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We add an ensemble of nuclei to the equation of state for homogeneous nucleonic matter to generate a new
set of models suitable for astrophysical simulations of core-collapse supernovae and neutron star mergers. We
implement empirical constraints from (i) nuclear mass measurements, (ii) proton-proton scattering phase shifts,
and (iii) neutron star observations. Our model is also guided by microscopic many-body theory calculations
based on realistic nuclear forces, including the zero-temperature neutron matter equation of state from quantum
Monte Carlo simulations and thermal contributions to the free energy from finite-temperature many-body
perturbation theory. We ensure that the parameters of our model can be varied while preserving thermodynamic
consistency and the connection to experimental or observational data, thus providing a probability distribution
of the astrophysical hot and dense matter equation of state. We compare our results with those obtained from
other available equations of state. While our probability distributions indeed represent a large number of possible
equations of state, we cannot yet claim to have fully explored all of the uncertainties, especially with regard to

the structure of nuclei in the hot and dense medium.
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I. INTRODUCTION

The equation of state (EOS) of nuclear matter is a central
microscopic input for the simulation of core-collapse super-
novae and neutron star mergers. In a supernova, the nuclear
incompressibility generated from Fermi degeneracy pressure
and short-range nuclear forces is essential in providing the
pressure support which causes the infalling shockwave to
“bounce” and propel the mantle off the protoneutron star
underneath [1]. In a neutron star merger, the EOS determines
the compactness of the two stars, which in turn determines
the amount of r-process material ejected in a merger [2], the
properties of the kilonova emission [3], and features of the
late-inspiral gravitational wave emissions (e.g., see Ref. [4]).
The EOS also determines the lifetime and final fate of the
merger remnant [5—10] through the relationship between the
EOS and the neutron star maximum mass.

Since weak equilibrium is not fully achieved in the short
dynamical timescale of either a supernova explosion or a
neutron star merger, there are at least three relevant quantities
for describing the composition of dense matter: the number
density of baryons ng, the electron fraction Y,, and the tem-
perature 7. Muons, pions, and strangeness-containing hadrons
may introduce additional complexity, but as a minimal model
we neglect these more exotic degrees of freedom in the present
work. Simulations of supernovae or mergers which employ
realistic EOSs often use tabulations that span baryon num-
ber densities nz ~ 10’-10"> g/cm?, electron fractions ¥, ~
0.1-0.6, and temperatures 7 ~ 0-100 MeV.
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EOSs for core-collapse supernovae were first developed
by Lattimer and Swesty [11], who employed three different
nonrelativistic Skyrme effective interactions and the single-
nucleus approximation to account for the presence of heavy
nuclei in a gas of unbound nucleons. A second set of
EOS tables was developed Shen et al. [12] (also using the
single-nucleus approximation), which was based on the NL3
relativistic mean-field Lagrangian. While the single-nucleus
approximation is sufficient to describe the bulk thermodynam-
ics, it does not in general accurately describe the composition
[13—18] and the associated weak reaction rates. Shen et al.
[19] constructed the first full table to go beyond the single-
nucleus approximation. Their work was based on a more
modern relativistic mean-field model, “FSUGold” [20], and
goes beyond the single nucleus approximation to include a
full distribution of nuclei in nuclear statistical equilibrium
(NSE). Alternative formalisms were developed by Furusawa
et al. [21] and Hempel et al. [22,23], which resulted in EOS
tables built upon several nucleon-nucleon interactions, includ-
ing FSUGold, DD2 [24], IUFSU [25], SFHo [26], and SFHx
[26]. More recently, several EOSs have been added to the
CompOSE (CompStar Online Supernovae Equations of State)
database [27], including an EOS with hyperons [28]. Recent
EOS tables with a similar goal of matching observational
and experimental constraints have been released by Schneider
et al. [29,30].

The basic paradigm under which most EOS tables are con-
structed is to compute the thermodynamic quantities based on
a single model of the nucleon-nucleon interaction. However,
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this paradigm fails when one wants to perform uncertainty
quantification. There is currently no model for the nucleon-
nucleon interaction and the accompanying EOS which (i)
faithfully describes matter in all of the density and temper-
ature regimes which are relevant for supernovae and mergers
and (ii) allows one to vary a set of parameters in such a way as
to explore the uncertainties in the EOS without spoiling agree-
ment with experiments or observations. For example, Skyrme
[31] models are often used to describe dense matter for the
purposes of EOS tables, but often fail to describe low-density
matter as described by the virial expansion or nuclear effective
field theory [32]. Even when a Skyrme effective interaction
does happen to match model-independent properties of the
EOS at low-densities, it does so at the cost of suppressing
the uncertainties in matter at higher densities and introducing
unphysical correlations between matter in the two density
regimes.

