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Multiphase flows are characterized by sharp moving interfaces, separating dif-

ferent fluids or phases. In many cases the dynamics of the interface determines

the behavior of the flow. In a coarse, or reduced order model, it may therefore

be important to retain a sharp interface for the resolved scales. Here, a pro-

cess to coarsen or filter fully resolved numerical solutions for incompressible

multiphase flows while retaining a sharp interface is examined. The differ-

ent phases are identified by an index function that takes different values in

each phase and is coarsened by solving a constant coefficient diffusion equa-

tion, while tracking the interface contour. Small flow scales of one phase,

left behind when the interface is moved, are embedded in the other phase by

solving another diffusion equation with a modified diffusion coefficient that is

zero at the interface location to prevent diffusion across the interface, plus a

pressure like equation to enforce incompressibility of the coarse velocity field.

Examples of different levels of coarsening are shown. A simulation of a coarse

model, where small scales are treated as a homogeneous mixture, results in

a solution that is similar to the filtered fully resolved field for the early time

Rayleigh-Taylor instability.
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interacting with a bubble and another for “phase inversion” where a light fluid at the

bottom of the computational domain moves to the top. This study was extended to

three-dimensional flows by Toutant et al.7 who proposed closure relations for some of

the subgrid terms and examined the interaction of small scale vortices with a single

deformable bubble. Further studies of the fully three-dimensional phase inversion

problem was done by Vincent et al.8 who also derived the averaged LES equations

and examined the magnitude of the various subgrid terms. The jump conditions

for interfaces in filtered fields were revisited by Toutant et al.9 and Toutant et al.10

who in addition to filtering the turbulent flow simplified the interface, and proposed

subgrid models for some of the unresolved terms. Model equations were also derived

by Liovic and Lakehal11 who used “component-weighted volume averaging” to fil-

ter the equations and develop models for unresolved subgrid terms near deforming

interfaces, based on the distance to the interface. Aniszewski et al.12 used approxi-

mate deconvolution to model the surface tension tensor for the filtered equations and

Waclawczyk and Oberlack13 discussed modeling in the context of ensemble-averaged

fields. A very different approach to subgrid modeling was introduced by Hermann

and Gorokhovski14,15 and Herrmann16 who used a dual scale strategy where the flow

field is coarsened but the full interface is retained on a finer grid. The filtered equa-

tions are similar to those in Toutant et al.9 but the subgrid terms for surface tension

can be computed directly for the well resolved interface. A subgrid model is, how-

ever, need for the advection of the interface on the finer grid. Recent development

of closure terms for the model equations derived in Labourasse et al.6, focusing on

atomization, can be found in Ketterl and Klein17, Klein et al.1 and Ketterl et al.2.

Studies of the use of deconvolution models for a two-dimensional phase inversion are

described in Gouenard et al.18 and for attempts to deal with non-isothermal flow

see Saeedipour et al.19. A large number of authors have developed numerical models

where small bubbles and drops are represented as Lagrangian point particles while
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FIG. 2. The motion of an interface following the interface contour of the index function.

Left: the interface, where the index function has the value χ∗, needs to catch up to χI

and must move a distance ∆x = un∆τ , computed from χI and the gradient. Right: Once

interfaces are close enough, there is no χI contour close by.

in an unbounded two-dimensional domain, is given by

g(x, T ) =
1

4πDT

∫

Area

e−
||x−x

′||2

4DT go(x
′)da′, (4)

at time T , where go is the initial condition. Thus, filtering a field by a Gaussian kernel

is equivalent to evolving it by a diffusion equation for a time that is related to the

length scale of the filter ∆ by 4DT = ∆2/6. The reason we find it more convenient

to coarsen the field by diffusion rather than filtering, should become clear in the

rest of this section. The connection between filtering and diffusion for single phase

turbulence has been pointed out by Johnson40,41, and Capecelatro and Desjardins42

use diffusion to distribute the effect of small particles onto a fixed grid, as examples

of other uses of diffusion instead of explicit filtering. We have taken advantage of

the flexibility of doing smoothing by diffusion rather than filtering in Chen et al.43,

where we used it to sharpen a smooth distribution.
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FIG. 3. The evolution of an interface simplified by diffusing the index function at times

t = 0.175 (top row) and t = 0.25 (bottom row). In each row the results are shown for τ = 0

(original), τ = 0.0004 (∆ = 0.1), τ = 0.0026 (∆ = 0.25), and τ = 0.0104 (∆ = 0.5). The

interface is the red line and contours of the index function are also shown. “Collapsed”

interfaces are shown as gray lines.

