
AGAPE: Anomaly Detection with Generative
Adversarial Network for Improved Performance,

Energy, and Security in Manycore Systems
Ke Wang∗, Hao Zheng†, Yuan Li∗, Jiajun Li∗, Ahmed Louri∗

∗Dept. of Electrical and Computer Engineering, George Washington University, Washington, DC, USA
†Dept. of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida, USA

Emails: {cory, haozheng, liyuan5859, lijiajun, louri}@gwu.edu

Abstract—The security of manycore systems has become in-
creasingly critical. In system-on-chips (SoCs), Hardware Trojans
(HTs) manipulate the functionalities of the routing components to
saturate the on-chip network, degrade performance, and result in
the leakage of sensitive data. Existing HT detection techniques,
including runtime monitoring and state-of-the-art learning-based
methods, are unable to timely and accurately identify the im-
planted HTs, due to the increasingly dynamic and complex nature
of on-chip communication behaviors. We propose AGAPE, a novel
Generative Adversarial Network (GAN)-based anomaly detection
and mitigation method against HTs for secured on-chip commu-
nication. AGAPE learns the distribution of the multivariate time
series of a number of NoC attributes captured by on-chip sensors
under both HT-free and HT-infected working conditions. The
proposed GAN can learn the potential latent interactions among
different runtime attributes concurrently, accurately distinguish
abnormal attacked situations from normal SoC behaviors, and
identify the type and location of the implanted HTs. Using the
detection results, we apply the most suitable protection techniques
to each type of detected HTs instead of simply isolating the entire
HT-infected router, with the aim to mitigate security threats as
well as reducing performance loss. Simulation results show that
AGAPE enhances the HT detection accuracy by 19%, reduces
network latency and power consumption by 39% and 30%,
respectively, as compared to state-of-the-art security designs.

Index Terms—Manycore systems, Security, Hardware Trojans
(HTs), Generative Adversarial Networks (GAN)

I. INTRODUCTION

As technology scales, System-on-Chip (SoC) designs have
evolved to complex manycore systems. Network-on-Chip
(NoC) [1], as the standard interconnection fabric for SoCs, has
become the security vulnerability of manycore systems, since it
has visibility of the entire SoC and access of communications
among cores [2]–[9]. In NoC, Maliciously implanted Hardware
Trojans (HTs) [2], [5], [9], including fault-injection HTs, mis-
routing HTs, packet-drop HTs, and more, have been shown
to destruct NoC functionality, degrade NoC performance, leak
information, and covertly transmit data.

Previous work has been devoted to secure NoCs by detecting
and mitigating HT attacks [3], [5], [8], [10], [11]. Conventional
HT detection techniques use runtime monitoring [4], [6], [12]–
[15] to detect HT-infected components by capturing abnormal
attribute values (e.g., injection rate, buffer/link utilization, and
latency) that far exceed a manually designed threshold. How-
ever, since communication and network behaviors are hard to
be predicted or modeled in the complex manycore system, it is

impossible to manually select the attribute thresholds without
resulting in inaccurate detection and performance penalties.

State-of-the-art methodologies [16]–[19] use machine learn-
ing algorithms to eschew human-designed thresholds for HT
detection. However, these techniques require a significant
amount of pre-labeled data samples to train, which requires ex-
cessive human engineering. Besides, in those designs, although
the training data samples are generated with real applications,
these captured data sets can hardly cover sufficient design
space of possible HT behaviors (e.g. fault/error injections)
to engender confidence in the training accuracy. Furthermore,
these techniques usually employ the attribute vector of instanta-
neous attribute values for detection. This can be inadequate for
anomaly detection since the impact of HTs on NoC behaviors is
often reflected by the hidden inherent correlations of multivari-
ate time series of these attributes. For HT mitigation, existing
designs [3], [8] isolate the HT-infected routers and deploy
adaptive/regional routing to reallocate the traffic, relieve net-
work congestion, and provide non-interference transmissions.
However, these techniques rely on rerouting packets which may
not be efficient for all types of HTs and often cause significant
increases in network latency and power consumption [3].