Future work on the nucleon-nucleon interaction and the
equation of state may eventually resolve some of these issues.
In the meantime, a different approach is required to ensure that
simulations can quantify the uncertainties in the EOS without
over- or underconstraining the EOS. Based on our previous
work in Ref. [33], we construct a phenomenological descrip-
tion of the free energy for hot and dense stellar matter which is
able to (i) faithfully describe nuclear matter under conditions
that are probed by nuclear experiments and observations of
neutron stars and (ii) provides parameters which allow one to
(at least partially) quantify the uncertainties which result from
our imperfect knowledge of the nucleon-nucleon interaction.
We add nuclei to the EOS of homogeneous nuclear matter
described in Ref. [33] and show that our results compare well
with other EOS tables which are available.

II. METHOD
A. Basic formalism

We use the formalism developed in Ref. [22] to describe
nucleons in thermodynamic equilibrium with a distribution of
nuclei. Neutrons, protons, « particles, deuterons, tritons, AL,
and *He are treated separately to more easily describe the neu-
trino opacities near the neutrinosphere [34]. The Helmholtz
free energy density can be written as

Sy, (0}, T) = fop+ Y fi+ foou + for (D)

where n, and n, are the free neutron and proton number den-
sities, n; is the number density of nucleus i, and fcoy denotes
the Coulomb free energy described in more detail below. We
take i = ¢ = kg = 1. Baryon number conservation and global
charge neutrality imply two constraints, which we write as

ng =n, +n,+ ZniAi,
i

ngYe =ne=n, + » nZ. )

The free energy density of nucleons outside the nucleus,
denoted fyom, 1S based on the homogenous nucleonic mat-
ter EOS from Ref. [33] (see discussion below). (See also

Ref. [35] for an alternative EOS for homogeneous nucleonic
matter). We include an excluded volume correction (which is
only turned on between nucleons and nuclei), to correct for
the fact that the volume available to the nucleons is reduced
by the nuclei. We denote the volume available to nucleons as
V' =V — ) NV, where N; = n;V is the number of nuclei of
type i in the volume V, V; = A;/ny is the volume occupied by
one nucleus of type i, and ny is the saturation density of sym-
metric nuclear matter, 0.16 fm—>. The volume fraction that
free nucleons explore is § =V'/V =1 — ). A;n;/ng. Thus,

fnp = sfHOm(n;p n;ﬂ T) (3)

The n,, and n), are local densities and are defined by n), =
Nu/V' =n,/§,n, = Np/V' = n,/& separately. We ignore rest
mass contribution here and put a tilde on top when it is added
back.

The free energy density of the light nuclei and heavy nu-
cleus are treated as classical Boltzmann particles:

Qv
fi=-—nT|In N3 + 1], 4
where ; is the thermal wavelength
o \ 12
hi= (ﬁ) 5)

and V = «V is the volume fraction explorable to the nu-
cleus of type i, with k = 1 — ng/ng. The quantity €2; is the
temperature-dependent partition function. The prescription
we use follows from Refs. [19,36] and will be addressed in
the next section. Using these definitions

Q;

fi= —niT|:ln (—3) + 1] —nTInk. (6)
n,»)»i

One can also rewrite £ in terms of k and the nucleon densities

-1

§=K+(nn+np)/no=K<1—ﬂ—n—P> -

nop  no

The Coulomb energy in the Wigner-Seitz cell is [37]

E,‘COUI = _gZ_IiOl (gxi - %X?>a ®)
where
I’lBYe Ai 173 R,’ (9)
X = — = s
ny Z; Rws,i

where Rf’ = (3A;)/(4mny) is the nuclear radius and the size of
the Wigner-Seitz cell, Rws, is given by
4 4
Z[ = ?RWSJJ/ZBYE. (10)
The radius of nuclei is constrained by R; < Rys,; which limits
Xi < 1.
We take into account all charged particles here except
protons, the advantage is the Coulomb energy is merely a
function of charge and atomic number given np and Y,.
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After applying charge neutrality, the total free energy density
becomes

f(nnv np, {ni}’ T) = %_fHom(n;,a n;p T)

- Zi:n,-TH:ln (%) - 1} +ln/<}

+ Y mES + f(ngYe). (11

L

B. Homogeneous matter

We slightly modify the EOS of homogeneous matter from
Ref. [33] to no longer enforce a quadratic expansion for the
isospin-asymmetry dependence of the finite-temperature con-
tributions. The free energy is separated into a contribution
from the virial expansion and a contribution from degenerate
matter:

fHom(nBv Xps T)= fvirial(nBv Xps T)g
+ faeg(np, x5, T)(1 = ¢).  (12)

