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Abstract

Born in the aftermath of core-collapse supernovae, neutron stars contain
matter under extraordinary conditions of density and temperature that are
difficult to reproduce in the laboratory. In recent years, neutron star obser-
vations have begun to yield novel insights into the nature of strongly inter-
acting matter in the high-density regime where current theoretical models
are challenged. At the same time, chiral effective field theory has developed
into a powerful framework to study nuclear matter properties with quan-
tified uncertainties in the moderate-density regime for modeling neutron
stars. In this article, we review recent developments in chiral effective field
theory and focus on many-body perturbation theory as a computationally
efficient tool for calculating the properties of hot and dense nuclear matter.
We also demonstrate how effective field theory enables statistically mean-
ingful comparisons among nuclear theory predictions, nuclear experiments,
and observational constraints on the nuclear equation of state.
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1. INTRODUCTION

Neutron stars are one of nature’s most intriguing astronomical objects and provide a unique lab-
oratory for studying strongly interacting, neutron-rich matter under extreme conditions. With
masses about 1–2 times that of the Sun and radii of approximately 10 km, neutron stars contain
the densest form of matter in the observable Universe and lie just at the threshold for collapse to a
black hole. Much has already been learned about neutron stars through mass and radius measure-
ments, pulsar timing, X-ray observations, and gravitational wave measurements of binary mergers
in the new era of multimessenger astronomy (for reviews, see, e.g., 1–3). But many interesting
questions remain to be answered, especially regarding the nature of ultracompressed matter lo-
cated in the inner cores of heavy neutron stars where a variety of exotic new states of matter have
been theorized to exist.

While neutron stars are bound together by gravity acting over macroscopic length scales,
strong short-ranged nuclear interactions provide the essential pressure support to counteract grav-
itational collapse.The central densities in the heaviest neutron starsmay reach up to 5–10n0,where
n0 ≈ 0.16 fm−3 is the nucleon number density typical of heavy atomic nuclei (the associated mass
density is ρ0 ≈ 2.7 × 1014 g cm−3). Although the strong interaction is in principle described by
quantum chromodynamics (QCD) over all relevant energy scales, at present no systematic com-
putational method is available to calculate the properties of the high-density matter in the inner
cores of heavy neutron stars.

With chiral effective field theory (ChEFT), however, a powerful tool has emerged to carry
out microscopic calculations of nuclear matter properties at densities up to around 2n0. Instead
of QCD’s quarks and gluons, ChEFT is formulated in terms of nucleons and pions (and delta
isobars), which are the effective strong interaction degrees of freedom present throughout most of
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EOS: equation of state

MBPT: many-body
perturbation theory

RG: renormalization
group

the neutron star interior. In its range of validity, ChEFT provides a systematic expansion for two-
nucleon and multinucleon interactions consistent with the symmetries of low-energy QCD. The
unresolved short-distance physics is parameterized in terms of contact interactions whose low-
energy couplings are fitted to experimental data. An essential advantage over phenomenological
approaches is that theoretical uncertainties can be quantified by analyzing the order-by-order
convergence of the ChEFT expansion. In the last few years, the combination of systematic nuclear
matter predictions from ChEFT, uncertainty quantification, and neutron star observations has
developed into a new avenue for constraining the high-density regime of the nuclear equation of
state (EOS).

In this review our aim is to describe recent advances in microscopic ChEFT calculations of
the nuclear EOS and their application to neutron stars (for recent reviews of nuclear structure
calculations with ChEFT, see, e.g., 4–7). We highlight many-body perturbation theory (MBPT)
as an efficient framework for nuclear matter calculations at zero and finite temperature based on
chiral two-nucleon and multinucleon interactions. We also discuss Bayesian methods for quan-
tifying and propagating statistically meaningful theoretical uncertainties. Together with nuclear
experiments, astrophysical simulations, and neutron star observations, next-generation ChEFT
calculations will be crucial to infer the nature of the extreme matter hidden deep beneath the
surface of neutron stars.

The review is organized as follows. In Section 2 we focus on recent progress in deriving nuclear
forces fromChEFT and renormalization group (RG)methods to improve themany-body conver-
gence in nuclear matter calculations.We then dedicate Section 3 to recent high-order MBPT cal-
culations of the moderate-density nuclear EOS at zero temperature and advances in the Bayesian
quantification of effective field theory (EFT) truncation errors.We also discuss finite-temperature
calculations and nuclear thermodynamics. In Section 4 we review the present status of the high-
density nuclear EOS constrained by nuclear theory, experiment, and observation in the era of
multimessenger astronomy, emphasizing the importance of ChEFT. Section 5 ends the review
with our summary and perspectives on future advances in nuclear matter calculations and their
applications to astrophysics.

2. FROM MICROSCOPIC INTERACTIONS TO THE NUCLEAR
EQUATION OF STATE

In this section, we briefly review deltaless ChEFT and the construction of chiral nuclear inter-
actions as microscopic input for many-body calculations. Applying RG methods allows one to
systematically generate (perturbative) low-momentum interactions, for which the nuclear EOS
and related observables can be efficiently calculated using MBPT. We discuss both zero- and
finite-temperature MBPT, complementary many-body approaches, and the implementation of
3N interactions in nuclear matter calculations.

2.1. Chiral Effective Field Theory for Nuclear Forces

The interactions among nucleons arise as an effective low-energy phenomenon of QCD, the
theory of the strong interaction. At the momentum scales relevant for nuclear physics, p ∼
mπ, QCD is strongly coupled and features nonperturbative effects such as spontaneous chiral
symmetry breaking and the confinement of quarks and gluons into hadrons. Direct applications
of QCD to hadronic physics at finite density, where lattice QCD faces a formidable sign problem,
are therefore extremely challenging and not feasible at present or in the near future. However,
one can construct a systematic description of nuclear physics in terms of the effective degrees
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LEC: low-energy
constant

NkLO:
(next-to)k-leading
order

of freedom at low energies: nucleons and pions (and delta isobars). This effective description is
given by ChEFT (8–12).

The starting point of ChEFT is to write down the most general Lagrangian consistent with
the symmetries of low-energy QCD—in particular, the spontaneously broken chiral symmetry,
for which pions are the (pseudo) Nambu–Goldstone bosons. This naturally sets a limit for the
applicability of ChEFT; that is, the breakdown scale �b will be of order of the chiral symmetry–
breaking scale �χ ∼ 1 GeV. [Bayesian analysis of free-space NN scattering with several (not-
too-soft) chiral NN potentials in Weinberg power counting estimated �b ≈ 600 MeV (13).] A
truncation scheme, known as power counting, is then needed to organize the infinite number of
operators in the effective Lagrangian in a systematic expansion. This expansion is governed by
the separation of scales inherent in ChEFT; that is, the power counting is based on powers of a
typical momentum p (or the pion mass) over the ChEFT breakdown scale,Q = max (p,mπ )/�b.

In perturbative EFT, both power counting and ultraviolet renormalization are essentially un-
ambiguous and straightforward. The situation is different for applications of ChEFT in nuclear
physics, where the calculational framework must be able to account for nonperturbative effects
such as bound states (atomic nuclei) and large S-wave scattering lengths in NN scattering. While
there has been some controversy in the literature as to how the ChEFT expansion should be set
up precisely (see, e.g., 10, 12, and references therein), the prevalent and most successful power
counting for ChEFT (in particular regarding many-body applications) is the one first suggested
by Weinberg (14–16).

WithinWeinberg power counting, chiral nuclear interactions (and currents) are organized ac-
cording to naive (i.e., perturbative) dimensional analysis. The nuclear potentials constructed at a
given truncation order in the ChEFT expansion are then used to compute observables. Renor-
malization in this approach is approximative and is carried out by equipping the potentials with
regulator functions that suppress contributions above a cutoff scale � � �b (typically in the range
450–600MeV). That is, the cutoff independence of the observables will be achieved only approxi-
matively through �-dependent low-energy constants (LECs), which in practice are optimized for
a given � to reproduce low-energy NN scattering data and few-nucleon observables (see, e.g., 12,
17).The residual cutoff dependence can then be attributed to higher-order terms in the expansion,
so results are expected to become less cutoff dependent with increasing truncation order.

Figure 1 depicts the hierarchy of nuclear interactions up to fifth order (N4LO) in the chiral
expansion without delta isobars (for recent work on the currently less developed deltaful ChEFT,
see, e.g., 18, 19). In this review, NkLO indicates (next-to)k-leading order, where k is the number
of orders beyond leading order (LO). At each order, the interactions are composed of short-range
contact interactions as well as one-pion and multipion exchanges at long and intermediate dis-
tances, respectively. The LECs associated with pion exchanges have recently been determined
with high precision through an analysis of pion–nucleon scattering within the framework of Roy–
Steiner equations (20). The short-range LECs corresponding toNN couplings are generally fixed
by matching to NN scattering data. Figure 1 shows that ChEFT naturally predicts the observed
hierarchy of two-nucleon and multinucleon interactions (i.e., VNN > V3N > V4N, etc.). The first
nonvanishing 3N forces appear at N2LO in three topologies: from left to right in the figure, the
long-range two-pion exchange (involving the pion–nucleon LECs c1, c3, and c4), intermediate-
range one-pion exchange contact (∝cD), and short-range 3N contact interaction (∝cE). At N3LO,
the 3N forces are significantly more involved and operator-rich, and 4N interactions also start to
contribute. Apart from the two N2LO 3N LECs, cD and cE, chiral interactions up to N3LO are
completely determined by the πN and NN system. While N4LO NN forces have already been
worked out, partly even at N5LO, the derivation of N4LO 3N interactions has not been finished
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Figure 1

Hierarchy of chiral nuclear interactions up to fifth order (N4LO) in the chiral expansion without delta isobars (12). Solid lines indicate
nucleons; dashed lines indicate pions. The circled numbers indicate the number of short-range contact low-energy constants.
Abbreviations: LO, leading order; NLO, next-to-leading order; NkLO, (next-to)k-leading order.

yet.The 3NLECs cD and cE can be fit to (uncorrelated) few-body observables—for instance, the 3H
binding energy combined with the charge radius of 4He, the 3H β-decay half-life, or the nucleon–
deuteron scattering cross section.Heavier nuclei and even saturation properties in infinite nuclear
matter have also been used to constrain 3N forces.

