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Abstract

We model astrophysical disk surface brightness fluctuations as an inhomogeneous, anisotropic, time-dependent
Gaussian random field. The field locally obeys the stochastic partial differential equation of a Matérn field, which
has a power spectrum that is flat at large scales and falls off as a power law at small scales. We provide a series of
pedagogical examples and along the way provide a convenient parameterization for the local covariance. We then
consider two applications to disks. In the first we generate an animation of a disk. In the second, by integrating over
an animation of a disk, we generate synthetic light curves and show that the high frequency slope of the resulting
power spectrum depends on the local covariance model. We finish with a summary and a brief discussion of other

possible astrophysical applications.

Unified Astronomy Thesaurus concepts: Black holes (162); Accretion (14); Computational methods (1965);

Astrostatistics techniques (1886)

Supporting material: animations

1. Introduction

Astrophysical disks experience surface brightness fluctua-
tions that can in principle be predicted by numerical solutions
of well-known governing equations. Three-dimensional physi-
cal simulations are computationally expensive, however, and
may still be missing important physical processes and be
unable to resolve important physical lengthscales. What if the
main features of the fluctuations could be captured in a simpler,
easier-to-compute statistical model? In this paper we consider a
model in which the surface brightness fluctuations are treated
as a Gaussian random field (GRF).

GRFs are widely used in astrophysics to model correlated
noise. In cosmology they are used to model initial conditions
(e.g., Bardeen et al. 1986). In studies of quasars the light curve
of the unresolved source is commonly modeled as a damped
random walk (Kelly et al. 2009; MacLeod et al. 2010), which is
a Gaussian process. In both cases the field is homogeneous and
so a realization can be easily generated by drawing uncorre-
lated Fourier amplitudes from a Gaussian distribution with
variance given by the power spectrum.

In astrophysical disks the correlation length and correlation
time likely vary with local radius, possibly by orders of
magnitude. It is not easy to see how Fourier techniques might
be generalized to capture this inhomogeneity. In addition, the
surface brightness correlation is likely anisotropic, as for
example in the trailing spiral structures that populate flocculent
spiral galaxies. How can one efficiently generate a realization
of an inhomogeneous, anisotropic GRF to model fluctuations in
astrophysical disks?

In practice we wish to sample the GRF on a finite mesh of
points, which is equivalent to sampling a multivariate Gaussian
with a prescribed covariance matrix. For small sets of sample
points one might sample directly from the multivariate Gaussian.
A simple but computationally suboptimal way of doing this is to
transform to a basis that diagonalizes the covariance matrix
(Karhunen—Loeve transformation), draw independent ampli-
tudes, and transform back to the original basis. A more efficient
approach is to use a Cholesky decomposition of the covariance

matrix. This approach is not practical for the large numbers of
points considered here.

One might also generate an inhomogeneous, anisotropic GRF
by distorting an initially homogeneous, isotropic GRF through a
coordinate transformation (Sampson & Guttorp 1992). This is,
effectively, how weak lensing acts on the microwave back-
ground. The technique is limited to certain geometries and
boundary conditions. Suppose, for example, that one is modeling
a flocculent spiral galaxy in which the number of spiral arms
changes with radius. There is no coordinate transformation that
can map the associated covariance function onto a rectangular,
periodic domain with a homogeneous, isotropic GRF.

The technique we use here, which is borrowed from
geostatistics, generates an inhomogeous, anisotropic field as
the solution to a stochastic partial differential equation (SPDE;
Whittle 1954, 1963; Lindgren et al. 2011; Fuglstad et al. 2015).
This method has a well-defined notion of a local covariance
function, although the covariance function is limited to a
particular—but useful—functional form. To our knowledge
this is the first application of this technique in an astronomical
context.

The plan of this paper is as follows. In Section 2 we describe
the SPDE technique. In Section 3 we provide simple examples
of anisotropy, inhomogeneity, and time-dependent fields. In
Section 4 we apply the technique to the generation of synthetic
animations of differentially rotating disks. In Section 5 we
explore an application to generating broadband noise for disk
light curves. Section 6 contains a summary and a guide to the
main results.