To address these challenges, we propose AGAPE, which is a
novel NoC security framework for HT detection and mitigation
using a semi-supervised generative adversarial network (GAN).
The proposed GAN-based HT detection design models the
correlations among multiple time series of a number of runtime
NoC attributes and detect anomalies based on the trained GAN
model. The GAN model [20] is comprised of a generator and
a discriminator, both of which are constructed with neural net-
works and trained iteratively. The generator generates sufficient
realistic training samples to significantly improve the coverage
of possible cases in the training phase, followed by feeding
the generated training sets to the discriminator which tries
to distinguish their correct labels. Once trained, the generator
can capture the hidden distributions and interactions of the
training sequences, and the discriminator is able to distinguish
HT-infected scenarios from normal NoC behaviors with high
sensitivity. Using the HT detection results provided by the pro-
posed GAN, we apply the most suitable protection techniques
to each type of detected HTs instead of simply isolating the
entire HT-infected router, with the aim to mitigate security

threats as well as reducing performance loss. Specifically, we
enhance the router architecture with dynamic error correction
hardware to correct the faults induced by the fault-injection
HTs, and bypass links and channel buffers are used to avoid
the malfunctioning router components infected by misrouting
HTs and packet-drop HTs, respectively. Experimental studies
using full-system simulation indicate that AGAPE enhances the
HT detection accuracy by 19%, as compared to state-of-the-art
learning-based HT detection method, and achieves up to 91%
HT detection accuracy. Furthermore, by applying suitable pro-
tection mechanisms, the proposed framework reduces network
latency and power consumption by 39% and 30%, respectively,
as compared to existing NoC security designs.

II. BACKGROUND AND RELATED WORKS

A. Hardware Trojans in On-chip Networks

Hardware Trojans (HTs) [2], [4]–[6], [9], [13], [16], [21] are
intentional hardware alterations of the design specification or of
the corresponding implementation. HTs are implanted during
the IC design phase of the circuits. After being implanted,
the HTs usually remain dormant to avoid being detected and
are activated upon internal or external triggering events. In
NoCs, HTs [2], [5], [9], [13] are implanted in diverse hardware
components of the routers. Fault-injection HTs are implanted
at output ports or the error checking hardware (ECC) of the
routers. The implanted fault-injection HTs can force data bit-
flips of the transmitted packet and incur retransmission traffic.
The misrouting HTs are implanted in the pipeline stages (e.g.
routing computation logic). Once activated, they force the
packet to be transmitted via the routes that are forbidden by the
routing algorithm to cause dead-lock and live-lock problems.
Another type of HTs, the packet-drop HTs, are implanted in the
input buffers which can discard all the incoming flits stored in
the infected input virtual channel. These HTs can downgrade
performance by intentionally incurring retransmission traffic,
extensively increasing end-to-end latency, and creating network
congestion which can significantly disrupt traffic.

In this paper, we focus on the attack model in which
fault-injection HTs, misrouting HTs, and packet-drop HTs, are
randomly implanted into some of the routers in the NoC. The
triggering event for fault-injection HTs is runtime temperature
(router chip temperature) [22], while misrouting HTs and
packet-drop HTs are triggered by local buffer utilization [7].

B. Existing HT Detection Methodologies

Existing works have explored both traditional runtime mon-
itoring methods and machine-learning-based designs for HT
detection. The former HT detection techniques [4], [6] monitor
NoC attributes and detect malicious components by captur-
ing abnormal attribute values (e.g., injection rate, buffer/link
utilization, and latency) that far exceed a manually designed
threshold. The threshold values, if not carefully selected, can
result in inaccurate detection, thus leading to performance
degradation and security vulnerabilities. For example, the false-
positive detection results, when an HT-free router is marked
as HT-infected, can lead to isolating the HT-free router and

packet re-routing, therefore increasing the network latency. The
false-negative results leave the HT-implanted routers untreated,
which can result in an insecure system. Machine-learning-based
designs use supervised learning and neural networks [16]–
[19] to improve the HT detection accuracy. However, these
techniques, when being used in complex systems like NoCs,
require substantial training data, which includes millions of
normal data and labeled anomaly data recorded in time series of
all the related runtime NoC attributes. Moreover, these existing
methodologies are always specifically designed and trained
for one type of HT, thus are not able to capture the hidden
inherent correlations of all attributes in a complex system,
where multiple HT models are implanted simultaneously.

