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Abstract—Cooperative perception provides a novel way to
conquer the sensing limitation on a single automated vehicle and
potentially improves driving safety. To reduce the transmission
data volume, existing solutions use the intermediate data gen-
erated by convolutional neural network (CNN) models, namely
feature maps, to achieve cooperative perception. The feature
maps are however too large to be transmitted by the current
V2X technology. We propose a novel approach, called Slim-FCP,
to significantly reduce the transmission data size. It enables a
channel-wise feature encoder to remove irrelevant features for a
better compression ratio. In addition, it adopts an intelligent
channel selection strategy through which only representative
channels of feature maps are selected for transmission. To
evaluate the effectiveness of Slim-FCP, we further define a
recall-to-bandwidth (RB) ratio metric to quantitatively measure
how the recall of object detection changes with respect to the
available network bandwidth. Experiment results show that Slim-
FCP reduces the transmission data size by 75%, compared with
the best state-of-the-art solution, with a subtle loss on object
detection’s recall.

Index Terms—Automated vehicles, cooperative perception, 3D
object detection, feature fusion.

I. INTRODUCTION

Perception system on automated vehicles (AV) allows a
vehicle to collect information and extract relevant knowledge
from the environment, e.g., detecting objects [1]. Cooperative
perception, on the other hand, enables vehicles to share local
perception data with each other [2]. The prime reason for de-
veloping cooperative perception is maximizing the line of sight
and field of view of automated vehicles. The extended field
of view on automated vehicles will significantly improve the
recall performance on object detection on automated vehicles.
The major challenges of achieving this goal on connected
and automated vehicles (CAVs) lie in transmitting massive
amounts of rich sensor data between vehicles.

A. Main Challenges

There are two technical challenges we need to conquer
in designing an efficient and effective cooperative perception
solution. The first challenge is to diminish the feature map
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on spatial and channel domains with less sacrifice on perfor-
mance. While not all features are meaningful for the object
detection task, the irrelevant features can be removed before
transmission to save communication resources. Moreover, if ir-
relevant features can be accurately identified and replaced with
a reference number (e.g., zero), feature maps can be further
compressed to save network bandwidth. The perturbation on
feature maps caused by removing irrelevant features, however,
may affect the detection recall of an object detection model,
which degrades the performance of cooperative perception. In
other words, feature removal should not excessively sacrifice
performance, leaving us a big challenge on designing a proper
feature compression and removing mechanism.

The second challenge lies in the difficulty of channel
selection of feature maps to exchange amongst vehicles for
cooperative perception. While F-Cooper [3] reduces the trans-
mission data volume by only transmitting a subset of feature
maps, how to select the best set of channels for cooperative
perception remains an open question. The selection of im-
proper channels may lead to a significant drop in detection
performance, as the semantic information provided by the
received feature maps could become insufficient. The volume
of semantic information carried by different channels varies,
and identifying representative channels of feature maps helps
us achieve better performance with less resources needed.

B. Proposed Solution

To address the above-mentioned challenges, we propose a
lightweight feature-based cooperative perception (Slim-FCP)
for connected automated vehicles. The architecture of Slim-
FCP is shown in Fig. 1 which contains three major compo-
nents: channel-wise feature encoder and decoder, irrelevant
feature remover, and channel selection on feature maps. With
Slim-FCP, the feature maps produced by a convolutional
neural network (CNN) model will be encoded and significantly
compressed before they are shared. Here we assume two CAVs
to utilize the same detection model, as many works have
indicated that models on devices can be up-to-date periodically
from cloud or edge servers [4], [5].

While F-Cooper [3] replaces original raw data with fea-
ture maps to achieve cooperative perception, we argue that



Figure 1: Overall structure of Slim-FCP

feature maps can be further encoded by machine-learning
approaches. The parameters of a feature map can significantly
be reduced by feature encoding with negligible effect on
detection performance. To this end, we propose the semantic
information based encoder and decoder to reduce/recover the
parameters of transmitted feature maps. The encoder and
decoder design considers the channel dependencies that exist
on feature maps, i.e., we adopt channel-wise convolution
on the encoder to remove channel dependencies to facilitate
the following channel selection operation. By doing so, we
avoid the lacking channels problem from F-Cooper, which
alters the fusion results in many cases. For the decoder (on
the receiver side), we employ a deconvolutional layer and a
point-wise convolutional layer to decode the original semantic
information, by rebuilding the shape and channel dependencies
of the received feature maps.