2. Gaussian Random Fields and SPDEs

A random field f on a space X is a function such that for
every x € X, f(x) is a random variable. A GRF is a random
field such that the joint probability distribution on any set of N
points {xi,...,xy} is an N-dimensional multivariate Gaussian
distribution with mean vector p(x,) and covariance matrix
C(x,, x,), n,me€ {1,...,N}. Thus, a GRF is completely
defined by a mean function p(x) and a covariance function
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C(x, x"), x, x' € X. Since i can always be subtracted off, we
assume without loss of generality that all GRFs have
Zero mean.

GRFs have a simple definition and useful analytic properties
and have therefore been used as a statistical model for a wide
variety of phenomena. The central limit theorem implies that a
superposition of independent, identically distributed random
fields is a GRF. Thus, GRFs arise naturally in cosmology, since
primordial fluctuations are thought to be the result of an
interaction-free (or nearly interaction-free) scalar field during
the inflationary period.

Homogeneous, isotropic GRFs such as those that arise in
cosmology are readily generated in a Fourier basis. Homo-
geneity implies that the covariance function depends only on
Ax, so

P(k) = (f ()F " (k")
= [(Ff*() e @k dxdx!
= fC(Ax)e"(k*k/)xe"k/Ax dxdAx Ax=x —x'
=2rC (k)6 (k — k'), 1)

where (f(x)) is the expected value of f(x) and f (k) is the
Fourier transform f k) = f f(x)e™dx. Thus, the Fourier
transform of the covariance function C(Ax) is the power
spectrum P (k). Thus one can generate a realization of a
homogeneous GRF by drawing independent, normally dis-
tributed Fourier amplitudes with variance given by P (k). If the
GRF is also isotropic then the power spectrum depends only on
|k| (e.g., Bardeen et al. 1986).

Inhomogeneity (or nonstationarity)® makes the generation of
GRFs more difficult because the Fourier modes are no longer
delta-correlated. Since the covariance matrix on a rectangular
mesh with N points along each of the d dimensions has N*¢
components and Cholesky decomposition of an M x M
covariance matrix is an O(M?>) operation, generating a GRF
by directly sampling the resulting multivariate Gaussian would
require O (N3?) operations. This is too costly for even modest
grid size. Various approaches have been developed to make
statistical modeling using inhomogeneous GRFs feasible,
including low-rank approximations (e.g., Cressie & Johannesson
2008) or covariance tapering (e.g., Furrer et al. 2006).

The method we use here (Lindgren et al. 2011) takes
advantage of a relationship between a particular covariance
function known as the Matérn covariance, a SPDE, and
Gaussian Markov random fields (GMRFs). The Matérn
covariance is stationary and isotropic and has the form

__ |x—y|)",<(|x—y|) 5
C(x,y)—zylr(y)( 3 A= ) @)

x,y € R4, Here ) is a scaling parameter, v is a differentiability
parameter, and K, is the modified Bessel function of the second
kind, order v. For small r/\ = |x — y|/\, C, ~ %(1 — Ar?),
where A is a constant. Notice that for » = 1/3 this matches the

3 The terms homogeneity and stationary are sometimes used interchangeably
in literature to describe GRFs. We will use homogeneity as a strictly spatial
property and stationarity as a temporal, spatiotemporal, or purely mathematical
property. There are two types of stationarity. Strong stationarity requires that
the probability distribution be invariant under translations, while weak
stationarity requires only that the mean and covariance functions be translation
invariant. For GRFs, the two are equivalent.
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covariance of a passive scalar in Kolmogorov turbulence.* For
large r/ A, C, — 0, that is, the field decorrelates on scales large
compared to .

GMRFs are discrete Gaussian fields (e.g., random fields
sampled on a Cartesian lattice) where the probability distribu-
tion of the field at a point depends only on its neighbors, that is,
the field has the Markov property. Most numerical representa-
tions of Gaussian fields are discrete fields. Rue & Tjelmeland
(2002) demonstrated that a Matérn field is well approximated
by a GMRF, and Lindgren et al. (2011) showed that such a
GMREF can be constructed efficiently using SPDEs for certain
values of v. In what follows we specialize to v =2 — d/2,
where d is the number of dimensions; a generalization is
discussed in Appendix A.

