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Abstract—Autonomous vehicle systems require sensor data to
make crucial driving and traffic management decisions. Reliable
data as well as computational resources become critical. In this
paper, we develop a Vehicular Edge Computing FRAMEwork
(VECFrame) for connected and autonomous vehicles (CAVs)
exploring containerization, indirect communication, and edge-
enabled cooperative object detection. Through our framework,
the data, generated by on-board sensors, is used towards various
edge serviceable tasks. Due to the limited view of a vehicle,
sensor data from one vehicle cannot be used to perceive road
and traffic condition of a larger area. To address this problem,
VECFrame facilitates data transfer and fusion and cooperative
object detection from multiple vehicles. Through real-world
experiments, we evaluate the performance and robustness of our
framework on different device architectures and under different
scenarios. We demonstrate that our framework achieves a more
accurate perception of traffic condition via vehicle-edge data
transfer and on-edge computation.

Index Terms—Edge computing, Connected autonomous vehi-
cles, Vehicle-edge system, Cooperative computing, Performance
analysis.

I. INTRODUCTION

Autonomous vehicles are becoming more and more relevant
in today’s society. There is no denying the benefits of an
autonomous vehicle in terms of driver and pedestrian safety.
By delegating the driving decision to on-board computing
units, the driver-related issues such as driving under the
influence and other human operating errors are significantly
reduced. In addition to the safety benefits, we are also wit-
nessing a blossom of various other uses [25], [40], [32], with
amber alert detection and collusion avoidance being the most
prominent [41].

To facilitate the self-driving process, various sensors need to
relay their sensing data of the surrounding environment to the
on-board computing unit. This is usually handled by an array
of sensors such as the LiDAR, cameras, radar, GPS, IMU,
and more. Due to the vast array of sensors, it is estimated
that an autonomous vehicle will generate 4 terabytes of data
or more in two hours [2]. To enhance driving, connected
and autonomous vehicle (CAV) technology enables raw-data
level and feature-map level data sharing among vehicles [10],
[11], [6], which utilizes extraneous data from other vehicles

to drastically improve the detection capabilities of a single
vehicle.

Currently, most car manufacturers focus on uploading their
data to the cloud. However, the expensive data transmission,
exacerbated network congestion and prolonged latency be-
tween vehicles and the cloud make real-time object detection
inaccurate if not infeasible.

In this paper, we contribute our system, vehicular edge
computing framework (VECFrame), for the transfer and fu-
sion of images between vehicles and edge nodes to achieve
cooperative perception. We test the use of edge nodes as a
targeted and purposed system to facilitate the exchange of
large sensor data towards safer driving. VECFrame utilizes
the benefits of the close proximity of vehicles to edge nodes
to achieve direct and unfettered data dissemination and usage,
thereby allowing for a variety of use cases. We introduce an
efficient approach using modular containers in a framework
to disseminate data between vehicles and edge nodes, and
achieve a scalable framework towards cooperative perception
tasks through facilitating the flow of data. Our VECFrame
system opens up the data for more immediate processing
on edge nodes closer to vehicles. As the current bottleneck
for data exists in the limited means of communication, we
incorporate the power of edge with our system, mitigating the
bottleneck through the edge. We develop VECFrame through
containerization so it is scalable and platform independent. To
ensure that VECFrame can handle real-world communication
and computation loads, we rigorously test our VECFrame in
our experimentation.

We have implemented a prototype of VECFrame and eval-
uated its performance on a real CAV-edge test platform.
The experimental results show the developed VECFrame
achieves a horizontal scaling with more hardware utilized by
VECFrame. VECFrame can successfully handle cooperative
object detection in a scalable fashion. Experiments also show
that VECFrame is capable of disseminating data in a facilitated
manner through the edge servers with an increase of 40% to
350% in throughput with the edge as opposed to without.

The rest of the paper is organized as follows. We introduce
related works in Section II. We outline the design principals in
Section III and describe the details of VECFrame in Section
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IV. We show the computational workflow in Section V and
detail our experimentation and results in Section VI. Finally,
we conclude our paper and discuss future works in Section
VII.

II. RELATED WORKS

In 2014, the Society of Automotive Engineers(SAE) inter-
national announced in at the Taxonomy of automated driving
technology the SAE J3016 standard that helps define levels of
autonomy in vehicles[5].

