
SPACX: Silicon Photonics-based Scalable Chiplet Accelerator for DNN Inference

Yuan Li, Ahmed Louri

Department of Electrical and Computer Engineering
George Washington University, Washington, DC 20052

Email: liyuan5859, louri@gwu.edu

Avinash Karanth

School of Electrical Engineering and Computer Science
Ohio University, Athens, Ohio 45701

Email: karanth@ohio.edu

Abstract—In pursuit of higher inference accuracy, deep neural
network (DNN) models have significantly increased in complexity
and size. To overcome the consequent computational challenges,
scalable chiplet-based accelerators have been proposed. However,
data communication using metallic-based interconnects in these
chiplet-based DNN accelerators is becoming a primary obstacle
to performance, energy efficiency, and scalability. The photonic
interconnects can provide adequate data communication support
due to some superior properties like low latency, high bandwidth
and energy efficiency, and ease of broadcast communication.
In this paper, we propose SPACX: a Silicon Photonics-based
Chiplet ACcelerator for DNN inference applications. Specifically,
SPACX includes a photonic network design that enables seamless
single-chiplet and cross-chiplet broadcast communications, and
a tailored dataflow that promotes data broadcast and maximizes
parallelism. Furthermore, we explore the broadcast granularities
of the photonic network and implications on system performance
and energy efficiency. A flexible bandwidth allocation scheme is
also proposed to dynamically adjust communication bandwidths
for different types of data. Simulation results using several DNN
models show that SPACX can achieve 78% and 75% reduction
in execution time and energy, respectively, as compared to other
state-of-the-art chiplet-based DNN accelerators.
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I. INTRODUCTION

Emerging deep neural network (DNN) models often exhibit

significant increase in model complexity and size for higher

inference accuracy [1]–[8]. Consequently, computing systems

must scale up in processing power, on-chip memory capacity,

and data communication to efficiently process the large-scale

DNN models [9], [10]. As the scaling of a monolithic chip

slows down due to the stringent constraints of power density

and fabrication cost [11], [12], chiplet-based architectures

[11], [13] have been recently proposed for scalable DNN

inference applications [13]–[16]. However, in chiplet-based

DNN accelerators, data communication using metallic-based

interconnects is posing a major obstacle to the performance,

energy efficiency, and scalability. The fundamental limitations

of the metallic-based interconnects, especially those spanning

across chiplets, are (1) high latency and low bandwidth which

inevitably lead to system performance degradation [13], [17],

(2) prominent latency discrepancy between single-chiplet and

cross-chiplet communications which makes the orchestration

of data communication imposed by parallel computing in

DNN models challenging [13], and (3) excess energy of long-

distance communication frequently observed in chiplet-based

architectures [18], [19].

Photonic interconnects can potentially overcome the fun-

damental limitations of the metallic-based interconnects [18],

[20]. Low-loss waveguide can distribute data to processing

elements (PEs) in a single chiplet or across several chiplets

without requiring multiple hops [18], maintaining low and

uniform communication latency. Communication bandwidth

can be increased by techniques such as wavelength-division

multiplexing (WDM) and space-division multiplexing (SDM)

[21]. Photonic interconnects have been shown to achieve high

energy efficiency as the communication distance increases

[17]. More importantly, the salient ease of broadcast property

of photonic interconnects [18], [22] makes them especially

suitable to support the prevalent broadcast communication

observed in DNN inference applications.

Prior photonic network designs [23]–[34] for either on-chip

or chiplet-based data communication often target communica-

tion in CPUs or GPUs, and exhibit equal bandwidth between

arbitrary nodes. Several prior designs intentionally disable

the broadcast capability [25], [26], [30]. However, the highly

regular and non-uniform communication in DNN inference

applications [1], [15], [16] makes the costly equal bandwidth

allocation unnecessary. Prevalent broadcast communication

in DNN inference applications [1], [16] cannot be adequately

supported as well. In addition, previous DNN dataflows [13],

[35]–[40] are designed for accelerators with only the metallic-

based interconnects, as a result, optimized to consume more

data in memory hierarchies closer to computation units. These

dataflows do not promote data broadcast because broadcast

communication cannot be efficiently supported by underlying

accelerators. A dataflow tailored to photonic interconnects is

necessary because (1) data communication distance is not a

primary concern as in the previous dataflows, and (2) features

uniquely related to photonic interconnects such as ease of

broadcast communication shall be fully considered.

