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Normalizing flows are a class of machine learning models used to construct a complex distribution
through a bijective mapping of a simple base distribution. We demonstrate that normalizing flows are
particularly well suited as a Monte Carlo integration framework for quantum many-body calculations that
require the repeated evaluation of high-dimensional integrals across smoothly varying integrands and
integration regions. As an example, we consider the finite-temperature nuclear equation of state. An
important advantage of normalizing flows is the ability to build highly expressive models of the target
integrand, which we demonstrate enables precise evaluations of the nuclear free energy and its derivatives.
Furthermore, we show that a normalizing flow model trained on one target integrand can be used to
efficiently calculate related integrals when the temperature, density, or nuclear force is varied. This work
will support future efforts to build microscopic equations of state for numerical simulations of supernovae
and neutron star mergers that employ state-of-the-art nuclear forces and many-body methods.
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Introduction.—The hot and dense matter equation of
state (EOS) is of fundamental importance for interpreting
observations of neutron stars, core-collapse supernovae,
and neutron star mergers in terms of the underlying nuclear
microphysics [1,2]. Because of the complexity of comput-
ing the free energy and its derivatives (to obtain the
pressure, entropy, chemical potentials, etc.) across the wide
range of ambient conditions encountered during simula-
tions of supernovae and neutron star mergers, most equa-
tions of state in wide use by the simulation community are
based on simplified mean field models of the nuclear force
[3–6]. Since mean field theory is grounded in effective
interactions fitted to the bulk properties of medium-mass
and heavy nuclei, one loses connection to fundamental
nuclear two- and many-body forces and the ability to
estimate systematic uncertainties [7]. In addition, certain
thermodynamic properties that are important for under-
standing the evolution of core-collapse supernovae, such as
the temperature-dependent nucleon effective mass [8,9], are
quite different in microscopic and mean field models [10].
For these reasons, there is strong motivation to develop
more microscopic descriptions of the nuclear equation of
state based on realistic nuclear forces in beyond-mean-
field-theory quantum many-body calculations.
Microscopic calculations of the free energy Fðn; T; YpÞ

as a function of density n, temperature T, and composition
(e.g., the proton fraction Yp) have in recent years been
computed from realistic two- and three-body chiral effec-
tive field theory (EFT) nuclear forces [11–13]. However,
the inclusion of the most sophisticated three-body forces

[14,15] and important high-order many-body perturbation
theory corrections (such as third-order particle-hole dia-
grams) [16,17] require the evaluation of technically chal-
lenging multidimensional integrations and therefore have
not yet been achieved in finite-temperature calculations.
Moreover, the tabulation of an astrophysical equation of
state (the free energy and its first and second derivatives)
involves the repeated evaluation of these integrals across
more than 1 000 000 phase space points in order to ensure
numerical stability of supernova and neutron star merger
simulations [18]. Microscopic EOS tabulations suitable for
astrophysical simulations are therefore computationally
demanding and only recently have been carried out
[19,20] using the Argonne v18 NN potential and the
Urbana IX three-body force, supplemented by a liquid
drop model for describing the low-density inhomogeneous
phase of nuclear matter.
A potential solution to the numerical challenges outlined

above is adaptive Monte Carlo methods based on impor-
tance sampling [21], which have recently been employed
[17] to calculate high-order perturbation theory corrections
to the cold dense matter equation of state that were
previously intractable. In importance sampling an estimate
for the integral

I½ψ � ¼
Z
D
ψð  xÞd  x ð1Þ

is obtained as a Monte Carlo estimate under a proposal
distribution pðxÞ as
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I ≃ hIiN ¼ 1

N

XN
i¼1

ψð  xiÞ
pð  xiÞ

: ð2Þ

The precision of this estimator, however, is dependent on
how well pðxÞ is able to match the normalized target
jψð  xÞj=Ĩ, where Ĩ ≡ I½jψ j�. In particular, if pðxÞ matches
jψð  xÞj=Ĩ exactly, we obtain an ideal estimator [22].
Consequently, when a precise estimate for the integral is
required, as is the case when computing numerical deriv-
atives in EOS tabulations, the proposal distribution must
have sufficient expressive capacity to match the target.
Popular adaptive importance sampling methods [23,24],
however, often make restrictive assumptions on the inte-
grand such as factorizability, thus limiting the precision of
the estimator.
In the present work, we leverage normalizing flows