In the J3016 standard, the process of going from full manual
to full automation goes through 6 main stages, with each stage
highlighting a level of automation. However, in the develop-
ment process of autonomous vehicles, we encounter two paths,
intelligence and networking. Just as a human, the autonomous
vehicle must have both intelligence and networking to fully
succeed the human in the task of full self driving.

Modern vehicles have access to radio and cellular technolo-
gies that allow for constant connectivity [37]. The commu-
nication by the vehicles leads to the realization of Vehicle
to X (vehicles, infrastructures, roads, people, cloud, etc.).
Autonomous vehicles goes a step beyond these by adding
powerful onboard sensors and computational devices.

Vehicular communication through DSRC [22] and cellular
data are the two widely used technologies. With 5G in de-
ployment across the world, we see even more avenues being
opened up [42]. A recent work [42] studies the advantages
and limitations of these technologies from both technical and
non-technical perspectives.

With the public adoption of autonomous vehicles, all vehi-
cles, both autonomous ones and human operated ones, will be
able to benefit from the information that autonomous vehicles
can provide, should communication between the former and
latter become possible [42]. In [19], challenges are presented
as the widespread deployment of autonomous vehicles will
impact multiple sectors of society.

Going further in this direction, [33] develops a Vehicle to
X framework that studies the collaboration between devices,
edge servers, and cloud services. Similarly, Liu et al. analyze
the interaction of the Human and vehicle under the modern
understanding of driving assistance as well as autonomous
features [26].

In works such as [23] and[9], the potential of IoT and Edge
are discussed. Tasks such as low latency demand as well as
distributed computing as easily achieved through edge devices.
Tasks such as deep learning can be approached by the edge in a
distributed computing method [9], [17]. Issues like scheduling,
power consumption and security in edge computing are studied
in [12], [39], and [36].

A pioneering work on vehicular edge computing for video
crowd sourcing is presented in [43]. Here, Zhu et al. present a
novel method of turning public transportation mediums such as
busses and taxis into vehicular fog nodes. With this approach,
the edge computation is able to reach many more vehicles than
through stationary service points. However, in [43], they also
point out the deficiencies of using direct video transmission.

Recently, Franke et al. address the barriers and challenges
that autonomous vehicles face in urban traffic [13]. Addition-
ally, work such as [34] introduce and implement low power
systems targeting OBU units in autonomous vehicles. These
works highlight the issues facing autonomous vehicles when
relying only on the enclosed system without edge.

Additional research into how Edge can be dynamically
optimized, based on the algorithm used or based on the use
case, are examined in works such as [28], [27], where Luo
et al. propose an algorithm based approach to adapt the
scheduling of the edge based on priority. Luo et al. also
emphasize the constraints faced by the limited resources a
edge node has available when tasked by multiple vehicles.

III. DESIGN PRINCIPLES OF THE CAV-EDGE FRAMEWORK

With a better understanding of the barriers and challenges
of using edge computing for CAVs, we design VECFrame, a
Connected Autonomous Vehicle-Edge framework, to support
lightweight and agile data processing for CAVs. To manifest
the advantages of edge computing, we adhere to the following
ideologies while designing our framework. VECFrame must
be data-friendly, adaptable, and scalable. (1) VECFrame is de-
signed for facilitating sensor data transmission and processing,
therefore, it must be data friendly and can handle huge amount
of data transferred from vehicles to edge nodes and processed
on the edge. (2) VECFrame must also be adaptable, in terms
of running various types of applications written in different
program languages and executed on heterogeneous hardware.
(3) Last but not least, VECFrame needs to be scalable; There is
likely a large number of vehicles at a location of a reasonable
service zone. The performance of edge communication and
computation should scale well to accommodate the increased
number of requests and amount of data.

A. Efficient Data Dissemination

V2X communications of autonomous vehicles have been
a hot research topic, e.g., the PROMETHEUS and PATH
projects in Europe and United States, respectively [21], [7].
The recent advent of cooperative perception techniques [10]
require far more data than what traditional V2X can support.

With the existing V2X techniques, the information is broad-
cast to all nearby vehicles or unicast to specific vehicles. It is
not clear, however, what information is sent to which vehicles,
leading to an inefficient data dissemination for CAVs. This
problem becomes even worse when massive amount of sensor
or feature map data need to be transmitted between vehicles
and infrastructures [10], [6].

