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ABSTRACT 1 

The goal of this study is to analyze the impact of private autonomous vehicles (PAVs), specifically their 2 
near-activity location travel patterns, on vehicle miles traveled (VMT). The study proposes an integrated 3 
mode choice and simulation-based parking assignment model and an iterative solution approach to analyze 4 
the impacts of PAVs on VMT, mode choice, parking lot usage, and other system performance measures. 5 
The dynamic simulation-based parking assignment model determines the parking location choice of each 6 
traveler as a function of the spatial-temporal demand for parking from the mode choice model, while the 7 
multinomial logit mode choice model determines mode splits based on the costs and service quality of each 8 
travel mode determined partially by the parking assignment model. The paper presents a case study to 9 
illustrate the power of the modeling framework. The case study varies the percentage of persons with a 10 
private vehicle (PV) who own a PAV vs. own a private conventional vehicle (PCV). The results show that 11 
PAV owners travel an extra 0.11 to 1.51 miles compared with PCV owners on average. Hence, as the PCVs 12 
are converted into PAVs, total VMT in the network increases substantially. The results further indicate that 13 
VMT can be reduced by adjusting parking fees and redistributing parking lot capacities. The significant 14 
increase in VMT from PAVs implies that planners should develop policies to reduce PAV deadheading 15 
miles near activity locations, as the automated era comes closer. 16 

 17 

Keywords: Autonomous Vehicles, Parking, Mode Choice, Vehicle Miles Traveled, Integrated Modeling, 18 
Fixed-point Problem, Simulation, Deadheading  19 
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1 INTRODUCTION 1 

Over the last ten years, a large volume of research focused on modeling and predicting the impacts of 2 
autonomous vehicles (AVs) on travel behavior, travel demand, and transportation systems broadly. 3 
Although AVs are expected to result in more efficient vehicle operations that improve traffic flow, most 4 
studies suggest that AVs will also increase overall vehicle miles traveled (VMT) (1). Given that AVs are 5 
not yet widely available, their overall impact on travel demand and traffic congestion is still uncertain (2). 6 
However, in order to plan for AVs, including allocating resources for infrastructure investments and setting 7 
policies and regulations, it is important to model, understand, and forecast the potential impacts of AVs on 8 
transportation systems under a variety of different conditions.  9 

One particular concern about AVs is that they are expected to drastically increase overall VMT and 10 
thereby increase congestion, energy consumption, and vehicle emissions. The existing literature identifies 11 
a variety of behavioral changes stemming from the introduction of AVs that may increase private vehicle 12 
(PV) usage and overall VMT. For example, AVs are expected to decrease the burden or disutility of PV 13 
travel as AVs do not require a traveler to drive the vehicle, an onerous and unproductive task, thereby 14 
making PV travel less costly and increasing overall travel and travel distances for a variety of trip purposes 15 
(3–5). As another example, people without driver’s licenses, seniors, and people with medical conditions 16 
are expected to make more trips and increase their vehicle-based travel when AVs enter the market (6). 17 
From a long-term land use perspective, some people may change their home locations and work locations 18 
as a result of AVs reducing travel costs to/from major activity locations (7–9). Also, the improved 19 
convenience of PVs will attract current transit users to switch trips to PAVs, thereby increasing VMT (10, 20 
11). 21 

Additionally, as drivers become riders in PAVs, travel patterns of PAVs are likely to diverge from 22 
travel patterns in private conventional (i.e., non-autonomous) vehicles (PCVs). Rather PAV travel patterns 23 
are likely to involve dropping off travelers at their exact activity locations and traveling empty (i.e., 24 
deadheading) to another location to park during the activity. While deadheading in PAVs is similar to 25 
current taxi and ride-hailing services, in the case of taxis and ride-hailing, the next location is likely a 26 
traveler pickup spot, whereas in the case of PAVs, the next location is likely a parking spot. Both PAVs 27 
and conventional ride-hailing will inevitably generate deadheading miles, i.e., vehicles driving without 28 
passengers. However, the degree of deadheading in both cases depends on a variety of factors. Recent 29 
studies show that deadheading miles from ride-hailing services, unsurprisingly, increase road network 30 
congestion (12, 13). 31 

This study focuses on the near-activity location travel associated with PAVs and their impact on VMT 32 
relative to the current world with only PCVs. Figure 1 displays potential travel patterns for PCVs and PAVs 33 
for the same person trip from a home location to an activity location. Figure 1 shows that PCV travel 34 
typically involves a traveler driving to a parking lot and then walking to the activity location from the 35 
parking lot. However, in the case of PAVs, the AV drives the traveler directly to work, negating walking, 36 
and then deadheads to a parking location. Notably, because the traveler does not need to walk from parking 37 
location to activity location, the traveler is more willing to choose parking locations farther away from the 38 
activity location (or allow the AV itself to choose further away parking locations) if they are cheaper.  39 
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Figure 1 Travel Pattern of PCVs and PAVs 2 

The goal of this paper is to develop a modeling framework in order to analyze the potential impacts of 3 
PAVs on near-activity travel patterns and overall VMT. Near-activity travel patterns for PVs denote the 4 
travel between activity locations and parking lots by vehicles and people, in the case where the parking lot 5 
is not at the same location as the activity. To model this problem, this paper presents an integrated parking 6 
location choice and mode choice model. The parking location choice model considers factors such as 7 
parking fee, parking lot capacity and congestion, driving cost per mile, walking distance for PCV travelers, 8 
and waiting time for PAVs to pick up travelers for their return home trip. The mode choice model captures 9 
the potential shifts between transit, shared vehicles like ridesourcing and taxi, and PVs as a function of the 10 
cost and service quality provided by each of these modes. Moreover, by integrating the mode choice and 11 
parking choice model, the framework captures the balancing effects of mode shifts toward PAVs (and to a 12 
lesser extent PCVs) and parking lot capacity and congestion impacts on the attractiveness of PAVs and 13 
PCVs. 14 

The study also presents an iterative solution approach to solve the integrated mode choice and parking 15 
location choice problem. The output of the model and solution algorithm includes mode shares, VMT, 16 
parking lot occupancy, traveler wait times, traveler walk distances, and traveler in-vehicle travel time 17 
(IVTT). By varying the percentage of PAVs and PCVs in various scenarios, the study aims to analyze the 18 
impact of PAVs on overall VMT. The authors believe integrating mode choice with parking location choice 19 
is critical for assessing the impacts of PAVs on near-activity VMT, for the reason that PV travel is likely 20 
to increase in a future with AVs compared to the current transportation system without AVs.  21 

This paper makes several contributions to the existing literature. First, it introduces an integrated mode 22 
choice and parking assignment problem with PAVs, and formulates it as a fixed-point problem, in order to 23 
analyze the impacts of PAVs on near-activity travel patterns and VMT in particular. Previous research aims 24 
to analyze the impacts of PAVs on travel patterns and VMT, but those studies do not explicitly integrate 25 
mode choice and parking assignment. Second, this paper proposes a novel simulation-based parking 26 
assignment model to evaluate near-activity travel patterns, VMT, parking lot congestion, traveler walking 27 
distance, and other important travel attributes. Third, the paper presents an efficient iterative solution 28 
approach to solve the integrated mode choice and parking assignment problem. Fourth, the paper presents 29 
valuable insights into the trade-offs between VMT, travel time, and travel costs when comparing a system 30 
with PCVs vs. a system with PAVs.  31 

The remainder of this paper is structured as follows. The next section provides a brief review of the 32 
existing literature. The following section presents the mathematical formulation of the integrated mode 33 
choice and parking location choice problem. The following section presents an iterative solution approach 34 
to solve the integrated model. A case study based on an artificial central business district is outlined in the 35 
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following section. The next section presents computational results from the case study and associated 1 
scenario analyses. The penultimate section discusses the implications of the model results. The final section 2 
concludes the paper.  3 

2 LITERATURE REVIEW 4 

Although many studies analyze factors related to AVs that impact travel behavior, relatively few studies 5 
analyze the impact of AVs on near-activity location travel and parking. Moreover, most parking studies 6 
related to AVs focus on microscopic topics such as optimizing parking lot configurations and how to find 7 
a parking location more efficiently (14–17). Conversely, the current study focuses on parking and AVs 8 
across a transportation network to understand and forecast the potential impacts of AVs on VMT, parking 9 
lot usage, and other relevant metrics for transportation planning purposes. This section provides a brief 10 
review of studies that analyze the relationship between parking, travel behavior, and transportation system 11 
performance for PCVs before reviewing the small set of recent studies that incorporate PAVs alongside the 12 
other factors.  13 