In this paper, we propose SPACX: Silicon Photonics-
based Chiplet ACcelerator. SPACX includes a new photonic

network and corresponding dataflow co-optimized for DNN

inference applications. We also explore multiple broadcast

granularities enabled by different configurations of the pho-

tonic network and their implications on system performance

and energy efficiency. Besides, a flexible bandwidth allocation



scheme is developed to dynamically adjust communication

bandwidths for different types of data based on DNN layer

parameter information. Simulation studies with several DNN

models [2]–[5] show that SPACX can achieve 78% and

75% reduction in execution time and energy, respectively,

as compared to other state-of-the-art chiplet-based DNN

accelerators with either metallic-based [13] or photonic [30]

interconnects. The major contributions of this paper include:

• A Photonic Network Design. We develop a hierarchical

photonic network that seamlessly extends the connection

between the global buffer (GB) and chiplets to PEs,

enabling one-hop data communication from the GB to

arbitrary PEs. The photonic network adequately supports

orthogonal single-chiplet (from the GB to all PEs on a

single chiplet) and cross-chiplet (from the GB to specific

PEs on all chiplets) broadcast communications.

• A Broadcast-Enabled Output-Stationary Dataflow.

The proposed dataflow enforces single-chiplet and cross-

chiplet broadcast of input features and weights by spa-

tially allocating computations with shared input features

and weights to PEs on a chiplet and corresponding PEs

on all chiplets, respectively. Such allocation exploits the

orthogonal broadcast capability of the proposed photonic

network to obtain high data parallelism and high energy

efficiency of data communication. Furthermore, output-

stationary nature of the developed dataflow significantly

reduces intermediate data exchange between PEs which

incurs excessive electrical-to-optical (E/O) and optical-

to-electrical (O/E) signal conversions.

• Broadcast Granularity Exploration. We explore using

SDM technique to support multi-granularity broadcast

communication. By adding extra waveguides, proposed

photonic network can be tuned to several configurations

to support both single-chiplet and cross-chiplet broadcast

communications at multiple granularities (the number of

broadcast destination PEs). We explore the selection of

network configurations based on DNN layer parameters

and implications on performance and energy efficiency.

• Flexible Bandwidth Allocation. We enhance the pro-

posed photonic network with a flexible bandwidth allo-

cation scheme. This scheme adjusts the communication

bandwidth by tuning the numbers of wavelengths for

different types of data, based on DNN layer and system

parameters obtained offline. This scheme helps improve

network utilization and reduce PE stalls.

II. BACKGROUND AND MOTIVATION

A. Photonic Interconnects

1) Basic Photonic Components: Figure 1 demonstrates a

single photonic link with WDM. An off-chip laser source

emits light with different wavelengths λ0 and λ1. Light

is then coupled into a waveguide using an optical coupler

[41]. At the transmission side, two micro-ring resonators
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Figure 1. A photonic link including two sets of transmitter and receiver
and two multiplexed wavelengths λ0 and λ1.
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Figure 2. An optical tunable splitter working at (a) off-resonance and (b)
a transient state between on-resonance and off-resonance with a split ratio
of α/(1− α) when a bias voltage is applied.

(MRRs) [42], [43] labeled MRR0 and MRR1 work as optical

modulators to modulate wavelengths λ0 and λ1 using input

electrical signals, respectively. At the receiving side, another

two MRRs labeled MRR2 and MRR3 work as optical filters,

each of which selects a specific modulated wavelength and

forwards it to a corresponding photodetector [18]. The elec-

trical signals generated by the photodetectors are amplified

by the transimpedance amplifiers (TIAs) and forwarded to

comparators to retrieve the original data. An MRR, works as

either an optical modulator or filter, is tuned by a resistive

heater controlled by a thermal tuning unit to mitigate thermal

and process variations [18], [26]. As a signal can propagate

through a waveguide at a speed close to the speed of light [21],

one-hop data communication is viable in typical chiplet-based

architectures regardless of the relative position of source and

destination nodes. Prior work [24], [44]–[46] has also shown

that as many as 64 wavelengths can be multiplexed within

a single waveguide with each wavelength operating at 10

Gbps data rate. Since the transmitters and receivers account

for a significant fraction of the overall energy consumption

in a photonic link, high energy efficiency is achieved as

communication distance increases.