Although the residual regulator and cutoff dependence of observables at a given chiral order
is expected to decrease at higher orders, actual calculations show a significant influence of these
so-called regulator artifacts on the ChEFT convergence depending on the specific regularization
scheme and computational framework.These issues have resulted in the development of a flurry of
chiral potentials with nonlocal, local, and semilocal regulators for a range of cutoff values (see, e.g.,
table I in Reference 21). Moreover, as discussed in Section 2.2, RG methods allow one to modify
a given set of two-nucleon and multinucleon potentials such that observables are left invariant
(up to RG truncations) but the convergence of many-body calculations is optimized. These RG
transformations are most suitably formulated at the operator (i.e.,Hamiltonian) level.The nuclear
Hamiltonian constructed at a given order in the ChEFT expansion readsH= Tkin + VNN(�, ci) +
V3N(�, ci) + V4N(�, ci) + . . . , where � is the (initial) cutoff or resolution scale, and ci is the set of
LECs inferred from fits to experimental data. The nuclear Hamiltonian is not an observable, and
the basic idea of the RG is to exploit this feature to generate more perturbative Hamiltonians.

2.2. Perturbative Chiral Nuclear Interactions

The strong short-range repulsion (hard core) and tensor forces found in nuclear potentials con-
structed at cutoff scales � � 500 MeV raise questions regarding the applicability of perturbation
theory for many-body calculations. In fact, nuclear many-body calculations were historically
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SRG: similarity
renormalization group

considered a nonperturbative problem (see also Section 2.3). Both features give rise to strong
couplings between high- and low-momentum states—that is, large off-diagonal matrix elements,
which enhance the intermediate-state summations in perturbation theory. RG methods allow
one to amend this feature while preserving nonperturbative few-body results.

The initial application (22) of RGmethods to study the scale dependence of nuclear forces was
based onT-matrix equivalence, but in recent years the similarity renormalization group (SRG) has
been the standard RG method for softening nuclear interactions. The SRG decouples high- and
low-momentum states through continuous infinitesimal unitary transformations, Hs =UsHU †

s ,
described by a differential flow equation in the evolution parameter s. As the SRG flow progresses,
the matrix elements of the NN potential are driven toward a band-diagonal (or block-diagonal)
form in momentum space (for illustrations, see 23). While NN observables are by construction
invariant under any RG evolution of the NN potential, A-body observables will remain so only
if one also consistently evolves the multinucleon part of the nuclear Hamiltonian. The SRG al-
lows one to implement this in principle exactly, in terms of so-called induced many-body forces.
However, for practical applications, a truncation of the consistent evolution of multinucleon in-
teractions is required (e.g., at the 3N level). Neutron matter calculations with SRG-evolved chiral
interactions truncated at the 3N level indicate that induced 4N forces are (in that case) negligible
within uncertainties for a wide range of SRG resolution scales (24, 25).

There have beenmany recent developments in the application of ChEFT and SRG technology
for the construction of high-precision nuclear potentials. Hebeler et al. (26) explored a set of low-
momentum N3LO NN potentials combined with unevolved N2LO 3N forces where the two 3N
LECs were fit to reproduce few-body data (assuming that the 3N contact interactions capture
dominant contributions from induced 3N forces). For the softest of these potentials (with λ = 1.8
and�3N = 2.0 fm−1),whichwas found to predict nuclear saturation properties (26, 27) and ground-
state energies of light- to medium-mass nuclei in agreement with experiment (28), Stroberg et al.
(29) computed ground-state and separation energies of nearly 700 isotopes up to iron. Moreover,
Hüther et al. (30) constructed a family of SRG-evolved NN and 3N potentials up to N3LO. Also,
Reinert et al. (17) developed the first chiral NN potentials up to N4LO with semilocal regulators
in momentum space such that the long-range part of the pion exchanges remains invariant in
contrast to nonlocal regulators.They showed that several N3LO contact terms present in previous
generations of chiral NN potentials can be eliminated using unitary transformations, leading to
considerably softer potentials (even without SRG evolution).

The Weinberg eigenvalue analysis (21, 31) is a powerful tool for quantifying and monitoring
the perturbativeness of nuclear forces at different resolution scales. Given an NN potential, the
Weinberg eigenvalues ην (W) of the operator G0(W)VNN determine the (rate of ) convergence of
the Born series for NN scattering. Here, G0(W) is the (free-space or in-medium) propagator as a
function of the complex energy W. The Born series converges if and only if all eigenvalues sat-
isfy |ην (W)| < 1. Bound states of the potential (such as the deuteron) correspond to ην (W) = 1 at
energiesW < 0, so the free-space Born series diverges even for soft potentials. In nuclear matter
at sufficiently high densities, however, Pauli blocking suppresses the (in-medium) eigenvalues as-
sociated with bound (or nearly bound) states. For potentials constructed at � � 550 MeV, other
sources of nonperturbative behavior (such as the hard core) are suppressed as well, both in free
space and in medium (for details, see, e.g., 23). This implies that a nonperturbative treatment of
in-medium NN scattering in the particle–particle channel (see Section 2.3) is not mandatory for
these interactions. Instead, order-by-orderMBPT calculations can be used to systematically study
the many-body convergence of (low-momentum) chiral nuclear interactions.
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2.3. Many-Body Perturbation Theory at Zero and Finite Temperature

MBPT starts by partitioning the nuclear Hamiltonian H into a reference one-body part H0 =
Tkin + U and a perturbation H1 = V − U, where Tkin is the kinetic energy operator and U is
an effective single-particle potential. In this section, we consider NN-only potentials; we dis-
cuss the implementation of 3N interactions in Section 2.5. The standard choice for U is the
Hartree–Fock potential1 given byU (HF)

i = ∑
j V

i j,i j f j , with the antisymmetrized NN matrix ele-
mentsV i j,ab = 〈kik j|(1 − P12)VNN |kakb〉, the Pauli exchange operator P12, the momentum integral∑

j = ∫
d3k j/(2π )3, and the zero-temperature distribution function f j = θ (kF − k j ). For simplic-

ity, we assume here a single-species system and neglect spin–isospin degrees of freedom. In zero-
temperature MBPT, the ground-state energy density E is obtained by expanding H1 about its
reference value E0. Truncating the many-body expansion at a finite order L then leads to the
approximation E (kF) � E0(kF) +

∑L
l=1 El (kF),2 where the Fermi momentum kF is in one-to-one

correspondence with the particle number density via n(kF) = ∑
i fi(kF).

The first-order correction is determined by the expectation value ofU (HF)
i (32). At higher or-

ders it is useful to represent the contributions diagrammatically (e.g., as Hugenholtz diagrams).
The diagram and expression for the second-order contribution E2 are given by

E2(kF) = = −1
4

∑
i jab

V i j,abV ab,i j fi j f̄ab
1

Dab,i j
, 1.

with the distribution functions fij = fifj (holes) and f̄ab = (1 − fa )(1 − fb) (particles), energy de-
nominator Dab, ij = εa + εb − εi − εj, and single-particle energies εi = k2i /(2M ) +U (HF)

i . Writing
down the expression associated with a diagram follows these simple rules:

� Each vertex gives a factor Vij, ab, where i and j are the lines directed toward the vertex, and a
and b are the lines directed away from the vertex.

� Downward lines give factors of fi while upward lines give (1− fi), corresponding respectively
to hole and particle excitations of the reference ground state.

� For adjacent vertices, there is an energy denominator given by subtracting the energy of the
reference ground state from the excited state corresponding to the particle and hole lines
that are crossed by a virtual horizontal line between the two vertices.

Each diagram’s overall factor can be inferred from the diagrammatic structure as well (32). For
instance, the expression of the third-order particle–particle (pp) diagram reads

E3,pp(kF) = = 1
8

∑
i jabcd

V i j,abV ab,cdV cd,i j fi j f̄abcd
1

Dab,i jDcd,i j
. 2.

Finding all valid diagrams (and associated expressions) at a givenMBPTorder has been formalized
using graph theorymethods (34); inHartree–FockMBPT, there are (1, 3, 39, 840, 27300) diagrams
at order l = (2, 3, 4, 5, 6). Together with the automated code generation for the efficient Monte

1In Hartree–Fock MBPT, the −U part of H1 = V − U cancels all diagrams involving single-vertex loops (25,
27, 32).
2The many-body expansion is in fact a divergent asymptotic series, but the divergent behavior is expected to
appear only for high truncation orders L � 20 (33).
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FFG: free Fermi gas

Carlo integration of arbitrary MBPT diagrams developed in Reference 27, this has led to a fully
automated approach to MBPT calculations.

In the traditional Brueckner (orG-matrix) approach (35), the pp ladder diagrams are resummed
to all orders, motivated by the large high-momentum components of traditional NN potentials
to which the pp ladders are particularly sensitive. The pp bubbles in these diagrams are even
ultraviolet divergent if the potential is not sufficiently suppressed at high momenta. For modern
low-momentum potentials, however, the pp ladders no longer play a distinguished role in the
many-body expansion, and explicit MBPT calculations at third and fourth order have shown that
they are not enhanced compared with other diagrams at the same order (27). Nevertheless, partial
diagrammatic resummations are still pertinent for consistent calculations of in-medium single-
particle properties and response functions as performed in the self-consistent Green’s functions
(SCGF) method (for more details, see Section 2.4).