The parking location choice problem for PCVs is well established in the literature. Feeney provides a 14 
review of studies in the 1970s and early 1980s covering the impact of parking policy measures on travel 15 
demand (17). The behavioral models (mostly logit models) show that factors such as parking fees and time 16 
costs (e.g. walking time) impact mode choice and travel behavior (18). Unlike most of the literature that 17 
relies on revealed preference data, Axhausen and Polak employ stated preference data to estimate a parking 18 
choice model (19). Specifically, they create a parking type choice set that includes off-street, surface lot, 19 
and multi-story parking. Two other studies develop and use agent-based parking choice models within 20 
MATSim (20, 21). Bischoff and Nagel find that incorporating parking choice in MATSim for 21 
Klausenerplatz in Berlin increase total VMT estimates by almost 20% (21). Habib et al. incorporate parking 22 
type choice alongside activity scheduling decisions within an activity-based travel demand model (22). 23 

More recently, several studies analyze changes in parking behavior related to PAVs. Table 1 provides 24 
a summary of these studies alongside a summary of the current study. Levin and Boyles adopt the 25 
conventional multi-class four-step trip-based model to predict PAV travel patterns assuming that some 26 
PAVs will drive a traveler to their activity location before deadheading to the same traveler’s origin (home) 27 
to avoid parking fees near the high-demand activity center (23). In a PAV-only scenario, Childress et al. 28 
find a 50% discount in parking fees results in a significant increase in VMT (24). Zhang et al. suggest that 29 
PAVs will generate unoccupied VMT due to the reduction of household vehicle ownership and deadheading 30 
(25). Zhang et al. develop an integrated parking choice and route choice model (26). Harper et al. predict 31 
that some PAVs will greedily search for more distant and economical parking spots including unrestricted 32 
parking areas rather than downtown parking lots, thereby increasing VMT (27). On the other hand, Zhao et 33 
al. propose a centrally controlled parking system that collects travelers’ destination information and 34 
dispatches the vehicles to the parking lots and finds that this can reduce VMT (28). 35 

It is not possible to compare the results of those studies directly since they each make different 36 
assumptions and employ different modeling approaches. However, there are several emerging key factors 37 
that illustrate the relationship between AVs, travel behavior, and VMT. For example, parking fees and 38 
walking time are the most important factors in parking location choice (17–19, 24, 27). Not easily perceived, 39 
but a vehicle’s cost per mile is a factor as well. For PAVs, waiting time should be included in behavioral 40 
models since travelers need to wait for pickup after calling the AV, unless the traveler summons the PAV 41 
to arrive at the pickup point first, in which case the PAV may have to wait for the traveler. The model in 42 
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this study incorporates all these factors into a utility maximization framework for mode choice and parking 1 
location choice.  2 

Table 1 Comparison of PAV Studies on Parking Behavior 3 
Study Purpose Approach Parking-related Findings 

Levin & 
Boyles (2015) 

(23) 

Analyze impact of AVs on travel 
behavior and network 
performance 

Four-step trip-based travel 
forecasting model 

PAVs increase VMT due to 
deadheading to cheap parking  

Childress et 
al. (2015) (24) 

Quantify impacts of AVs on 
travel behavior and network 
performance  

Activity-based travel forecasting 
model 

Improved road capacity, reduced VOT, 
and discounted parking fees increase 
PAV demand and VMT. 

Zhang et al. 
(2018) (25) 

Quantify excess VMT stemming 
from vehicle deadheading 

Household travel model. Greedy 
scheduling algorithm for required 
household vehicles. Mixed-integer 
program for unoccupied VMT. 

Reduction of household vehicles 
increases VMT due to unoccupied 
PAV travel. 

Zhang et al. 
(2019) (26) 

Quantify network equilibrium 
patterns under AV parking 
behavior 

Integrated route choice and parking 
assignment choice model and 
solution approach 

PAVs increase traffic congestion due 
to parking search. Some PAVs will 
park at home. 

Harper et al. 
(2018) (27) 

Evaluate impact of AVs on 
VMT, emissions, and parking 
revenues 

Agent-based parking simulation 
model on grid network with greedy 
parking lot selection  

PAVs park at distant and economical 
parking locations and increase VMT. 

Zhao et al. 
(2021) (28) 

Analyze improvements in 
congestion under centralized 
parking dispatch 

Optimization of parking control 
with macroscopic fundamental 
diagram 

Optimized parking assignment reduces 
cruising VMT for parking 

This study 
Estimate impacts of PAV 
parking travel patterns on VMT 
and PV demand 

Integrated mode and parking 
location choice model. Iterative 
solution approach. 

PAVs increase demand for PV travel 
and as a result, VMT increases.  

3 PROBLEM FORMULATION 4 

This study presents the integrated mode choice and parking assignment problem, wherein the parking 5 
assignment model captures congestion and capacity constraints in parking lots throughout the analysis 6 
region. Since the demand for parking is a function of mode choice (i.e., higher PV demand increases parking 7 
lot congestion), and mode choice is a function of parking congestion (i.e., congestion in parking lots reduces 8 
demand for PVs), this study models the integrated mode choice and parking assignment problem using a 9 
fixed-point problem formulation. In general, a fixed point of a function 𝑓𝑓(∙) is a value 𝑝𝑝 such that 𝑓𝑓(𝑝𝑝) =10 
𝑝𝑝, or put another way, the value p is unchanged by function 𝑓𝑓(∙) (29). The variable 𝑝𝑝 can be a scalar or a 11 
vector.  12 

Eqn. 1 displays the general form of the integrated mode choice and parking assignment model in the 13 
form of a fixed point problem. A solution to Eqn. 1 is a multi-dimensional array of probabilities, 𝒑𝒑, that 14 

when input into 𝑓𝑓𝑚𝑚 �𝑓𝑓𝑝𝑝(∙)� remain unchanged. The parking function 𝑓𝑓𝑝𝑝(∙) in this study does not have a 15 

straightforward functional form, rather this study employs a dynamic simulation-based parking assignment 16 
model that is detailed in the next section. Eqn. 2 shows that the function 𝑓𝑓𝑝𝑝(∙) is non-separable because the 17 
mode splits (𝒑𝒑𝒐𝒐𝒐𝒐𝒐𝒐) between each origin 𝑜𝑜 ∈ 𝑂𝑂  and destination 𝑑𝑑 ∈ 𝐷𝐷  at time interval 𝑡𝑡 ∈ 𝑇𝑇  impact the 18 
service quality, price, and therefore parking location choice for travelers using the parking system between 19 
all origins, all destinations, and all future time periods. Conversely, the mode choice function, 𝑓𝑓𝑚𝑚(∙), 20 
displayed in Eqn. 3, which returns mode splits for travelers going from origin 𝑜𝑜 ∈ 𝑂𝑂 to destination 𝑑𝑑 ∈ 𝐷𝐷 21 
at time interval 𝑡𝑡 ∈ 𝑇𝑇, is separable by origin, destination, and time interval.  22 

𝒑𝒑 = 𝑓𝑓𝑚𝑚 �𝑓𝑓𝑝𝑝(𝒑𝒑)� (1) 
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𝒒𝒒 = 𝑓𝑓𝑝𝑝(𝒑𝒑) (2) 

𝒑𝒑𝒐𝒐𝒐𝒐𝒐𝒐 = 𝑓𝑓𝑚𝑚(𝒒𝒒𝒐𝒐𝒐𝒐𝒐𝒐) (3) 

Where, 1 

𝑀𝑀: set of modes in the transportation system, indexed by 𝑚𝑚 ∈ 𝑀𝑀 2 
𝑂𝑂: set of origin zones in the transportation network, indexed by 𝑜𝑜 ∈ 𝑂𝑂 3 
𝐷𝐷 set of destination zones in the transportation network, indexed by 𝑑𝑑 ∈ 𝐷𝐷 4 
𝑇𝑇 set of time intervals in the analysis period, indexed by 𝑡𝑡 ∈ 𝑇𝑇 5 
𝐾𝐾𝑚𝑚: set of service quality and cost/price attributes associated with mode 𝑚𝑚, indexed by 𝑘𝑘 ∈ 𝐾𝐾𝑚𝑚 6 
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜: choice probability for mode 𝑚𝑚 , for a traveler going from origin 𝑜𝑜 , to destination 𝑑𝑑 , and 7 

departing at time interval 𝑡𝑡. 8 
𝒑𝒑𝒐𝒐𝒐𝒐𝒐𝒐: vector of mode choice probabilities for origin 𝑜𝑜, destination 𝑑𝑑, and departing time interval 𝑡𝑡, 9 

with dimension |𝑀𝑀|. 10 
𝒑𝒑: multidimensional array of mode choice probabilities for all modes, origins, destinations, and 11 

time intervals, with dimension |𝑀𝑀| × |𝑂𝑂| × |𝐷𝐷| × |𝑇𝑇| 12 
𝒒𝒒: multidimensional array of service quality and price attributes for all modes, origins, 13 

destinations, and time intervals, with dimension |𝑀𝑀| × |𝑂𝑂| × |𝐷𝐷| × |𝑇𝑇| × |𝐾𝐾| 14 
 15 
The next section describes the detailed agent-based parking simulation model, 𝑓𝑓𝑝𝑝(∙). The next section 16 

also provides the functional form and the parameters for the mode choice function, 𝑓𝑓𝑚𝑚(∙), which is a 17 
straightforward multinomial logit model.  18 