[25–27] as a means for constructing efficient importance
sampling estimators for microscopic EOS tabulations.
Normalizing flows have recently emerged as a highly
expressive method for modeling complex proposal distri-
butions [28–37] using deep neural networks. We demon-
strate that this expressivity allows for precise first- and
second-order numerical derivatives of the free energy
over a relatively coarse density and temperature grid.
Furthermore, we show that a normalizing flow model
trained on one target integrand transfers remarkably when
the density, temperature, or nuclear force is varied, thus
providing a compelling framework moving forward for
including high-order many-body perturbation theory cor-
rections for tabulated astrophysical equations of state and
assessing associated uncertainties. Although the focus of
the present work is on the nuclear matter equation of state,

we note that normalizing flow based importance sampling
could also be applied in condensed matter physics and
related fields, where many-body perturbation theory has
recently received renewed interest [38,39].
As a concrete test case, we consider the second-order

perturbation theory contribution to the grand canonical
potential Ω of isospin-symmetric nuclear matter from an
antisymmetrized two-body force V̄NN :

Ωð2Þ ¼ −
1

8

X
1234

V̄12;34
NN V̄34;12

NN
f1f2f̄3f̄4 − f̄1f̄2f3f4
ϵ3 þ ϵ4 − ϵ1 − ϵ2

; ð3Þ

where fi ¼ 1=ð1þ eðϵi−μÞ=TÞ is the Fermi-Dirac distribu-
tion function for particles with chemical potential μ,
f̄i ¼ 1 − fi, ϵi ¼ k2i =ð2MÞ is the free-particle spectrum,
and the sums are taken over spin, isospin, and momentum.
On the one hand, the contribution in Eq. (3) is sufficiently
complex to demonstrate the efficiency of normalizing flow
based importance sampling, and on the other hand it is
amenable to nearly exact evaluation using Gaussian quad-
rature for benchmarking our results. Since our focus is on
the momentum-space integrations inherent in Eq. (3), we
begin with a particularly simple model of the nuclear force

VðqÞ ¼ g2

m2
ϕ þ q2

ð4Þ

associated with scalar-isoscalar boson exchange, where q is
the magnitude of the momentum transfer, and we take
mϕ ¼ 600 MeV and g ¼ 1. Performing the spin and iso-

spin sums in Eq. (3) and choosing  k3 ¼ k3îz, we obtain

Ωð2Þðn;TÞ ¼−
Mg4

64π8

Z
∞

0

dk1

Z
∞

0

dk2

Z
∞

0

dk3

Z
π

0

dθ1

Z
π

0

dθ2

Z
2π

0

dϕ1

Z
2π

0

dϕ2

k21k
2
2k

2
3 sinθ1 sinθ2ðf1f2f̄3f̄4− f̄1f̄2f3f4Þ

k21þ k22− k23− k24

×

�
4

ðm2
ϕþq21Þ2

−
1

ðm2
ϕþq21Þðm2

ϕþq22Þ
�
e−2ðp=ΛÞ6−2ðp0=ΛÞ6 ; ð5Þ

where  k4 ¼  k1 þ  k2 −  k3,  q1 ¼  k1 −  k3,  q2 ¼  k1 −  k4,
 p ¼ 1

2
ð  k1 −  k2Þ, and  p0 ¼ 1

2
ð  k3 −  k4Þ. We have included

the multiplicative function gð  p;  p0Þ ¼ e−ð  p=ΛÞ6−ð  p0=ΛÞ6 in the
definition of the potential in Eq. (4) as is common in
the literature to regulate the unresolved high-momentum
components of chiral nuclear forces [40]. We choose
Λ ¼ 450 MeV as the high-momentum cutoff scale. In
practice, we have replaced the upper integration limits
of∞ with kmax ¼ 2Λ, which we have tested is sufficient to
achieve converged results.
Methods.—A normalizing flow [25–27] defines a

complex distribution pð  xÞ by applying a learnable, bijec-
tive mapping  h to a simple base distribution πð  uÞ. The
probability density of a sample  x ≔  hð  uÞ under a flow can