Because not all features/parameters on a feature map are
meaningful for object detection, we propose a learning-based
irrelevant feature remover, which dynamically replaces irrele-
vant features with a reference number, increasing the sparsity
of a feature map and improving feature map compression ratio.
To deal with the situations of network congestion, or limited
network bandwidth, we propose a channel selection mecha-
nism to enable AVs to exchange fewer channels of feature
maps but achieve similar cooperative perception performance.
Unlike F-Cooper’s channel selection strategy, our solution
considers how much a channel can contribute to the object
detection task and how much redundant information a channel
carries, compared to already-selected channels. The proposed
channel selection strategy can eliminate the issues caused by
transmitting a random subset of channels in F-Cooper.

C. Contributions

The main contributions of this paper can be summarized
as follows. First, we propose a lightweight feature-based
cooperative perception framework for connected automated
vehicles, which significantly reduces transmission data volume
between CAVs, compared with the state-of-the-art feature-
based cooperative perception solutions. Second, to the best of
our knowledge, we are the first to explore what semantic infor-
mation contributes more to cooperative perception. Experiment
results show that a large portion of a feature map is useless
for object detection and can be removed for transmission
efficiency. Third, for extreme network conditions, e.g., with
network congestion, the proposed channel selection strategy
can achieve a similar detection performance by only transmit-
ting partial channels of feature maps. We verify that Slim-FCP
introduces negligible computation overhead on CAVs, and the
sacrifice on detection recall caused by channel selection is
acceptable. As proven in our experiments, both processing and
transmission times of Slim-FCP are tiny. Moreover, Slim-FCP
is generic and applicable to other systems, such as a vehicular
edge system, to enable a cooperative perception system with
the assistance of edge computing.

II. PRELIMINARIES AND BACKGROUND

With the rapid grown of edge computing [6], [7], more com-
plicated computing tasks are now implemented in a distributed
manner. It was shown that the sensing and detection ability
of automated vehicles could be enhanced by enabling the
communication between AVs to achieve so-called cooperative
perception [2], [3], [8], [9]. Objects that cannot be detected
by a single vehicle can easily be located, considering the
information from other vehicles.



Three types of information can be shared between vehicles
to achieve cooperative perception: (1) raw sensor data, (2)
feature maps generated from detection models, and (3) final
detection results. Cooper [2] allows CAVs to share raw LiDAR
data with others, thus significantly improves sensing range
and detection recall. However, raw data sharing can be a
huge burden to wireless vehicular networks. An automated
vehicle can generate LiDAR data at a speed 100 MB/s,
and sharing such a huge amount of data among vehicles
is unrealistic, even for a high-speed vehicular network. To
save network bandwidth, sharing final object detection results
to achieve cooperative perception introduces less traffic onto
the network. The performance of result-based cooperative
perception, however, is limited by the detection effectiveness
of individual vehicles. For example, a receiver vehicle can still
not detect the objects that have not been detected by other
vehicles.

To address this issue, the currently existing solutions uti-
lize the intermediate results processed by a detection model,
namely feature maps, to realize feature-based cooperative
perception [3], [10]. As most object detection models on
automated vehicles are CNN-based, feature maps produced
by a model’s feature extractors become accessible. A feature
extractor usually consists of several convolutional layers which
extract abstract features from raw data. The extracted fea-
tures, stored in a feature map, represent important semantic
information of the input data. Only features are treated as
the input for high-level machine learning tasks, e.g., object
detection and classification. By sharing feature maps among
vehicles, cooperative perception can be achieved with less
network traffic introduced. F-Cooper [3] allows vehicles to
share feature maps and fuse received and local ones to realize
a more precise object detection. When the receiving feature
maps complement their own ones, new semantic information
is added to improve the detection model’s performance. The
fused feature maps are generated by employing the maxout
function on two feature maps, which can be regarded as the
merging of these feature maps. As stated in F-Cooper [3], for
objects that cannot be detected on the individual vehicle, they
can be detected from fused feature maps, which is also the
main contribution of raw-data cooperative perception [2].