4 SOLUTION APPROACH 19 

Figure 2 displays the proposed iterative solution approach to solve the integrated mode choice and parking 20 
assignment problem. The remainder of the section describes the iterative solution approach along with the 21 
model input and output. 22 

Figure 2 Solution Approach 24 

4.1 Model Inputs 25 

The left-most box labeled ‘Input’ in Figure 2 includes a scenario setting box that leads into an input 26 
parameters box. This study performs sensitivity and scenario analyses based on changes in a variety of 27 
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model parameters. These parameters and the changes to them are detailed in later sections. The input data 1 
and parameters in this study include the available travel modes, mode choice model parameters, fixed modal 2 
attributes for non-PV modes, the location, capacity and price of parking lots, parameters for the parking 3 
congestion model, the transportation network, and demand data including trip origins and destinations. The 4 
following subsections provide details about the available travel models and the mode choice model 5 
parameters.  6 

4.1.1 Travel Modes 7 
This study incorporates three types of high-level travel modes, PVs, shared vehicles (SVs), and public 8 
transit. PV includes PCV and PAV. SV includes shared-use automated vehicles (SAVs,) ride-hailing and 9 
ride-sharing services, and taxis. SV travelers wait for a vehicle, travel inside an SV, pay a fare, and receive 10 
door-to-door service. Public transit effectively refers to high-capacity buses. Transit riders walk to a bus 11 
stop, wait for a bus, pay a fare, travel inside the bus as a rider, and walk to their destination—they may also 12 
need to transfer between routes, but this study assumes transfers are not necessary. 13 

Specific scenario details are given in the Case Study section; however, it is important to note that each 14 
traveler has access to a single PV—either a PCV or PAV but not both—in this study. Additionally of note, 15 
in the scenarios with all PCVs, SVs are conventional vehicles (SCVs); conversely in the scenarios with all 16 
PAVs, the SVs are all SAVs.  17 

4.1.2 Mode Choice Model Parameters 18 
Important mode choice model parameters include the disutility of travel time for in-vehicle travel and out-19 
of-vehicle travel (walking and waiting) and the disutility of travel costs. Combining the disutility of travel 20 
time and travel costs produces estimates of a user’s value of time (VOT). According to review papers and 21 
reports, VOT varies widely depending on a variety of factors (19, 30). Axhausen and Polak find a wide 22 
range of walking VOT estimates ranging from $1.35/h to $47.43/h in the mode choice context and $7.67/h 23 
to $58.21/h in the parking choice context (19). Caltrans uses the following VOTs: $13.65/h for automobile 24 
and transit in-vehicle VOT and $27.30/h for transit out-of-vehicle VOT in 2016 dollars (31). Kolarova et 25 
al. estimate the VOT from the German National household travel survey data segmented by mode and 26 
income class (3). Based on the middle-income class’s PCV commuting trips ($8.18/h), the other values of 27 
in-vehicle VOT are $5.26/h, $8.72/h, and $4.89/h for PAV, SAV, and public transit, respectively. The 28 
walking VOT is $12.03/h, while the AV and public transit waiting VOT are $9.49/h and $7.45/h, 29 
respectively. Zhong et al. provide ranges for the VOT for PCV, PAV, and SAV in the United States by 30 
place of living: $9.36/h (rural) to $53.71/h (urban) for PCV; $7.71/h to $40.89/h for PAV; and $8.64/h to 31 
$46.53/h for SAV (5). This study mostly uses the values in Kolarova et al. (3). 32 

Moreover, this study uses $0.50/mi as the cost per vehicle mile of travel, based on the 2020 electric 33 
vehicle cost provide by the American Automobile Association (32).  34 

According to several studies about 40% of a ride-hailing service travel is deadheading miles (13, 33). 35 
In other words, when one mile of PCV travel from an origin to a destination (except the parking travel 36 
distance) is changed to a ride-hailing vehicle travel, the travel distance becomes 1.67 miles (67% extra 37 
travel). Considering that PAVs do not cruise to find and then pick up another passenger, the PAV’s VMT 38 
increase depends on the parking location finding travel distance. 39 
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4.2 Iterative Solution Approach  1 

The middle portion of Figure 2 displays an overview of the proposed solution approach that involves 2 
iterating between the mode choice model and the dynamic simulation-based parking assignment model. In 3 
the iterative process, the outputs of the parking assignment model are the performance of the transportation 4 
system, specifically the costs and service quality attributes associated with PAV and/or PCV travel. Given 5 
that the parking model is agent-based, these cost and service quality attributes are available at the agent 6 
level and can easily be aggregated over time and space. The costs and service quality attributes for the other 7 
modes—transit and SV—are fixed in this study. The costs and service quality modal attributes for PVs 8 
from the parking assignment model are the inputs to the mode choice model, alongside the fixed modal 9 
attributes for SVs and transit. The outputs of the mode choice model are the modal splits, which are the 10 
inputs for the next iteration of the parking assignment model. This iterative process repeats until there is 11 
consistency between the mode choice model and the parking assignment model in terms of modal service 12 
quality/costs and modal splits.  13 

The following two subsections describe the dynamic simulation-based parking assignment models and 14 
the multinomial logit mode choice model, respectively.  15 

4.2.1 Dynamic Simulation-based Parking Assignment Model 16 
The mode choice model returns modal splits, 𝒔𝒔𝒏𝒏, where the 𝑛𝑛 superscript denotes the current iteration 17 
number. Given that the modal attributes for SV and transit are fixed, and these modes do not use the parking 18 
lots, only the modal splits for PV are needed as input for the parking assignment model, 𝒔𝒔𝒎𝒎=𝑷𝑷𝑷𝑷𝒏𝒏 . The formula 19 
for the spatial (origin zone to destination zone) and temporal demand for PVs in the current iteration, 20 
𝑠𝑠𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑃𝑃𝑃𝑃
𝑛𝑛 , is displayed in Eqn. 4.  21 

𝑠𝑠𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑃𝑃𝑃𝑃
𝑛𝑛 = 𝑝𝑝𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑃𝑃𝑃𝑃

𝑛𝑛 × 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 ∀𝑜𝑜 ∈ 𝑂𝑂,∀𝑑𝑑 ∈ 𝐷𝐷,∀ 𝑡𝑡 ∈ 𝑇𝑇 (4) 
where 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 denotes the total trip demand from origin zone 𝑜𝑜 to destination zone 𝑑𝑑 departing at time 𝑡𝑡, 22 
which is exogenous to the integrated model system, meaning it is independent of the iteration. Notably, the 23 
demand for origin zone 𝑜𝑜 and to destination zone 𝑑𝑑 is based on aggregating traveler agents with origin 24 
nodes that are inside origin zone 𝑜𝑜 and destination nodes that are inside destination zone 𝑑𝑑. 25 

Each traveler agent in the dynamic simulation-based parking assignment model must choose a parking 26 
lot, where 𝐴𝐴 is the set of parking lots, indexed by 𝑎𝑎 ∈ 𝐴𝐴. In this study, each traveler creates an ordered list 27 
of parking lot preferences, based on their own expected generalized cost of travel. Each traveler with a PCV 28 
drives from their origin to a parking lot before walking from the parking lot to their activity location. Each 29 
traveler with a PAV rides from their origin to their activity location (i.e., destination node) after which the 30 
vehicle deadheads to a parking lot. Eqn. 5 and 6 display the expected generalized cost functions for PCV 31 
travelers and PAV travelers respectively.  32 

𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃,𝑎𝑎 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑎𝑎 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤,𝑎𝑎 + 𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑑𝑑𝑎𝑎 ∀𝑎𝑎 (5) 

𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑤𝑤𝑤𝑤 × 𝑡𝑡𝑤𝑤𝑤𝑤,𝑎𝑎 + 𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑑𝑑 ∀𝑎𝑎 (6) 

where 𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 is the in-vehicle VOT, and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑎𝑎 is the travel time between the origin and parking lot 𝑎𝑎; 33 
𝑉𝑉𝑉𝑉𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤  is the walking VOT, and 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤,𝑎𝑎  is the walking time between parking lot 𝑎𝑎  and the traveler’s 34 
destination; 𝑉𝑉𝑉𝑉𝑇𝑇𝑤𝑤𝑤𝑤 is the waiting VOT, and 𝑡𝑡𝑤𝑤𝑤𝑤,𝑎𝑎 is the length of time the traveler must wait at the activity 35 
location to be picked for their return home trip, when their PAV is in parking lot 𝑎𝑎; 𝐶𝐶𝐶𝐶𝐶𝐶 is the vehicle’s 36 
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cost per mile, and 𝑑𝑑𝑎𝑎  is the travel distance between the traveler’s origin and parking lot 𝑎𝑎  (via the 1 
destination in the case of PAVs). 2 

The parking assignment model simulates the movements of PAV and PCV travelers and the vehicles 3 
themselves as well as the occupancy of parking lots, in a time-driven simulation. Hence, the simulation 4 
captures the current location of travelers, PAVs, and PCVs as well as the current occupancy of all parking 5 
lots in the transportation network, every time step, which is denoted Δ𝜏𝜏 (and equal to six seconds in this 6 
study). 7 

Each traveler has an ordered list of parking lots because it is possible that a parking lot is full when 8 
the PV arrives at the parking lot entrance in the simulation, in which case the traveler or the traveler’s PAV 9 
needs to travel to the next parking lot on their ordered list. Of note, this study assumes a traveler only 10 
becomes aware of a parking lot’s occupancy when they arrive at the parking lot—future studies may assume 11 
travelers have full knowledge of parking lot occupancies at all times. Additionally, since travelers can go 12 
from parking lot to parking lot in the simulation, the expected costs for a parking lot 𝑎𝑎, 𝐸𝐸𝐶𝐶𝑎𝑎, in a traveler’s 13 
ordered list does not reflect the detour travel time and distance that occurs in the simulation. Hence, the 14 
ordered list of parking lots for an agent is fixed within the current iteration of the model, i.e., an agent does 15 
not update their ordered parking list during a simulation.” 16 

In addition to capturing hard capacity constraints at each parking lot in the transportation network, the 17 
parking assignment model also captures in-lot parking search time. This is an important model feature for 18 
dense urban areas with limited parking supply, as drivers can spend considerable time inside parking lots 19 
finding an open parking spot. In this study, the parking time after entering the parking lot (in-lot parking 20 
time) depends on the volume to capacity ratio of the parking lot. For example, this study uses a BPR 21 
function to reflect the in-lot parking time, expressed as Eqn. 7: 22 

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝(𝑣𝑣𝑎𝑎) = 𝑡𝑡0 × �1 + 𝛼𝛼 �
𝑣𝑣𝑎𝑎
𝐶𝐶𝑎𝑎
�
𝛽𝛽
� (7) 

where 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 is the in-lot parking time; 𝑣𝑣𝑎𝑎 is the number of vehicles currently in parking lot 𝑎𝑎 (parking and 23 
searching for parking); 𝐶𝐶𝑎𝑎 is the capacity of parking lot 𝑎𝑎; and 𝛼𝛼, 𝛽𝛽, and 𝑡𝑡0 are model parameters to be 24 
calibrated based on data.  25 

The parking assignment model also captures network IVTT and network walking time. The simulation 26 
model assumes both vehicles and pedestrians travel along the shortest network path. The model does not 27 
currently capture congestion in the road network, as the assumption is that parking lot capacity is the 28 
limiting constraint on PV mode demand. Additionally, the simulation model does not capture congestion 29 
or capacity at drop-off points (i.e., activity locations).  30 

As noted in Figure 2, the simulation-based parking assignment model returns the service quality and 31 
costs for PV modes. It does so by taking the average values for service quality and cost from all traveler 32 
agents with origin 𝑜𝑜, destination 𝑑𝑑, departure time 𝑡𝑡, and 𝑃𝑃𝑃𝑃 mode 𝑚𝑚, as denoted in Eqn. 8. 33 

 34 

𝑞𝑞𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑚𝑚,𝑘𝑘
𝑛𝑛 =

∑ 𝛿𝛿𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑚𝑚
𝑟𝑟,𝑛𝑛

𝑟𝑟∈𝑅𝑅 𝑞𝑞𝑘𝑘
𝑟𝑟,𝑛𝑛

∑ 𝛿𝛿𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑚𝑚
𝑟𝑟,𝑛𝑛

𝑟𝑟∈𝑅𝑅
 

∀𝑜𝑜 ∈ 𝑂𝑂,∀𝑑𝑑 ∈ 𝐷𝐷,∀𝑡𝑡 ∈ 𝑇𝑇 

∀𝑚𝑚 ∈ 𝑀𝑀,∀ 𝑘𝑘 ∈ 𝐾𝐾𝑚𝑚 (8) 
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Where, 𝛿𝛿𝑜𝑜,𝑑𝑑,𝑡𝑡,𝑚𝑚
𝑟𝑟  is an indicator variable equal to one if agent 𝑟𝑟 has origin 𝑜𝑜, destination 𝑑𝑑, departure time 𝑡𝑡, 1 

and was assigned to mode 𝑚𝑚 in iteration 𝑛𝑛; 𝑞𝑞𝑘𝑘
𝑟𝑟,𝑛𝑛 is agent 𝑟𝑟’s experienced service quality or cost metric 𝑘𝑘’s 2 

value in iteration 𝑛𝑛. The set of experienced service quality or cost metrics 𝐾𝐾𝑚𝑚, vary by PV mode 𝑚𝑚. For 3 
PCV, 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃 includes IVTT from origin to parking lot, in-lot parking time, parking fee, walking time from/to 4 
the parking lot, the opposite direction IVTT, and vehicle travel distance to calculate vehicle parking cost. 5 
On the other hand, for PAV, 𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃 includes include IVTT from origin to destination, total vehicle travel 6 
distance, parking fee, and the waiting time for the PAV to pick up the traveler for the return home trip. The 7 
values in Eqn. 8 are then fed into the mode choice model.  8 

4.2.2 Multinomial Logit Mode Choice Model 9 
This section describes the mode choice model. The study employs the random utility maximization 10 
framework to model mode choice. The utility function for each mode can be written as Eqns. 9–13: 11 

𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑃𝑃𝑃𝑃𝑃𝑃�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝�+ 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑+ 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑�+ 𝜖𝜖 (9) 

𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑+ 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑� + 𝜖𝜖 (10) 

𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛽𝛽𝑆𝑆𝑆𝑆 + 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 + 𝜖𝜖 (11) 

𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛽𝛽𝑆𝑆𝑆𝑆 + 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 + 𝜖𝜖 (12) 

𝑈𝑈𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛽𝛽𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤 + 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 + 𝜖𝜖  (13) 

where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is path travel time (origin to the final parking lot entrance), 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 is in-lot parking time from Eqn. 12 
7, 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤 is walking time, 𝑡𝑡𝑤𝑤𝑤𝑤 is waiting time, 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 is vehicle operating cost per mile, 𝑑𝑑 is vehicle driving 13 
distance (including parking lot searching travel), 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 is parking fee per hour, 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 is parking duration time, 14 
𝑐𝑐𝑓𝑓𝑓𝑓 is the fare of shared vehicle or transit, 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆 and 𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 are mode-specific coefficients, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is IVTT 15 
coefficient, 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is cost coefficient, and 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤 and 𝛽𝛽𝑤𝑤𝑤𝑤 are coefficients for each variable. 16 

Among those variables, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝, 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝, and 𝑑𝑑 change in the parking assignment model, and the other 17 
non-beta parameters and variables remain unchanged based on scenario settings. 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑃𝑃𝑃𝑃𝑃𝑃, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑃𝑃𝑃𝑃𝑃𝑃, 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤, 18 
𝛽𝛽𝑤𝑤𝑤𝑤, and 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are frequently used variables in the mode choice model and can be found from many studies 19 
in the literature. Wardman (34) and a TCRP Report (35) collect and list relative time valuations for transit 20 
travel from decades of studies in UK and US, respectively. 21 

The study also assumes that the error terms, 𝜖𝜖 , are independent (across modes and agents) and 22 
identically distributed. Hence, the functional form for mode choice is the multinomial logit model.  Given 23 
the modal attributes from the previous iteration of the parking assignment model, the exogenous modal 24 
attributes and other parameter values, as well as the beta coefficients, determining the mode choice 25 
probabilities, 𝒑𝒑, from the multinomial logit model is straightforward and computationally inexpensive.  26 