III. HARDWARE TROJAN DETECTION WITH GENERATIVE
ADVERSARIAL NETWORK

We propose AGAPE, a learning-based NoC design frame-
work that provides high-performance and power-efficient detec-
tion and mitigation against HTs. In this section, we introduce
AGAPE’s HT detection methodology using an improved semi-
supervised GAN [23].

A. GAN Basics

The Generative Adversarial Networks (GANs) [23] have
been widely used for anomaly detection [20], [24], [25]. The
generative model of GANs follows an adversarial training
process, in which two neural networks, a discriminator D and
a generator G, are simultaneously trained. In GAN, both G
and D are multi-layered conventional neural networks. The
generator G takes as input a random noise vector z and outputs
synthesized fake training samples (e.g. time series of a set of
NoC attributes). The discriminator D receives a real training
sample x or a synthesized sample generated by G and identifies
the source of the received training sample. Designed based on
the game-theoretic formulation, the discriminator and generator
are considered to be two players which compete against each
other in a zero-sum min-max game, followed by a value
function V (G,D):

minG maxD V (D,G) = Ex[logD(x)] + Ez[log(1−D(G(z)))] (1)

Trained in the opposition to each other, the generator G
can eventually generate synthesized samples that are extremely
similar to the real samples. In this case, the generator G is able
to learn and capture the potential latent interactions among the
runtime attributes concurrently. The discriminator D, trained
with both real samples and synthesized samples, would be
extremely sensitive to distinguish the correct label of the testing
samples and can accurately capture the anomaly in the training
data sequences for anomaly detection.

B. Proposed HT Detection Framework

The goal of the proposed AGAPE design is to not only detect
anomalies in runtime NoC attributes when HTs are implanted,
but also to correctly identify the type of the implanted HTs.
Therefore, we extend the conventional GAN model with class
labels c for both G and D. The class labels c ∈ {cn, cf , cm, cp}
represents the scenarios in which no HTs are implanted, fault-
injection HTs are implanted, misrouting HTs are implanted,

!"#

$%&'

!"#"$%

()&*)+,-$%&&)#.)/-

!"#"$%&'$ ()*+$),)#%&'$

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

"

"

01!"#2 3

#

"$
%&

$! $!

%&

"$

#

&'$

"&#

$!
$!

"&#

&'$

%& %&

$%&'
4)56 $%&'

4)56
$%&'
4)56 $%&'

4)56
789&*:%*)
4)56 5)9;,4)56

$%&'
4)56

$%&'
4)56

$%&'
4)56

$%&'
4)56

-./0!"#"$%&'$0%#10()*+$),)#%&'$0("*)2#

!"#$$ %

& ' '(&)

*

!"#$%

$&'((

!"#$%&#'($")

*"+",#-".
&#'($")

/#-"+-
&(#0"

)#*+'&,

-*((

.$*/0

-%/034"$%5506$+7)&"+&8$"

Fig. 1. The architecture of the proposed GAN. (a) shows the overall architecture and the workflow. (b) shows the design of the generator (G) and GAN
discriminator (D). The generator and discriminator are both constructed with convolutional layers. The generator captures the latent space z and generates
samples G(z). The discriminator uses the feature map captured by the generator and real samples x to calculate the anomaly detection result A(x|ci).

and packet-drop HTs are implanted, respectively. The proposed
GAN model is shown in Fig. 1. (a). The generator G uses
the class label and the training sample as inputs to generate
the synthesized time series. The discriminator takes a testing
sample as input and calculates the results if the input sample
x is from G or real training sample space as well as the
classification of the training sample.