III. SLIM-FCP: LIGHTWEIGHT FEATURE BASED
COOPERATIVE PERCEPTION SOLUTION

Vehicular applications have less tolerance on high frame
processing delays [11], [12]; therefore, finding the right bal-
ance between performance and network resourcing and push-
ing data processing tasks from vehicle to edge is a significant
research task [13]–[15]. While F-Cooper enables cooperative
perception on CAVs by sharing feature maps, the size of
feature maps must be reduced before transmission to save
network bandwidth and decrease networking delay. To this
end, we propose to design (1) a channel-wise autoencoder, (2)
an irrelevant feature remover (IFR), and (3) a channel selection
mechanism, to reduce the size of the transmitting feature maps.

A. Channel-Wise Semantic Feature Encoder and Decoder

As feature maps are usually sparse and useful semantic
information is generally represented by a small portion of a
feature map, we propose to employ a channel-wise semantic
information encoder (on sender side), to encode feature maps,
and a point-wise convolution decoder (on receiver side), to
recover the original semantic information. The proposed au-
toencoder’s architecture is shown in Fig. 2 where 128-channel
feature maps are converted into 32 independent channels.
Although the proposed autoencoder can be configured to
support a higher conversion ratio, e.g., 128 to 16 channels,
we find converting (128 channels) to 32 channels provides the
best tradeoff between object detection recall and transmitted
data volume.

It is well-known that the semantic information within a
feature map is represented in both the spatial (h ∗ w) and
channel (c) domains, where h and w are the height and width
of feature maps, and c is the total number of channels. By an
autoencoder [16], the original 128-channel feature maps can
be converted into 32 channels, as shown in Fig. 2a. Introducing
the autoencoder aims to generate a concise representation of
the original feature maps, with reduced dimensionality, by
training the network to ignore noise/background information.
As the involved convolutional operations are applied to all
channels, the resulting features in 32 channels are correlated,
complicating the channel selection (which will be discussed
later). To mitigate this issue, making future operations on
independent channels, we further propose the channel-wise
feature autoencoder, which removes the correlations among
channels to produce 32 channels without channel dependency.
Different from traditional autoencoder [17], in our channel-
wise feature autoencoder, we set the group number equal to
the channel number in the convolution operations to ensure
one channel is processed by only one filter. Interested readers
can refer to [18] for more details on channel-wise convolution.

Correspondingly, we design a point-wise convolution de-
coder on the receiver side to recover the shape and semantic
information of received feature maps. To avoid the potential
issues caused by removing the channel dependencies from
the encoder, we adopt the point-wise convolution [18] to
rebuild the channel dependencies by using 1 × 1 kernels in
convolution operations. It is then followed by a deconvolution
layer to recover the spatial size of the received feature maps, as
shown in Fig. 2b. Our point-wise convolution decoder, together
with the channel-wise feature encoder, makes preparations for
future channel selection, and significantly reduces the size of
transmitted feature maps.

B. Channel Selection on Feature Maps

While different channels represent different semantic in-
formation after channel-wise convolution encoder, selecting
representative channels for transmission could be challenging.
Improper channel selection may cause a significant drop in de-
tection performance. To select the best channels for transmis-
sion, we consider both attention weights and the uniqueness
of semantic information contained in various channels.



(a) Channel-wise Feature Encoder (b) Point-wise Feature Decoder

Figure 2: Semantic feature encoding and decoding. (a) On the sender side, the to-be-transmitted feature maps first go through
a convolutional layer, composed of 32 3× 3 filters, which reduce the size of each feature map from w× h to w/2× h/2. The
resulting feature maps are then processed by a channel-wise convolutional layer (3 × 3 kernels) to produce 32 independent
feature maps. The 32 feature maps are finally transmitted to the receiver. (b) When a set of feature maps are received, the
receiver adopts a point-wise convolution layer and a deconvolution layer to recover the semantic information carried in the
original feature maps.

Attention weight based channel selection. To weigh the
importance of channels, we produce the SENet channel atten-
tion module [19] as shown in Fig. 3. Literature also states that
the magnitude of feature value on feature maps can represent
the strength of features [20] for 3D detection tasks. As the
final output feature maps are the element-wise multiplication
product of attention weight and input feature maps, we indicate
that channels with higher attention weight contain more im-
portant semantic information than other channels. The channel
attention module is adopted after the channel-wise feature
encoder, and the output feature maps are computed as follows,

f i = Fscale(f
i
0, w

i) = f i0 ⊗ wi,∀i = 1, 2, · · · , 32, (1)

where f i0 is the i−th channel of input feature map, and Fscale

denotes the element-wise multiplication, and f i is the final
output feature map of the attention module.