The free energy density for degenerate matter is

fdeg(”B’ Xps T)= fSkyrme(”Bs Xp = 1/2,T =0)
+ 8 egym () + A foor(np, x,, T). (13)

Based on the work in Ref. [38], most of our tables use
the Skyrme model labeled SKym* to compute A fo;. This
Skyrme model was fitted to the equation of state of asym-
metric nuclear matter [39,40] calculated from several realistic
chiral two- and three-body forces as well as consistent nu-
cleon isoscalar and isovector effective masses derived from
the nucleon self-energy [41,42]. In particular, the description
of nuclear matter thermal properties relies on accurately mod-
eling the nucleon effective mass, which is proportional to the
density of states near the Fermi surface and hence the temper-
ature dependence of the entropy [43,44]. We also construct
two tables with alternative models for A fior, Skx414 and
Sk x450 from Ref. [45]. The derivatives of the degenerate free
energy density are

Ifiea 1
S = 3 Hnsiyme(np. xp = 1/2,T = 0)
1
+ EMp,Skyrme(nB7 Xp = 1/2» T = O)
0&ym  26(1 =6
+82 2 ( )ssym
BnB np
+ Aot (g, Xp, T, (14)
e 1
= = S pskyme(np, Xp = 1/2,T = 0)
p
1
+ E,U«n,Skyrme(nB, Xp = 1/2, T =0)
Ll 20040
8n3 np
+A//Lp,hol(n87 Xp, T)» (15)

and
0
% = _ShOI(nBﬂx[)7 T)7 (16)
where
O69m _ 1y (mp)equc(ns) + hng)eipmc(15)
ong ng)eqme (ng) + h(ng)egyc(na

— I (ng)ens(np) + [1 — h(ng)lexs (np)
1

- E[Mn,Skyrme(nBs Xp = 1/2, T =0)

+ Mp,Skyrme(nBa Xp = 1/2’ T = O)] (17)
In Eq. (17), the auxiliary function /' is used to interpolate
between the pure neutron matter equation of state eqmc valid
around normal nuclear densities and the high-density equa-
tion of state ens that may be constrained by neutron star

observations. Note that eqmc is given by the quantum Monte
Carlo inspired form

« B
wesnl(G) ()} o

C. The Saha equations

In order to fix the densities of the nuclei, we solve the

equations
d
(—f) =0. (19)
ani ng,Ye
Before we begin, it is useful to define
Q;
fia=-nT|ln| —5)+1 (20)
n,-ki

as the classical part of the nuclear free energy.
We can rewrite the full free energy from Eq. (11) in terms
of ng and Y,:

f[nn(nB’ Yv(:‘vT)9np(nB’ YerT)s {ni}’T]’ (21)

to re-express the derivative (T is implicitly held constant),

@) =G, G, Gr)
81’1,’ ng,Y, Bn[ Ny, 8”" np,{n;} 31’1,‘ ng,Y,
()., (5%
anl) ny,{ni} ani ng.,Y,
(). ) ),
ani Ny, My 8”” np,{n;} an!’ ny,{n;}

(22)

Thus, we obtain the Saha equations
i = uaN; + Mpzi (23)

with the chemical potentials denoted by

af af
wi=\ o o M=y , and
n; ny,n,, T Ny np,{ni}, T

ad
<—f> . 24)
8np np,{n;}, T

Hp
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We also define u, = (9f,)/(dn.). Note that our formalism
naturally implies that the chemical potential of the neutrons
and protons inside nuclei is the same as that outside nuclei
(i.e., the neutrons and protons are in chemical equilibrium).
To see this how this works for neutrons, use Eq. (23) for
i=(Z,N+1)andi = (Z, N) and then subtract, giving

HEN+1) — Hzn) = OV + Dy — Ny = . (25)

In particular, the reaction (Z, N + 1) <> (Z, N) 4+ nis in equi-
librium. The same reasoning applies equally well to protons.

These chemical potentials can be written analytically. For
the nuclei, we define

3Z%« (1 1
PO = —n[—’—a —Xi— =X} (26)
5 R \2 2
as in Ref. [22] and this definition implies
aECOul P'COUIZA
ni< ! ) =1 = 27)
on; oy ne

For the nuclei, this definition gives

Ai Ainn Alnp
i = —| — ) fHom + MnHom| —— | + Mp,Hom
no En() Eno

Tn;A;
+ i — T Ink + i + ES

KN
iPCoul
+ n— + Zipte, (28)
where ;o = (0 fi.a1)/(9n;). For the nucleons
Tl’l,‘
Mpn = Mn,Hom + — (29)
Kn
and
TI’L,' PCouI
Hp = UpHom + —— + e + s (30)
Kngp Ne

where 14y Hom = (3 fiiom)/(3n,) and P! = 3" PCU! Note
that because we have not included electrons as separate de-
grees of freedom in Eq. (11), the electron chemical potential
appears in Eq. (30). Thus, our chemical potentials above
match those in Ref. [22]. Using the Saha equation, we find