is smoothed. Instead of approximating the time derivative as done above, we can

use equation (5) and replace the time derivative by the Laplacian. Computing the

Laplacian on the fixed grid and interpolating it to the interface works and should, in
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FIG. 4. A plot of interface length versus pseudo-diffusion-time. The solid line is the large

scale interface length while the dashed line is the collapsed interface length.

principle, handle interacting interfaces correctly. We have, however, not found it as

robust as the process described above. Since the velocity of an interface in a diffusion

field is given by its curvature, we could also move it that way. It is, however, first of

all, generally difficult to accurately evaluate the curvature and secondly, an interface

evolved by its curvature is not guarantied to follow the appropriate contour as is the

case with our approach, and numerical errors can therefore accumulate.

To show how the coarsening works, we apply it to the large amplitude stage

of a two-dimensional Rayleigh-Taylor instability. The computational domain is a

rectangle of dimensions 1×2 with periodic side boundaries and rigid top and bottom,

and resolved by a regular 128 × 256 grid. The density and viscosity of the heavy

and light fluids are ρ1 = 10, µ1 = 0.02, and ρ0 = 5 and µ0 = 0.01, respectively.

Gravity acceleration is gy = −100 and surface tension is σ = 0.25. At the initial

time the velocities are zero but the elevation of the interface is perturbed by y(x) =

1 + 0.1 sin(2πx) + 0.1 sin(4πx). Figure 3 shows the simplification of the interface
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respectively. Gravity acceleration is gy = −100 and surface tension is zero. At the

initial time the velocities are zero but the elevation of the interface is perturbed by

z(x, y) = 1.75 + 0.12× [cos(2πx) + cos(2πy)]. The small scales have been eliminated

at τ = 0.0026, at τ = 0.0204 a downward moving drop has separated from the heavy

fluid, and in the last frame ( τ = 0.0267) this drop has been mixed with the lighter

fluid, as seen for the two-dimensional case.

B. Smoothing the Flow Variables

As the interface moves, field variables such as density and momentum are left

behind on the opposite side of the interface. Variables that switch side are taken

to belong to the small scales and we can account for their evolution in many ways.

Here we smooth those and “blend” them with the original field. Thus, we need to

diffuse those variables, but only on one side of the interface. To do so we again

solve a diffusion equation, but to prevent diffusion across the interface, we put the

diffusion coefficients around the interface equal to zero in a thin band containing

the interface. We denote the new diffusion coefficient by D̃ and since the diffusion

coefficient is now not constant, we need to solve

∂φ

∂τ
= ∇ · D̃∇φ, (10)

where φ is the flow variable that we are smoothing. Smoothing the index function

again, but using D̃ instead of a constant D, gives the volume fraction α of the phase

where χ = 1 for the unfiltered field.

Unlike for single phase flow, where we generally filter the velocity field, here we

filter the momentum, since it is the conserved quantity. This can lead to nonzero

divergence at the interface and to correct for that we recompute a pressure field
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needed to make the velocity divergence free. For the mixture model used here, where

both phases have the same velocity, the mixture velocity should be divergence free.

For a more advanced model, such as the drift flux model, we would have slip and

the velocity used here becomes the mass weighted velocity which is not necessarily

divergence free. However, once the slip is known, the volume source can be computed.

The complete smoothing process involves evolving the index function and the

flow variables in pseudo-time τ for long enough to achieve the desired smoothing. In

addition to diffusing the index function to move the interface (equations 5 and 8), we

also evolve a copy of the index function to find the void fraction by using D̃, which

consists of the constant diffusion coefficient D modified by putting it to zero at and

around the interface. Similarly, we evolve the momentum using a pseudo-pressure

field to enforce incompressibility.

Denoting the filtered variables by a tilde, the equations to be evolved in pseudo

time (τ ≤ T ) to generate a coarse flow field are:

χ̃(τ = 0) = χ; α(τ = 0) = χ; D = 1.0; (11)

∂χ̃

∂τ
= ∇2χ̃; uf = −

1

∆τ

(
(χ̃I − χ̃)

|∇χ̃|2

)
∇χ̃;

dxf

dτ
= uf ; (12)

D̃(x, τ) = D modified by setting D(xf ) = 0; (13)

∂α

∂τ
= ∇ · D̃∇α; (14)

∂

∂τ
(ρ̃u) = −∇p̃ + ∇ · D̃∇(ρ̃u); with ∇ · ũ = 0. (15)

We assume that ρ̃u = ρ̃ũ, that the density is given by ρ̃ = αρ1 + (1−α)ρo, and that

the filtered velocity is incompressible. The second equation (12) is the smoothing of

the index function described above. The third equation (13) is the modification of

the diffusion coefficient by setting it to zero where the interface is. In equation (14)

18





FIG. 6. The evolution of the perturbation volume fraction field (α′) in pseudo-time by

nonlinear diffusion, for the later time shown in figure 3 (t = 0.25) and the same values of

τ .

we have the option of doing so.