4.3 Model Output 27 

After the iterative solution approach converges to a solution, there are a variety of system-level and agent-28 
level performance metrics that can be output for analysis purposes.  The system-level metrics include VMT, 29 
empty VMT, final mode splits, parking lot occupancy and parking lot revenue. The agent-level metrics 30 
include travel time, walk time, travel cost, generalized cost, and systematic utility.  31 
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5 CASE STUDY 1 

5.1 Network Configuration 2 

This study uses a grid network describing an imaginary central business district (CBD). The network, 3 
displayed in Figure 3, has 8 external origin nodes (Nodes 1 to 8), 22 activity locations (Nodes 9 to 30), and 4 
10 in-network parking lots (Nodes 31 to 40) with 1 out-of-network parking lot (Node 41) that 5 
accommodates unassigned vehicles. The size of a block is 600 ft by 500 ft and the width of the road is 60 6 
ft. The main road links are unidirectional with a uniform vehicle speed (25 ft/s) and a uniform walking 7 
speed (4 ft/s). 8 

Parking assignment requires a fine spatial resolution, particularly in the CBD. Each intersection is 9 
divided into four nodes to reflect intersection delays. Each internal short link in each intersection has 10 
additional travel times: 12 seconds for the through direction and 24 seconds for a left turn and a U-turn. 11 
Each activity location and parking lot has two bi-directional links connected with the main road that take 12 
18 seconds to traverse and are accessible only from the adjacent direction links (i.e., only right turn is 13 
available) and a short detour (ex: U-turn at the downstream intersection) is required for the opposite 14 
direction travel. For example, assume a PAV with external origin 3 and activity location 21 parks in lot 36 15 
in Figure 3, the node sequence of the path would be: [3, 539, 537, 122, 535, 533, 531, 529, 530, 549, 550, 16 
212, 21, 211, 550, 552, 362, 36]. 17 

 18 
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Figure 3 Grid Network for Parking Assignment Simulation 2 

5.2 Trip Generation and Distribution 3 

Vehicle trips are generated every six seconds (Δ𝜏𝜏 = 6𝑠𝑠𝑠𝑠𝑠𝑠) and the simulation runs for four hours (i.e., there 4 
are 2,400 time steps during the process). To collect enough samples, each simulation runs three times (i.e., 5 
three days). There are 12,000 entering trips including PV and non-PV (SV or public transit) users per 6 
scenario. To balance the parking location availability throughout the day, 3,000 PVs randomly exit the 7 
parking lot during the analysis period. The 12,000 entering trips have uniformly distributed origin and 8 
destination nodes (and zones) and departure times. Additionally, the model does not explicitly model travel 9 
from activity location or parking lot to external origin. Rather, the study uses fixed values for PAV user 10 
pickup wait time and IVTT to external origin. Additionally, the case study assumes that 50% of PAV 11 
travelers schedule pickup service and have a zero minute wait time, while the other 50% do not schedule 12 
pickup service and wait for their vehicle to travel from parking lot to activity location.   13 
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5.3 Parking Lots 1 

Each parking lot has a fixed parking capacity and a fixed parking fee. The total parking capacity across the 2 
10 parking lots is 4,000 and 15% of parking spots (600) are vacant at the beginning in the base scenario. 3 
The results section includes scenario analyses with respect to changes in parking fees and parking lot 4 
capacities. Parking fees range from $1.5/h to $5.5/h with mean (median) values of $3.65/h ($3.75/h). 5 
Parking lot fees are based on lots in major cities in Germany and the United States (36). When all parking 6 
lots are full, vehicle must go to the out-of-network parking lot (Lot 41) that is 0.5 miles away,  costs $5.5/h, 7 
and has a capacity of 10,000.  8 

For the in-lot parking space search time function (Eqn. 7), the study uses the following parameter 9 
values for all parking lots: 𝑡𝑡0 = 1 minute and 𝛼𝛼 = 𝛽𝛽 = 2. According to the function, parking time is 60 10 
seconds when the parking lot is empty, 90 seconds at 50% vacancy, 120 seconds at 30% vacancy, and 180 11 
seconds at 1% vacancy. 12 

5.4 Model Parameters and Values of Time 13 

The model parameters and VOTs used in this study are based on those in Kolarova et al. (3). Since there is 14 
no experience of AV travel yet, the value of AV travel time in most studies relies on SP survey or 15 
assumptions. The San Diego Association of Governments (SANDAG) multiplies 0.75 from the PCV in-16 
vehicle VOT as a modifier considering the improved convenience (37), which is as same as Correia et al. 17 
(38). Conversely, Kolarova et al. estimate that in-vehicle VOT in PAVs is 0.64 of in-vehicle VOT in PCVs. 18 
According to a review paper by Singleton, several simulation studies assume various VOTs of AVs, and 19 
the value ranges from 0% to 100% of PCV VOT (39). This study applies Kolarova et al.’s survey-based 20 
number in the base scenario and adjusts the number in alternative scenarios with different modifiers. Note 21 
that Kolarova et al.’s SAV refers to “driverless taxi” in their survey. The coefficient values used in this 22 
study are shown in Table 2. 23 

Table 2 Model Parameters 24 
Variable PCV PAV SCV SAV Transit 

Mode-specific constant 0 0 -0.927 -0.927 -3.23 

Time-related 
In-vehicle time (minutes) -0.0966 -0.0621 -0.11 -0.103 -0.0577 
Walking time (minutes) -0.142 - - - -0.031 
Waiting time (minutes) - -0.112 -0.112 -0.112 -0.088 

Cost-related Operating cost and parking fee (USD) -0.709 -0.709 - - - 
Fare (USD) - - -0.709 -0.709 -0.709 

5.5 Travel Costs for Mode Choice 25 

The mode choice model includes out-of-network IVTT since the mode choice is not only based on the travel 26 
in the simulated network, but also affected by the whole travel path. For each traveler, the out-of-network 27 
IVTT time for two directions are added to the in-network IVTTs (including the parking lot searching time) 28 
determined by the parking assignment model. PV and SAV users’ out-of-network IVTT is set to 20 minutes 29 
per one way, and transit users’ out-of-network IVTT is set to 30 minutes per one way. Including the in-30 
network IVTT, the total IVTT becomes around the US average (27.6 minutes for one-way commute) 31 
according to recent data (40). Assuming the average speed is 24 mi/h, the out-of-network one-way travel 32 
distance is 8 miles. 33 

This study assumes 10 minutes (5 minutes in each direction) of waiting time for SAV and 20 (10+10) 34 
minutes of waiting time and 10 (5+5) minutes of walking time for transit. Transit fare is $5 (thus, $10 for 35 
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the two-way trips). Uber fare consists of base fare ($2), cost per minute ($0.4/min), and cost per mile ($1/mi) 1 
(41), which can be changed when the company starts to run AVs. For SAVs, Chen and Kockelman use 2 
$0.75–1/mi (42), Kaddoura et al. assume $0.64–0.84/mi (€0.35–0.46/km) (43), and An et al. estimate 3 
$0.66/min (44), which is a simplified cost estimation of the current Uber service. Considering those studies, 4 
this study uses $1.6/mi for SCV fare and $0.8/mi for SAV fare. 5 

5.6 Scenarios 6 

This study analyzes several scenarios that reflect various possible future conditions at different points in 7 
time. Table 3 displays the full set of scenarios. In the base scenario, all PVs are PCVs. Those PCVs are all 8 
converted into PAVs in Scenario A. Scenarios B1 and B2 are all PAV scenarios, but they apply different 9 
in-vehicle VOTs for PAV, 50% and 90% of PCV in-vehicle VOT, respectively. Scenarios C1 and C2 are 10 
also all PAV but uniformly apply $3.5/h fee to all parking lots, and Scenario C2 additionally attempts to 11 
evenly distribute parking lot capacity across the network. Table 4 displays the parking lot fees, capacity, 12 
and initial vacancy across a variety of scenarios. 13 

In the base scenario and Scenarios A–C2, the traveler agents are aggregated into a single origin zone 14 
and single destination zone for the mode choice model. However, in Scenarios D1–D5, the traveler agents 15 
are aggregated into four destination zones in the mode choice model. Scenarios D1 through D5 vary the 16 
proportion of PVs that are PAVS, as opposed to PCVs, between 0 and 1 in increments of 0.25. 17 

Table 3 Scenarios 18 
Scenario Modes PAV VoT Parking 

fee 
Parking lot 

capacity 
PAV 

percentage Description 

One Origin and One Destination Spatial Aggregation in Mode Choice 
Base PCV, SCV, Transit - Varied Uneven 0% CV default 