To make good use of the limited network bandwidth avail-
able for vehicular communications, it is critical to design an
efficient data dissemination mechanism for CAVs. To this end,
we adopt the publish-subscribe paradigm [20] in VECFrame,
which supports efficient information dissemination between
vehicles and edge nodes. Specifically, we make use of the
Message Queuing Telemetry Transport (MQTT) [18] and
Wget protocols [4] to achieve efficient data dissemination for
CAVs.
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B. Adaptability

To ensure our VECFrame framework is capable of handling
a wide variety of use cases and workloads, we need to
make it adaptable so that different algorithms/programs can
be packaged into individual modules which are then deployed
in a flexible manner. In the current day workflow, a myriad
of different languages are used for different programs, and
this has both positive and negative effects. For autonomous
vehicles, there is no set of defined guidelines that all man-
ufacturers follow. Take Nvidia PX2, the OBU for our CAV
enabled vehicle, for example, while the processing unit is
powerful, countless issues arise when custom code is ran on
the hardware. More modern versions of this type of OBU, such
as the Drive PX Pegasus or Drive AGX [3], are more open
and support more customization, but they are still packaged
systems with constraints. Different operating systems, chip-
set architectures, software versions and other constraints tie
down and restrict the usefulness of a tailored program. To
address these issues, we explore containerization techniques in
VECFrame. Containers are lightweight and agile for running
modular edge workloads, due to the fact that they share the
same kernel [38].

C. Scalability

As time progresses, we will start to see more and more
autonomous vehicles on the roads. This increase will require
VECFrame to be scalable in order to accommodate the growth.
There are two methods of upscaling a system: vertical and
horizontal [16]. Vertical scaling entails an increase in hardware
performance while horizontal scaling entails an increase in the
number of devices. In this paper, we concentrate on horizontal
scaling, leaving the vertical scaling as an issue for future
research.

With the increase in vehicles, wide-spread data transmission
would cause the vehicle on-board unit (OBU) to become the
bottleneck of data dissemination, due to its limited resources,
taxing the resources needed for reliable data processing. To ad-
dress this bottleneck problem, we leverage edge devices/nodes
to handle scheduling and deep learning-based processing of
vehicular data. The scalability of edge nodes can be tackled
by either scale-up (i.e., using more powerful edge nodes)
and/or scale-out (i.e., using more edge nodes). It is cost and
energy efficient to achieve horizontal scaling by means of
containerization and edge computing.

IV. VECFRAME: A CAV-EDGE COMMUNICATION AND
COMPUTATION FRAMEWORK

Between manufacturers and car models, there are different
hardware and software in the available and upcoming au-
tonomous cars. Adding to the fact that we need to account
for a scalable solution for our framework, we consider using
containers in our VECFrame framework.

As Docker is an industry standard for containerization, rapid
development and deployment of programs, and it is built to
accommodate horizontal scaling through the use of kubernetes,
swarm, or other solutions that supports docker containers [8].

Fig. 1: An edge-centric communication and computation sys-
tem is formed in the scenario where roadside edge node(s)
facilitates data dissemination and processing to reduce con-
gestion and delay.

It is for this reason that we decide to build VECFrame with
modular containers rather than an single purpose and platform
bound program.

A. VECFrame Communication Subsystem

The on-board units of autonomous vehicles leverage the
computational resources available on edge nodes to perform
computational tasks.

Edge nodes are owned by edge service providers, e.g.,
telecom companies or state departments of transportation. Car
manufacturers setup service agreements with the edge service
providers, as well as obtain the required mechanisms to coor-
dinate with roadside edge nodes. Moreover, the security and
privacy protection measures are entailed through the service
agreement and are tied in with the handshaking and discovery
process.

A vehicle can discover edge nodes, and their provided
services, through a service discovery process. Depending on
the edge service providers, the service discovery processes
might not be necessarily the same. Through such services,
a vehicle learns the security mechanisms adopted by the edge
nodes, computational resources available for request, service
APIs, etc. Based on the obtained information, a handshake
process is initiated between a vehicle and an edge node to
ensure the vehicle is connected to the edge.