The consistent generalization of MBPT to finite temperatures (T > 0) is a nontrivial issue.
From the standard finite-T perturbation series for the grand canonical potential3

�(T ,μ) � �0(T ,μ) +
L∑
l=1

�l (T ,μ), 3.

the free energy densityF (T ,μ) is obtained via the thermodynamic relationF (T ,μ) = �(T ,μ) +
μn(T ,μ). Here, the density is given by n(T, μ) = −��(T, μ)/�μ. The issue is now that the rela-
tions between (F , n) and (E , n), obtained in finite- and zero-TMBPT, respectively, do not match
in the limit T → 0 (as discussed further below).

Regarding this issue, we first consider the finite-T expression for the second-order diagram,

�2(T ,μ) = = −1
4

∑
i jab

V i j,abV ab,i j fi j f̄ab G2. 4.

Equation 4 differs only slightly from E2(kF) in Equation 1. First, the energy denominator is re-
placed by G2 = (1 − e−Dab,i j/T )/(2Dab,i j ). The numerator in this expression vanishes at any zero of
the denominator; that is, there are no poles at finite T. In the T → 0 limit, the integration re-
gions corresponding to the two terms in the numerator of G2 separate into two equivalent parts
with integrable poles at the integral boundaries—that is, G2 → 1/Dab,i j for T → 0. These features
pertain to higher-order diagrams (36).4 The second difference at finite T compared with T = 0
is that the fi = fi(T,μ) are Fermi–Dirac distributions instead of step functions centered at the Fermi
energy εkF .

Similar to the free Fermi gas (FFG; i.e., MBPT with U = 0 and L = 0), for Hartree–Fock
MBPT at L = 1, the chemical potential μ at T = 0 matches the reference Fermi energy εkF , with
n(T, μ) = ∑

ifi(T, μ) (36). But these relations cease to be valid at higher orders because of higher-
order contributions in the expression for n(T, μ). Note that these contributions involve factors
�fi/�μ = fi(1 − fi)/T, which become δ(εi − μ) at T = 0 (so there is a nonvanishing contribution
at T = 0). Contributions involving factors fi(1 − fi)/T are also present in certain perturbative
contributions to �, starting at fourth order for Hartree–Fock MBPT (36) (for U = 0, they appear

3Use of the grand canonical ensemble is required for the evaluation of quantum statistical averages in the
thermodynamic limit.
4The poles (at the integral boundary) at T = 0 lead to nonanalyticities in the asymmetry dependence of the
nuclear EOS (see Section 3.2).
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already at second order). These contributions can be associated with the presence of additional
so-called anomalous diagrams in finite-T MBPT (for more details, see 36, 37). As evident from
the discussion above (i.e., below Equation 4), the T → 0 limit of the finite-T expressions for
normal (i.e., not anomalous) contributions �l matches the corresponding zero-T contributions
El , except that the reference Fermi energy is replaced by the (true) chemical potential. Therefore,
a consistent finite-T version of Hartree–Fock MBPT for L ≤ 3 would be given by

F (T , μ̃) � F0(T , μ̃) +
L∑
l=1

Fl (T , μ̃), 5.

where Fl = �l (for l = 1, 2, 3) and the auxiliary “chemical potential” μ̃ is related to the density
via n(T , μ̃) = ∑

i fi(T , μ̃), implying μ̃ → εkF in the T → 0 limit.5

In the U = 0 case, the method for constructing a finite-T perturbation series of the form of
Equation 5 for any L is well known (37): One expands each contribution to F (T ,μ) about μ̃

according to μ = μ̃ + ∑L
l=1 μl (T , μ̃) while neglecting all terms beyond the truncation order L.

[The terms μl are determined by the requirement that the truncated expansion of n(T, μ)
about μ̃ reproduces n(T , μ̃) = ∑

i fi(T , μ̃).] This process can also be applied to Hartree–Fock
MBPT (25), with the caveat that the single-particle potential has to be evaluated at μ̃—that is,
no derivatives of U (HF)

i (T , μ̃) in μ̃ appear. In both cases (U = 0 and Hartree–Fock MBPT), the
resulting perturbation series for the free energy reproduce zero-T MBPT at each truncation
order L, even though the terms Fl contain anomalous contributions for l ≥ 4 (l ≥ 2 for U = 0).
The fact that Equation 5 results from a truncated reexpansion shows explicitly that the original
grand canonical series is not consistent with zero-T MBPT (for general arguments why the free
energy series is expected to give improved results compared with grand canonical MBPT, see 36,
38).

Altogether, MBPT as formulated in the free energy series (Equation 5) provides a consistent
framework for nuclearmatter calculations at zero and finite temperature,wheremany-body uncer-
tainties can be systematically assessed by increasing the truncation order L. Although the number
of MBPT diagrams increases rapidly with L, the technologies recently developed for automated
diagram generation and evaluation (27, 34) enable calculations at high-enough orders to probe
in detail the many-body convergence for chiral low-momentum NN and 3N interactions. Fur-
thermore, exploring MBPT with single-particle potentials beyond the Hartree–Fock level is an
important task for future research. In particular, the single-particle potential U can be chosen at
each truncation order such that the grand canonical and free energy series are also equivalent for
L > 1 (36); for Hartree–Fock MBPT, they are equivalent only for L = 1. First investigations of
this order-by-order renormalization of the single-particle potential have shown that higher-order
contributions to U can have a significant effect on low-order MBPT results and the many-body
convergence (39).

2.4. Other Many-Body Methods

The advances in ChEFT and RG methods have established MBPT as a central approach for
studying the nuclear EOS at zero and finite temperature.While MBPT is the focus of this review,
various other many-body methods have been applied in initial nuclear matter studies with chiral
NN and 3N interactions. In particular, nonperturbative frameworks are important to benchmark
theMBPT convergence and probe aspects of many-body physics beyond the nuclear EOS. Below,

5The true chemical potential is obtained from F (T , μ̃) via μ = ∂F/∂n.
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SNM: symmetric
nuclear matter (δ = 0)

we briefly discuss the SCGF approach and the quantum Monte Carlo (QMC) method. Some
other methods, which for brevity are not discussed here, are coupled-cluster (CC) theory (40),
in-medium SRG (4), and lattice EFT (41). Systematic comparisons between different many-body
frameworks will provide a coherent picture of microscopic interactions and nuclear many-body
properties.

The SCGF approach (42, 43) is based on the self-consistent computation of in-medium prop-
agators (or Green’s functions) in Fourier (Matsubara) space, corresponding to the to-all-orders
resummation of some perturbative contributions to the propagators. SCGF calculations of the
nuclear EOS at zero and finite temperature (44, 45) have been implemented using the in-medium
T-matrix approximation, where the ladder diagrams are resummed to all orders, providing a ther-
modynamically consistent generalization of Brueckner theory (43). Furthermore, SCGF calcula-
tions have been used to benchmark the order-by-order convergence of MBPT (up to third order)
in neutron matter (46). The energy per particle obtained in SCGF andMBPT was found to agree
well for a range of unevolved chiral NN and 3N interactions up to N3LO. The SCGF approach
allows for fully consistent computations of response functions and transport properties, which will
be vital for comparisons with MBPT calculations of these quantities.

QMC refers to a family of stochastic methods that solve the many-body Schrödinger equa-
tion through random sampling (6). As such,QMCmethods are truly nonperturbative and provide
important benchmarks for many-body methods with basis expansions. However, apart from the
fermion sign problem, a caveat is that most QMC methods require local nuclear potentials to
obtain low-variance results, restricting both the regularization scheme and the interaction oper-
ators that can be included in the ChEFT expansion. QMC calculations with local chiral NN and
3N potentials up to N2LO have been carried out in neutron matter (47, 48) and recently also in
symmetric nuclear matter (SNM) (49). Because of Fierz invariance breaking, the regulator arti-
facts are significantly larger than in MBPT calculations with nonlocal potentials. However, since
QMC methods are not restricted to soft interactions, a much wider range of momentum cutoffs
can be studied withQMC.Hence,QMCmethods can provide important insights into the residual
cutoff dependence of observables and the breakdown scale of ChEFT at high densities.

2.5. Implementing Three-Body Forces

Three-nucleon forces are crucial for understanding properties of finite nuclei and nuclear mat-
ter (7), such as drip lines along isotopic chains and nuclear saturation in SNM. Even though
partial-wave decomposed matrix elements of chiral 3N forces have become available recently up
to N3LO (50), implementing 3N forces in many-body calculations remains computationally dif-
ficult and usually requires approximations (51). The large uncertainties due to 3N forces (e.g., in
the nuclear EOS at densities n � n0) emphasize the need for improving these approximations as
well as developing novel chiral NN and 3N potentials in general.

Normal ordering allows one to include dominant 3N contributions in many-body frameworks
using density-dependent effective two-body potentials (52). Through Wick’s theorem, the
general three-body Hamiltonian can be exactly normal-ordered with respect to a finite-density
reference state (e.g., the Fermi sea of noninteracting nucleons or the Hartree–Fock ground state)
instead of the free-space vacuum (23). This shifts contributions from the three-body Hamiltonian
operator to effective zero-body, one-body, and two-body operators plus a residual (reduced)
three-body operator. A many-body framework built for NN interactions can then incorporate
a density-dependent effective interaction V med

NN derived from V3N as VNN → VNN + ξ V med
NN .

The combinatorial factor ξ is determined by Wick’s theorem and depends on the many-body
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PNM: pure neutron
matter (δ = 1)

ANM: asymmetric
nuclear matter
(0 < δ < 1)

calculation of interest. The matrix elements of V med
NN are obtained by summing one particle over

the occupied states in the reference state:

〈
2′3′ |V med

NN | 23
〉
= =

∑
σ1τ1

∫
dk1

(2π )3
f1〈12′3′|V̄3N|123〉, 6.

with the shorthand notation |i〉 = |kiσiτi〉, antisymmetrized 3N interactions V̄3N , and momentum
distribution function of the reference state f1.