then be obtained analytically using the change of variables
formula

pð  xÞ ¼ πð  h−1ð  xÞÞ
���� det

�∂  h−1
∂  x

�����: ð6Þ

In the present case,  h should transform πð  uÞ such that the
resulting distribution pð  xÞ matches our target distribution
as closely as possible. This can be achieved by optimizing
the parameters of  h using gradient-based methods to
minimize a suitable divergence metric between our model
and target distributions. To optimize this objective in
practice, however, certain conditions must be satisfied
when choosing a parametrization for  h.
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First, the transformation  h must have sufficient expres-
sive capacity to model the target distribution and at the
same time have a Jacobian determinant that is tractable to
compute. To satisfy these requirements, we implement  h
using a sequence of coupling transforms [41,42]. For a
given coupling transform  ϕ, an n-dimensional vector  x is
first partitioned into two parts:  x ¼ ðx1;…; xd; 0;…0Þþ
ð0;…; 0; xdþ1;…; xnÞ, which we refer to as the base input
and updated input vectors, respectively. The d coordinates
of the base input vector are then passed through a neural
network which outputs a set of parameters  θ that define an
invertible transformation gθiðxiÞ dimensionwise on the
n − d updated input coordinates xi. The coordinates of
the base input vector x1;…; xd are then passed unchanged
through the coupling transform: xi → xi, for i ≤ d. This
results in a lower-triangular Jacobian matrix where the
determinant can easily be computed as the product of the
diagonals:

det

�∂  ϕ
∂  x

�
¼

Yn
i¼d

∂gθi
∂xi : ð7Þ

Furthermore,  h can bemade highly expressive by composing
a sequence of k coupling transformations  h ≔  ϕk ∘ … ∘  ϕ1

with different choices of base input and updated input
coordinates such that all variables are allowed to interact.
The second condition  h must satisfy is that its output

range needs to respect the specified boundary conditions
for a given integral. For this purpose, we choose to
implement each coupling transform using rational-
quadratic spline flows [31,43,44], which define gθiðxiÞ
piecewise on an interval ½Ai; Bi� by partitioning the interval
into K bins and defining the transformation in each bin as a
monotonic rational-quadratic function. The rational-quad-
ratic functions are parametrized by a set of K þ 1 knots
fðxðkÞ; yðkÞÞgKk¼0, which define the boundaries for the
domain and range of each transformation, and a set of
K þ 1 derivatives fδðkÞgKk¼0 defined at each knot. The knots
monotonically increase within the interval ½Ai; Bi� where
ðxð0Þi ; yð0Þi Þ ¼ ðAi; AiÞ and ðxðKÞi ; yðKÞi Þ ¼ ðBi; BiÞ such that
gθiðxiÞ is a mapping from ½Ai; Bi� to ½Ai; Bi�. Thus, by
setting ½Ai; Bi� to be the boundaries for each dimension of a
given integral, we can restrict  h to only be defined on the
integration region.
We implement our flow using a composition of 6

rational-quadratic spline coupling transforms which is
the minimum number required to account for correlations
among all the variables in our seven-dimensional integral in
Eq. (5) [32]. For each transform, we use K ¼ 16 bins and
implement each neural network using a residual network
[45] with two residual blocks and 32 hidden features. Our
base distribution is chosen to be uniform over the integra-
tion region for each dimension, respectively. To train our

flow, we minimize the Pearson χ2 divergence between our
model distribution pð  xÞ and target distribution jψð  xÞj=Ĩ.
This divergence is estimated as an expectation under our
model through importance sampling as

Dχ2 ≃ hDχ2iN ¼ 1

N

XN
i¼1

½jψð  xiÞj
Ĩ

− pð  xiÞ�2
pð  xiÞ

=pð  xiÞ; ð8Þ

where the normalizing constant Ĩ is additionally estimated
through sampling. At each training iteration, we minimize
this expectation with respect to the parameters of our flow
using gradient descent on batches of N samples, where
sampling from our flow amounts to first sampling from the
base distribution πð  uÞ and then passing these samples
through  h to obtain  x. The gradient descent optimization
algorithm we employ is Adam [46]. All models were
implemented using PyTorch [47], and the open-source
implementation for the spline transformations in
Ref. [44] was used for our coupling layers.
Results.—We start by training the flow on the target