After a connection is built, the vehicle will coordinate
its current tasks with the edge node, e.g., offloading certain
tasks to the edge. The edge node, on the other hand, could
retrieve data collected by the vehicle or multiple vehicles to
accomplish its own task. As data from other vehicles could
be useful and/or needed by the edge node(s) to perform
tasks such as cooperative perception, a collective communi-
cation mechanism is needed in VECFrame. For an effective
collection/dissemination of data for different tasks (topics),
we exploit the publish-subscribe paradigm in VECFrame’s
communication subsystem.
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Fig. 2: Vehicles and edge nodes run VECFrame container
based workflows.

One major benefit of VECFrame is that the computational
results obtained on the edge nodes can be broadcast to the
associated vehicles, saving computational resources on these
vehicles. Most importantly, several tasks such as obtaining
real-time mapping information must be done through the
edge servers, due to the limited field of views on individual
vehicles. Fig. 1 shows an edge-centric communication system
where vehicles, traffic infrastructure (e.g., smart cameras on
traffic lights), and other smart objects/devices send/receive
data to/from edge nodes collectively or individually to perform
CAV and smart transportation related tasks. Because the
edge becomes not only the data processor but also the data
facilitator, we anticipate an overall reduction in network traffic
and congestion. Without the introduction of edge nodes, data
needs to be transmitted multiple times to multiple destinations.
This is not only redundant but also costly, which is examined
in Section VI.

There are distinctive advantages of this design, e.g., fos-
tering interoperability is one of them. Traditionally, vehicles
made by different manufactures cannot communicate with
each other, even with the DSRC standard being employed as
the main protocol for vehicular communications. Through the
edge nodes, however, different vehicles can share their data
between each other and with the traffic infrastructure. Besides
interoperability, efficient data dissemination can be achieved;
only the relevant vehicles which are interested or involved in
certain tasks will participate in data exchange, which makes
both network communication and edge computing efficient.
This is achieved through a publish-subscribe paradigm em-
ployed in the framework, which is detailed in Section V-A.
In addition, the edge nodes provide an extra layer of security
and privacy protection to vehicles, which either share their
sensor data to others or consume the data provided by the local
edge without going through the public Internet or possible
leakage in the cloud. With this in mind, VECFrame opens up
opportunities for more secure applications to be developed and

Fig. 3: Task facilitation and result dissemination using a
publish-subscribe paradigm.

deployed on CAVs.

V. VECFRAME COMPUTATION WORKFLOW

Starting with the task type, we know from works such
as [40], [41] that edge servers can service anything from
emergencies to infotainment. With tasks ranging from time
critical to mundane entertainment, an edge server needs to
prioritize its service schedule. Before a task is accepted, an
edge server evaluates if there are sufficient computational re-
sources that are suited for the requested task. This is achieved
in the handshaking process in which a vehicle requesting edge
computing service needs to communicate its task as well as
its credentials as part of the handshake process. Based on
the specific needs, an edge node either accepts or denies the
vehicle’s requests.

When a requesting task is accepted, the edge node converts
the request into multiple modules to support parallel process-
ing and reliable computing. As seen in Fig. 2, the vehicle
has two lightweight components (as containers) that handle
data exposure and data reception separately. This separation
allows for enhanced data isolation, i.e., only the data allowed
for sharing is exposed to an edge node. The sensor data
of a vehicle is dynamic, and with communication and task
priority in mind, VECFrame distincts data exposure versus
data uploading. Exposing data and uploading data are two
different concepts in our framework. Exposing data makes the
data available so that an edge node handles its scheduling.
Whereas data uploading prepares the data at the time of
upload, requiring precious OBU resources.

After data has been received by the edge node, it passes
the received data to the appropriate workflow components (as
containers) for processing. For example, the data received from
multiple vehicles or the traffic infrastructure is aggregated first
to ensure all sensor data are placed into the same coordinate
system. To achieve this goals, the location information of
contributing vehicles (or roadside infrastructures), and the
configuration and calibration details of these sensors are
needed by the edge nodes. Aggregated data is then be fed
into the fusion module, which effectively fuses the data gen-
erated from multiple vehicles. Different data fusion algorithms
might be applied in this module, for example, a feature map

471

Authorized licensed use limited to: University of North Texas. Downloaded on May 30,2022 at 16:58:35 UTC from IEEE Xplore.  Restrictions apply. 



based fusion solution could be appropriate for LiDAR data
fusion [10]. With the fused data, an object detection module
is executed to discover the locations and types of objects in
the fused data. Again, depending on the nature of the fused
data and the edge node’s current load, an object detection
algorithm is performed. There are many 2D and 3D object
detection algorithms available for CAV applications, e.g., those
listed on the KITTI website [15]. VECFrame provides an
open framework where different object detection algorithms
can be employed and evaluated. Finally, the object detection
results based on the fused data are then made available to all
vehicles that subscribed to this information (i.e., topic). The
dissemination module efficiently multicasts the obtained object
detection results to the interested vehicles.