In contrast to the (Galilean-invariant) NN potential, the effective two-body potential
(Equation 6) depends on the center-of-mass momentum P of the two remaining particles. Hence,
both potentials cannot be straightforwardly combined in a partial-wave basis, and different approx-
imations for the P dependence have been used to enable applications to nuclear matter. Under the
assumption that P = 0, first implementations evaluated Equation 6 semianalytically in SNM and
pure neutron matter (PNM) starting from the N2LO 3N interactions (26, 53, 54). Extensions to
asymmetric nuclear matter (ANM) and finite temperature have followed (38, 46, 55, 56), and a new
method that allows for the construction of an effective two-body potential from any partial-wave
decomposed 3N interaction in an improved P angle-averaging approximation has been devel-
oped (56). The latter approach is especially advantageous for studying 3N forces at N3LO (56),
bare and SRG evolved, and in different regularization schemes. Semianalytic expressions along
the lines of Reference 53 have been derived up to N3LO and also partially to N4LO (57).

The three-body term in the normal-ordered Hamiltonian cannot be implemented using effec-
tive two-body potentials. In nuclear matter, such residual 3N contributions have been studied in
CC (58) and MBPT calculations (27, 59–61). Explicit calculations of the residual 3N diagram in
MBPT at second order,

E res
2 (kF) = = − 1

36

∑
i jkabc

V i jk,abcV abc,i jk fi jk f̄abc
1

Dabc,i jk
, 7.

showed for a range of chiral interactions that its contribution is typically much smaller than both
the overall EFT truncation error and the individual contributions from the otherMBPT diagrams
up to this order (27).While these findings give some justification for the commonly used approx-
imation where residual 3N contributions are neglected, the automated approach introduced in
Reference 27 implements chiral NN, 3N, and 4N interactions exactly in nuclear matter calcula-
tions using a single-particle spin–isospin basis. Combined with high-performance computing, this
method sets the stage for systematic studies of ChEFT interactions in MBPT up to high orders
without the mentioned approximations.

3. NUCLEAR EQUATION OF STATE AT ZERO AND FINITE
TEMPERATURE

In this section, we survey recent nuclear matter calculations up to n ≈ 2n0 in MBPT with chiral
NN and 3N interactions. We discuss advances in the quantification and propagation of EFT
truncation errors, confront different microscopic constraints on the nuclear symmetry energy
with experiment, and examine contributions beyond the standard quadratic expansion of the EOS
in the isospin asymmetry. We conclude the section with results for the nuclear liquid–gas phase
transition at finite temperature.
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3.1. Confronting Nuclear Forces with Empirical Constraints

Figure 2a illustrates the nuclear EOS at zero temperature as a function of density n for a repre-
sentative set of isospin asymmetries δ = (nn − np)/n, where nn is the neutron number density and
np is the proton number density. Several general observations can be gleaned.Nuclear interactions
are much stronger in SNM compared with PNM, which is closer to the FFG. Consequently, the
uncertainties are larger in SNM, especially for densities n � n0. In PNM they are well controlled
for n� n0, and a wide range of chiralNN and 3N interactions lead to similar results for PNM (see,
e.g., 7, 62, 63). Increasing uncertainties toward higher densities are predominantly due to 3N inter-
actions. Although the complexity of 3N interactions is much reduced in PNM (54), they provide at
all values of δ important repulsive contributions that grow stronger with density than those ofNN
interactions. The 3N interactions are therefore crucial for understanding the high-density EOS
and the structure of neutron stars. In PNM, all chiral interactions up to N3LO are completely
determined by the πN and NN systems. The intermediate- and short-range 3N interactions at
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Figure 2

(a) Nuclear equation of state at T = 0 as a function of density n for a representative set of isospin asymmetries δ. The uncertainty bands
in the energy per particle E/A were obtained in Reference 56 by second-order MBPT calculations based on the Hebeler et al.
interactions (26). Key observables that characterize E(n ≈ n0, δ)/A are illustrated: the saturation point (n0, E0), incompressibility K,
symmetry energy Sv , and its slope parameter L at n0. (b) Saturation points of numerous chiral interactions from fourth-order (circles)
and third-order (squares) MBPT calculations, as well as coupled-cluster theory (triangles)—specifically, the NN and 3N interactions by
Hebeler et al. (26) [as in panel a, λ/�3N (fm−1)], Carlsson et al. (64) [sim � (MeV)], and Holt and colleagues (39, 65) [Holt � (MeV)].
The Hamiltonian “2.0/2.0∗” uses the ci values from the NN partial-wave analysis in Reference 66 in the 3N forces. The ellipses show
the 2σ regions of order-by-order calculations up to N3LO in MBPT with effective field theory truncation errors fully quantified (67).
Note that the saturation points are aligned along a Coester-like band (gray anticorrelation band). The white box in each panel depicts the
empirical saturation point, E0 = −15.86 ± 0.57 MeV with n0 = 0.164 ± 0.007 fm−3 (56). The data in panel b are from References 18,
27, and 67. Abbreviations: FFG, free Fermi gas; GP-B, Gaussian process–BUQEYE (Bayesian Uncertainty Quantification: Errors in
Your EFT) Collaboration; MBTP, many-body perturbation theory; NLO, next-to-leading order; N2LO, next-to-next-to-leading order.
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N2LO, which are proportional to the LECs cD and cE, respectively, vanish (for regulators symmet-
ric in the particle labels) because of the coupling of pions to spin and the Pauli principle, respec-
tively. Furthermore, the long-range two-pion exchange 3N forces at N2LO are simplified since
the LEC c4 does not contribute. This allows for tight low-density constraints on the neutron-rich
matter EOS from PNM calculations and systematic high-density extrapolations (see Section 4).

Nuclearmatter represents an ideal system for testing nuclear interactions at the densities acces-
sible to laboratory experiments and their implementation in many-body methods. As illustrated in
Figure 2a, the nuclear EOS in the vicinity of n0 is (to good approximation) characterized by only
a few experimentally accessible quantities. That is, the EOS of SNM can be expanded about its
minimum n0 as E(n, δ = 0)/A≈ E0 + (K/2) η2, with the saturation energy E0 = E(n0, 0)/A, incom-
pressibility K, and η = (n − n0)/(3n0). Further, explicit ANM calculations with chiral NN and 3N
interactions (56, 68, 69) have shown that the asymmetry dependence of the nuclear EOS is reason-
ably well reproduced by the standard quadratic approximation E(n, δ)/A= E(n, 0)/A+ Esym(n) δ2,
where the symmetry energy expanded in density reads Esym(n) ≈ Sv + Lη. In this approximation
one finds E(n, 1)/A≈ (E0 + Sv)+ Lη for PNM.Microscopic predictions and empirical constraints
for (n0, E0, K) and (Sv , L) can then be confronted with one another.6

Nuclear saturation emerges from a delicate cancellation between kinetic and interaction con-
tributions to the EOS. Reproducing empirical constraints on (n0, E0, K) is therefore an impor-
tant benchmark of nuclear interactions, especially 3N forces (providing the necessary repulsion).
Figure 2b depicts the saturation points of numerous chiral potentials as predicted by fourth-
and third-order MBPT calculations. The saturation points are aligned along a Coester-like band,
which overlaps with the empirical saturation point, determined from a set of energy density func-
tionals (71). Also shown in Figure 2b are results from CC calculations with N2LOsat and the
new deltaful chiral potentials (18) �NLOGO � (MeV) and �N2LOGO � (MeV) constructed by
the Gothenburg–Oak Ridge (GO) Collaboration. Only the latter fall into the empirical range for
(n0, E0). However, judging the extent to which a nuclear potential reproduces empirical (satura-
tion) properties can be quite misleading without taking meaningful uncertainties into account; in
particular, the truncation of the EFT expansion at a finite order can result in sizable EFT trunca-
tion errors (even at N3LO) that need to be quantified.

Until a few years ago, the prevalent way of estimating theoretical uncertainties in nuclear
matter calculations was parameter variation within some (arbitrary) range—that is, probing the
observable’s sensitivity to, for instance, the 3N LECs or momentum cutoff. Recently, the focus
has been more on the systematic quantification of EFT truncation errors (72), which can be es-
timated by assuming that an observable’s EFT convergence pattern at order k takes the form
yk(n) = yref (n)

∑k
m=0 cm(n)Q

m(n) (73). Here, yref(n) sets a dimensionful reference scale, Q(n) is the
dimensionless expansion parameter, and the cm(n) are the dimensionless coefficients not to be con-
fused with the LECs of the interaction (e.g., y4 = E/A at N3LO). Note that c1 = 0 in Weinberg
power counting. For given choices of yref(n) and Q(n),7 the cm ≤ k(n) are obtained from order-by-
order calculations {y0, y1, . . . , yk} of the observable. Since yref(n) and Q(n) factor in all physical
scales, the cm(n) are expected to be of order one (i.e., natural) unless the coefficients are fine-
tuned. The standard EFT uncertainty, which assumes that the truncation error is dominated by

6See Reference 70 for a review of the link between the nuclear EOS and nuclear observables (e.g., from
measurements of the isoscalar giant monopole resonance, K ≈ 210–230 MeV was inferred).
7For instance, yref � y0 and Q ∼ p/�b with the typical momentum p ∝ kF(n) and some estimate of the EFT
breakdown scale �b have been used to estimate uncertainties in the nuclear EOS.
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BUQEYE: Bayesian
Uncertainty
Quantification: Errors
in Your EFT

GP: Gaussian process

GP-B: Gaussian
process–BUQEYE
Collaboration

the first omitted term, has been implemented by Epelbaum et al. (74) and applied to a wide range
of observables in finite nuclei and infinite matter. This EKM uncertainty can be summarized at
NjLO as δy(n) = yref Q j + 2max (|c0|, |c1|, . . . , |cj + 1|), whose pointwise estimates can be interpreted
as Bayesian credibility regions under a particular choice of priors for cm (13).