In figure 7 the streamfunction computed from the velocity field is shown, first for

the unfiltered velocity (left frame) and then for the smoothed velocity (frames 2-4) at

the same pseudo times as in figure 3 and 6. Since we enforce incompressibility when

we smooth the flow, the normal velocity remains continuous across the simplified

interface. For modest smoothing, where only the smallest scales have been eliminated

the flow field remains close to the original one (second and third frame) but for

aggressive smoothing as in the last frame the flow field above and below the interface

has been simplifies to a pair of counter rotating vortices, driven by the upward moving

blob and the downward moving mixed region.

Figure 8 shows the vorticity field computed from the velocity field, first for the

original velocity (left frame) and then for the smoothed velocity (frames 2-4) at the

same pseudo times as in figures 3 – 7. Since the flow is driven by baroclinic vorticity

generated at the interface, the concentration is highest there and indeed, nearly all
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FIG. 7. The evolution of the stream function in pseudo-time as the interface is smoothed

by diffusion, for the later time shown in figure 3 (t = 0.25) and the same values of τ .

FIG. 8. The evolution of the vorticity in pseudo-time as the interface is smoothed by

diffusion, for the later time shown in figure 3 (t = 0.25) and the same values of τ .

the original un-smoothed vorticity is at the interface. As small scale features are

eliminated, the vorticity is mixed with the bulk, although the concentration remains

highest at the interface. For the most aggressive smoothing in the right frame, we
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see pairs of faint counter-rotating vortices in the bulk on either side of the interface,

corresponding to the vortices seen in the plot of the streamfunction in figure 7.

We can generate field values for other quantities than those show here. The

interfacial area, for example, is one important measure of the simplification of the

phase distribution and we can construct an area field by differentiating the unfiltered

index function. By filtering it we get the area concentration. Similarly, we can filter

components of the area tensor. The volume fraction and the area concentration

would allow us to obtain the Sauter Mean diameter and equivalent number density,

if we assume that the smoothed phase consists of spherical drops or bubbles.

IV. EVOLVING THE COARSE FIELD

The main purpose of coarsening the flow field is to provide data for modeling the

evolution of the coarse flow. Such models come in various forms and the purpose

of the present paper is not to explore the many possibilities in any detail. We do,

however, include one simple example in this section.

The homogeneous mixture model, where the phases are assumed to be completely

mixed and move with the large scale fluid velocity is probably the simplest model

imaginable. In our implementation a sharp interface is assumed to separate the large

scales, and the small scales are represented by mixtures embedded in the large scale

regions, so the conversion between large resolved scales and modeled small scales

must be captured. The coarse interface moves with the coarse velocity when no

conversion happens, but when transfer of the index function between large and small

scales takes place, the interface and fluid velocity are different. We generally expect

this to happen in high curvature regions. There is only one large scale velocity which

is found by solving a momentum equation, supplemented by the incompressibility

22









is embedded in the other, can be treated in a variety of ways, such as assuming a

homogeneous mixture (as done here), by a drift flux model, an Eularian two fluid

model, or representing the embedded phase as Lagrangian particles.

We note that here we represent the interface by connected marker points that are

moved as the smoothing progresses. To simplify the interface we could also simply

smooth the index function and then reconstruct the interface from the contour of the

average value. For the other steps, where we separate the large and small flow scales

by diffusion and we need to evolve the interface along with the field values, having

the interface makes this relatively straightforward. This could, however, presumably

also be done in the absence of explicit tracking of the interface by reconstructing the

interface from the average contour at every step in pseudo time.

Although the motivation for the coarsening strategy presented here is reduced

order modeling of the flow, it also provides us with a tool that should be useful in

analyzing the distribution of scales in multiphase flows. As we coarsen the flow,

we separate it into small and large scales, which can be examined separately as the

coarsening is varied. Other possibilities include following a different contour than the

average one to “skeletonize” the flow. We hope to explore some of those possibilities

in later studies.

The data that support the findings of this study are available from the corre-

sponding author upon reasonable request.
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