A field f (x) with a Matérn covariance for v = 2 — d/2 can
be expressed as a solution to the SPDE

(1 — RV)f(x) = NoX>W(x), 3)

where d is the number of dimensions, N is a normalization
constant, o2 is the variance of the field, and W is a standardized
Gaussian white noise process (Whittle 1954, 1963). The power
spectrum for solutions to (3) is

NZO.Z)\d
T+ (N

Since Gaussian white noise is easy to generate on a lattice, this
changes the computational task from manipulating a large
covariance matrix to solving a finite difference approximation
to an elliptic partial differential equation. The numerically
obtained solution of the SPDE on a finite grid or irregular
lattice is a GMREF that represents the underlying GRF.

The key advantage of the SPDE method is that it can be
readily generalized to inhomogeneous, anisotropic fields at
little extra cost. By taking the SPDE as the definition of an
inhomogeneous Matérn field, we can construct anisotropic and
nonstationary variants by introducing position-dependence in
the parameters, e.g.,

(I = V- A@)V)f (x) = No@)[det(A@)]/* Wx),  (5)

“)

Py

where the matrix A(x) introduces position-dependent aniso-
tropy and correlation lengths, o2 is the local variance of the
field, A is a normalization constant, and x € R? or R? (since
v > 0). Because varying the correlation lengths also changes
the variance of the field, the variance at each point is
approximately normalized by the factor of (det(A))!/*. This
normalization holds when the correlation lengths varies on
scales large compared to the correlation lengths.

3. Examples

Before applying this model to astrophysical problems we
consider a sequence of models demonstrating the ability to
model anisotropy, inhomogeneity (see also Fuglstad et al.
2015), and time dependence in two spatial dimensions.

The local covariance is controlled by A, which we
parameterize as

A= )\lzululT + A%uzuzT, (6)

=1 /2 matches the covariance for Burgers turbulence.
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Figure 2. A realization of an anisotropic, homogeneous field advected to the left by a velocity field. While the field is generated probabilistically, the model encodes a
spatiotemporal correlation that is aligned with the velocity field. Thus, across a single correlation time, features appear to be moving across the domain before
decorrelating.

(An animation of this figure is available.)

where )\ and )\, are the correlation lengths along the axes
specified by the 2D spatial unit vectors u; and u, and
u - u, = 0. Notice that (detA)/2 = M\ \,. If the field is
homogeneous, the resulting covariance function is

2

g
C(Ax) = = IF(Z/)

s(Ax)"K, (s(Ax)), )

where

s(Ax)? = Ax - K'Ax

o Ax-u12 Ax-u22
o i e G

Evidently A~! acts as a metric on the space.

If =X =\ (ie, A= XI) the SPDE solution is a
homogeneous, isotropic GRF. Anisotropy is introduced by
choosing an anisotropy direction u; and setting A = ;.
Inhomogeneity is introduced by allowing A to vary across
the domain.

Realizations of isotropic/homogeneous, anisotropic/homo-
geneous, and anisotropic/inhomogeneous fields are shown in
Figure 1. Each model was generated on a 256 x 256 Cartesian
grid with periodic boundary conditions, with A\ = 64 grid
spaces. The left model is homogeneous (\, = Ay = const.).
The center panel is anisotropic with u; = (cos 7/6, sin 7/6)
and A\, = 0.2). The right panel is inhomogeneous with
u; = (cos O(x), sin 0(x)) and 6(x) = w/4 — «|x|/L, where L
is the length of the grid and x € [—-L/2, L/2].