The Bayesian Uncertainty Quantification: Errors in Your EFT (BUQEYE) Collaboration has
recently introduced a Bayesian framework for quantifying correlated EFT uncertainties in the nu-
clear EOS (67, 75) (the framework is publicly available at https://buqeye.github.io/software/).
In contrast to the standard EFT uncertainty, the new framework allows for both the quantifi-
cation and propagation of statistically meaningful uncertainties to derived quantities (e.g., the
pressure) while accounting for correlations across densities and between observables. Without
considering these correlations, uncertainties can be overestimated. The framework also includes
Bayesian model-checking tools (76) for diagnosing and testing whether the in-medium ChEFT
expansion works as assumed (e.g., inference for �b). Gaussian processes (GPs) with physics-
based hyperparameters are trained on the order-by-order calculations of the energy per parti-
cle under the assumption that all cm(n) are random curves drawn from a single GP (73). The
Gaussian posterior for the cm(n) is then used to estimate the to-all-orders EFT truncation error
δyk(n) = yref (n)

∑∞
m=k+1 cm(n)Q

m(n) and combined with additional (e.g.,many-body) uncertainties.
From the posterior, arbitrary derivatives in n can also be obtained.

Using this new framework, Drischler et al. (67, 75) studied the EFT convergence of the first
order-by-order calculations with NN and 3N interactions up to N3LO in PNM and SNM, con-
ducted in References 27 and 77 using a novel Monte Carlo integration framework forMBPT.The
associated N3LO 4NHartree–Fock energies have been found negligible compared with the over-
all uncertainties (see also 78). To construct a set of order-by-order NN and 3N interactions up to
N3LO, Reference 27 adjusted the two 3N LECs to the triton and (n0, E0) for two cutoffs. Several
potentials with reasonable saturation properties were obtained, although they are generally under-
bound at N3LO. This holds at the 2σ credibility level with EFT truncation errors quantified (67)
(see ellipses in Figure 2b). Hoppe et al. (79) found that, in agreement with the expectations from
SNM, the values predicted for the corresponding binding energies of medium-mass nuclei are too
small compared with experiment and, in contrast to the SNM expectations, the values predicted
for the corresponding charge radii are too large. Since both observables were also much more
sensitive to the 3N LEC cD, SNM and medium-mass nuclei seem more intricately connected than
one might naively expect (79).

Figure 3 shows the order-by-order predictions for the energy per particle, pressure, and speed
of sound squared in PNM at the 1σ confidence level based on GP-B 500 (75). The observables
show an order-by-order convergence pattern at n � 0.1 fm−3, whereas N2LO and N3LO have a
markedly different density dependence at n � n0 due to repulsive 3N contributions. This is also
manifested in the Bayesian diagnostics (73). Assuming Q = kF/�b, the inferred breakdown scale
�b ≈ 600 MeV is consistent with free-space NN scattering and could be associated with n > 2n0.
The EFT truncation errors are strongly correlated in density and to those in SNM. A correlated
approach is therefore necessary to reliably propagate uncertainties to derived quantities, although
the standard EFT uncertainty for the energy per particle is broadly similar to the 1σ confidence
level (75).

3.2. Nuclear Symmetry Energy and the Isospin Asymmetry Expansion

The nuclear symmetry energy is a key quantity in understanding the structure of neutron-rich
nuclei and neutron stars. Although masses of heavy nuclei constrain the value of the symmetry
energy well at nuclear densities, its density dependence is much less known (80). Studying the
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Figure 3

Order-by-order predictions for (a) energy per particle E/N, (b) pressure P = n2d(E/N )/dn, and (c) speed of sound squared c2s = ∂P/∂ε

in PNM as a function of the density (75) based on the MBPT calculations up to N3LO in Reference 27. The energy density
ε = n(E/N + mn) includes the neutron rest mass energy mn. Correlated uncertainty bands are given at the 1σ confidence level.
Abbreviations: LO, leading order; MBPT, many-body perturbation theory; NLO, next-to-leading order; NkLO, (next-to)k-leading
order; PNM, pure neutron matter. Data from Reference 75.

density-dependent symmetry energy from theory, experiment, and observation is therefore an
important task in the era of multimessenger astronomy.

Figure 4a summarizes theoretical constraints for Esym(n ≤ 2n0) from a wide range of chiral
NN and 3N forces as well as different many-body methods. Specifically, it shows the results for
Esym(n) = E(n, δ = 1)/A − E(n, 0)/A as obtained in the calculations by Lim & Holt (81) and
Drischler et al. (27, 67) (GP-B 500) in MBPT, Carbone et al. (44) in the SCGF method, and
Lonardoni et al. (49) using QMC methods. The latter were conducted with two different param-
eterizations of the N2LO 3N contact interaction (i.e., distinct bands for E1 and Eτ ) to demonstrate
the significant regulator artifacts present in local chiral 3N potentials. Different uncertainty esti-
mates were used in these calculations. The uncertainty bands by Carbone et al. (44) probe param-
eter variations in the nuclear interactions, while those by Lonardoni et al. (49) and Drischler et al.
(27, 67) quantify truncation errors using the standard EFT uncertainty (up to N2LO) and BUQ-
EYE’s new Bayesian framework (up to N3LO), respectively. Also,many-body (or statistical Monte
Carlo) uncertainties are included in the bands. Lim &Holt (81) performed a statistical analysis of
MBPT calculations based on a range of chiral potentials at different orders and two single-particle
spectra to probe the chiral and many-body convergence. Only the results by Lim &Holt (81) and
Drischler et al. (27, 67) (both MBPT) have a clear statistical interpretation, each at the 1σ and 2σ
confidence levels. Overall, the constraints fromChEFT are consistent with each other, even at the
highest densities shown, but the uncertainties in Esym(n) are generally sizable—for instance, 20.7
± 1.1, 31.5 ± 3.0, and 49.0 ± 12.0 MeV at n0/2, n0, and 2n0, respectively, for Lim & Holt (81)
at the 1σ confidence level. Drawing general conclusions from comparing the sizes of these bands
can be misleading since the underlying methods for estimating uncertainties are quite different.
Order-by-order comparisons for a wider range of chiral NN and 3N interactions with EFT trun-
cation errors quantified are called for to provide more insights into and stringent constraints on
Esym(n). The Bayesian statistical tools introduced by the BUQEYE Collaboration allow for such
systematic studies.
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Figure 4

(a) Constraints on Esym(n) based on chiral interactions (bands) and phenomenological potentials (symbols). Dashed lines have been used
to enhance readability. The vertical band depicts the empirical saturation density. Data from Akmal et al. (82), Baldo et al. (83), Müther
et al. (84), Lim & Holt (81), Carbone et al. (44), Lonardoni et al. (49), and Drischler et al. (GP-B 500) (27, 67). (b) Theoretical and
experimental constraints for (Sv , L) as well as the conjectured UG bounds (85) in comparison (see annotations in the figure panel). The
experimental constraints are derived from heavy-ion collisions (86), neutron-skin thicknesses of Sn isotopes (87), giant dipole
resonances (88), the dipole polarizability of 208Pb (89, 90), nuclear masses (91), and IAS + �R (92). The theoretical constraints are
derived from microscopic neutron matter calculations by Hebeler et al. (H) (93), Holt & Kaiser (HK) (39), and Gandolfi et al. (G) (94)
as well as from the UG limit by Tews et al. (85). Gray ellipses show the allowed regions from PNM and SNM calculations at N3LO
with truncation errors quantified (light gray: 1σ ; dark gray: 2σ ) (67). The white area in the center shows the joint experimental
constraint; the constraints extracted from measurements of IAS + �R are not included in this area because they barely overlap.
Abbreviations: GP-B, Gaussian process–BUQEYE (Bayesian Uncertainty Quantification: Errors in Your EFT) Collaboration; IAS +
�R, isobaric analog states and isovector skins; N3LO, next-to-next-to-next-to-leading order; PNM, pure neutron matter; SNM,
symmetric nuclear matter; UG, unitary gas.

Despite the large uncertainties in the SNM EOS (see Section 3.1), predictions for Esym(n)
(as an energy difference) can be made with significantly smaller uncertainties than those in
E(n, 1)/A and E(n, 0)/A individually, if correlations are properly considered. The BUQEYE Col-
laboration (67) found that the EFT truncation errors associated with the PNM and SNM calcu-
lations in Reference 27 are highly correlated, meaning that the uncertainty in Esym(n) is less than
the usual in-quadrature sum of errors. Combined with order-by-order calculations up to N3LO,
this led to narrow constraints (see gray bands in Figure 4a) based on the interactions used with �

= 500 MeV [e.g., Esym(2n0) = 45.0 ± 2.8 MeV]. Another set with � = 450 MeV is compatible at
the 2σ confidence level. The constraints agree with those of Lim & Holt (81) at the 1σ level (or
even better) as well as the calculations by Akmal et al. (82), Baldo et al. (83), and Müther et al. (84)
with phenomenological nuclear potentials. The latter, however, do not provide uncertainties that
could be used to judge the level of agreement. These correlations need to be investigated further
using different many-body frameworks and interactions.
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UG: unitary gas

Figure 4b compares various theoretical and experimental constraints in the (Sv , L) plane. The
regions obtained by Hebeler et al. (93), Gandolfi et al. (94), and Holt & Kaiser (39), which were
derived from microscopic PNM calculations and the empirical saturation point, agree well with
each other and are consistent with the range in Sv of the joint experimental constraint, although L
is predicted with somewhat lower values. The 1σ and 2σ ellipses for GP-B 500 (as in Figure 4a)
are in excellent agreement with the joint experimental constraint [GP-B 450 is slightly shifted to
higher (Sv , L)], indicating a stiffer neutron-rich matter EOS at n0 compared with the other theo-
retical constraints. This is, however, consistent with joint theory-agnostic posteriors from pulsar,
gravitational wave, and NICER observations (e.g., compare with figure 1 in Reference 95). An
important feature of the correlated GP approach is that the theoretical uncertainties in n0 (in-
cluding truncation errors) are accounted for through marginalization over the Gaussian posterior
for the saturation density predicted from the SNM calculations, pr(n0) ≈ 0.17 ± 0.01 fm−3. Apart
from the calculations by Holt & Kaiser (HK) allowing slightly lower (Sv , L), all shown theory
calculations satisfy the constraint (solid black line in Figure 4b) derived from the conjecture (85)
that the unitary gas (UG) sets a lower bound for the PNM EOS. (Note that Reference 85 also
made additional assumptions to derive an analytic bound; see the dashed black line in Figure 4b.)
Overall,Figure 4b shows that current constraints from nuclear theory and experiment predict the
symmetry energy parameters in the range Sv ≈ 28–35 MeV and L ≈ 20–72 MeV.