A; Ain,
it =\ — ) fom =+ Mn Hom | Ni —
no énO

A;
+Mp,H0m|:Zi - <ﬁ>i| +Tlnk — E,'COUIv 3D
&no
which gives us a recipe for computing the free energy for
each nucleus. Using Pyom = — fiom + Mn,Hom™), + /L,,,Homn;,,

we can rewrite this result slightly

Micl = _ViPH0m + M/’Ln,Hom + Zi:up,Hom +Tlnk — E[Coul'

(32)
The excluded volume effect reflected in the 7 Ink and
—PyomV; terms suppresses the number density of nuclei near
saturation densities. Note that, because we are able to com-
pute the chemical potentials in Eqgs. (28)—(30) analytically,
our derivation of the Saha equations includes the rearrange-
ment terms described in Ref. [46]. Of course, this simple

excluded volume approximation which we use is not suffi-
cient for accurately mimicking the multicomponent plasma
at low-temperature (for example, we cannot use this model
to accurately measure the crystallization temperature) but is
a reasonable approximation for the high-temperature environ-
ment encountered in supernovae and neutron star mergers.

At a fixed grid point in (ng, Y., T') space, given n, and
np, we can compute « and & using their definitions above,
compute the homogeneous matter EOS and EZ.C"ul and thus use
Eq. (32) to compute ;. This is then used to compute »; and
then we can solve Egs. (2) to obtain the correct value of n,, and
n,. Internally, our code defines x, = n),/ny and x, = n’p/no
and then solves Eqs. (2) in terms of the variables log;, x,, and
log; xp.

The solution of Eqs. (2) is not unique because of the
liquid-gas phase transition and the discrete nature of the nuclei
in the distribution, so we often use neighboring points as
initial guesses and choose the solution that minimizes the free
energy. Our solver automatically decreases the step size when
unphysical configurations are encountered, but occasionally it
does not converge, especially just below the nuclear saturation
density. Note that our method implies a small discontinuity
in the free energy at the liquid-gas phase transition, but our
previous experience in simulations based on SFHo and SHFx
[26] shows that this small discontinuity is not typically an
issue in core-collapse and merger simulations.

We approach this with a combination of techniques, all
of which are automatically applied until a solution is found:
(i) iteratively solving for neutron and proton conservation
separately using a bracketing method (ii) using a minimizer
instead of a solver and (iii) restarting the solver with random
initial points near the initial guess.

D. First derivatives

After having solved the Saha equations for n;(n,, n,), it is
useful to define new “effective” chemical potentials for the
nucleons which include the nucleons both inside and outside

nuclei
d 0
V= ( f) and v, = (—f> (33)
an" ny, T anl’ n,, T

[note that these differ from Eq. (24) in that they no longer hold
n; constant] which gives a new thermodynamic identity

f(nns np, T)=—P(n,, np, T) + vpn, + Vplp. (34)
Rewriting the free energy again
fnn, np, {ni(ny, np, TH}, T, (35)

which implies that the effective chemical potentials can be
computed in terms of the definitions above

8]1,‘
Ve = et ) m<%> (36)

for both {x, x} = {n, p} and {x, X} = {p, n}. Defining

8 = Hj— MalNj — UpZj, (37)
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we can take advantage of the fact that all the g; are constant

to write
0gi on;
() G,
j al’lx ni\Ng, 8 j#i 8g,~ Ny N5, 8 joti

8n[
ony neng)

The first derivative on the RHS can be obtained directly from
Egs. (28)—(30). The second derivative is just an element along
the diagonal of the inverse of the matrix

0gi
My =2 . (39)
. 8I’lj (RN

The numerical errors associated with inverting this large ma-
trix decreases the benefit of the analytical formalism. Thus we
compute v, and v, numerically for now. The entropy is easier
to compute

af Z Z
= - = J¢ i il om>
’ <3T)”rhn]n{ni} et i o i il Son

(40)
where s, = 0f,/dT and
| Q; +5+Td§2,» @l
i=n;\1n —: - —_— .
MEM\ M) T2 T ar
E. Nuclei

We use the nuclear masses from experiment [47] wherever
they are available. The atomic mass tables usually include an
empirical bounded electron contribution term a1 Z*3 which
is subtracted before the binding energy is calculated. We use
the theoretical masses from Ref. [48] for nuclei which do not
have experimental mass measurements up to the neutron and
proton drip lines. We use the experimental or theoretical spins
tabulated in Ref. [49]. Finally, we limit Z < 7N and N < 7Z
in order to avoid extreme nuclei which our model likely does
not describe well.