The model can be extended to include time variation by
building a GRF with two space and one time dimension, and a
suitable specification for A (Appendix B describes an
alternative approach to time dependence). Here, the vector
x = (¢, x, y). Introducing the velocity field v = (0, v, ) and

correlation time )\, we write s> = Ax - A - Ax, where now

A = Nuouy + Nwu + Nuu, )
so that
o (g)z N ((Ax — VA1) - u1)2 N ((Ax — vAD) - uz)z
Ao Al A2
(10)

where Ax = (At, Ax, Ay), uy = (1, w, v), w = (0, cos 6,
sin 0), and u, = (0, —sin 6, cos #). Notice that while u; and
u; are still unit vectors, u is not. Furthermore, % is not orthogonal
to u; or u,. Nevertheless, (detA)!/2 = \gM\As. As in the 2D
case, A acts as a metric. In particular, along a spatial slice
Ax = (0, Ax, Ay), the form of r is identical to the 2D case, and
thus Ay and )\, are the correlation lengths along the major and
minor spatial axes at any point in time. On the other hand, setting
Ax = (At, v At, v At) = Amug, we have s> = (Ar/Xy)?.Thus
A corresponds to the correlation time following the flow.

Figure 2 shows an example that takes the homogeneous,
anisotropic model from above and generates a time-dependent
model with a velocity field in the —x direction, advecting it to
the left.

Notice that the model (9) is quite flexible and can be used in
conjunction with the SPDE technique to introduce velocity
fluctuations around any velocity field. Appendix A describes a
generalization to three and more spatial dimensions.

4. Application to Resolved Disks

Next we consider a model for a resolved disk with surface
brightness fluctuations. Possible applications including disk
galaxies, disks around young stars (which appear to be notably
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Figure 3. A realization with differential rotation and position-dependent correlation lengths. The field, displayed in log scale, goes to zero in the center and near the
edges due to the envelope function. As before, the appearance of advection is created by a spatiotemporal correlation that is applied along the velocity field, which for
this realization is Keplerian. The position-dependent angle in the spatial correlation creates the spiral arm features.

(An animation of this figure is available.)

lacking in turbulence), and planetary rings. Here we are
motivated by Event Horizon Telescope observations of the disk
around the black hole in M87 ((EHT) Event Horizon Telescope
Collaboration et al. 2019a, 2019b, 2019c, 2019d, 2019e, 2019f).
We will consider a simple image-plane model that assigns mean
velocities to points on the image. The model does not include
radiative transport, lensing, or other key physical processes. The
local covariances are drawn from numerical simulations of disks,
and we adopt the drastic simplification that the mean velocities
follow a Keplerian profile.

4.1. Local Correlations in Disks

The local covariance of velocity fluctuations in disks can be
derived from local model simulations of disks. Guan et al. (2009),
for example, give an analytic fit for the covariance function on a
plane lying at fixed altitude in a local numerical model of a disk.
Their power spectrum is constant (white noise) at small £ and
forms a tilted ellipse at large k, asymptotically decaying as k—11/3.
Thus, the local power spectrum can be modeled by

1

Ptk) x — 11
®© (1 + k- Ak)'1/® (b
which corresponds to a covariance function
C o 513K (s), (12)

where K| /3 is a modified Bessel function of the second kind and
s2 = Ax - KX''Ax. Here, x is a 3D spatial vector, and A is
parameterized as a spatially 3D extension of Section 3.

For simplicity we work in 2D, in the midplane of the disk,
and approximate the Guan et al. (2009) covariance with a
v=1/2 Matérn covariance. We then extend the spatial
covariance to 2 + 1D as described in Sections 2 and 3. This
preserves key features of the field: an anisotropic covariance
function with steep decay at small scales, decorrelation at large
scales, and a power spectrum of the form

P(k) x (13)

1
(1 +k - Ak)?*’
here k = (w, ki, ky).
4.2. Global Model

We can now construct a time-dependent global disk model.
First, we produce a realization of the fluctuation field f, which

we interpret as fractional variation in disk surface brightness,
using (9).

The velocity field is v = Q% x x, with Qg oc |32,
corresponding to Keplerian rotation. The major axis of the
correlation tensor % is chosen to lie at a contant 20° angle to a
circle of constant radius. This is the opening angle of spiral
features in the GRF, and is consistent with local model results
(Guan et al. 2009). We let Ao, A, and )\, vary with radius but
not azimuth, since the model is on average axisymmetric. It is
natural to take Ao o< 1/€Qx. The correlation lengths are
expected to be proportional to the disk scale height, which is
in turn assumed proportional to the local radius (this
assumption can be relaxed), so A; « r and % = const. Finally,

we set 0 = 1. This completes the speciﬁcation of f.