integral in Eq. (5) using batches of N ¼ 5000 samples
drawn randomly at each iteration from our base distribution
and passed through our model. We initially fix the density
at n ¼ n0, where n0 ¼ 0.16 fm−3 is the saturation density
of nuclear matter, and the temperature at T ¼ 25 MeV. The
learning rate for the Adam optimizer was set to 10−3 until
200 iterations passed without an improvement in the χ2 loss
function, at which point a cosine scheduler was initiated
with maximum learning rate 10−3, minimum learning rate
10−4, and period of 200 iterations. For comparison, we have
computed the integral in Eq. (5) using the adaptive
Monte Carlo integrators Divonne, Suave, and VEGAS in
the Cuba multidimensional integration library [21]. Only
VEGAS [23,24] was found to give a high-quality estimate
of the integral as well as a reliable associated uncertainty,
and therefore it will be the standard benchmark used
throughout this work. Suave yielded inaccurate integral
estimates, while Divonne was found to underestimate its
actual error (see discussion below).
In the top panel of Fig. 1 we compare the VEGAS

(green) and normalizing flow (red) total relative uncertainty

σt
Ωð2Þ ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiP

i
1
σ2i

q
P

i
Ωð2Þ

i
σ2i

=
P

i
1
σ2i

ð9Þ

over the first 3000 iterations, where in Eq. (9) i is the

training iteration, σi is the batch standard error, and Ωð2Þ
i is

the batch mean. We observe that VEGAS outperforms the
normalizing flow early in the training, but the greater
expressive capacity of the normalizing flow leads to a
smaller total relative uncertainty past 500 iterations.
Moreover, in stark contrast to VEGAS, the normalizing
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flow continues to learn over many training iterations, as
shown in the bottom panel of Fig. 1, where we plot the
batch relative uncertainty jσb=Ωð2Þj, which reflects the
performance of each model at a particular training iteration
with 5000 samples. We observe that the VEGAS batch
uncertainty saturates after less than one hundred iterations,
while the normalizing flow batch uncertainty continues to
decrease throughout training. We stopped training the
normalizing flow when the total relative uncertainty
reached 10−5 (after 36 000 iterations) with associated batch
relative uncertainty of ∼1.5 × 10−3, which is an order of
magnitude improvement over VEGAS.
When precise integral estimates are required (as is the

case for computing numerical derivatives of the free energy),
it is clear that normalizing flows are able to outperform
VEGAS, with the caveat that a high sample complexity is
required to reach this low precision. We now demonstrate
that this initial high sample complexity is a one-time cost,
and that normalizing flow models transfer exceptionally
well when either the density, temperature, or even the
nuclear potential in Eq. (5) is varied. In the left and right
panels of Fig. 2 we show the temperature and density
dependence, respectively, of the total relative uncertainty
jσt=Ωð2Þj in the evaluation of Eq. (5). Both VEGAS (green)
and the normalizing flow (red) were first trained at the phase
space point indicated by the star and then transferred
sequentially to different densities and temperatures using
just 100 additional training steps (500 000 samples). At the
starting point (n ¼ n0; T ¼ 25 MeV), the normalizing flow
begins with more than an order of magnitude better
uncertainty estimate compared to VEGAS. We can see that
this improvement in the precision (relative to VEGAS)
persists as both the density and temperature are varied. We
note that the increase in total relative uncertainty as

temperature decreases is not unexpected, since the sharp-
ening of the Fermi distribution functions becomes difficult
to model within any adaptive Monte Carlo method, as
evidenced by the similar behavior demonstrated byVEGAS.
We also show inFig. 2 the ability for eachmodel to adapt to

nontrivial changes in the choice of nuclear potential. In
particular, the dashed lines in the left panel of Fig. 2 denote the
total relative uncertainty in the evaluation of Eq. (5) after
replacing the simple potential in Eq. (4) with the sum of the
leading-order (LO) and next-to-leading-order (NLO) pion-
exchange contributions in realistic chiral effective field theory
nuclear forces [40,48]. In obtaining the integral estimates for
VχNLO;π , we included one extra training run (100 iterations) at
the phase space point (n ¼ n0; T ¼ 25 MeV) to reorient the
normalizing flow model before using the standard 100
iterations to train and evaluate at all phase space points.