F. Partition function

The partition function we use for light nuclei and the rep-
resentative heavy nucleus follows from Ref. [19]. The nuclear
partition function can be expressed as a sum of discrete states
and an integral of the level density

E;

Q=@+ 1)+ / p(E)exp(—E/T),  (42)

Eq

where the level density p(F) is the back-shifted Fermi-gas
formula given below. The limits on the integral in the partition
function are determined from

E, = imin(S,, S,) and (43)

E, = min(S, + Eg, S, + Ex + 1E.), (44)

where S, and §, are the neutron and proton separation
energies. The quantity Ez = 1/(2M;R?) is the zero-point
energy and with the nuclear radius approximated by R =
1.25fm (A — 1)!/3. The Coulomb barrieris E, = (Z — 1)a/R.
When either S, or §,, is negative, the contribution of the level
density to the partition function is neglected.

The expression for the level density begins by defining a
back-shift parameter § for each nucleus. The prescription from
Ref. [36] is

Z<30:8=25,—80/A, (45)

Z>30:8=35,—80/A—0.5 (46)

with 8§, = (114712 MeV)[1 + (1/2)(—1)* + 1/2(—1)"]. We
will also need the level density parameter, a, for which an
approximate model is

Z <30:a=0.052MeV~'A!2 47)

Z>30:a=0.125MeV ' A. (48)

Finally, different expressions are used for the level density
depending on the relative size of § and E;. When § is smaller
than E,, the level density has the expression

) — 7w exp(2+/al) 49
p(E) = EW’ 49)
where U = E —§.

When § is larger than E;, 6 is set to E; (so that U = E —

E;) and the level density is

p(E) = Cexp(U/T.), (50)
where
1 51 /a
— =——+ —, and 51
T~ 4% + NG an (&)Y
5
C= {—fa‘”%‘m exp (4_1 + M).

The derivative of the partition function with respect to the tem-
perature is required for computing the entropy [see Eq. (41)],
and this is straightforward to compute analytically.

This recipe for the partition function is only approxi-
mate and underestimates the contribution from excited states
[50,51]. Reference [19] found that this approximation did
not adversely impact the thermodynamics of dense matter,
but a more systematic and quantitative exploration of these
uncertainties is an important avenue for future work.

III. RESULTS

While our EOS formalism is designed to be used for any
physical values of the parameters, we precompute nine ta-
bles and present results based on those parametrizations. The
parameters {ins, iskyrme, ¢, @, L(MeV), S(MeV), ¢} are (i) the
choice of high-density EOS parametrization selected from a
discrete set of Markov-chain samples constructed in Ref. [52],
(ii) the choice of Skyrme effective interaction selected from
1000 samples generated from the posterior probability distri-
bution in Ref. [53], (iii and iv) the power and prefactor in
Eq. (18) for the neutron matter equation of state, (v and vi)
the symmetry energy slope parameter, the symmetry energy,
and (vii) the speed of sound at the largest density we con-
sider, ng = 2 fm 3. Reference [33] uses the Skyrme EOS for
isospin-symmetric matter, but has a separate parameters for
the symmetry energy parameters S and L to describe neutron
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TABLE I. Parameters for the EOS tables generated for this work.
The model with note 1 was constructed with the Sk x414 model for
A fro from Ref. [45], and the model with note 2 was constructed with
the Sk x450 model for A fi,; from Ref. [45].

L(MeV) SMeV) ¢

iNS iSkyrme (o4 a

fiducial 470 738 0.5 13.0 62.4 32.8 0.9
large Miox 783 738 0.5 13.0 62.4 32.8 0.9
small R 214 738 0.5 13.0 62.4 32.8 0.9
smallerR 256 738 0.5 13.0 62.4 32.8 0.9
large R 0 738 05 130 62.4 32.8 0.9
small SL 470 738 0.5 13.0 23.7 29.5 0.9
large SL 470 738 0.5 13.0 100.0 36.0 0.9
fiducial' 470 738 0.5 13.0 62.4 32.8 0.9
fiducial® 470 738 0.5 13.0 62.4 32.8 0.9

matter. The Skyrme models are calibrated to experimental
nuclear properties which constrain nuclear isospin-symmetric
matter well but do not accurately constrain neutron matter. For
this reason, Ref. [33] uses quantum Monte Carlo calculations
from Ref. [54] to constrain neutron matter and thus the values
of § and L. The parameters of the nine equation of state tables
are listed in Table I. The finite temperature corrections are
determined by a separate Skyrme model which is calibrated
to finite-temperature many-body calculations from Ref. [45].
The principal uncertainty in these calculations is the choice of
the momentum cutoff, so we choose a range of values, from
414 MeV to 450 MeV Ref. [45] to quantify this uncertainty.
The fiducial EOS is consistent with the most probable neutron
star mass and radius while having moderate S and L (see
details in Ref. [33]). The Skyrme parameters for our fiducial
EOS are listed in Table II. In the following, the figures are
demonstrated for our fiducial EOS.