We produced a realization by generating Gaussian white
noise on a grid and solving the elliptic Equation (3). We used
the preconditioned conjugate gradient method with a semi-
coarsening multigrid preconditioner provided by hypre, a
library of parallel solvers for linear systems.

To generate an animation of the disk we need to relate f to
the surface brightness p. The mean surface brightness of the
disk is given by an “envelope function” g(r). In this example
X =rg/r and

g(r) = x*exp(—x?). (14)

This has a “shadow” in the middle, like the EHT image of
M87, and a surface brightness that drops off as r—* at large
radius. The surface brightness is then

n = ewexp(L). (s)
The control parameter (or function) n controls the fluctuation
amplitude (this could also be done when the random field is
generated). The envelope function is independent of the GMRF
and can be chosen for convenience.

Figure 3 shows the resulting nonstationary, anisotropic GRF
with differential rotation and position-dependent correlation
lengths. The model was run on a Cartesian mesh in x, y, ¢ at a
resolution of (N, Ny, N,) = (1024, 256, 256), with periodic
boundary conditions in time and Dirichlet boundary conditions
in space. It was run on an Intel Xeon 6140, and required less
than two minutes to converge to a solution. The fluctuation

field parameters are \y(r) = 27 where O = % =5, and

O’ 2
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% = 0.1. The envelope has a single parameter ry that was set to

1]/10 of the width of the grid (=26 mesh points).

The code used to produce this example is publicly available
at https://github.com/AFD-Illinois /inoisy.

5. Application to Unresolved Disk Light Curves

AGN light curves are commonly modeled as a damped
random walk (Ornstein—Uhlenbeck process; Kelly et al. 2009;
MacLeod et al. 2010). Ornstein—Uhlenbeck processes are the
only nontrivial stochastic processes that are Gaussian, Markov,
and stationary. The power spectrum of an Ornstein—Uhlenbeck
process is

P(w) x (1 + (tw)®)~, (16)

where w is the angular frequency and 7 is a characteristic
timescale. The power spectrum is flat (white noise) at low
frequency and scales as w2 at high frequency. Not all AGN
light curves are well modeled by a damped random walk,
however. Some have steeper spectra at high frequency (e.g.,
Smith et al. 2018). Can we use the GRF model of Section 4.2 to
produce a more general model that connects the local structure
of the disk, encoded in A, to the power spectrum of the light
curve?

A light curve is a time series constructed by integrating the
source’s fluctuating surface brightness over space at each
instant. For a GMREF realization f (¢, x), where here x is a 2D
spatial vector, the light curve is

L = [ewesp( L2, a7

where g(x) is the envelope function.

First, consider a simplified model calculation that shows that
this integration can lead to interesting, nontrival results. If # is
large then

L(t) ~ Ly + fg(x)f(t, x)l d?x, (18)
n

where L is the luminosity when f = 0. To make the problem
analytically tractable we use a stationary, isotropic GRF
generated using the method of Section 3 (Equation (3) solved
in two spatial dimensions plus time), with power spectrum

N

Pr(w. k) = . 19
7(w. k) (1 + w/wd + K2/k2)? (1)

Here A\ is a normalization constant.

The power spectrum of the light curve P, (w) is the k = 0 mode
of the power spectrum P,(w, k) of h(t, x) = f(t, x)g(x)/n.
Then, using a hat to denote the Fourier transform,

Pr(w) = Py(w, 0)
= C(Ar x, x) - g(x) - g0l k=o
=C* & |i-o
= [Pr(w, K gk — k') d%)k' =0

52 /
_ & (=K'
_fN 2/, 2 72 zzdzkl' (20)
(1 + w*/wy + k' /kg)
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Using a Gaussian envelope

E 2 2
x) = e’ /(207)
g(x) Py
E 22
5(k) — o K0%/2
g (k) 22

the integrals can be done analytically and the light-curve power
spectrum is

EN k¢

Puw) = 2217 1 + @

—2—(1 + Q%%Ei(-0%), (1)

where & = w/wy, g> = (0ky)?, and Q% = ¢>(1 + &?).