A PAV, SAV, Transit 64.3% of PCV Varied Uneven 100% AV default 
B1 PAV, SAV, Transit 90.0% of PCV Varied Uneven 100% Variations in 

PAV VoT 
parameter B2 PAV, SAV, Transit 50.0% of PCV Varied Uneven 100% 

C1 PAV, SAV, Transit 64.3% of PCV Uniform Uneven 100% Variations in 
cost variable C2 PAV, SAV, Transit 64.3% of PCV Uniform Even 100% 

One Origin and Four Destinations Spatial Aggregation in Mode Choice 
D1 PCV, SCV, Transit 

64.3% of PCV Varied Uneven 

0% 

Variations in 
PAV 

Ownership 
Percentage 

D2 PCV, PAV, SCV, SAV, 
Transit 25% 

D3 PCV, PAV, SCV, SAV, 
Transit 50% 

D4 PCV, PAV, SCV, SAV, 
Transit 75% 

D5 PCV, PAV, SCV, SAV, 
Transit 100% 
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Table 4 Parking Lot Information across Scenarios 1 

Parking lot 

Default Scenarios C1 
and C2 Scenario C2 

Parking fee 
(USD/h) 

Capacity 
(veh) 

Initial 
vacancy 

(veh) 

Parking fee 
(USD/h) 

Capacity 
(veh) 

Initial 
vacancy 

(veh) 
31 3.5 450 60 3.5 250 38 
32 2 1,100 200 3.5 250 37 
33 3 250 75 3.5 750 112 
34 4 190 45 3.5 400 60 
35 5 140 20 3.5 500 75 
36 5.5 420 25 3.5 550 83 
37 5 320 40 3.5 350 52 
38 1.5 550 30 3.5 300 45 
39 3 380 60 3.5 300 45 
40 4 200 45 3.5 350 53 
41 5.5 10,000 10,000 5.5 10,000 10,000 

6 RESULTS 2 

6.1 No Spatial Disaggregation Scenarios 3 

The Solution Approach section and Figure 2 describe an iterative solution approach to solve the fixed-point 4 
integrated mode choice and parking location choice problem, 𝒑𝒑 = 𝑓𝑓𝑚𝑚 �𝑓𝑓𝑝𝑝(𝒑𝒑)�. However, when the variable 5 

𝑝𝑝 is a scalar or low-dimensional vector, and the function 𝑓𝑓𝑚𝑚 �𝑓𝑓𝑝𝑝(𝒑𝒑)� is relatively easy to evaluate, it is 6 
possible to use enumeration to solve the fixed point problem. The base scenario and scenarios A through 7 
C2 meet these criteria because the mode choice model does not include any spatial or temporal 8 
disaggregation; hence, the dimension of 𝒑𝒑 is 1 × 1 × 1 × |𝑀𝑀|. Using an enumeration method also has the 9 
added benefit of ensuring that all fixed points are identified, whereas the iterative solution approach may 10 
not identify all possible fixed points solutions.   11 

Figure 4 shows the results of the enumeration approach for the base scenario and scenarios A through 12 
C2. The x-axis displays the input values for the PV mode share, 𝑝𝑝𝑚𝑚=𝑃𝑃𝑃𝑃.   and the y-axis displays the 13 
evaluation of the integrated parking assignment and mode choice function, 𝑓𝑓𝑚𝑚 �𝑓𝑓𝑝𝑝(𝑝𝑝𝑚𝑚=𝑃𝑃𝑃𝑃  )�. Values along 14 

the diagonal represent solutions to the fixed point problem.  15 

Using an increment of 1%, Figure 4 shows that there is a unique solution for the base scenario and 16 
scenarios A through C2. Unsurprisingly, the lines are all downward sloping. Moreover, the relative flatness 17 
of Scenario C1 and C2 likely stems from the fact that the parking fees across the network are uniform. The 18 
existence and uniqueness of a solution for all scenarios engenders a straightforward analysis of the fixed 19 
points solutions across scenarios. 20 
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Figure 4 Fixed Points of Pr(PV)s 2 

6.1.1 Mode Share Metrics  3 
Figure 5 shows the mode shares for all modes in each scenario. The mode share for PV is lowest in the base 4 
scenario where the PVs are PCVs, and the mode share is 50%. In Scenario A, where all PVs are PAVs, PV 5 
mode share significantly increases to 87% due to eliminating walking time, potentially reducing parking 6 
fees, and the reduction in IVTT disutility.  7 

In Scenario B2, the assumption is that PAV in-vehicle VOT is 50% of PCV in-vehicle VOT, and the 8 
PAV mode share increases all the way to 92%. In Scenario B1, when PAV in-vehicle VOT is 90% of PCV 9 
in-vehicle VOT, the PAV mode share is 74%. Taken together, Scenario A, B1, and B2 unsurprisingly 10 
indicate that PAV IVTT disutility has a significant impact on mode share.  11 

The properties of parking lots also affect the choice probability. Instead of the varied parking fees that 12 
range from $1.5/h to $5.5/h in the base scenario, all parking fees are set to $3.5/h in Scenarios C1 and C2. 13 
In addition, Scenario C2 redistributes the parking lot capacities to be more evenly distributed in the network. 14 
In Scenarios C1 and C2, the PAV mode shares are 67% and 69%, respectively. This represents a notable 15 
reduction in mode share compared to Scenario A, in which the larger parking lots had lower fees. 16 
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Figure 5 Mode Share by Scenarios 2 

6.1.2 VMT Metrics 3 
In addition to the increase of the travel demand (Figure 6a), total PV VMT substantially increases in PAV 4 
scenarios (Figure 6b). Note that we only consider in-network VMT (starting from external origin nodes), 5 
and do not include the VMT from the actual origin to external nodes. Total VMT increases by 15,000–6 
22,000 miles in Scenarios A, B1, and B2 compared to the base scenario. On the other hand, the increases 7 
are reduced when there is no difference in parking fees in Scenario C1 and C2. The VMT increase is 8 
controlled better when the parking lot capacity is evenly distributed across space.  9 

As shown in Table 5 and Figure 6c, the average VMT for a PCV is 1.07 miles in the base scenario, 10 
and the average VMT for a PAV stretches from 1.18 miles to 2.57 miles in the other scenarios. The VMT 11 
per vehicle increases 1.38–1.51 mi/veh in default parking lot settings compared to the base scenario. In 12 
Scenarios C1 and C2, VMT per vehicle increases are only 0.11–0.35 mi/veh. This clearly indicates that the 13 
spatial distribution of parking prices and parking supply have a significant impact on average VMT per 14 
vehicle. Hence, if policymakers and planners are interested in reducing VMT in a future era with PAVs, 15 
parking supply and pricing must be considered alongside other policy measures.  16 

The increase in total network VMT from PAVs shown in Figure 6b stems from both an increase in PV 17 
trips (shown in Figure 6a) and an increase in network VMT per vehicle (shown in Figure 6c). Hence, VMT 18 
in a future with AVs is likely to increase due to travelers switching to PV and also driving more miles in 19 
PAVs than they did or would have in PCVs. Policymakers interested in decreasing VMT will likely need a 20 
multi-pronged approach to address these two factors that are expected to increase VMT.  21 

 22 
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Figure 6 PV’s VMT in the Network: (a) Number of PV Trips, (b) Total PV VMT, and (c) VMT per Vehicle 2 

6.1.3 Travel Time and Travel Cost Metrics 3 
Table 5 shows the average travel time components for travelers along several dimensions, along with 4 
average total travel time, and average travel distance. Travel distance is the distance in the grid network 5 
(counted from the external origin node) and includes the deadheading travel distance. The travel distance 6 
in every PAV scenario is longer than the distance in the PCV base scenario.  7 

Since PCV travelers need to travel to parking lots and search for parking, while PAV travelers do not, 8 
the average IVTT of PCV travelers is 3.3 minutes longer than that of PAV travelers on average. On the 9 
other hand, PAVs spend more time searching for parking than PCVs. The reasons are twofold; first there 10 
are more vehicles in the PAV scenarios and second PAVs have more homogeneous parking lot 11 
preferences—they want cheap parking and do not care much about distance from activity location nor 12 
parking spot search time—making cheaper parking lots more crowded.  13 

The PCV users’ average (one-way) walking time from parking lot to activity location is about 6 14 
minutes in one direction, and nearly 13 minutes total including the activity location to parking lot return 15 
walk. Of course, walking time is zero minutes for the PAV scenarios. The average waiting time for PAVs 16 
to pick up PAV users is 1.2-2.4 minutes in Table 5. The variation across scenarios comes from the distance 17 
between parking lots and activity locations.  18 