A. Composition of hot and dense matter

In Fig. 1, the baryon number fraction of free neutrons, pro-
tons, light nuclei, and heavy nuclei are plotted as a function of
baryon density for Y, = 0.1 and Y, = 0.5. The baryon number
fraction of species i is

Xi = niA;/ng, (52)
where n; is the number per unit volume for species i and A;

is the number of baryons in species i. Equation (2) ensures

TABLE II. Parameters for Skyrme Hamiltonian igyyrme = 738.

fo —2719.7 MeV fm?

f 417.64 MeV fm’
t — 66.687 MeV fm’
t 15042 MeV fm>(+9
Xo 0.16154

X —0.047986

X2 0.027170

X3 0.13611

€ 0.14416

Y, =0.1
| R | T
0.3 T=1 Me\/‘// | T = 3.16 MeV i |
g ] 4 | I
S ! | [
g7 ./‘\_-I I I
7 1 1 i I
= 01—/ ,l ' A
:_X" " M
00—\ < /X >
h — Xy == Apel
%
g -
g ] — X, — X,
§ 02__ . - Xt - Xnu(:lci
;] T=631Me '"i T — 10 MoV
= _ A
= 0.1 : 1 II\\ ,r\
] o ¢iﬁf-\
0.0 T I T T
107° 1076 107 107° 1076 1073
np (fm™) ng (fm™)

Mass traction

i

< b

=

S

E

2

?2 T =10 MeV [
| I I T‘Lf_

107° 107 1073 107° 107¢ 1073
ng (fm™?) ng (fm™3)

FIG. 1. Baryon number fractions X; for protons, light nuclei, and
a sum over heavy nuclei, as a function of density for ¥, = 0.1 and
Y, = 0.5 for four temperatures. In the top four panels, the neutron
baryon number fraction is omitted to help make the heavy nuclei
more visible. In the bottom four panels, the neutron mass fraction is
hidden behind the proton mass fraction at low densities where these
two quantities coincide. The right edge of the plots is chosen to be
npg = ny and nuclei always disappear at a baryon density below ng
(independent of electron fraction or temperature).

>".X; = 1. The quantity Xyyci i defined by
Xnuclei =1- Xn - Xp - Xd - Xt - Xa - X3He - X“Li' (53)

At low densities, the system consists of only protons and neu-
trons. For ¥, = 0.1 and T = 1.0MeV, as density increases,
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the mass fraction of alpha particles rises to around 0.2 for
np between 1077 and 107° fm 3. Above 107° fm 3, the light
nuclei are gradually replaced by heavy nuclei. The transition
density from light to heavy nuclei increases as temperature
increases. For Y, = 0.5, o particles are even more prominent
at lower densities and heavier nuclei dominate more strongly
near the transition to nucleonic matter. For higher temperature
(but independent of electron fraction), the region of light and
heavy nuclei gradually merge to a single peak.

Figure 2 shows baryon number fractions X, X, and Fig. 3
shows baryon number fractions X,, Xn,cei as a function of
baryon density and temperature. Near Y, = 0.5 and at low
temperatures, the system consists almost entirely of heavy
nuclei. As the temperature increases, the nonuniform clus-
ters transform to uniform matter. On the other hand, as Y,
decreases, nuclei are replaced by free neutrons. The critical
temperature of the gas-liquid phase transition is around sev-
eral to tens of MeV depending on the proton fraction.

To compute the average proton and neutron number of
nuclei, we define

() e

where this sum includes the light nuclei d, t, «, 3He, and
4Li. We define a similar quantity N, and the average nuclear
mass number is then A = N + Z. Figure 4 shows A and Z as
a function of baryon density and temperature. The maximum
A for our EOS is limited to about 340. For symmetric nuclear
matter, A reaches the upper limit we set. For smaller electron
fractions, the maximum mass number decreases to 120 as
neutrons leave nuclei to form a gas. The shell structure of
nuclei is evident in the figures as rapid color changes. As
baryon density increases, A rises to several plateaus. Figure 5
shows the charge and mass number of nuclei as a function
of density and electron fraction at four fixed temperatures.
The transition density from inhomogeneous matter to ho-
mogeneous matter is not independent of proton fraction, as
observed in microscopic calculations of the equation of state
[40,55]. The transition density is largest near ¥, &~ 0.4, which
is to be expected since heavy laboratory nuclei have a similar
proton fraction. At higher temperatures nuclei disappear as we
approach the liquid gas transition.