When @ <1, P, approaches a constant, and when
q*(1 + @) > 1, the power spectrum asymptotes to
EN kg
202m)3 1 4+ @?

—4
E’N (i) . (22)

Pr(w) — 0

=
22m)302\ wy

Thus, similar to the original power spectrum Pp the light
curve’s power is flat at low frequencies and falls off as w™* at
high frequencies. However, in the intermediate range where
o> 1butQ < 1,

EN (w)?
P (w) — 22y (w_o) . 23)

.. . . 2 2 _ (2m0 2.
This intermediate regime occurs when g~ = (ck()* = =) Is

small, i.e., when the width of the envelope function is much
smaller than the correlation length. Figure 4 shows the shape of
P, with varying ¢*. As ¢° becomes smaller, the intermediate
regime becomes more prominent.

The light-curve power spectrum can also be calculated
analytically for the more realistic envelope function

r 3
g(r) = (;) er/e (24)

applied to the same homogeneous, isotropic GRF. Like the
envelope used in Section 4.2, this envelope is ring-like with a
depression in the center, although it instead goes as 7 at small r
and falls off exponentially at large r.

The power spectrum of the light curve produced by (24) has
the form

Pp(w) x m[z 0 ] (25)

where a; are integer coefficients and @, ¢, and Q are defined as
before. As for the Gaussian envelope, the power spectrum is
constant for @ < 1 and falls off as w™* at high frequencies, but
in the intermediate regime where © > 1 but Q < 1 is small,
the power spectrum falls as w™>. Once again, this regime is
determined by ¢, the ratio of the envelope width to the
correlation length. When the envelope is much larger than
the correlation length, we recover the slope of —4, but as the
envelope becomes narrower, the power spectrum becomes
shallower.
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Figure 4. Plot of P, (@) (solid), (1 + ©2)~! (dotted), and ql—z(l + @2)72 (dashed) for g2 = 1 (a), 0.01 (b), and 0.0001 (c).
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Figure 5. The light curve (left) and power spectrum (right) of the realization in Figure 3.

Now consider the light curve of the global disk model
generated in Section 4.2. Figure 5 shows the light curve and
power spectrum of the realization shown in Figure 3. The slope
of the power spectrum is shallower than w™* due to the
combined effect of the envelope function and the inhomo-
geneity of the underlying GRF. Because the fluctuation field is
anisotropic and inhomogeneous, the preceding simple models
do not apply, but the qualitative behavior is similar.

It is interesting to ask whether the shape of the power
spectrum, which is comparatively easy to observe, contains
information about the underlying model. Figure 6 shows the
high frequency slope of the light-curve power spectrum for a
family of realizations similar to Section 4.2, with ) /r varying
from 5 to 195. The slope is averaged over five realizations. All
other parameters are identical to Section 4.2. Evidently the
slope of the power spectrum exhibits behavior that is consistent
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Figure 6. The slope of the power spectrum as a function of ); /r. The slope gets shallower as ) /r increases.

with the simple models described above: the power spectrum
becomes shallower as the ratio of the correlation length to the
envelope width increases.

6. Summary

We have explored a model in which surface brightness
fluctuations on an astrophysical disk are treated as a Gaussian
random field. Realizations of the anisotropic, inhomogeneous
fluctuation field can be generated by solving the stochastic
partial differential Equation (3). We provided pedagogical
examples of anisotropic, inhomogeneous, and time-dependent
anisotropic inhomogeneous fields in Section 3. The method
requires that one specify an anisotropy tensor at every point in
the domain. The key, useful result is a simple parameterization
of the anisotropy matrix (9): one need only specify the
anistropy and orientation of the covariance function in the two
spatial dimensions, a velocity field, and a correlation time.

We applied the method to realize time-dependent, resolved
images of a statistical disk model. The example shown in
Figure 3 is difficult to distinguish from an animation of disk
flow based on a physical simulation. The method presented
here enables an inexpensive statistical simulation of a disk
(even in three spatial dimensions, as described briefly in
Appendix A); the realization shown here was generated in a
few minutes.