Semantic information based channel selection. However,
channels selected by attention weight have its limitations.
The semantic information carried by different channels may
be repetitive. E.g., since laser becomes sparse when distance
increase, near objects are more likely to have a prominent
feature on the feature map, and channels that carry semantic
information from the near region are more likely to have higher
attention weight. Simply selecting channels with high attention
weights may lead to a drop-down of detection performance on
a certain region, e.g., a relatively far region.

For convolutional feature maps, if several channels represent
repetitive semantic information, the diversity of these channels
should be small; therefore, the distance between channels is
also small. By contrast, a channel’s semantic information is
irreplaceable if the channel is different from other channels.
Based on the above finding, we consider the redundancy of se-
mantic information carried on different channels by measuring
its norm distance to all neighbor channels. Similar to [21], we
name the distance measuring process as feature map entropy,
which helps us select representative channels of feature maps.
Specifically, we construct a channel distance matrix di for

i − th channel on feature map, in which di contains the
distance to k nearest neighbor channels. In this case, we
measure the distance between channels by Euclidean distance
dij = ‖f i − f j‖. Then we compute the average distance of
i− th channel to its k nearest neighbors as follows,

Ai =
i∑

k=1

dik/k. (2)

The larger the average distance Ai is, the channel is away from
other channels, and more irreplaceable semantic information
is carried by channel i. That is to say, channel i can be con-
sidered a representative channel for transmission. Therefore,
the corresponding channel contains more semantic information
and should be selected for transmission. With the consideration
of the semantic information redundancy across channels, we
avoid the potential semantic information lack in a specific
region, e.g., a far area with fewer point clouds been collected.

In the experiment, we jointly consider the attention weight
and uniqueness of semantic information for channel selection,
cover the whole physical region with fewer channels, and avoid
excessive sacrifices on the detection performance after fusion.
We discuss our detailed implementation in the experiment
section.

C. Irrelevant Feature Remover

In addition to channel selection, classic data compression
solutions can also be leveraged to reduce the size of transmit-
ted feature maps, and increase the communication efficiency
and network capacity [22]. A key observation is that irrelevant
features in feature maps can be removed with negligible
effect on CNN-based models [23], [24]. If we remove those
irrelevant features from feature maps and set their values to a
constant number, a much better compression ratio on feature
maps can be achieved. A common approach to removing
irrelevant features is the mask-based feature remover [23],
which computes a mask associated with each pixel in a feature
map. The remover mask replaces irrelevant information with



Scenario Dataset Cooper [2] F-Cooper [3] Slim-FCP w/o CS Slim-FCP
Near Far Near Far Near Far Near Far

Multi-lane Roads KITTI 76.89 64.19 72.91 59.14 72.47 58.34 70.83 54.37
Road Intersections T&J 69.27 57.33 65.50 52.61 64.72 52.15 61.75 48.02

Parking Lots T&J 65.03 52.42 61.76 46.12 61.38 45.70 57.84 40.56

Table I: Recall comparison among Cooper [2], F-Cooper [3], Slim-FCP without Channel Selection, and Slim-FCP (%).

the pre-defined perturbation, e.g., a reference number or noise.
The remover is defined as the follows,

[Φ(f0;m)(p)] = m(p)f0(p) + (1−m(p))ξ, (3)

where p is one pixel of input feature map f0, m(p) ∈
[0, 1]C∗H∗W is the corresponding mask value associated with
pixel p. The choices of a reference number can be a constant
value ξ, as stated in Eq. (1).

To seek a higher compression ratio, we use the constant
number “zero” as the reference in the mask. Taking zero as the
reference also saves the computational effort and contributes
to the consistent output of the model, as stated in [24]. With
the irrelevant feature remover, the background and irrelevant
area on the feature map is changed to zero. Meanwhile,
the prominent area on the feature map is nearly unchanged,
allowing us to compress feature maps with a high compression
ratio.