B. Comparison with other EOSs

Figure 6 shows the average mass number A as a function
of baryon density and temperature for several other EOSs:
LS220 [11], SFHO [26], FSU21 [56], NRAPR [29], STOS
[12], and FYSS [21]. Note that these results were inter-
polated from the files created by Ref. [57] (and stored at
stellarcollapse.org), and thus details may differ slightly
from the original files. Significant differences can be found
among these plots for the predictions of mass number in inho-
mogeneous phase. The plots fall into two categories. STOS,
FSU21, and FYSS allow nuclei with maximum mass number
around several thousand, while LS220, NRAPR and SFHo
limit A below several hundred. There is also some variation
between models in the Y, dependence of the phase transition

; 1.0
1(a) Y. =0.01
10! —
= 1 X,=0975/ 08
&~ 100
] 0.6
10! X,
0.4
10t
=
(]
=
&~ 100 0.2
1071 0.0
X 05
10—
% 3 0.4
= ]
&~ 100
] 0.3
107! Xp
0.2
10!
>
[«b]
=
E‘ 100 0.1
10 T T 0.0
10-° 1078 10°3 10-° 1079 10°3
np (fm %) np (fm ™)

FIG. 2. Baryon number fractions X, and X, as a function of
baryon density and temperature for ¥, = 0.01, 0.1, 0.3, 0.5, respec-
tively. The right edge of the plots is chosen to be np = ny where
nuclei disappear (independent of electron fraction or temperature).

between nuclei and nuclear matter. In FSU21 and FYSS, the
phase transition is nearly Y, independent. Note that different
panels have different maximum values of Y,, and this impacts
the apparent shape of the transition to nucleonic matter. The
STOS, FSU21, and FYSS tables all include a pasta phase
before transitioning to homogeneous matter, and this also
complicates the comparison. The inclusion of the pasta phase,
in general, decreases binding energy and therefore favors a
late transition to homogeneous matter. Note however that the
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FIG. 3. Baryon number fractions X,, and X, as a function of
baryon density and temperature for ¥, = 0.01, 0.1, 0.3, 0.5, respec-
tively. The right edge of the plots is chosen to be np = ny where
nuclei disappear (independent of electron fraction or temperature).

difference of the mass number between EOS tables does not
strongly impact the thermodynamic quantities such as the
pressure and entropy [13].

C. Nuclear distribution

Figure 7 shows the nuclear distribution for selected points
in the EOS as in [19]. Our results are similar, and our restric-
tion of Z < 7N and N < 7Z is evident in the linear cutoff

102—5
] (@) Y. =001 (b) Y, = 0.1 -
= 10
3 7
= ] 250
&~ 100 -
3 200
190} =
1 (@©v.=03 (d) Y. =05
— 1
S 103
< =
\% ]
&~ 10° —
107! [0
100
np (fm™3) np (fm™3)
102 -
3 L 100
1 (e) Y. =0.01 (f) Yo=0.1
— 1
< 10 =
= 3 80
& 100—;
] 60
190 =
3 Z
] 40
— 1]
S 103
2 3
5 -
S 20
107! 0

1078 1074 10° 1078 1074 10°

np (fm™) np (fm™)
FIG. 4. Average mass(top)/proton(bottom) number for Y, =
0.01, 0.1, 0.3, 0.5, respectively.

in the distribution near the lower-left corner in each panel.
A significant number of nuclei participate in the EOS at each
point. Even though we do not fully explore this uncertainty in
this work, we find that changing the distribution can signifi-
cantly change the transition to nucleonic matter. This variation
may impact core-collapse supernovae and protoneutron star
evolution, as implied by the recent discussion in Ref. [58].
Figure 8 shows the isotopic distribution for the same four
points in the (ng, Y., T') space. The distribution shows a struc-
ture created by the magic numbers (peaks near Z = 28 and
Z = 50 are evident), as well as a peak at low Z as found earlier
in Ref. [18].
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FIG. 5. Average mass (top four panels) and proton (bottom four
panels) number for 7 = 1, 3, 5, 7 MeV, respectively.