While the standard quadratic approximation [E(n, δ)/A = E(n, 0)/A + Esym(n) δ2] is in general
sufficient to characterize the isospin asymmetry dependence of the nuclear EOS, certain neutron
star properties, such as the crust–core transition (96) and the threshold for the direct Urca cooling
process (97), are sensitive to nonquadratic contributions. Neglecting charge symmetry–breaking
effects, the energy per particlemay be assumed to have an expansion in the asymmetry δ of the form
E(n, δ)/A ≈ E(n, 0)/A+ ∑L

l=1 S2l (n) δ
2l , where the standard quadratic approximation corresponds

to S2l > 2(n) = 0. Note, however, that the FFG already contributes to the nonquadratic terms [e.g.,
SFFG4 (n) � 0.45 MeV × (n/n0)2/3]. Parametric fits to microscopic ANM calculations have been
used to investigate the nonquadratic contributions and found them to be relatively small (56,
68, 69, 98). Recently, however, Kaiser (99) has shown that MBPT at second order gives rise to
additional logarithmic contributions ∼δ2lln |δ| with l ≥ 2. Furthermore, Wellenhofer et al. (69)
found that the analogous expansion of the free energy exhibits convergent behavior for δ ≤ 1
only at high temperature. That is, the expansion’s radius of convergence decreases to zero in the
limit T → 0 (with diverging S2l > 2), as implied by the logarithmic terms at T = 0. Nevertheless,
Wen &Holt (100) demonstrated that the coefficients of the normal and logarithmic terms at T=
0 can be extracted up to O(δ6) from high-precision MBPT calculations with chiral interactions.
Such calculations allow for the improvement of existing parameterizations in δ at T = 0 and help
motivate the investigation of alternative schemes, such as an expansion in terms of the proton
fraction x = np/n = (1 − δ)/2 for neutron-rich matter.

3.3. Nuclear Thermodynamics

While thermal effects are negligible in isolated neutron stars, they become important in neutron
star mergers and core-collapse supernovae, where T � 100 MeV can be reached. Dense matter
at such high temperatures consists of not only nucleons and leptons but also additional particles,
such as pions and hyperons. The consistent inclusion of these particles in medium is a work in
progress (101, 102). In the nascent field of multimessenger astronomy, one of the immediate
theoretical needs is consistent modeling of (a) cold neutron stars, (b) hot hypermassive neutron
stars formed in the aftermath of compact object mergers, and (c) core-collapse supernovae so
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Figure 5

(a) Liquid–gas coexistence boundary (binodal) of SNM from second-order MBPT calculations based on three sets of N3LO NN
potentials and N2LO 3N interactions with � = 414, 450, and 500 MeV (38, 55). The zero-temperature limit of the coexistence
boundary corresponds to the nuclear saturation point. The white box shows the empirical range for the critical point from
Reference 107. (b) Asymmetry dependence of the critical temperature Tc(δ) and the temperature TκT (δ) where the region with negative
κ−1
T vanishes. Abbreviations: MBPT,many-body perturbation theory; NkLO, (next-to)k-leading order; SNM, symmetric nuclear matter.

that observations and simulations in any one of these astrophysical regimes can be propagated to
constrain the others. Finite-temperatureMBPTwith ChEFT interactions is a suitable framework
for this purpose, and here we describe some of the results on nuclear thermodynamics in recent
years (for reviews, see 103, 104).

The salient thermodynamic feature of homogeneous nuclear matter at subsaturation densi-
ties is the presence of a liquid–gas type instability toward the formation of clustered structures.
In neutron stars, this instability corresponds to the crust–core transition, involving such intricate
features as a variety of pasta shapes (105). The nuclear liquid–gas instability is also connected to
the observed multifragmentation events in intermediate-energy heavy-ion collisions. In the ide-
alized case of (infinite) nuclear matter, there is a liquid–gas phase transition of the van der Waals
type.Nuclear matter calculations at finite temperature with chiral interactions have provided pre-
dictions for the properties of this phase transition—in particular, the location of the critical point.
Figure 5a shows the second-order MBPT results for the boundary of the liquid–gas coexistence
region (the so-called binodal) of SNM obtained in Reference 38. [The results for the binodal of
SNM recently obtained with the SCGF method (45) and lattice EFT (41) are similar to those in
Figure 5.] The predicted critical point, especially the associated temperature Tc ≈ 17–19 MeV, is
consistent with estimates [e.g.,Tc ≈ 15–20MeV (106)] extracted frommultifragmentation, nuclear
fission, and compound nuclear decay experiments (106, 107).

In the interior of the binodal, a region where the homogeneous system is unstable with
respect to infinitesimal density fluctuations can be found. The boundary of this region is called
the spinodal. Between the binodal and spinodal, the uniform system is metastable. (The two
boundaries coincide at the critical point.) For SNM, the unstable region is identified by a
negative inverse isothermal compressibility, κ−1

T = n(∂P/∂n) < 0. An equivalent stability criterion
is �μ/�n > 0, which corresponds to a convex free energy density F (T , n) as a function of n. If
charge symmetry–breaking effects are neglected, SNM can be treated as a pure substance with
one particle species (nucleons), whereas ANM is a binary mixture with two thermodynamically
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distinct particles (neutrons and protons). This implies that the stability criteria are different in the
two cases, and for ANM the region with κ−1

T < 0 is a subregion of the spinodal region. There are
various equivalent stability criteria for binary mixtures (108). A useful criterion is that outside the
spinodal, the free energy F (T , nn, np) is a convex function of nn and np (for details, see 55). The
MBPT results for the asymmetry dependence of the critical temperature Tc(δ) from Reference 55
are shown in Figure 5b. For comparison, Figure 5b also shows the trajectory of the temperature
TκT (δ) where the subregion with negative κ−1

T vanishes. The trajectory of Tc(δ) reaches its T = 0
end point at a small proton fraction x; that is, while PNM is stable at all densities, already small
x lead to a region where the system undergoes a phase separation (55, 109).

A useful characteristic for the temperature dependence of the nuclear EOS is the thermal index
�th(T , n, δ) = 1 + Pth(T , n, δ)/Eth(T , n, δ), where Pth is the thermal part of the pressure, and Eth is
the thermal energy density. For a free gas of nucleons with effective masses m∗

n,p(n, δ), one obtains
for �th the following temperature-independent expression:8

��
th(n, δ) = 5

3
−

∑
t=n,p

nt (n, δ)
m∗
t (n, δ)

∂m∗
t (n, δ)
∂n

. 8.

[To be precise, for δ � {0, 1} the above expression is valid only in the classical limit, but it pro-
vides a good approximation to ��

th(n, x) for intermediate values of δ, as Reference 63 showed.]
Recently, References 25 and 110 showed that ��

th(n, δ) reproduces the exact �th with high accu-
racy. This implies that the temperature dependence of the EOS can be characterized in terms of
a temperature-independent effective mass (for a recent implementation, see 63), which is partic-
ularly useful for monitoring thermal effects in astrophysical applications (111, 112).

4. APPLICATIONS TO NEUTRON STAR PHYSICS

In this section, our goal is to emphasize the prominent role of nuclear theory in modeling neu-
tron stars, core-collapse supernovae, and neutron star mergers. We begin by placing high-energy
nuclear astrophysics in the more general context of the QCD phase diagram and then discuss the
ambient conditions under which ChEFT can serve as a tool to constrain the properties of hot
and dense matter. Specific applications include the neutron star mass–radius relation, moment of
inertia, and tidal deformability as well as the nuclear EOS and neutrino opacity for astrophysical
simulations.