Fig. 1.(b) shows the designs of the generator and the discrim-
inator of the proposed GAN. First, time series of the runtime
attributes used for the input layer of the generator are split
into small sequences and reconstructed into matrices. Then
the input is fed to the encoder part of the generator, which
has four convolutional layers to capture the feature maps. The
kernel size is 4 * 4. After that, a transpose layer is used as
the decoder part of the generator to generate the synthetic
training set from the feature maps. The output layer is of
the same size as the input matrix. The activation function
used for all generator layers is ReLU. The discriminator uses
the feature map matrices as input. The discriminator has five
convolutional layers with 20% dropout, and the filter size is 4
* 4. LeakyReLU is used for the activation function between the
first two convolutional layers. The last four convolutional layers
in the discriminator are densely connected where the activation
function is ReLU. Specifically, to keep the feed-forward quality,
each of the last four layers in the network of the discriminator
obtains additional input from all the previous layers. The output
layer has four neurons. Our GAN was trained offline. To reduce
the area overhead of GAN implementation, only the trained
discriminator is embedded in the proposed router.

The training and the testing samples are comprised of sets
of time series of run time NoC attributes. These NoC attributes
include buffer utilization (number of occupied virtual channels)
for each input port (+x, -x, +y, -y, and local core), link
utilization (value of input-flits per cycle) for each input port
(+x, -x, +y, -y, and local core), packet injection rate of each
input port, retransmission rate (NACK rate) of each output port,
average end-to-end latency of the propagated packets, and local
operation temperature. These input values are normalized in the
range of 0 to 1 for the non-linearity of the activation functions.
These attributes are measured every 100 cycles and recorded in
the time series for GAN training for each 5000 cycle iteration.

The generator and discriminator are trained following the mini-
max game within each class c:

min
G

max
D

V (D,G|c) = Ex,c[logD(x|c)]

+ Ez,c[log(1−D(G(z|c)))]
(2)

The real samples x are captured with the NoC system run-
ning synthetic traffic and real applications. These samples are
recorded and labeled in four classes, c ∈ {cn, cf , cm, cp}. The
designed AGAPE is trained multiple rounds with each class of
real samples respectively.

Once trained, the generator G is able to learn the potential
interactions among the NoC attributes and capture the mapping
from latent space z to real samples x. Using this learned
mapping G(z) = z �→ x, during the inference phase, the
discriminator takes the testing sample, or the time series, and
maps the sample to the latent space. The discriminator D then
calculates the output of the discriminator CNN and the loss
function L. The value of L indicates the similarity of the
testing sample to the training samples, which can be used to
generate an anomaly score A for HT detection. Specifically,
the loss function L if comprised of a residual loss LR and a
discrimination loss LD, which are defined as:

LR =
∑

|x−G(zγ)|

LD =
∑

|f(x)− f(G(zγ))|
(3)

where function f is the sigmoid cross-entropy. The residual
loss LR measures the dissimilarity between the testing sample
and the training sample G(zγ) in the latent space. For an
ideal normal testing sample, the value of LR is zero. The
discrimination loss LD indicates how well the training sample
is mapped to the latent space. We define the anomaly score A
within class c as: A(x|c) = (1 − λ) · LR(x|c) + λ · LD(x|c),
where λ is set to 0.5, and samples with A below 0.9 is classified
as anomalies. In the proposed AGAPE design, each testing
sample will be used to calculate four anomaly scores for all
classes. The class with the smallest A(x|ci) under 0.9 would
be the detection result. In doing so, during the inference phase,
the discriminator can justify whether an anomaly exists in the
testing phase and also identify the type of the implanted HT.

IV. THREAT MITIGATION TECHNIQUES

We propose a set of efficient HT mitigation techniques for
fault-injection, misrouting, and packet-drop HTs, respectively.

Proposed Router Design
Input Port

Virtual Channel

bypass
Controller

RC VA SA

Crossbar

HT
Detection

Core

+Xin

-Xin

+Yin

-Yin

Core

+Xout

-Xout

+Yout

-YoutBuffer State
Table

Output
Port

Channel
Buffers

Core
Network Interface

Bypass Links

ECC
Decoder

ECC

ECC

ECC

ECC

ECC
Encoder

Output Output Output
ECC

ECC

ECC

ECC

Fig. 2. The proposed AGAPE router architecture for HT mitigation.

The proposed AGAPE router architecture is shown in Fig. 2.
We enhance the conventional router architecture with three
dynamic hardware designs, namely an HT detection module
using the proposed GAN architecture, a set of pass links for
infected router isolation, and a set of channel buffers in each
port to improve the throughput and latency when HT infected
router components are isolated. These proposed designs can
dynamically be enabled or disabled according to the HT results.