D. Monte Carlo results

Figure 9 shows four Monte Carlo plots of the average mass
number for some selected points when the seven parameters
in our EOS are randomly selected. The distribution gives un-
certainty of the EOS in subnuclear density at low temperature
at four points where the distribution is nearly maximal. The
distribution of A is wider at extreme values of Y,, the top
panels show results for ¥, = 0.05 and ¥, = 0.65. The bottom-
left panel shows that the probability distribution is particularly
wide for larger densities near the transition to nucleonic matter
in large part because heavy nuclei are present in some models
but not others. This effect persists even up to large densities,

as shown in the lower-right panel, where nuclei are present
for some models but not others. At the large proton fractions
represented by the lower-right panel, large nuclei are excluded
from being present due to the small inter-nuclear spacing. The
uncertainty in the nucleon-nucleon interaction then leads to
some models with a significant number of « particles and
other light nuclei (right peak) and a few models with no nuclei
at all (left peak).

At some points in the (np, Y,, T') space, the variation shown
in Fig. 9 is much smaller than the variation between other EOS
tables. Atng = 0.03fm >, ¥, = 0.05,and T = 5 MeV (corre-
sponding to the upper-left panel of Fig. 9), LS220 givesA = 9
but STOS gives A = 204 whereas our result is 19.5 £ 3.5.
Our variation in some regions, however, is larger than the
variation between EOS tables. At ng = 0.08 fm ™, ¥, = 0.05,
and T =1 MeV (corresponding to the lower-left panel of
Fig.9), NRAPR givesA = 1, FSU21 gives A = 0, FYSS gives
A =12, LS220 gives A = 4, SFHO gives A = 1, and STOS
gives A = 0.15, while our result is as large as A = 45 for some
parametrizations.

IV. DISCUSSION

While we have created a code which can propagate the un-
certainties in the nucleon-nucleon interaction to the resulting
equation of state, we have not yet fully included all of the
uncertainties. In particular, in addition to the several uncer-
tainties which are involved in the calculation of homogeneous
nucleonic matter (discussed in Ref. [33]), there are several
additional uncertainties involving nuclei which we have not
included. Pasta structures, which are present to surprisingly
large temperatures [58,59], are not included in the present
work. In addition, the modification of the nuclear surface en-
ergy due to the presence of nucleons outside nuclei (see, e.g.,
Refs. [60,61]) has not been included in this work. While these
corrections are principally important at lower temperatures,
and are thus subleading, they may impact the resulting nuclear
distribution, particularly in core-collapse supernovae.

We also do not include all of the possible nuclear many-
body effects. For example, we do not yet include nuclei
beyond the driplines, as it would significantly increase the
size of the distribution of nuclei which we have to consider at
every point in the (np, Y., T') space. However, these nuclei can
impact the final composition [62,63]. In addition, we do not
yet use the same underlying nucleon-nucleon interaction for
both homogeneous matter and nuclei, and Ref. [64] has shown
that this inconsistency may result in spurious effects in the
composition. We have not found an impact on the composition
in the tables which we have generated, but we cannot yet fully
rule this out.

One important consideration is the recent experimental
measurement of a large value for L, as measured in PREX-
II [65,66]. While our fiducial model has a smaller value of
L one of our alternate parametrizations has a value of L =
100 MeV, only 6 MeV away from the central value suggested
in Ref. [66].

The nucleon effective mass has been recently shown to
be particularly important for both core-collapse supernovae
and mergers [67,68]. While the parametrizations tabulated
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FIG. 7. Mass fraction of nuclei in the nuclear chart for matter at
four selected points, comparable with Ref. [19].

in Table I all use the same Skryme model (which has a re-
duced effective mass of 0.904), the zero temperature effective
masses are indeed modified in our full Monte Carlo results
presented in Fig. 9. We do not vary the finite-temperature
effective mass from our Skyrme model, SKxm®*, because
we do not yet have a probability distribution for the finite

-------- np=103fm > Y, =047 =1MeV
00— ====np=10"*fm™>,Y, = 0.4; T = 3.16 MeV
—— =10 fm %Y, =02, 7 =1 MeV
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FIG. 8. Isotopic distribution for the same four points shown in
Fig. 7.
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FIG. 9. Probability distribution for the average nuclear mass
number for equations of state generated by our code at four points.

temperature part of the EOS, but this work is in progress.
The effective mass, unlike the equation of state, is not a
quantum mechanical observable (it depends, for example, on
the arbitrary demarcation between the kinetic and potential
energy). Thus it only has a unique specification in the con-
text of a particular model or class of models. However, the
effective mass is important for computing the neutrino mean
free path, which is well-defined, and clearly relevant for sim-
ulations of supernovae and mergers. Thus the best way to
properly assess the impact of the effective mass is construct
a probability distribution of both the equation of state and the
neutrino opacities together. Work on this direction is also in
progress.

The open-source code for this work, [69], is built upon
O2scl [70], GSL, HDF5, and matplotlib [71]. The tables are
available for download at [72].
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