The entire data processing is decoupled into multiple mod-
ules, i.e., data aggregation, data fusion, object detection, and
results multicast, which improves the system’s robustness,
adaptability, and interoperability. More importantly, the algo-
rithms (e.g., data fusion, object detection, and multicasting)
employed in different modules can vary to accommodate
different CAV applications and available resources on edge
nodes.

A. Effective CAV-Edge Communication

Efficient data communication is important in VECFrame,
due to the sheer amount of data that needs to be exchanged
between vehicles and edge nodes. It is not affordable if the
sensor data is transmitted multiple times or re-transmitted due
to security issues. As studied by Intel, an autonomous vehicle
equipped with high end sensors such as LiDAR can generate
around 4 terabytes of data in two hours [31], [2]. In addition
to the sheer quantity of data, we also need to consider the
integrity of the data after transmission.

In Fig. 2, data generation (vehicles) and consumption (edge
nodes) are separated from each other. In VECFrame’s publish-
subscribe subsystem, a broker (which can reside on an edge
node) maintains a list of topics and vehicles (as data gen-
erators) publish their sensor data via the broker. Through
the usage of this subsystem, the edge can effectively handle
multiple different types of workflow through piping the needed
data from the necessary containers. This process reduces the
workload. Both vehicles and edge nodes subscribe certain
topics maintained by the broker. When new data arrives, the
broker notifies the subscribers in various manners, based on
the characteristics of the data. The broker can be deployed in
a distributed manner, e.g., on multiple edge nodes, to achieve
a better scalability and reliability.

From this, we exploit the MQ Telemetry Transport (MQTT)
[18] as the result dissemination protocol in VECFrame. MQTT
is a publish/subscribe, extremely simple and lightweight mes-
saging protocol, designed for constrained devices and low-
bandwidth, high-latency or unreliable networks.

Since the raw data costing more bandwidth, efficient and
reliable transmission is critical. We have tested a myriad of
communication protocols as seen in Fig. 4 for both through-
put and reliability. The results show that Wget and aria2cx

outperform other data transfer methods in terms of speed
and reliability. They are the better choice as the raw data
dissemination protocol.

Fig. 4: Comparison of data transfer methods in terms of speed
and reliability.

B. Edge Computing for CAVs

Edge nodes are close in proximity and thus low in latency,
so we deem them as devices that provide extra computational
resources. These possibilities range anywhere from real-time
amber alert detection to infotainment for autonomous vehi-
cles [32], [24].

Cooperative perception [10] can make use of our CAV-Edge
framework to acquire the needed data and be able to service
multiple vehicles that cooperate to extend the perception range
and object detection accuracy. In the case of early fusion,
fusion of raw data or feature data, the vehicle is required
to pipeline that data to other vehicles while processing said
data at the same time for itself. In works such as [6], early
fusion plays an important factor to the vehicles in the region
by significantly improving detection results from 30% to 95%.

However, the trade between extra improvements in detection
versus taking up crucial on board computing resources is now
the main issue. As fusion between different vehicles all require
both location, orientation, as well as a myriad of other factors
to function properly, the process of sending this data alone is
taxing.

This does not stop at data fusion. While in a testing
environment, we are able to run experiments according to
the hardware available, the compiled software for the right
platform, as well as use compatible data formatting that will
not conflict. However, in the real world, such ideal conditions
do not exist due to the lack of an uniform standard for CAV.

Fig. 5: Views of a real-world Detection error based on single
vehicle
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Fig. 6: Our CAV-Edge test platform is a Polaris GEM equipped
with various sensors and onboard computing units.

With that in mind, the usage of Edge to facilitate these
endeavors become evident as the best option. With the Edge
serving as the main point of data traffic, both the issues of
stressing the on board unit as well as heterogeneous hardware
and data formats can be resolved.