FIG. 1. (top) Total relative uncertainty jσt=Ωð2Þj as a function of
iteration at the beginning of training for the evaluation of
Ωð2Þðn0; T ¼ 25 MeVÞ in Eq. (5) using the normalizing flow
(red) and VEGAS (green) Monte Carlo integration algorithms.
(bottom) Same as top panel but for the batch relative uncertainty
jσb=Ωð2Þj as a function of iteration over the full training time. The
number of batch samples per iteration is 5000. The gray dashed
line is added to help guide the eye.

FIG. 2. Total relative uncertainty for the evaluation of
Ωð2Þðn; TÞ in Eq. (5) using the VEGAS (green solid line) and
normalizing flow (red solid line) Monte Carlo integration
algorithms. Both models were initially trained at n ¼ n0 and T ¼
25 MeV (denoted by the star) for 36 000 iterations and then
transferred to nearby phase space points using only 100 addi-
tional training iterations (500 000 samples). Also shown are the
total relative uncertainties (dashed lines) for both models trained
for 100 iterations when the potential in Eq. (4) is replaced by the
pion-exchange terms up to next-to-leading-order in the chiral
expansion.

FIG. 3. Relative error for the evaluation of Ωð2Þ
MCðn; TÞ in Eq. (5)

using the VEGAS (green), Divonne (blue), and normalizing flow
(red) Monte Carlo integration algorithms compared to the exact

evaluation Ωð2Þ
GQðn; TÞ using Gaussian quadrature. The VEGAS

and normalizing flow models were initially trained at n ¼ n0 and
T ¼ 25 MeV and then transferred to lower temperatures using
100 additional training iterations (500 000 samples).
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We observe that the normalizing flow is able to efficiently
transfer even when a highly nontrivial change to the nuclear
potential is introduced.
In Fig. 3 we show the true Monte Carlo integration errors

for Divonne, VEGAS, and normalizing flows by compar-
ing to exact results obtained from Gaussian quadrature
(GQ). In general, we observe that the integral estimates for

Ωð2Þ
MC from the normalizing flow and VEGAS are within 1 or

2 standard deviations of the exact result Ωð2Þ
GQ, while

Divonne significantly underestimates its actual error.
We now estimate how the uncertainties in the

Monte Carlo estimates for the grand canonical potential
from the VEGAS and normalizing flow models propagate
to the calculation of numerical derivatives. In the top and
lower panels of Fig. 4 we show the 1st and 2nd-order
derivatives of Ωð2Þ with respect to the density and temper-
ature, respectively. The central finite difference method of
order 2 is applied to calculate the numerical derivatives
from the VEGAS (green) and normalizing flow (red)
datasets generated in Fig. 2 as well as the exact results
obtained through Gaussian quadrature (blue). We see that
the improved numerical precision from the normalizing
flow leads to significantly better estimates of free energy
derivatives. In particular, we can see that in the low-
temperature region the derivatives from VEGAS fluctuate
strongly about the true value, while the results from the
normalizing flow are stable and match the exact values
well, even for the 2nd-order derivatives.
Outlook.—In the present work, we have performed

proof-of-principle calculations demonstrating the potential
of normalizing flow-based importance sampling in the

context of nuclear many-body perturbation theory.
In particular, we have shown that normalizing flows are
able to learn models of the target integrand which allow for
precise integral estimates and which can be transferred to
related integrals with minimal additional computational
cost. Ultimately, this leads to speedup factors on the order
of 100 compared to VEGAS when precise integral eval-
uations must be repeated across a multi-dimensional phase
space, such as in calculations of the free energy and its
numerical derivatives in astrophysical equation of state
tables. Numerous extensions and further applications are
envisioned. One important application is the nucleon
single-particle energy, a quantity that varies over the
four-dimensional parameter space fn; T; Yp; qg, where q
is the nucleon momentum. First- and second-order deriv-
atives of this quantity are needed when computing, e.g.,
the nucleon effective mass. Another application is to
nuclear matter response functions, which vary over the
five-dimensional parameter space fn; T; Yp; q;ωg, where q
and ω represent the momentum and energy transfer to the
medium. In all of these cases, normalizing flows may allow
for the inclusion of perturbation theory contributions that at
present are too computationally demanding to map over the
full phase space needed in astrophysical applications.
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