As the irrelevant feature remover perturbs the feature maps
with masks, we still hope to keep the consistency of the
detection output of our model. Therefore, we define a distance
metric ρ(f, f0), where the f represents the output feature
maps of irrelevant feature remover, to measure the cosine
distance between two feature maps. The distance must be
small if two feature maps are similar, which means a relatively
consistent detection output; otherwise, it means a deviation
on outputs. Therefore, this distance metric can ensure the
output consistency of our model, and be optimized along
with the model during the training process. The overall mask
operation and optimization for irrelevant feature remover can
be summarized as follows.

f(p) = m(p)f0(p), (4)

m(p) = arg min
m(p)

{ρ(f, f0) + λ · ||m(p)||1}. (5)

Here, the L1 norm of m(p) keeps the sparsity of the mask,
and most pixels are zero, leading to the output feature maps
being sparse. Only prominent and crucial semantic features
remain on feature maps, and those areas on the feature map
correspond to the large values on the generated feature masks.

IV. EXPERIMENT AND RESULT EVALUATION

In this section, we evaluate the performance of Slim-
FCP compared with the baseline feature-based cooperative
perception solution, F-Cooper [3].

Figure 3: Attention module from [19]. The global average
pooling operation generates the channel-wise statistics of
input feature maps. The following two fully connected layers
build the channel dependencies of the output weight, and the
Sigmoid function maps the weight to [0, 1]. The attention
weight scales with the input feature maps at the end of the
attention module.

A. Experimental Setup

We evaluate our Slim-FCP on both KITTI [25] and T&J
datasets [3]. KITTI is a well-known vision benchmark dataset;
however, as it is not created for cooperative vision processing
tasks, it offers a limited amount of data to evaluate cooperative
perception solutions. In KITTI, the data collected by one
vehicle at two different time instances are considered as if
generated from two different vehicles. To evaluate cooperative
perception solutions in a more realistic setting, we extend the
T&J dataset provided by F-Cooper by including more driving
scenarios. The T&J dataset contains more new scenarios,
e.g., road intersection and parking lots. In total, we use
approximately 1, 600 and 800 sets of data for evaluation from
the T&J and KITTI datasets, respectively. In experiments, the
detection region of the automated vehicle (equipped with a
Velodyne VLP-16 LiDAR sensor) is [0, 70.4], [−40, 40] and
[−3, 1] meters along the x, y, and z axles. We define objects
within 20 meters from the receiver vehicles are in the “near”
category, and those beyond this range are in the “far” category.

B. Cooperative Detection Recall

We dive into the details of how Slim-FCP performs on
detecting 3D objects, against the baseline F-Cooper [3], and
the raw data fusion solution, Cooper [2]. We report our results
with the IoU (Intersection over Union) threshold equaling
to 0.7, and the detection confidence score threshold is 0.5.
We take the top 10 unique channels for channel selection,
according to two selection strategies, namely attention weight,
and semantic information channel selections. We set nearest
neighbor number k = 5 for distance computation among



channels. The total number of the selected channels for
transmission is 20.

The comparison results are shown in Table I where “Slim-
FCP w/o CS” represents a simplified version of Slim-FCP
which does not implement the channel selection mechanism.
For the “near” category, we observe that the recall of Slim-
FCP w/o CS is similar to F-Cooper’s on the KITTI dataset.
The recall gap of two approaches is less than 1%. For road
intersection and parking lots cases, the recall decrease is not
as apparent as on the multi-lane road cases. The main reason
is that the road intersection and parking lots cases are from
the T&J dataset, which is low-resolution data compared to
the KITTI dataset and is less sensitive to the tiny changes
in detection performance. The recall decrease is also incon-
spicuous for the “far” category, which is about 0.5% in all
cases. In summary, the detection recall is very similar between
F-Cooper and Slim-FCP w/o CS, meaning that the effective
representation of semantic information on feature maps is not
apparently affected by semantic feature encoder and irrelevant
feature remover. The slight decrease in the recall is mainly
caused by encoding, as slimming feature maps reduce a large
number of parameters and inevitably drop a tiny part of
semantic information.

To verify the performance of Slim-FCP when it enables
channel selection, we show the recall comparison results in
Table I. For the “near” category, the recall decrease of Slim-
FCP on the KITTI dataset is approximately 2%, while on
the T&J dataset, it is about 4%, compared to F-Cooper. It
makes sense that a high-end LiDAR sensor is used to collect
the KITTI dataset; therefore, the corresponding feature maps
contain more semantic information and have better resistance
capacity against channel selection. For the “far” category,
Slim-FCP performs well on open-area cases, such as multi-
lane roads and intersections, with about 5% recall decrease. In
the parking lots cases, the decrease is slightly larger. Due to the
occlusion, features from far areas become inconspicuous. The
Slim-FCP further partially discards the features by channel
selection, leaving us a slightly larger decrease on recall.
However, even so, the recall of Slim-FCP in the parking lots
cases is still over 40%. Most mis-detected vehicles are either
very far from the source vehicles or highly occluded in a
certain position. These objects are considered lower priority
objects and can be easily detected with streaming feature
sharing.