To show the limits of autonomous vehicles without edge
support, we depict the results from a single vehicle in Fig. 5. In
Fig. 5, we can clearly see that the top scenario has obstruction
of a vehicle by bushes, while the bottom scenario failed to
detect a vehicle with a trailer attachment. In these situations,
an edge device running cooperative perception services can
notify and warn the vehicle of such objects that the OBU has
failed to detect. It is due to these faults that we decide to focus
on prioritizing cooperative perception on the edge rather than
other operational services for VECFrame.

In this paper, we study use cases related to 2D object
detection of the traffic conditions.

VI. PERFORMANCE EVALUATION

We have implemented a prototype of VECFrame and eval-
uated its performance on a connected autonomous vehicle
(CAV) test platform. Our CAV platform includes electric cars
equipped with a variety of sensors, an onboard (on each
electric car) computing unit, multiple roadside edge computing
nodes, and on-campus edge servers. The sensors mounted on
the electric cars are Velodyne Ultra PUCK VLP-16 LiDAR
sensor, Delphi SRR2 radar sensor, Sekonix 120/60 degree field
of view (FOV) cameras, and Xsens MTi-G710 GPS sensor.
The onboard computing unit is NVIDIA DRIVE PX2. The
edge nodes and servers are HPE ProLiant servers.

We used the following equipment in our framework exper-
iment:

• Nvidia PX2
• 4K Capable 12 MegaPixel Camera
• Netgear r6020 Router
• 8xDell Optiplex 3060 Small Formfactor
• TP-link T2U wireless transceiver (DSRC Equivalent

throughput - empirically tested)
• Snapdragon 845 SOC with 802.11 ac dual band Murata

KM8509176 module
• 2xraspberry pi

Fig. 7: Views of a real-world parking lot from individual
vehicles.

Fig. 8: Multi-vehicle cooperative object detection results from
the edge show a much wider perception range and an accurate
detection of vehicles and pedestrians.

We design our experiments into two categories: tests of the
VECFrame communication subsystem and tests of the edge
computing subsystem. For the first stage of our experimenta-
tion, we empirically test a variety of data aggregation protocols
in terms of their throughput and variance. Fig. 4 shows the
measured throughput of eight data transfer tools. In the figure,
we can see wget and aria2cx show a consistent throughput.
While Wget shows its capability as a reliable and fast protocol,
it does not come close to protocols, such as MQTT which is
a lightweight, publish-subscribe protocol designed for mobile
devices.

Next, we conduct experiments with a cooperative 2D object
detection road monitoring as a use case. The experiments
are performed in a controlled DSRC environment with eight
vehicles (OBUs with our CAV test platform data) and one
edge node. The data was gathered with the vehicle shown in
Fig. 6.

A. Performance with Edge

The addition of edge nodes facilitates data transfer and
processing. We conduct experiments, in a controlled DSRC
environment, to fully evaluate all facets of VECFrame. We
test framework configurations with and without an edge node.
The results are shown in Fig. 9. On the left, we see that without
the use of edge, the average throughput is 0.6 Mbps for MQTT
and a mere 0.2 Mbps for Wget. However, with the presence of
edge (in the figure on the right), we see a definite improvement
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Fig. 9: Performance impact from edge computing. On the left, we see that without the use of an Edge node, the throughput
is averaging 0.6 Mbps for MQTT and a mere 0.2 Mbps for Wget. However, with the presence of Edge node on the right, we
see improvement for both MQTT (0.85 Mbps) and Wget (0.9 Mbps).

Fig. 10: We test the traffic cameras from stoplights in this
scene. Individual images are shown.

for both MQTT and Wget, averaging 0.85 Mbps (i.e., a 41.7%
increase) and 0.9 Mbps (i.e., a 350% increase) respectively.

B. Multi-Vehicle and Vehicle-infrastructure Cooperative Ob-
ject Detection Performance Evaluation

We design two sets of experiments for road and traffic
monitoring. Peer vehicles share their 2D images in the first
scenarios, and images from the transportation infrastructure
(for example, cameras on traffic lights) are used in the second
scenario.

Fig. 7 shows the images taken by individual vehicles of
a real-world parking lot. The edge node takes multiple 2D
images from vehicles through fusion and then object detection
with OpenCV [29]and YOLOV3 [30] respectively in our
framework. For an incoming vehicle, the results from the
framework provide more than ample warning as seen in Fig. 8.
In the results, we can clearly see a pedestrian on the far
right hand side, which is well out of line of sight to vehicles
approaching the intersection. Similar to the stationary sensors
mentioned in [6], the edge node processes images taken and
shared by the transportation infrastructure, such as traffic light
cameras and roadside cameras, to help assist with road and
traffic monitoring.