2) Optical Tunable Splitter: Different from MRRs work-

ing at either on-resonance or off-resonance as optical mod-

ulators and filters, an optical tunable splitter works in the

transient state between on-resonance and off-resonance [47].

As shown in Figure 2, the regions inside and outside an

optical tunable splitters are doped to form a PIN diode

structure. The optical tunable splitter is disabled (at off-

resonance) if no bias voltage is applied, as shown in Figure

2 (a). Light traverses from the input port to the through port

in this case. When applying an appropriate bias voltage to

the PIN diode, light from the input port is split to two parts



and forwarded to the drop port (α fraction) and the through

port (1−α fraction), respectively. The split ratio is α/(1−α)
in this case. By tuning the bias voltage, the split ratio in the

range of 0.4 to 1.8 can be obtained [47]. The bias voltage is

tuned by a digital-to-analog converter (DAC) with a delay

less than 500 ps [47]. Multiple optical tunable splitters can

be cascaded [48] in the case when a split ratio outside the

range of 0.4 to 1.8 is required.

We can construct a broadcast channel using a transmitter

and multiple receivers with the corresponding optical filters

replaced by optical tunable splitters, each of which tuned to

an appropriate split ratio. Implementing broadcast channels

instead of unicast channels shown in Figure 1 can significantly

reduce the number of transmitters at the cost of moderate

increase in laser power, leading to high energy efficiency of

data communication. Single-chiplet or cross-chiplet broadcast

communication is enabled when the receivers are attached

to PEs in a single chiplet or specific PEs in all chiplets,

respectively. The orthogonal single-chiplet and cross-chiplet

communications are achieved when multiple broadcast chan-

nels with respective wavelengths are multiplexed in the same

waveguide.

3) Existing Photonic Network Designs: Several prior

photonic network designs [17], [23]–[25], [30], [31] have

been developed for chiplet-based architectures. These network

designs, similar to the ones developed for monolithic-chip

architectures [26]–[29], [32]–[34], only target generic commu-

nication in CPUs or GPUs. The resulting equal bandwidth

setup between arbitrary nodes may lead to unnecessarily

high implementation cost and energy overhead, given the

highly regular and non-uniform communication in DNN

inference applications [1], [16]. Furthermore, the prevalent

broadcast communication in DNN inference applications [1],

[16] cannot be adequately supported by prior network designs

[25], [26], [30] in which broadcast capability is intentionally

disabled. Unlike prior photonic network designs, SPACX pho-

tonic network is tailored to support the predetermined regular

data communication, especially broadcast communication, in

DNN inference applications with minimal implementation

cost and energy overhead.

B. Communication in DNN Inference

1) DNN Computation: The computation in a convolution

layer can be formulated as a multi-dimensional nested loop

over weight kernels, input feature maps (ifmaps), and output

feature maps (ofmaps). The dimensions include the height

(r) and width (s) of weight kernels, the height (h) and width

(w) of ifmaps, the number of input channels (c), and the

number of output channels (k). The height (e) and width

(f) of ofmaps are not independent and can be derived from

the previous dimensions. Figure 3 shows the computation

operations and data communication involved in a convolution

layer. Weights and input features are read-only input data

while partial sums (psums) are read-and-write intermediate

k [0:K)

Weights (W [k r s c])

…

r [0:R)

h [0:H)

w [0:W)
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k [0:K)

Ifmaps (I [h w c]) Ofmaps (O [k h-r+1 w-s+1])
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c [0:C)

Figure 3. Computation and data communication in a convolution layer.

1 for c = [ 0 : C )
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4 for w = [ 0 : W )
5 for r = [ 0 : R )
6 for s = [ 0 : S )
7 O [k h - r + 1 w - s + 1] += W [k r s c] * I [h w c]

Figure 4. The nested loop representation of a convolution layer.

data used to generate the output features, which are output

data. Figure 4 is a nested loop representation of a convolution

layer assuming that both batch size and stride equal one.