For fault-injection HTs, a double-error correction, triple-
error detection code (DECTED) is applied to the HT-infected
router, which is capable of correcting 2 error bits in each
transmitted flit automatically. Once the fault-injection HT is
detected, the router enables the DECTED encoder located at
the output ports and sends an activation signal to its adjacent
downstream routers to enable their DECTED decoders. During
packet transmission, each flit is first encoded with the error
correction code, and it will be verified with the decoder of
the downstream router. Meanwhile, a copy of the transmitted
flit is buffered in the router’s virtual channel until it receives
an ACK message back from the downstream router. If the flit
fails the error checking, a negative-ACK will be sent back to
the upstream router, and the buffered flit will be retransmitted.
This can mitigate the HT-injected faults in the transmitted data
without fully isolating the HT-infected router.

For misrouting HTs and packet-drop HTs, we modify the
NoC architecture with router bypass links and channel buffers
to transmit packets without traversing the HT-infected routing
computation logic and input buffers. Specifically, the bypass
links connect all the input and output ports of an isolated
router with the bypass links and a simple switch logic using
MUXes/DEMUXes. The packets being transmitted are propa-
gated via the bypass links using a round-robin scheme. To fully
bypass the routing computation logic, the routing information
is recorded in a modified buffer state table. Similar to the
VC state table, the modified buffer state table consists of
the following entries: the VC identifier (VC), read pointer
(RP), write pointer (WP), allocated output ports (OPX and
OPY), output VC (OVC), state (ST), and credit count (CR).
Additionally, channel-buffer-related entries are added, namely
input port identifier (Port) which identifies the input port of the
incoming flit, downstream router status (DRS) which indicates

whether the downstream router is available or bypassed/power-
gated, a channel buffer pointer (CBP), and the channel buffer
credit (CBC) which gives the occupancy status of the associated
channel buffers. The header flit carries the packet information
for route computation (RC) and VC allocation. If the router
input buffer is HT-infected and needs to be bypassed, the
buffer allocation table assigns a free channel buffer slot to the
header flit and records the VC information (VC) and output
information (OVC, OPX, and OPY). Thus, the body flits can
be routed to the associated output port by simply following the
VC to find the correct output port from the buffer allocation
table. The credit (CR) is updated in the buffer allocation table.
This guarantees that the flow control can operate normally
irrespective of whether the router is available or bypassed.
Additionally, all the available router buffer slots and channel
buffer slots are recorded in a channel buffer state table. If all the
router buffer slots and channel buffer slots of an input direction
are occupied, a congestion signal will be generated.

V. EVALUATION AND ANALYSIS

A. Simulation Setup

We evaluate the proposed AGAPE design using the GEM5
full-system simulator, in which we fully incorporate the HT
attack models, the proposed AGAPE, and the HT mitigation
techniques. The generator and discriminator are trained offline
before being implemented in each router for the testing phase.
In the testing phase, different types of HTs are randomly
implanted. At runtime, these HT-infected routers are activated
when the triggering events are met. Workloads from the PAR-
SEC benchmark suite are tested.

We compare the performance of the proposed design to
three other solutions, namely (1) baseline: a baseline which
consists of a traditional wormhole-based router with conven-
tional runtime monitoring [4] for HT detection and a basic
router-isolation strategy for detected HTs, (2) RM: conventional
runtime monitoring and the proposed HT mitigation technique,
and (3) ANN: state-of-the-art artificial neural network (ANN)-
based HT detection [17], [18] and the proposed HT mitigation
technique. During the testing phase, each benchmark applica-
tion is executed for ten rounds, HTs are randomly implanted
for each round of execution. Performance metrics are recorded
using the average measurement values of all testing rounds.

We evaluate the area and power consumption with Synopsys.
The value of power consumption refers to the summary of NoC
static power and dynamic power. We first modeled the static
power of all components with Synopsys. Since Synopsys cannot
evaluate the dynamic power accurately for different benchmark
applications, we fed the power parameters captured by Syn-
opsys to the DSENT power model which is integrated with
GEM5. During the application execution, DSENT calculates
the average dynamic power by the number of buffer-writes,
crossbar, VA/SA activities, and ANN/DQL calculations within
the full application execution time.