(The physical inputs for the model are the correlation lengths
and correlation times as a function of radius, which may be
determined from simulations.)

Our statistical disk models provide a complement to physical
simulations. Although physical simulations solve the governing
equations and can therefore be predictive, they are subject to
uncertainties related to physical and numerical approximations.
Statistical models—if they can provide a good approximation
to the simulations for particular parameter values—enable one

to treat the physical simulations as a point in a larger parameter
space of models, and therefore provide a universe of models to
test physical simulations against.

We also used the statistical disk model to generate light
curves for unresolved disks, and found that the models
naturally produce an f~2 — f~3 power spectrum. This provides
a means of connecting the space and time correlations of
surface brightness fluctuations, which might be measured in a
local model simulation, to the light curve.

(Evidently it is interesting to examine how to extract model
parameters from a data set (inference).)

The technique used here seems likely to be useful elsewhere
in astrophysics. For example, in modeling turbulent fluctua-
tions in the interstellar medium (Sale & Magorrian 2018),
providing realizations for turbulent inflow boundary condi-
tions, or providing statistical models for any turbulent flow in
which a mean flow field is known and for which a local
covariance can be derived.

This work was supported by the NSF grants AST-1716327,
OISE-1743747, and a Romano Professorial Scholarship. We
thank Gil Holder and Aviad Levis for their useful comments,
and the referee for the helpful report that greatly improved the
paper.

Software: This paper made use of the hypre library from
https://github.com /hypre-space /hypre.

Appendix A
Generalization to v = 1/2

In the models considered above we restricted attention to the
Matérn covariance with v = 1/2. A more general set of
covariances in the Matérn family can be found by solving the
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fractional SPDE
(1 — XV22f (x) = NX20 W(x), (Al)

where VW is Gaussian white noise with unit variance and
a = v + d /2. The fractional differential operator (x> — V2)*/2
is defined by its spectral properties:

(1 = XV)2 = (1 + NkP)* ¢y (A2)

for any function ¢ for which the inverse Fourier transform of
the right side is well defined. Notice that for o = 2m, where m
is an integer, the differential operator in (Al) can be
approximated by a finite difference and solved by conventional
methods. For example, the SPDE

1+ /\2V2)2f(x) = /\f)\d/ZUW(x) (A3)
has
_ N2Xg?
b= ey (A4)

One motivation for considering a higher order model like this is
for modeling a time-dependent process in three spatial
dimensions (d=4); for v = 1/2 and d > 3 the variance of
the GRF diverges, and the v = 1/2 model is unsatisfactory,
although this defect can be repaired by replacing the white
noise process YV by a red noise process, possibly realized as the
solution to a separate SPDE.

Notice that any finite difference operator with a compact
stencil will have the Markov property, and the associated SPDE
generates a GRF.

Appendix B
Alternative Approach to Time Dependence

In Section 3 we introduced time dependence by treating the
time coordinate on the same footing as the space coordinates,
and orienting one axis of the correlation ellipse along a velocity
vector. Here we consider a distinct procedure based on the
SPDE

(1 + T(% - V) - A2V2)f(x) =AWk),  (BD)

where 7 is a characteristic timescale and A is a constant. This
SPDE was proposed by Lindgren et al. (2011) using slightly
different notation. The power spectrum is

Pox o< (T(w—k-v)?2 + (1 + NXkH))! (B2)

from which one can see (because the integral over w, k
diverges in two spatial dimensions) that the pointwise variance

Lee & Gammie

of this model is formally infinite. The variance of the associated
GMRF on a finite grid is not, however. We have implemented
this form in the noisy code, available at https: //github.com/
AFD-Illinois /inoisyB.

Another SPDE that produces a field that is equivalent to the
example in Section 3 is

2
(1 - 72(% v v) - AZVZ] f () = NoX2r2W(x),
(B3)

where d is the number of spatial dimensions. The power
spectrum is

Popox (72w —k -v)> + 1 + XkHH)~L (B4)

Evidently the associated GRF has finite variance in two spatial
dimensions, but not in three.
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