2) Prevalent Broadcast Communication: Data communi-

cation involved in a convolution layer includes transmitting

weights and input features to the PEs and gathering generated

psums or output features from the PEs. Data communication

in DNN inference applications is regular and predetermined

by the nested loop and computing system parameters. As

we can observe in Figure 4, the same weight W[k r s
c] is broadcast to different destinations if the h (line3)

and w (line4) loops are processed in parallel. Similarly,

the same input feature H[h w c] is broadcast to different

destinations if the k (line2), r (line5), and s (line6)

loops are processed in parallel. However, leveraging broadcast

opportunities of one input data type (weight or input feature)

could lead to losing the broadcast opportunities of the

other. For example, the broadcast opportunities of weights

are fully leveraged by processing the h and w loops in

parallel, however, at the cost of completely losing the

broadcast opportunities of input features. With the goal

of maximizing the overall broadcast opportunities, SPACX

dataflow simultaneously broadcasts weights and input features

by processing the k, h, and w loops in parallel with

an output-stationary dataflow. Specifically, weight W[k r
s c] is broadcast to a set of PEs that hold different

I[h w c] (h∈[0:H), w∈[0:W), and c with the same

value as in W[k r s c]). Input feature I[h w c] is

broadcast to another set of PEs that hold different W[k r
s c] (k∈[0:K), r with the value of h-e+1, s with the

value of w-f+1, c with the value as in I[h w c]). The

simultaneous broadcast of input features and weights can

be perfectly supported by the orthogonal single-chiplet and

cross-chiplet broadcast capability of the proposed SPACX

photonic network, respectively.

3) Emerging Dataflow Optimization Goals: Optimizing

data locality is the major optimization goal of several prior

dataflows [13], [35]–[40]. For example, [13], [49] improve
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Figure 5. SPACX architecture with 8 accelerator chiplets and 8 processing elements (PEs) per accelerator chiplet. Each local waveguide is connected to
the global waveguide through a chiplet interface and an interposer interface. A single-bit token propagation network is implemented on each accelerator
chiplet to determine the PE with active PE-to-GB communication. 16 wavelengths λ0, λ1, ..., λ15 are utilized for either single-chiplet or cross-chiplet
broadcast communication.

weight locality while [36] improves output feature locality,

incurring respective broadcast communication of input fea-

tures and weights. This is because of the fundamental latency

and energy limitations of the metallic-based interconnects.

The resulting broadcast communication is not the primary

optimization goal but created by the nature of convolution

computation. In fact, the broadcast communication is not well-

supported but emulated by several unicast communications

in many metallic-based networks like [13]. Since photonic

interconnects largely overcome the limitations of metallic-

based interconnects, the original dataflow optimization goals

may become less relevant while emerging optimization goals

increasingly gain importance. Locality or data communication

distance is no longer a primary concern as in the previous

dataflows due to the distance-independent feature of photonic

interconnects, while broadcast opportunities which used

to be not well leveraged can significantly improve energy

efficiency of data communication. We consider optimization

goals uniquely related to the photonic interconnects such as

maximizing broadcast communication and reducing E/O and

O/E signal conversions in the SPACX dataflow.

III. SPACX ARCHITECTURE

A. Photonic Network Architecture

Figure 5 shows the SPACX architecture with M=8 chiplets

and N=8 PEs on each chiplet. In this example, 16 wavelengths

are implemented for either single-chiplet or cross-chiplet

broadcast communication. All the photonic components (e.g.,

waveguides, MRRs, photodetectors, optical tunable splitters)

are implemented on a silicon interposer [12] while all the

electrical components are implemented on the GB die or

accelerator chiplets. We can observe two levels of waveguides:

a global waveguide connecting all accelerator chiplets, and

a local waveguide on each accelerator chiplet. Please note

that identical network architecture is used in both levels to

provide seamless data communication between the GB and

arbitrary PEs. The physical placement of the GB die and

accelerator chiplets, as well as the placement of the global

and local waveguides, is not necessarily the same as in Figure

5, which only highlights the hierarchical architecture of the

SPACX photonic network.