B. HT Detection Accuracy

We use precision, recall (or sensitivity), and F1-score, along
with the conventional metrics (HT detection rate and detection

TABLE I
HT DETECTION METRICS USING DIFFERENT TECHNIQUES

Technique HTs Precision Recall F1 score Detection Rate Correctness Accuracy

AGAPE
Fault-injection 0.8728 0.9642 0.9162

0.9571 0.9512 0.9105Misrouting 0.7698 0.9281 0.8416
Packet-drop 0.8020 0.9792 0.8818

ANN-based Detection [18]
Fault-injection 0.5227 0.9494 0.6742

0.8324 0.8715 0.7254Misrouting 0.4950 0.7588 0.5991
Packet-drop 0.4526 0.7890 0.5752

Runtime Monitoring [4]
Fault-injection 0.1646 0.6742 0.2646

0.6498 0.7459 0.4847Misrouting 0.1290 0.6480 0.2152
Packet-drop 0.1065 0.6272 0.1821

accuracy), to evaluate the performance of the proposed AGAPE.
The definitions of these measurements are:

Precision =
TP

TP + FP + ITP

Recall(Sensitivity) =
TP + ITP

TP + ITP + FN

F1 score = 2 · Recall · Precision

Recall + Precision

DetectionRate =
Σ(TP + ITP)

Number of implanted HTs

Correctness =
TP

TP + ITP
Accuracy = DetectionRate · Correctness

(4)

where TP is true positives, FP is false positives, and FN is false
negatives. It should be noted that the HT detection techniques
may categorize some HTs as other types. In such cases, we
consider the detection result as incorrect true positives (ITP).
We select these metrics to indicate the potential impact of the
detection results on overall system-level NoC performance. For
example, a higher precision value means fewer false positives,
where HT-free routers are marked as HT-infected and isolated
falsely. This will result in reduced network latency penalties. A
higher recall value implies fewer false negatives (the undetected
HTs which are security threats). The F1 score, which is a
weighted average of precision and recall, takes both false pos-
itives and false negatives into account and is often considered
to be a better measurement of the capability to identify real
threats when classes are uneven distributed (e.g. more actual
TNs). The correctness value indicates how well the detection
techniques can correctly label the detected HTs.

The entire PARSEC benchmark is tested, and the average
measurement values are listed in Table. I. As shown in Table. I,
across all types of HTs, the proposed AGAPE achieves over
0.84 F1 scores, indicating improvements in both precision and
recall. The proposed AGAPE improves overall detection accu-
racy by 18.5% over state-of-the-art ANN-based HT detection
and achieves over 95% overall detection rate, 95% correctness,
and 91% HT detection accuracy, due to the use of GAN and
time series of the NoC attributes.

C. Performance Analysis

Speedup: The speedup is calculated with the full execution
time of each benchmark application, using various HT detection
techniques (baseline, RM, ANN, and AGAPE), as shown in
Fig. 3. As can be seen in Fig. 3, simply deploying dynamic
HT mitigation technique has limited speedup because of the
inaccurate HT detection. The proposed AGAPE design achieves
an average of 16%, 14%, and 9% speedup over the other
three designs, respectively, thanks to the improved HT detection

70%

80%

90%

100%

110%

120%

130%

blk bod can dedup fac fer fre flu str swa vips x264s average

Sp
e

e
d

u
p

 o
f

Ex
e

cu
ti

o
n

 T
im

e
(N

o
rm

al
iz

e
d

)

Baseline RM ANN Proposed AGAPE

Fig. 3. Speedup of full application execution time comparison, normalized to
the baseline (higher is better).