The final column sums average traveler IVTT, walking time, and waiting time to determine total travel 19 
time. The results show that the total roundtrip in-network travel time for PCV is significantly higher than 20 
total roundtrip in-network travel time for PAV users. Hence, there are significant time benefits associated 21 
with PAVs compared with PCVs.  22 
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Table 5 Average PV Traveler Distances and Times 1 

Scenario 
Number 
of PVs 
(veh) 

Travel 
distance 
(mi/veh) 

In-lot 
parking time 

(min/veh) 

IVTT 
(min/prs) 

Walking 
time 

(min/prs) 

Waiting 
time 

(min/prs) 

Total time 
(min/prs) 

Base 6,000 1.07 2.45 8.19 12.73 - 20.9 
A 10,440 2.53 2.71 4.83 - 2.37 7.2 
B1 8,880 2.45 2.70 4.83 - 2.40 7.2 
B2 11,040 2.57 2.72 4.84 - 2.35 7.2 
C1 8,040 1.42 2.61 4.84 - 1.39 6.2 
C2 8,280 1.18 2.45 4.85 - 1.22 6.1 
 2 

Table 6 presents an even more holistic comparison of the travel experiences of PV users across 3 
scenarios; it includes average monetary costs and monetized travel time components based on the values of 4 
IVTT, walking time, and waiting time in the mode choice model. The final column of Table 6 displays the 5 
total generalized cost per traveler.  6 

Table 6 shows that the in-network vehicle operating cost is $0.06 to $0.75 for PAVs than PCVs, 7 
depending on the scenario. This result stems from the deadheading distance that PAVs travel after dropping 8 
off travelers at their activity locations.  9 

Scenarios A, B1, and B2 have higher average parking fees for travelers compared with the base 10 
scenario. Hence, despite PAVs being able to travel further to cheap parking lots, the increase in total PV 11 
demand in the PAV scenarios forces some travelers to pay for parking at the high-cost parking lots, which 12 
more than offsets their ability to access cheap parking lots. Since the parking fees are unified in Scenarios 13 
C1 and C2, the popular cheaper-than-average parking lots are not cheap anymore. Thus, the average parking 14 
fee increases in those scenarios.  15 

The monetized IVTT, monetized walking time, and monetized waiting time columns of Table 6 16 
parallel the IVTT, walking, and waiting time columns in Table 5. IVTT is higher and walking time is 17 
significantly higher for PCVs than PAVs, while waiting time is higher for PAVs.  18 

The final column of Table 6 is the sum of all the cost and monetized cost components in the preceding 19 
columns. Interestingly, while Scenario A and B1 have the lowest total generalized costs, the base scenario 20 
has a lower generalized cost than Scenarios C1 and C2. This latter finding stems directly from the high 21 
parking cost per person in Scenarios C1 and C2. 22 

Table 6 Average Monetized Traveler Costs 23 

Scenario 
Vehicle 

operating cost 
(USD/prs) 

Parking fee 
(USD/prs) 

Monetized 
IVTT 

(USD/prs) 

Monetized 
Walking time 

(USD/prs) 

Monetized 
Waiting time 

(USD/prs) 

Total 
generalized 

cost 
(USD/prs) 

Base 0.53 4.72 1.12 2.55 0 8.92 
A 1.27 (+0.73) 5.34 (+0.62) 0.42 (-0.69) 0 (-2.55) 0.37 (+0.37) 7.40 
B1 1.22 (+0.69) 5.07 (+0.35) 0.42 (-0.69) 0 (-2.55) 0.38 (+0.38) 7.10 
B2 1.29 (+0.75) 5.46 (+0.74) 0.42 (-0.69) 0 (-2.55) 0.37 (+0.37) 7.54 
C1 0.71 (+0.18) 7.77 (+3.05) 0.42 (-0.69) 0 (-2.55) 0.22 (+0.22) 9.12 
C2 0.59 (+0.06) 7.84 (+3.12) 0.42 (-0.69) 0 (-2.55) 0.19 (+0.19) 9.05 
 24 
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Together with the VMT results, Table 5 and Table 6 illustrates some trade-offs between PCVs and 1 
PAVs in terms of travel time, travel cost, and VMT. Compared with the base scenario, the PAV scenarios 2 
A, B1, and B2 significantly increase VMT, while reducing average traveler in-network time considerably 3 
and slightly reducing traveler generalized costs. On the other hand, compared with the base scenario, the 4 
PAV scenarios C1 and C2, only slightly increase VMT, while significantly reducing average in-network 5 
travel time. However, C1 and C2 have a higher total generalized cost than the baseline scenario because of 6 
the higher parking costs that are needed to reduce VMT.  7 

6.1.4 Vehicle Hours Traveled vs. Traveler In-vehicle Travel Time Results  8 
Figure 7 displays both total vehicle hours traveled (VHT) and total traveler IVTT under the various 9 
scenarios. Figure 7a displays the total VHT for PVs and traveler IVTT. Even though the number of travelers 10 
and VHT increase in the PAV scenarios, there is no significant increase in total traveler IVTT. 11 
Understandably, this is because the PAVs are empty during the parking search process. Figure 7b shows 12 
that PV VHT per vehicle increases in Scenarios A, B1, and B2 relative to the baseline scenario; conversely, 13 
PV VHT per vehicle only increase slightly in Scenario C1, while Scenario C2 shows a slight decrease. 14 
Figure 7c displays the average IVTT per traveler, with the main result being that IVTT per traveler is lower 15 
in the PAV cases than the baseline PCV scenario. The results in Figure 7c partially explain the increase in 16 
PV mode share in the PAV scenarios despite the increase in VHT with PAVs. 17 

Figure 7 PV’s VHT and IVTT in the Network: (a) Total PV VHT and IVTT, (b) VHT per Vehicle, and (c) 19 
IVTT per Traveler 20 

6.1.5 Impact of Increased Shared Autonomous Vehicle 21 
According to Balding et al. and Conway et al., using data from the 2017 national household travel survey 22 
(45), the share of for-hire vehicles (taxi and TNC) is around 0.5% across the country and up to 1.7% in San 23 
Francisco and 1.5% in Washington DC (33, 46). Since this study only considers travelers who have their 24 
own vehicles, the base scenario (PCV-SCV) shows an even lower mode share for SVs, 0.2%. However, the 25 
percentage is much higher in the PAV-SAV scenarios as the SV’s travel cost per mile decreases 26 
significantly.  27 

Naturally SV, particularly SAVs, impact total network VMT in addition to PAVs. Assuming 40% 28 
deadheading miles for SVs (13, 33), SV travel adds 0.67 deadhead miles per in-service mile. Figure 8 29 
illustrates the impact of SAVs on VMT. Figure 8a displays the number of SV trips across the scenarios. 30 
Interestingly, Scenarios C1 and C2 produce the highest number of SV trips. Figure 8b displays the total SV 31 
deadheading VMT, which parallels the results in Figure 8a. Figure 8c displays the total SV and PV VMT 32 
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and finds that VMT increases substantially (5,000–22,000 miles, depending on the scenario) in the AV-1 
based scenarios. However, the impact of SV VMT (green bars in Figure 8c) is relatively small compared 2 
to PV VMT (blue bars in Figure 8c) in nearly all scenarios. 3 

Figure 8 SV VMT in the Network: (a) Number of SV Trips, (b) Total SV Deadheading VMT, and (c) Total PV 5 
and SV VMT 6 

6.2 Spatial Disaggregation Scenarios 7 

While the results in the prior subsection were based on an enumeration-based solution approach to the 8 
integrated mode choice and parking assignment problem, this section presents results using the iterative 9 
solution approach proposed in the Solution Approach section. Notably, the iterative solution approach is 10 
necessary in this section because the mode choice model aggregates the travelers into four destination zones, 11 
rather than just one destination zone like in the prior subsection. This subsection illustrates the ability of 12 
the iterative solution approach to identify a solution to the fixed-point problem. 13 

Figure 9 displays the mode choice results under a variety of different scenarios. The parameter 𝛼𝛼 14 
denotes the proportion of travelers who own a PAV, as opposed to a PCV. Each row of graphs in Figure 9 15 
denotes a separate 𝛼𝛼 value, whereas 𝛼𝛼 does not vary across columns. The figure varies 𝛼𝛼 between 0 and 1 16 
in increments of 0.25. Each column in Figure 9 denotes a separate initial starting point for PV mode choice 17 
in order to determine if the iterative solution algorithm finds different fixed points as a function of the initial 18 
starting points.  19 