Moreover, we argue that our channel selection keeps Slim-
FCP running when network bandwidth is limited, while other
approaches may not work in such a situation. Due to the trans-
mission data volume required by non-selection approaches,
receivers may not receive messages or receive outdated mes-
sages that are useless. Meanwhile, our Slim-FCP with channel
selection performs well with a slight sacrifice on recall even in
this extreme situation. More importantly, Slim-FCP still keeps
the cooperative perception working with limited bandwidth
resources. Moreover, slimming messages by channel selection
enables more AVs to participate in cooperative perception,
compensating the performance gap between non-selection and

selection approaches. For situations with smooth network
communication, CAVs should adopt the Slim-FCP w/o CS for
the best detection result.

Figure 4: Comparison on data volume using different com-
pression approaches

C. Transmission Data Size

Fig. 4 shows the comparison of different cooperative per-
ception approaches on transmission data size. F-Cooper uti-
lizes a lossless data compression method Deflate [26], and
the compressed data size is about two-thirds of the raw
data. For Slim-FCP, the transmission data size is reduced
to 0.485 MB even without the irrelevant feature remover
(IFR). The compressed data size of Slim-FCP is significantly
reduced to approximately 0.17 MB with IFR enabled, which
is only one-fifth of the raw data. The large decrease in data
size indicates that a significant proportion of features on
feature maps are irrelevant features and can be removed with
negligible effect on detection. The data size can be further
reduced to about 93 KB when Slim-FCP enables the channel
selection mechanism. In our experience, we replace Deflate
with the LZMA algorithm [27], another widely used lossless
compression algorithm, and increase the compression ratio. By
comparison, the transmission data size of Slim-FCP can be as
small as 67 KB with channel selection for extreme cases such
as network congestion and computational resource limitation.

D. Recall/Bandwidth Ratio

As indicated in [28], [29], bandwidth efficiency is one
of the most important factors for edge-based applications.
To demonstrate how Slim-FCP outperforms other approaches
on bandwidth efficiency, we introduce a term called Re-
call/Bandwidth ratio (RB ratio). Here, we define the band-
width as the size of data shared by a certain approach every
second to enable cooperative perception. As shown in Fig 5,
Cooper, the raw data cooperative perception solution requires
the most bandwidth among all approaches, leading to a low RB
ratio. By sharing feature maps instead of raw data, F-Cooper
performs better on bandwidth efficiency than Cooper, which is



Figure 5: Comparison on Recall/Bandwidth ratio among dif-
ferent approaches

about 50% RB ratio improvement on both near and far cate-
gories. Meanwhile, Slim-FCP greatly outperforms F-Cooper
on bandwidth efficiency. The RB ratio is approximately 3
times better than F-Cooper even without channel selection
and it increases to 6 times with channel selection enabled.
This dramatic difference shows the great improvement in
the bandwidth efficiency of Slim-FCP and the robustness of
detection performance when limited network bandwidth is
available.

E. Processing and Transmission Delay

The computation burden introduced by Slim-FCP is negli-
gible for processing units on CAVs, making our processing
time very close to F-Cooper, which is about 20 fps. For
transmission delay among CAVs, we compute the delay based
on the 5G NR based C-V2X [30], the future networking
protocol for V2X communication. Suppose the LiDAR sensor
collected data at 10 Hz, and the conservative transmission data
rate is 100 Mbps in the 5G NR based C-V2X [30]. Taking the
Slim-FCP with channel selection as an example, the total time
required to transmit one piece of LiDAR data from a vehicle
to an edge server (or another vehicle) is about 50 ms, and
this delay introduced by C-V2X is acceptable for cooperative
perception on CAVs.