4.1. Scales in Hot and Dense Stellar Matter

The extreme astrophysical environments found in core-collapse supernovae, neutron star inte-
riors, and neutron star mergers span baryon number densities nB ∼ 10−7–101 n0, temperatures
T ∼ 0–100 MeV, and isospin asymmetries δ ∼ 0–1 (corresponding to electron fractions Ye ∼
0–0.5) (113). In Sections 2 and 3, we have shown that ChEFT provides a suitable framework
to constrain the EOS, transport, and response properties of hadronic matter when the physical
energy scale is well below the chiral symmetry–breaking scale of �χ ∼ 1 GeV. In practice,
ChEFT descriptions of nuclear matter based on high-precision NN and 3N forces begin to break
down at densities n ≈ 2–3n0 and temperatures T � 30 MeV. Therefore, additional modeling is
needed at high densities and temperatures to cover all regions of astrophysical interest. For this
purpose, high-energy heavy-ion collisions at RHIC, LHC, and especially FAIR aim to probe
states of matter similar to those that exist naturally in neutron stars, but reaching sufficiently

8The thermal index of an FFG is �th, free = 5/3.
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Figure 6

Schematic view of the QCD phase diagram. The figure highlights regions probed by experiments (RHIC, LHC, FAIR, and FRIB),
regions of validity for lattice QCD and chiral EFT, and environments reached in neutron stars, supernovae, and neutron star mergers.
Abbreviations: EFT, effective field theory; QCD, quantum chromodynamics.

large proton–neutron asymmetries remains a significant challenge that may be addressed at
next-generation radioactive ion beam facilities, such as FRIB. The interplay of microscopic
ChEFT, whose convergence pattern is not especially sensitive to the isospin asymmetry, together
with upcoming nuclear experiments that create and study hot, dense, and neutron-rich matter,
will provide a direct line of inquiry probing neutron star physics from low to high densities.

From the observational side, measurements of neutron star masses, radii, tidal deformabilities,
and moments of inertia are expected to place constraints on the pressure of β-equilibrium matter
at n� 2n0 (81, 114, 115). In Figure 6, we present a qualitative overview of theQCDphase diagram
and highlight regions probed by nuclear experiments (RHIC,LHC, FAIR, and FRIB), theory (lat-
tice QCD and ChEFT), and astrophysical simulations of neutron stars, supernovae, and neutron
star mergers. We see that ChEFT intersects strongly with the region of FRIB experiments and
nuclear astrophysics, providing a bridge between new discoveries in the laboratory and their im-
plications for neutron stars. The next decade is expected to witness a strong interplay among all of
these different fields, with nuclear theory predictions being confronted with stringent empirical
tests.
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TOV: Tolmann–
Oppenheimer–Volkoff

4.2. Neutron Star Structure

The mass–radius relation of nonrotating neutron stars is determined from the EOS by the gen-
eral relativistic equations for hydrostatic equilibrium, the Tolmann–Oppenheimer–Volkoff (TOV)
equations:

dp
dr

= −G(M(r) + 4πr3p)(ε + p)
r(r − 2GM(r))

,
dM
dr

= 4πr2ε, 9.

where r is the radial distance from the center of the star,M(r) is the mass enclosed within r, ε is
the energy density, and p is the pressure. Analyses of spectral data from neutron stars in quies-
cent low-mass X-ray binaries and X-ray bursters (116, 117) have resulted in radius measurements
R1.5 = 10–13 km for typical 1.5M� neutron stars. More recently, the NICER X-ray telescope
has observed hot spot emissions from the accretion-powered X-ray pulsar PSR J0030+045. Pulse
profile modeling of the X-ray spectrum from two independent groups has yielded consistent re-
sults for the neutron star mass M = 1.44+0.15

−0.14M� (118) and M = 1.34+0.15
−0.16M� (119) and radius

R = 13.02+1.24
−1.06 km (118) and R = 12.71+1.14

−1.19 km (119) at the 68% credibility level. Future large-
area X-ray timing instruments, such as STROBE-X and eXTP, have the potential to reduce uncer-
tainties in the neutron star mass–radius relation to ∼2% at a given value of the mass. This would
significantly constrain the neutron-rich matter EOS at n ≈ 2n0 and, when combined with mass
and radius measurements of the heaviest neutron stars, could give hints about the composition of
the inner core (120).

In recent years, numerous works have studied constraints on the neutron star EOS from
ChEFT.9 In Reference 93, the EOS of neutron-rich matter was calculated up to saturation density
with MBPT using chiral NN and 3N interactions. To extrapolate to higher densities, a series of
piecewise polytropes was used to parameterize the EOS. It was found that ChEFT generically
gives rise to soft EOSs that lead to 1.4M� neutron stars with radii in the range R1.4 = 10–14 km.
Subsequent studies (e.g., 63, 122–124) have employed a wider range of chiral forces, increased the
assumed range of validity for ChEFT calculations to 2n0, and explored other high-density EOSs,
including smooth extrapolations and speed-of-sound parameterizations. The choice of transition
density at which ChEFT predictions are replaced by model-dependent high-density parameteri-
zations has a particularly large influence on neutron star radius constraints. For instance, when the
transition density was raised to nt = 2n0, Reference 125 obtained R1.4 = 9.4–12.3 km while Ref-
erence 124 found R1.4 = 10.3–12.9 km; both calculations eliminated the stiffest EOSs that would
give rise to R1.4 > 13 km.To demonstrate how a precise neutron star mass and radius measurement
can constrain the EOS of β-equilibrium matter at n = 2n0, in Figure 7 we show the correlated
probability distribution (81) for the radius of a 1.4M� neutron star and the nuclear symmetry en-
ergy at twice saturation density Esym(2n0). The inset in Figure 7 shows the conditional probability
distribution for Esym(2n0) assuming a precise measurement of R1.4 = 12.38 km. For the specific
EOS modeling used in Reference 81, such a precise radius constraint determines Esym(2n0) with
an uncertainty of approximately 10%.

In addition to radius measurements, there has long been the possibility (126, 127) of obtaining
a neutron star moment of inertia measurement based on long-term radio timing of PSR J0737-
3039, a binary pulsar system in which the periastron advance receives a small correction from
relativistic spin–orbit coupling. A recent analysis (128) has shown that by 2030, a moment of
inertia measurement of PSR J0737-3039A to 11% precision at the 68% confidence level will be

9In addition to a high-density extrapolation, a uniform-matter EOS from ChEFT needs to be supplemented
with a neutron star crust model, such as the BPS crust model (121).
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Figure 7

Correlations between the radius of a 1.4M� neutron star and the isospin asymmetry energy Esym at twice
saturation density n = 2n0. The inset shows the PDF of Esym(2n0) for the specific value R1.4 = 12.38 km.
Results obtained from the Bayesian modeling of the nuclear equation of state in Reference 81. Abbreviation:
PDF, probability distribution function.

achievable. The moment of inertia for a uniformly rotating neutron star of radius R and angular
velocity� can be calculated in the slow-rotation approximation, valid formost millisecond pulsars,
by solving the TOV equations together with

I = 8π
3

∫ R

0
r4(ε + p)e(λ−ν )/2 ω̄

�
dr, e−λ =

(
1 − 2m

r

)−1

,
dν
dr

= − 2
ε + p

dp
dr

, 10.

where λ and ν are metric functions and ω̄ is the rotational drag. In References 129 and 130, the
moment of inertia of PSR J0737-3039A, which has a very well-measured mass ofM = 1.338M�,
was calculated from EOSs based on ChEFT. In Reference 129, it was found that at the 95%
credibility level, the moment of inertia of PSR J0737-3039A lies in the range 0.98 × 1045 g cm2 <

I < 1.48 × 1045 g cm2, while Reference 130 found a consistent but somewhat larger range of
1.06 × 1045 g cm2 < I < 1.70 × 1045 g cm2. The moment of inertia is strongly correlated with
the neutron star radius, and it has been shown (131) that measurements of the PSR J0737-3039A
moment of inertia can constrain its radius to within ±1 km.

In the past 10 years, several neutron stars (132–134) with well-measured masses ofM � 2M�

have been observed. The maximum mass (MTOV
max ) of a nonrotating neutron star is a key quantity

in probing the composition of the inner core, which must have a sufficiently stiff EOS to support
the enormous pressure due to the outer layers.10 To date, the strongest candidate for the heaviest
measured neutron star is PSR J0740+6620, with a mass ofM = 2.14+0.20

−0.18M� at the 95% credibil-
ity level (134). As mentioned previously, ChEFT generically gives rise to relatively soft EOSs just

10BeyondMTOV
max , additional stable branches (135), such as hybrid quark–hadron stars or pure quark stars, may

appear before the ultimate collapse to a black hole.
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above nuclear saturation density. The existence of a very massive neutron star withM = 2.14M�

would require a stiff EOS at high densities, revealing a slight tension with ChEFT (136).However,
even smooth extrapolations (63, 81) of EOSs from ChEFT can produce maximum neutron star
masses in the range 2.0M� �MTOV

max � 2.4M�, and therefore more precise radius measurements
(or the observation of heavier neutron stars) are needed to make strong inferences about the EOS
in the ChEFT validity region n � 2n0.

4.3. Neutron Star Mergers

The advent of gravitational wave astronomy has opened a new window into the visible Universe.
Current gravitational wave detectors (LIGO and Virgo) are sensitive to frequencies 10 Hz < f <
10 kHz, which is the prime range for compact object mergers and supernovae. Gravitational wave
astronomy therefore has major implications for the field of nuclear astrophysics (3). In particular,
during the late-inspiral phase of binary neutron star coalescence, a premerger neutron star will de-
form with induced quadrupole moment Q under the large tidal gravitational field E : Qi j = −λEi j ,
where λ is the dimensionful tidal deformability parameter. Tidal deformations enhance gravita-
tional radiation and increase the rate of inspiral. Gravitational wave detectors are sensitive to such
phase differences and hence the dense matter EOS, but such corrections enter formally at fifth
order (137) in a post-Newtonian expansion of the waveform phase and are therefore difficult to
extract. The tidal deformability is an important observable in its own right, but this quantity is
also strongly correlated with both the neutron star radius (138) (since more compact stars experi-
ence a smaller deformation under a given tidal field) and especially the moment of inertia through
the celebrated I-Love-Q relations (139). The postmerger gravitational wave signal from binary
neutron star coalescence can also carry important information on the nuclear EOS. It has been
shown (140) that the peak oscillation frequency fpeak of a neutron star merger remnant is strongly
correlated with neutron star radii. Moreover, a strong first-order phase transition can show up as
a deviation in the empirical correlation band between fpeak and � (141).