B. Wavelength Allocation

We categorize all available wavelengths into two groups:

X wavelengths for cross-chiplet broadcast communication

(λ0 to λ7) and Y wavelengths for single-chiplet broadcast

communication and PE-to-GB unicast communication (λ8 to

λ15). The corresponding PEs on all chiplets are designated

the same wavelength in X (λ0 for PE0). All PEs on a

chiplet are designated the same wavelength in Y (λ8 for

Chiplet0). Although wavelengths are equally divided into

two groups in Figure 5 (X=Y=8), this is not always true in

other configurations of the SPACX architecture. In Section

V, we will discuss how SDM technique can be utilized to

decouple X and Y from N and M, and enable flexible multi-

granularity broadcast communication.

C. Interposer Interface and Chiplet Interface

We take interposer and chiplet interfaces located between

the global waveguide and local waveguide on Chiplet0
shown in Figure 6 as an example. As wavelengths λ0-

λ7 are utilized for cross-chiplet broadcast communication,

8 optical tunable splitters are tuned to a split ratio of

1/7 to forward one eighth of power in these wavelengths

from the global waveguide to the local waveguide in the
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Figure 6. Interposer interface and chiplet interface attached to Chiplet0.

interposer interface. Meanwhile, since wavelength λ8 is

utilized for single-chiplet broadcast communication and PE-

to-GB unicast communication on Chiplet0, all power of

this wavelength is forwarded from the global waveguide to

the local waveguide through an optical filter working at on-

resonance. Another optical filter working at on-resonance is

utilized to forward the modulated wavelength λ8 from the

local waveguide to the global waveguide. The DAC to control

the split ratio of all optical tunable splitters and the thermal

tuning units are implemented on the chiplet interface.

D. Support for Different Communications

1) Cross-Chiplet Broadcast Communication: In the

SPACX photonic network, cross-chiplet broadcast commu-

nication is utilized to send the same data from the GB to

PEs that are located on different chiplets but share the same

position. For example, wavelength λ0 is allocated to the

broadcast communication from the GB to PE0 on all chiplets.

Data shared by PE0 on all chiplets is used to modulate

wavelength λ0 at the GB side. The optical tunable splitters

associated with wavelength λ0 in all interposer interfaces

are tuned to appropriate split ratios (1/7 split ratio for

Chiplet0, 1/6 split ratio for Chiplet1, ..., 1/0 split

ratio for Chiplet7), to forward an equal fraction of power

of wavelength λ0 to each chiplet, and in the end to each PE0
through a specific local waveguide. Similarly, wavelengths

λ1 - λ7 are allocated to broadcast communications from the

GB to PE1 - PE7 on all chiplets.

2) Single-Chiplet Broadcast Communication: In the

SPACX photonic network, single-chiplet broadcast commu-

nication is utilized to send the same data from the GB to all

PEs on a chiplet. For example, wavelength λ8 is allocated

to the broadcast communication from the GB to all PEs on

Chiplet0. Data shared by all PEs on Chiplet0 is used

to modulate wavelength λ8 at the GB side. An optical filter

on the interposer interface attached to Chiplet0 works at

on-resonance to completely forward the power of wavelength

λ8 to the local waveguide on Chiplet0. Along the local

waveguide, optical tunable splitters in all PEs are tuned

to appropriate split ratios (1/7 split ratio for PE0, 1/6
split ratio for PE1, ..., 1/0 split ratio for PE7), to forward

an equal fraction of power of wavelength λ8 to each PE.
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Similarly, wavelengths λ9 - λ15 are allocated to broadcast

communications from the GB to Chiplet1 - Chiplet7.