F. Channel Selection Strategy

Our channel selection module produces two strategies for
selecting representative channels: attention weight and se-
mantic information based channel selection. To find the best
combination of channels selected by two strategies, we hope
to identify how performance evolves with different channel
selection strategies. To this end, we compare the performance
of five different selection groups, in which each option picks a
different number of channels by two strategies. Channels are
first picked up based on attention weight, and then the seman-
tic information to ensure no repetitive channels exist in the

Figure 6: Cumulative Distribution Function vs. Range of
detected objects in meters

Figure 7: Recall comparison of Slim-FCP among different
channel selection strategies. The first and second numbers
are the number of channels selected by attention weight and
semantic information, respectively.

selection results. As shown in Fig. 7, the recall of Slim-FCP
increases when more channels are selected for transmission.
The recall of groups with 15 channels are backward to groups
with 20 channels on both “near” and “far” categories since the
volume of semantic information is in direct ratio to the number
of selected channels. For group 3 to 5, which contain the same
number of channels, groups with more channels selected by
attention weight (group 3) prioritize detecting “near” objects.
As discussed above, channels representing semantic informa-
tion from “near” objects are more likely to have large attention
weights. By comparison, groups with more channels selected
by semantic information have better detection recall on “far”
objects. Two strategies seem to compensate for detecting
objects with different distances. When we increase the number
of channels selected by semantic information based strategy,



the recall on the “far” category increases accordingly. To
leverage the benefit of both selection strategies, we take group
5 as our primary evaluated approach, which picks ten unique
channels by each selection strategy.

G. Effective Detection Range

As the increase of detection range is the main benefit of
cooperative perception on CAVs, we compare F-Cooper to our
Slim-FCP with channel selection enabled. Here we omit the
comparison between F-Cooper and Slim-FCP without channel
selection since they are very similar in detection range. We
illustrate this comparison in Fig. 6, which shows the difference
in the detection range of the two approaches. As we can see,
89% of detected objects by Slim-FCP are within 30 meters,
while F-Cooper is 72%. This illustrates that our approach
performs similarly with F-Cooper to detect objects within
30 meters, which is the high priority area for autonomous
driving. The difference becomes apparent in detecting distant
objects (over 30 meters). The maximum detection range of
Slim-FCP with channel selection is about 42 meters, and only
11% of detected objects have a distance of over 30 meters. In
contrast, F-Cooper performs better in detecting these objects
and has a maximum detection range of 53.4 meters. This is
another evidence to show that the channel selection strategy
affects more on objects that do not have a prominent feature
on feature maps. However, since channel selection potentially
enables more AVs to participate in cooperative perception,
this weakness can be compensated by feature maps from
other nearby CAVs. Some feature enhancement strategies also
provide a novel way to improve the detection performance on
those distant objects [20].

Figure 8: Recall improvement of Slim-FCP with multiple AVs

H. Slim-FCP on Multiple CAVs

We discuss how the number of participating AVs affect
the performance of cooperative perception in this section, and
compare the recall with multiple-AV cases on Fig. 8. Cases

are evaluated on Slim-FCP with channel selection enabled, and
the distance between sender and receiver is at least 12 meters.
As shown in Fig. 8, the recall increases significantly when
more AVs participate. This drastic difference proves that the
missing semantic information caused by channel selection can
be complemented by feature maps from other nearby AVs. The
number of participating AVs determines the performance of
cooperative perception. For an open detection region like our
Slim-FCP (80× 70.4 m2), five participating AVs can achieve
satisfactory detection results for the whole area. More AVs
may need to participate to guarantee the performance when
more occlusion occurs on the region, e.g., heavy traffic roads.
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V. CONCLUSION

In this paper, we propose a lightweight feature based
cooperative perception idea on CAVs, which significantly
reduces the size of the transmission data required by fea-
ture based cooperative perception solutions. Specifically, we
design a semantic feature encoder to further slim the size
of feature maps and remove irrelevant features using the
irrelevant feature remover. To encounter extreme cases such
as possible bandwidth limitation, we propose our channel
selection strategy to select representative channels on feature
maps for transmission. Compared with previous state-of-the-
art approaches, the size of compressed feature maps of Slim-
FCP is only 1/4 of them, with a slight sacrifice on recall.
Our experimental results show that Slim-FCP works well for
detecting objects on various road environments, enables more
automated vehicles and road infrastructures to participate in
the cooperative perception with a limited amount of compu-
tational and network resources. We believe our Slim-FCP is
very computational efficient with an acceptable trade-off on
performance and will help the cooperative perception tasks on
automated vehicles for better driving safety.
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