Fig. 11: Most of the vehicles are correctly detected, located,
and counted in the vehicle-infrastructure cooperative percep-
tion using edge computing.

In our second set of experiments, we use a vantage point
and angle akin to that of a traffic light camera as seen in
Fig. 10. With this vantage point, we expect VECFrame helps
facilitate the results of detection for incoming vehicles to be
aware of the traffic and avoid accidents, and help regulate
traffic management in accordance to the real-time condition.

Fig. 11 presents the experimental results for the traffic
light scenario. Although there is some distortion due to image
alignment in fusion, the combined view (perception range) is
significantly enhanced and the vehicles are located, identified,
and counted in a higher accuracy. With the edge leveraging
data from the traffic infrastructure, we are disseminating poten-
tially critical information to incoming vehicles. Factors such
as sensor failure or environmental conditions might render an
autonomous vehicle blind, but with vehicle-infrastructure co-
operative perception using edge computing, we can potentially
avoid these deadly accidents [35][14].

In addition to road and traffic monitoring, we have tested
many other scenarios. The results are listed in in Table I with
breakdown of the execution time of the four steps: data aggre-
gation, data fusion, object detection on the fused data, and re-
sults dissemination. Each test is coincident with a different test
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(a) 8 Vehicle File Loss (b) 4 Vehicle File Loss

Fig. 12: Sets of 2, 4, and 8 vehicles are tested with the same payload. Reliability and data integrity (data loss) is evaluated.

scenario, with tests 1 through 11 detailing road intersections
from various locations and weather conditions. We note that
aside from the communication subsystem, VECFrame stalls on
image fusion and detection due to hardware constraints (Our
edge node has a quad-core i5 Intel processor). However, aside
from hardware and optimization limitations, the vehicles are
receiving the results with minimal latency from the edge.

Group Agg. Fusion Detect Multicast Total (s)
Test 1 0.6 2.64696 3.63507 0.00544 6.88747
Test 2 0.3 1.60079 3.56692 0.00523 5.47294
Test 3 0.3 0.97034 3.57243 0.00461 4.84738
Test 4 0.2 1.72102 N/A N/A 1.92102
Test 5 0.3 1.25113 3.61586 0.00539 5.17238
Test 6 0.3 1.72399 3.63339 0.00693 5.66431
Test 7 0.3 1.53299 3.63738 0.00671 5.47708
Test 8 0.3 1.89981 3.61449 0.00449 5.81879
Test 9 0.6 3.70769 3.68509 0.00872 8.0015

Test 10 0.3 2.01195 3.65668 0.00649 5.97512
Test 11 0.4 1.3641 3.61012 0.0046 5.37882

TABLE I: Breakdown of the execution time in the edge
computing workflow.

C. Evaluation of Data Aggregation

We test MQTT and Wget for the performance of data
aggregation and data integrity. MQTT and Wget play different
roles in VECFrame. While MQTT is good at broadcasting
small packets, Wget is more reliable in terms of data integrity.
In this set of experiments, we evaluate vehicle-vehicle as well
as vehicle-edge data aggregation.

1) Throughput and Scalability Evaluation: Scalability is an
important aspect to the CAV-edge system. As our framework
is containerized with docker and modular, horizontal scaling
is achieved through the use of an efficient container orchestra-
tion system. Moreover, as VECFrame is modular, horizontal
scaling requires that all of its components be capable of
scaling. Computational components such as object detection

and sensor data fusion can be scalable due to the increase
in computational resource on edge nodes (scale-out and/or
scale-up). However, communication may be bottlenecked due
to the low-bandwidth wireless connections between vehicles
and edge nodes and the large amount of sensor data (e.g., HD
images) exchanged.

To evaluate the scalability of VECFrame’s communication
subsystem, we measure the its performance with an increased
number of vehicles. We set up the vehicles in groups of 2, 4,
and 8 with each vehicle generating a payload of 36 images.
We then test each group over 100 runs by having all vehicles
request the edge service simultaneously.