30%

40%

50%

60%

70%

80%

90%

100%

blk bod can dedup fac fer fre flu str swa vips x264s averageA
ve

ra
ge

 E
n

d
-t

o
-e

n
d

 L
at

e
n

cy
(N

o
rm

al
iz

e
d

)

Baseline RM ANN Proposed AGAPE

Fig. 4. Average end-to-end latency comparison, normalized to the baseline
(lower is better).

accuracy, which can eliminate the performance loss induced by
applying incorrect HT mitigation techniques.
Average End-to-End Latency: Fig. 4 shows the normalized
end-to-end packet latency for different techniques. It can be
seen in Fig. 4, the end-to-end latency is improved by 14% by
solely using the proposed dynamic HT mitigation technique.
It is because the proposed dynamic HT mitigation technique
eliminates the isolation of the entire HT-infected routers and
increases network throughput with bypass links and channel
buffers. For the fault-injection HTs, the proposed HT mitigation
technique corrects the injected faults in the packets to reduce
retransmission packets, which consumes network resources and
can lead to network congestion. As compared to RM and ANN,
the proposed AGAPE improves end-to-end latency by 25%
and 14%, respectively. This indicates that the proposed HT
mitigation technique achieves greater network latency reduction
with higher HT detection accuracy.
Power Consumption: We evaluate the overall power con-
sumption, which is comprised of static and dynamic power
consumption, as shown in Fig. 5. The RM design reduces the
overall consumption by 9%, as compared to the baseline, due
to the use of the proposed dynamic HT mitigation technique.
AGAPE reduces power consumption by additional 21% and
12% over RM and ANN, respectively. That is because the
proposed design can reduce static power consumption using
router bypassing and mitigates unnecessary packet retransmis-

40%

50%

60%

70%

80%

90%

100%

blk bod can dedup fac fer fre flu str swa vips x264s average

O
ve

ra
ll

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

(N
o

rm
al

iz
e

d
)

Baseline RM ANN Proposed AGAPE

Fig. 5. Overall power consumption comparison, normalized to the baseline
(lower is better).

sion and misrouted traffic propagation, thus reducing dynamic
power consumption.

D. Overhead Analysis

We evaluate the overheads of AGAPE in terms of timing,
chip area, and power. The timing overhead is obtained by
GEM5, while the offline-training time is not included. The chip
area and power overheads are evaluated using Synopsys Design
Vision software with 32nm technology.

The timing overhead is induced by calculating the output
of the GAN discriminator during the testing phase. In the
worst case, the computation overhead of the discriminator
is 270 cycles, which implies 5.4% of the 5000 cycle HT
detection interval. To avoid the potential negative impact on
network performance, we use two sets of different time steps for
attribute monitoring and controlling. The two sets of time steps
are offset by the discriminator computation time which can
pipeline the overhead effectively. By doing so, the calculation of
GANs does not block either the monitoring or the controlling,
which will not negatively impact the overall performance.

The proposed GAN-based HT detection requires additional
ALUs and SRAM storage in each router for the implementation
of the trained discriminator. The proposed design consumes
9161 µm2 chip area, which implies 7.2% area overhead over
a conventional router. However, the proposed AGAPE design
only induces 2.9% additional area overhead, as compared to
existing ANN-based HT detection designs [18]. Furthermore,
the power overhead of the AGAPE is 0.34mw, which implies
1.5% power overhead over existing ANN-based designs.

VI. CONCLUSIONS

We propose AGAPE, a novel Generative Adversarial Net-
works (GAN)-based anomaly detection method against hard-
ware Trojans (HTs) for high-performance, low-power, and
secure on-chip communications in manycore systems. AGAPE
learns the distribution and latent interactions among the mul-
tivariate time series of a number of NoC attributes under
both HT-free and HT-infected working conditions, thus can
accurately distinguish abnormal attacked situations from nor-
mal NoC behaviors and identify the type and location of the
implanted HTs. Using the detection results, the maliciously
implanted HTs are treated using suitable HT mitigation tech-
niques efficiently. Specifically, to protect the network against
the fault-injection HTs, advanced error correction codes are
applied to the HT-infected router to detect and correct the HT-
injected faults. The routers with misrouting HTs are bypassed

using the bypass links to avoid the faulty routing computa-
tion. Furthermore, the packet-drop attacks are mitigated by
replacing the infected router input buffers with the channel
buffers. Simulation results show that, as compared to current
NoC security techniques, the proposed AGAPE framework
improves the HT detection accuracy by 19% over state-of-
the-art learning-based techniques and achieves up to 91% HT
detection accuracy. Moreover, AGAPE reduces network latency
and power consumption by 39% and 30%, respectively.