The lines in each of the 15 graphs in Figure 9 indicate that the iterative solution approach converges 20 
to a fixed-point solution under all cases after less than 20 iterations. Moreover, given that the only thing 21 
that changes between the three graphs in each row is the initial starting point of PV mode choice, the 15 22 
graphs indicate that the iterative solution approach finds the same fixed point, independent of starting point 23 
of the mode choice probabilities. The analysis below assumes a single fixed-point solution based on the 24 
empirical finding in Figure 9 that the algorithm converges to a single fixed point. However, it is important 25 
to note that this paper does not prove the model system always admits a unique solution. 26 

The results in Figure 9 indicate that PAV owners are much more likely to choose PV than PCV owners, 27 
in all scenarios. However, an interesting finding is that as the proportion of travelers who own a PAV, 𝛼𝛼, 28 
increases, the mode choice probabilities for PAV owners decrease, while they increase for PCV owners. 29 
The reason for this stems from the fact that PAV and PCV owners prefer different parking lots. PCV owners 30 
are highly sensitive to the distance between a parking lot and their activity location, whereas PAV owners 31 
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are not. This means that as the proportion of travelers owning a PAV increases, PAV owners must compete 1 
with more travelers who share their parking lot preferences (i.e., PAV owners who mainly care about price), 2 
while PCV owners compete with fewer travelers who share their parking lot preferences (i.e., PCV owners 3 
who are sensitive to walking distance in addition to price).  4 

This logic also explains why the range of modal splits for PCV owners across zones narrows as 𝛼𝛼 5 
increases. When 𝛼𝛼 is zero, the range of PV mode share across zones is as wide as 15%, indicating that PCV 6 
travelers going to a zone with congested parking lots and high parking costs are significantly less likely to 7 
choose PV than travelers going to zones with uncongested and lower cost parking lots. Conversely, the 8 
range of PAV mode shares across zones is quite small under all scenarios, because a traveler’s destination 9 
does not heavily impact where they prefer to and do park their PAV.   10 
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Figure 9 Mode Choice Convergence Plots Varying PV Mode Share Starting Points by Column from 20% to 3 
80%, and PAV Ownership Proportion by Row from 0.0 to 1.0 4 

7 DISCUSSION 5 

Although the case study presented in this paper is based on a fictional CBD, the results section hopefully 6 
illustrates the power of the integrated mode choice and parking location choice model to provide valuable, 7 
transferrable, and generalizable insights into VMT, parking occupancy, transportation system performance 8 
and user costs and travel times in a future with PAVs and PCVs. Moreover, the model can be applied to 9 
any region as long as detailed data about the road network, parking lots, and travel demand (or trips) are 10 
available. The proposed solution approach, incorporating the simulation-based parking assignment model 11 
and the multinomial logit mode choice model, are computationally efficient and would easily scale to large 12 
metropolitan areas given data availability. 13 
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The proposed model should also be quite useful for policy and planning analysis and decision support. 1 
For example, compared to the current PCV-only case, redistributing parking spaces appears able to prevent 2 
dramatic increases in VMT while not reducing PV mode share in a future with PAVs. This suggests the 3 
spatial distribution of parking supply and parking pricing can significantly impact VMT in the future with 4 
PAVs.  5 

Moreover, although not shown explicitly in the results section, the model can demonstrate, under 6 
certain scenarios, that parking pricing alone may struggle to reduce VMT and PV demand. Rather, joint 7 
parking pricing and roadway pricing is likely necessary in an AV future to reduce VMT and PV demand. 8 

Another implicit finding from this study is that PAVs searching for parking would often look for the 9 
cheapest possible lot in the area, particularly when the driving cost per mile is low. Hence, if all PAVs want 10 
to access the same cheap lot(s) in the periphery of the CBD, this/these lot(s) will become full, and the other 11 
PAVs will need to search for and drive to the next cheapest lot. This finding has important technology, 12 
policy, and modeling implications. From a technology standpoint, providing accurate real-time information 13 
to travelers and/or PAVs about parking lot occupancy could be quite useful. From a policy standpoint, 14 
setting parking prices based on disaggregate spatial resolutions in CBDs may not be helpful in a world of 15 
PAVs. Moreover, there is clearly a value in promoting a reservation system of parking lots and even spaces 16 
in parking lots to reduce both parking lot search time and parking space search time, respectively. Finally, 17 
from a modeling standpoint, a future extension involves incorporating traveler/PAV knowledge of parking 18 
lot occupancy into the modeling framework to analyze the benefits of this information on VMT. 19 

Another future modeling extension involves incorporating roadway congestion into the modeling 20 
framework. The results in this paper clearly indicate a significant increase in roadway VMT as a result of 21 
the attractive attributes of PAVs as well as the increase in parking search distance for PAVs. However, at 22 
some point, if enough vehicles are driving around searching for the cheapest parking lot with available 23 
space, the network is going to experience congestion. This increase in congestion would normally have a 24 
leveling effect on parking search costs, as human drivers would perceive the time costs of sitting in 25 
congestion and likely choose more expensive parking locations and leave the roadway network. However, 26 
if the vehicles searching for a cheap parking spot are driverless, they will have much lower costs per minute 27 
in congestion and are much less likely to choose nearby parking lots and exit the roadway network. This is 28 
a particularly troubling insight for cities in the future. It suggests that congestion pricing in cities may 29 
become even more vital to prevent gridlock and vehicles may need to be charged not just per mile but per 30 
minute on the road network in order to avoid regular gridlock in CBDs.  31 

A related future model extension includes incorporating congestion and capacity constraints at pickup 32 
and drop-off spots near activity locations in dense urban areas. With a large percentage of PAVs and/or 33 
SAVs in a dense urban area, large queues are likely to build at pickup and drop-off points associated with 34 
activity locations with high demand, such as large office buildings. These queues may even spillover into 35 
the roadway network; thereby requiring a response for traffic managers, planners, or regulators.  36 

A final research area includes conducting stated preference surveys to better estimate model 37 
parameters used in this study.  Parameters associated with willingness-to-pay, willingness-to-wait, and 38 
willingness-to-walk are likely to have a significant impact on model results related to mode share and VMT.  39 
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8 CONCLUSION  1 

Modeling, understanding, and forecasting the potential implications of AVs and PAVs on travel behavior, 2 
travel demand, and transportation systems under a variety of possible future scenarios is critical in terms of 3 
planning for AVs. This study focuses on the potential transportation system implications during the 4 
transition from PCVs to PAVs for near-activity travel in urban areas. Specifically, given the ability of PAVs 5 
to drop-off travelers at their activity location and then deadhead to a parking location, under certain 6 
assumptions it is conceivable that PAVs will drive far distances to park and/or drive around looking for an 7 
open parking space. This process would significantly increase VMT compared to PCVs that drive directly 8 
to a parking location close to the traveler’s activity location. 9 

To analyze the impacts of PAVs on near-activity location travel, parking lot usage, overall VMT, and 10 
traveler cost and travel time this study proposes an integrated parking assignment and mode choice 11 
modeling framework. The proposed mode choice model form is multinomial logit, while the parking model 12 
is a dynamic simulation-based model of the temporal dynamics of supply and demand for a system of urban 13 
parking locations. The study also proposes an iterative solution approach to solve the integrated mode 14 
choice and parking assignment problem. In the iterative solution approach, the parking simulation model 15 
calculates system performance and costs for travelers based on the demand for each mode—determined 16 
either by the mode choice model or the initial modal splits—while the mode choice model returns modal 17 
splits based on the travel costs from the parking simulation model.  18 

The study applies the integrated model and iterative solution approach to an illustrative CBD network. 19 
The model results indicate that PAVs significantly increase VMT compared to PCVs. The reason for this 20 
result stems from the differential between parking prices and driving fees in the case study. As such, PAVs 21 
do not simply look at the stations nearby their traveler’s activity location, instead they consider all parking 22 
locations and are highly price sensitive. Moreover, in the case where a few parking locations are particularly 23 
attractive to PAVs, these parking locations may reach capacity, requiring PAVs to detour and search for 24 
other parking locations, thereby further increasing VMT in dense urban areas. The results section also 25 
illustrates that PAVs significantly reduce in-vehicle travel time, eliminate walking time, but require 26 
travelers to wait a few minutes to be picked up.  27 

The proposed modeling framework can provide valuable insights to researchers, planners, 28 
policymakers, and other city officials in terms of the potential implications of AVs on VMT, parking lot 29 
usage, mode share, and other measures of transportation system performance and user costs.   30 
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