Fig. 14 shows the experimental results, i.e., data aggregation
throughput. From the figure, we can clearly differentiate be-
tween Wget and MQTT, as Wget maintains a stable throughput
rate of 20 Mbps for 2 vehicles, MQTT suffers Quality of
Service(QoS) restrictions and only averages 3.9 Mbps. If we
examine Fig. 12, we see a similar issue with MQTT versus
Wget, where MQTT suffers from substancial data integrity
issues with more vehicles than Wget, which suffered no data
integrity loss. We further analyze the relationship between the
increase in vehicles and the execution time. The results in
Fig. 13 show a linear scalability is achieved for both with a
R2 value of 0.99 each, indicating a tight fit to the regression.
We also note that both methods display an marked increase in
variance as the number of vehicles increases. This is caused by
contention on the edge node to aggregate more data as more
vehicles are involved.

2) Reliability and Data Integrity Evaluation: As one of the
critical functionalities in VECFrame, we need to ensure that
MQTT and Wget are optimized for our framework. To this
end, we need Wget to aggregate data from vehicles to the
edge and MQTT to disseminate results from the edge back to
vehicles. We have conducted 100 trials of the same workload
in VECFrame. The trials are conducted in two setups, i.e., one
group with a total payload of 36 images, and the other group
with a payload of four images. Both groups are tested for 100
runs separately.

For data integrity, we need to check the percentage of data
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Fig. 13: Scalability of data aggregation. Linear regression fits both sets of data with a R2 of 0.99.

(a) MQTT Throughput (b) Wget Throughput

Fig. 14: Sets of 2, 4, and 8 vehicles are tested with the same payload. Performance (throughput) is evaluated.

loss that has occurred. As shown in Fig. 12, we have the
comparison between MQTT and Wget from the experiment.
As the file loss for our test with only two vehicles involved
saw no data integrity loss, we did not include that in our figure.
Due to the payload being images, we used a combination
of mean squared error(MSE) and structural similarity index
metric(SSIM) to check for image corruption on top of raw
binary values,. However, as all of our results came back with
negligible results, indicating that the loss of integrity does not
impact the inference process, they were not included with the
figure.

Fig. 12 plots the loss rate using MQTT and Wget, and
from the figure, we see a vast differentiation between the
two methods. Wget, despite being heavier as a protocol when
compared to MQTT, performs significantly better in terms of
reliability and data integrity protection; both are critical to data
processing. As we can see, Wget was able to maintain com-
plete data integrity despite doubling the number of vehicles
from 4 to 8. On the other hand, MQTT, suffered quite a bit,
with 29 out of 100 test runs seeing data integrity loss.

That is not to say that MQTT is unsuited for the task
however. In our experiment, we subjected both protocols to the
full VECFrame pipeline, which forces a wait for complete data
retrieval before moving forward with the data to the processing
containers. This was to ensure that we have no faulty data as

using such can result in serious consequences.
By taking the strength of both Wget and MQTT, we im-

plement both to work in tandem to reach a optimized balance
for the framework. Wget facilitates the data transfer to ensure
data integrity, while MQTT disseminates the results back to
the vehicles with small latency as seen in Table I.

VII. CONCLUSIONS

Autonomous vehicles will be connected with edge com-
puting infrastructures which provide computing and storage
resources for AI-driven CAV services and applications. In this
paper, we present VECFrame, a CAV-edge framework which
provides efficient multi-vehicle and/or vehicle-traffic infras-
tructure with cooperative edge computing services. VECFrame
offers a series of scalable and reliable methods for vehicle data
aggregation, sensor data fusion, cooperative object detection,
and results dissemination. We use CAV cooperative perception
as a use case to present and evaluate the communication
subsystem and the edge computing workflow in VECFrame.
Experimental results on a real CAV test platform show the
promising results of VECFrame in exploiting edge resources
for extending vehicles’ perception range and enhancing object
detection accuracy for both self driving and traffic manage-
ment with minimal latency.

In VECFrame, we assume that the industry sector will
provide edge as a service, which is more general and effective
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than the way that current vehicles upload their data from
vehicles[1]. We see security, optimized scheduling and energy
computation trade-off as opportunities for our future research.

Edge computing and CAVs are both rapidly developing
fields of interest. Our framework benefits both fields in
that VECFrame provides a holistic framework with edge-
based mechanisms to enable vehicle-vehicle and vehicle-
infrastructure cooperative services. With more autonomous
vehicles running on road and more data shared among vehi-
cles, scalable cooperative computation and real-time decision
making can be achieved by using VECFrame.
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