The first observation of a neutron star merger through its gravitational wave emissions,
GW170817 (142), was accompanied by a short γ -ray burst and optical counterpart (143).
The combined multimessenger observations of this single event have resulted in a wealth of
new insights about the origin of the elements and the properties of neutron stars. Analysis
of the gravitational waveform resulted in a prediction (144) �1.4 = 190+390

−120 for the dimen-
sionless tidal deformability � = λ/M5 of a 1.4M� neutron star. Theoretical predictions from
ChEFT (81, 145) predating the analysis in Reference 144 yielded similarly small tidal de-
formabilities 140 < � < 520 (81). Analogous constraints on the binary tidal deformability
parameter

�̃ = 16
13

(m1 + 12m2)m4
1�1 + (m2 + 12m1)m4

2�2

(m1 +m2)5
11.

from gravitational wave data [�̃ = 300+420
−230 (146)] and ChEFT [80 < �̃ < 580 (145)] were simi-

larly consistent. From the strong correlation between neutron star radii and tidal deformabilities,
the LIGO/Virgo Scientific Collaboration (144) reported an inferred constraint of R = 11.9+1.4

−1.4
km for both of the neutron stars involved in the merger under the assumption that the shared
EOS could support 2M� neutron stars. Only the combined mass Mtot = 2.74+0.04

−0.01M� of the
binary was very well measured from the gravitational waveform, but neither of the individual
component masses 1.17M� <M1, 2 < 1.60M� was expected (142) to deviate more than 20% from
the canonical value of M � 1.4M�, assuming low neutron star spins. In summary, GW170817
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data were found to strongly favor the soft EOSs predicted from ChEFT, though many other
models (147) with generically stiffer EOSs were consistent with the upper bounds on � and R1.4

from GW170817.
Current gravitational wave interferometers do not have large signal-to-noise ratios at the high

frequencies expected during the postmerger ringdown phase, and therefore GW170817 provided
no clues about the fate of the merger remnant.Nevertheless, analyses of the spectral and temporal
properties of the kilonova (148) optical counterpart to GW170817 have been used (149–153) to
infer the lifetime of the merger remnant. Depending on the component neutron star masses prior
to merger (primarily the total mass Mtot) as well as the maximum mass for a nonrotating neu-
tron star MTOV

max , the merger remnant can (a) undergo immediate collapse to a black hole, (b) ex-
ist as a short-lived hypermassive neutron star supported against collapse by differential rotation,
(c) persist as a longer-lived supramassive neutron star supported against collapse by rigid body
rotation, or (d) form a stable massive neutron star. While there is still some uncertainty about
what ranges ofMtot will lead to each of the above four scenarios, it has been suggested (150) that
prompt collapse will occur whenMtot � 1.3–1.6MTOV

max , hypermassive neutron stars will be created
when 1.2MTOV

max �Mtot � 1.3–1.6MTOV
max , and supramassive neutron stars will result whenMtot �

1.2MTOV
max . Each merger outcome is expected to have a qualitatively different optical counterpart

and total mass ejection since longer remnant lifetimes generically give rise to more and faster-
moving disk wind ejecta.

Observations of the GW170817 kilonova suggest that the most likely outcome of the neu-
tron star merger was the formation of a hypermassive neutron star, which would imply a value of
MTOV

max = 2.15–2.35M� (150, 151, 153). Eliminating the possibility of prompt black hole formation
in GW170817 also rules out compact neutron stars with small radii and tidal deformabilities. In
Reference 149, such arguments were used to infer that the radius of a 1.6M� neutron star must be
larger than R1.6 � 10.7 km, while in Reference 152 it was found that the binary tidal deformabil-
ity parameter for the GW170817 event must satisfy �̃ � 400. Both of these inferred constraints
are compatible with predictions (81, 123, 124, 145) from ChEFT. However, the constraint on the
binary tidal deformability �̃ > 400 can rule out a significant set of soft EOSs (154)—roughly half
of those allowed in the analysis of Reference 81. Combined gravitational wave and electromag-
netic observations of binary neutron starmergers together withmore precise radiusmeasurements
therefore have the possibility to strongly constrain the dense matter EOS and related neutron star
properties in the regime of validity of ChEFT (154–156).As a demonstration, inFigure 8we show
the joint probability distributions (81) for the pressure of nuclear matter at n = 2n0 with (a) the
radius of a 1.4M� neutron star, (b) the tidal deformability of a 1.4M� neutron star, and (c) the
moment of inertia of PSR J0737-3039A with a mass of 1.338M�.

4.4. Core-Collapse Supernovae

Neutron stars are born following the gravitational collapse and ensuing supernova explosion of
massive stars (M � 8M�). The core bounce probes densities only slightly above normal nuclear
saturation density (113) and leaves behind a hot (T ∼ 20–50 MeV) nascent proto-neutron star.
During the subsequent Kelvin–Helmholtz phase, which lasts tens of seconds, the proto-neutron
star emits neutrinos, cools to temperatures T < 5 MeV, deleptonizes, and contracts to reach
suprasaturation densities in the innermost core.The success or failure of the supernova itself (157),
the thermal and chemical evolution during the Kelvin–Helmholtz phase (158), and the possibility
of novel nucleosynthesis in the neutrino-driven wind (159) depend on details of the nuclear EOS
and weak reaction rates.
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Figure 8

Joint probability distribution for the pressure of β-equilibrium matter p(2n0) with (a) the radius of a 1.4M� neutron star, (b) the tidal
deformability of a 1.4M� neutron star, and (c) the moment of inertia of PSR J0737-3039A with a mass of 1.338M�. Results obtained
from the Bayesian modeling of the nuclear equation of state in Reference 81.

Investigating the qualitative impact of specific EOS properties (such as the incompressibility
or the symmetry energy) on the fate of supernova explosions is often challenging because
of Mazurek’s Law, a colloquial observation that feedback effects tend to wash out any fine-
tuning of parameters in core-collapse supernovae (160). Nevertheless, several recent systematic
investigations (111, 161) of EOS parameters have supported the idea that a high density of
states, linked to a large value of the in-medium nucleon effective mass M∗, reduces thermal
pressure and leads to enhanced contraction of the initial proto-neutron star. This results in the
emission of higher-energy neutrinos that support the explosion through the neutrino reheating
mechanism (157). Since microscopic calculations based on ChEFT tend to predict larger values
of the effective mass than many mean-field models do (110, 162), these observations have helped
motivate recent efforts (63, 163) to include thermal constraints from ChEFT directly into
supernova EOS tables.

Neutrino reactions also affect the nucleosynthesis outcome in neutrino-driven wind outflows
and the late-time neutrino signal that will be measured with unprecedented detail during the
next galactic supernova. Charged-current neutrino absorption reactions νe + n → p + e− and
ν̄e + p → n+ e+, which can be calculated from the imaginary part of vector and axial vector re-
sponse functions, are especially sensitive (164, 165) to nuclear interactions and in particular the
difference �U = Un − Up between proton and neutron mean fields. The isovector mean field is
especially important in the neutrinosphere, the region of warm and dense matter where neutrinos
decouple from the exploding star. Recently, the calculation (162, 166) of nuclear response func-
tions that include mean-field effects from ChEFT interactions has shown that terms beyond the
Hartree–Fock approximation are needed for accurate modeling. In particular, resummed particle–
particle ladder diagrams were shown (166) to produce larger isovector mean fields due to resonant,
nonperturbative effects in the NN interaction. Moreover, for neutral-current neutrino reactions,
such as neutrino pair bremsstrahlung and absorption, resonant NN interactions were shown to
significantly enhance reaction rates at low densities compared with the traditional one-pion ex-
change approximation (167).
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5. SUMMARY AND OUTLOOK

In this article, we have reviewed recent progress in ChEFT calculations of nuclear matter proper-
ties (with quantified uncertainties) and their implications in the field of nuclear astrophysics.Com-
bined with observational and experimental constraints, these microscopic calculations provide the
basis for improved modeling of supernovae, neutron stars, and neutron star mergers. In particular,
we have highlighted MBPT as an efficient framework for studying the nuclear EOS and transport
properties across a wide range of densities, isospin asymmetries, and temperatures. We have also
shown how advances in high-performance computing have enabled the implementation of two-
nucleon and multinucleon forces in MBPT up to high orders in the chiral and many-body ex-
pansions. Finally, we have described new tools for quantifying theoretical uncertainties (especially
EFT truncation errors) to confront microscopic calculations of the nuclear EOS with empirical
constraints. Such systematic studies are particularly important in view of EOS constraints antici-
pated in the new era of multimessenger astronomy—for instance, from gravitational wave detec-
tion, mass and radius measurements of neutron stars, and experiments with neutron-rich nuclei.

Here, we briefly summarize several open research directions at the interface of nuclear EFT
and high-energy nuclear astrophysics. (a) EFT truncation errors and their correlations in den-
sity and across observables need to be studied with different many-body frameworks and nuclear
interactions at arbitrary isospin asymmetry and finite temperature. (b) Together with EFT trun-
cation errors, the uncertainties in the LECs parameterizing the interactions need to be quantified
and propagated to nuclear matter properties using a comprehensive Bayesian statistical analysis.
(c) The full uncertainty quantification of the nuclear EOS will be aided by the development of
improved order-by-order chiral NN and 3N potentials and by the study of different regulariza-
tion schemes as well as deltaful chiral interactions. (d) Many-body calculations of nuclear matter
properties beyond the nuclear EOS (e.g., linear response and transport coefficients) with chiral
NN and 3N interactions are required for more accurate numerical simulations of supernovae and
neutron star mergers. (e) Future neutron star observations will provide stringent tests of nuclear
forces and nuclear many-body methods in a regime that is presently largely unconstrained. The
interplay of observation, experiment, and theory in the next decade can be expected to result in
many further advances in our understanding of strongly interacting matter.
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