ACKNOWLEDGMENT

This research was partially supported by NSF grants CCF-
1702980, CCF-1901165, and CCF-1812495. We sincerely
thank the anonymous reviewers for their excellent and con-
structive feedback.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in DAC’01, 2001.

[2] J. Rajesh et al., “Hardware trojan attacks in soc and noc,” in The
Hardware Trojan War. Springer, 2018, pp. 55–74.

[3] T. Boraten and A. Kodi, “Securing NoCs against timing attacks with
non-interference based adaptive routing,” in NOCS’18. IEEE, 2018.

[4] H. Salmani, “COTD: Reference-free hardware trojan detection and recov-
ery based on controllability and observability in gate-level netlist,” IEEE
TIFS, vol. 12, no. 2, 2016.

[5] T. Boraten and A. K. Kodi, “Mitigation of denial of service attack with
hardware trojans in noc architectures,” in IPDPS’16. IEEE, 2016.

[6] K. Xiao and M. Tehranipoor, “BISA: Built-in self-authentication for
preventing hardware trojan insertion,” in HOST’13. IEEE, 2013.

[7] R. Karri et al., “Trustworthy hardware: Identifying and classifying
hardware trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[8] H. M. Wassel et al., “SurfNoC: a low latency and provably non-interfering
approach to secure networks-on-chip,” in ISCA’13, 2013.

[9] P. Mishra and S. Charles, Network-on-Chip Security and Privacy.
Springer Nature, 2021.

[10] J. A. Ambrose et al., “Rijid: random code injection to mask power
analysis based side channel attacks,” in DAC’07, 2007.

[11] M. Barbosa and D. Page, “On the automatic construction of indistinguish-
able operations,” in IMACC’05. Springer, 2005.

[12] A. M. Fiskiran and R. B. Lee, “Runtime execution monitoring (rem) to
detect and prevent malicious code execution,” in ICCD’04. IEEE, 2004.

[13] V. Y. Raparti and S. Pasricha, “Lightweight mitigation of hardware trojan
attacks in noc-based manycore computing,” in DAC’19. IEEE, 2019.

[14] Z. Zhang and Q. Yu, “Invariance checking based trojan detection method
for three-dimensional integrated circuits,” in ISCAS’20. IEEE, 2020.

[15] S. Charles, Y. Lyu, and P. Mishra, “Real-time detection and localization
of dos attacks in noc based socs,” in DATE’19. IEEE, 2019.

[16] T. Iwase, Y. Nozaki et al., “Detection technique for hardware trojans using
machine learning in frequency domain,” in GCCE’15. IEEE, 2015.

[17] K. G. Liakos et al., “Conventional and machine learning approaches as
countermeasures against hardware trojan attacks,” Microprocessors and
Microsystems, 2020.

[18] S. Wang et al., “Hardware trojan detection based on elm neural network,”
in ICCCI’16. IEEE, 2016.

[19] Z. Huang et al., “A survey on machine learning against hardware trojan
attacks: Recent advances and challenges,” IEEE Access, vol. 8, 2020.

[20] F. Di Mattia et al., “A survey on gans for anomaly detection,” arXiv
preprint arXiv:1906.11632, 2019.

[21] M. Tehranipoor and K. Farinaz, “A survey of hardware trojan taxonomy
and detection,” IEEE design & test, vol. 27, no. 1, pp. 10–25, 2010.

[22] M. Potkonjak et al., “Hardware trojan horse detection using gate-level
characterization,” in DAC’09, 2009.

[23] I. J. Goodfellow, J. Pouget-Abadie et al., “Generative adversarial net-
works,” arXiv preprint arXiv:1406.2661, 2014.

[24] D. Li, D. Chen et al., “Anomaly detection with generative adversarial
networks for multivariate time series,” 2019.

[25] T. Schlegl et al., “f-anogan: Fast unsupervised anomaly detection with
generative adversarial networks,” Medical image analysis, vol. 54, 2019.