E. PE-to-GB Unicast Communication

The aforementioned cross-chiplet and single-chiplet broad-

cast communications in the SPACX photonic network only

address input data transmission from the GB to PEs. Output

data transmission from PEs to the GB is also implemented

using global and local waveguides. To reduce implementation

complexity and cost, all local PEs on a chiplet share a single

wavelength (the same wavelength for single-chiplet broadcast

communication, wavelength λ8 for Chiplet0). Output data

generated in different local PEs is sequentially transmitted

to the GB. A token propagation mechanism is therefore

needed to determine which local PE currently has access

to the PE-to-GB unicast communication channel. The local

PE holding the token can modulate the specific wavelength

using its output data to be transmitted (wavelength λ8 for all

PEs in Chiplet0). The modulated wavelength is forwarded

from the local waveguide to the global waveguide through

another optical filter on the interposer interface, and in the

end, to the GB. Upon completion of transmission, the token is

released and forwarded to the next local PE through the token

propagation network. The token is originally held by PE0 on

each chiplet after reset. Because of the uniform computation

operations across all PEs, the proposed token propagation

mechanism exhibits two features. First, conventional token

arbitration waveguide in [34] is replaced by a single-bit

electrical ring, as the adjacent downstream PE is guaranteed to

hold output data ready for transmission upon the completion

of output data transmission of current PE. Second, each

local PE is allocated an equal-duration time slot for output

data transmission. As the local PEs compete for a single

wavelength, the communication bandwidth for PE-to-GB

unicast communication is relatively low. We address this

issue through proper dataflow optimization in Section IV.

F. Other Modules in SPACX Architecture

Figure 7 shows the architecture of PE0 in Chiplet0 as

in the SPACX architecture shown in Figure 5. PE0 includes

two receivers and one transmitter. Receiver0 is equipped

with an optical tunable splitter on wavelength λ8 to receive
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Figure 8. Processing a convolution layer [r s e f c k]=[2 2 4 4 3 8] on the SPACX architecture. SPACX dataflow processes output features
on the same e/f plane on different chiplets, and output features with different k values on different PEs on a single chiplet.

data from single-chiplet broadcast communication while

Receiver1 is equipped with an optical filter on wavelength

λ0 to receive data from cross-chiplet broadcast communica-

tion. The transmitter is equipped with an optical modulator

on wavelength λ8 for PE-to-GB unicast communication.

The SPACX PE architecture includes separate buffers for

input features, weights, and psums or output features. A

multiply-and-accumulate (MAC) module is responsible for

computation operations. PE0 holds the token upon reset

and passes it to PE1 after the output features stored in the

accumulation buffer have been transmitted.

We implement computation units for auxiliary operations

such as pooling, activation, and normalization on the GB

die as shown in Figure 5, as these operations often demand

high communication bandwidth and are fast to process [6],

[50]. In this paper, we focus on accelerating convolution

and fully-connected layers. An execution controller (similar

to the RISC-V processor in [13]) is responsible for off-

loading computation operations to PEs and orchestrating

data communication by tuning the optical tunable splitters

on the interposer interfaces and PEs. As PEs in the SPACX

architecture process aligned computation operations and incur

predetermined data communication, the tuning process is

performed offline prior to the execution of a DNN layer. For

simplicity, we do not show the control network between the

execution controller and the interposer interfaces and PEs

in Figure 5. The execution controller also determines the

bandwidth allocation scheme discussed in Section VI as it

is also achieved by tuning the optical tunable splitters. The

tuning latency is set to be 500 ps [47].

IV. BROADCAST-ENABLED SPACX DATAFLOW

SPACX dataflow is developed according to three features

specifically related to the proposed photonic network. First,

the proposed photonic network can support highly energy-

efficient orthogonal single-chiplet and cross-chiplet broadcast

communications. Second, data exchange between PEs could

lead to frequent and costly E/O and O/E signal conversions.

Third, the PE-to-GB communication bandwidth in the pro-

posed photonic network is relatively low.

Consider the convolution layer shown in Figure 8 (a) as an

example. We present different weight kernels (output channel

k dimension) with different colors, and label a weight in

a specific weight kernel using A.B terminology where A
and B represent the input channel in the c dimension and

the position of this weight in A input channel, respectively.

Input features are labeled using the same A.B terminology

as for weights. For output features, A in the A.B terminology

represents the output channel in the k dimension while B
represents the position of an output feature in A output

channel. Figure 8 (b) describes how the example convolution

layer in Figure 8 (a) is mapped to the SPACX architecture

shown in Figure 5 to fully exploit the orthogonal single-

chiplet and cross-chiplet broadcast capability of the proposed

photonic network. We map two rows of output features

in an ofmap to different chiplets (E2=2 and F2=3 in the

dataflow shown in Figure 9) while filling the PEs on each

chiplet with corresponding output features in other ofmaps

(K3=8). As we allocate output features on the same ofmap

to different chiplets, cross-chiplet broadcast capability of the

proposed photonic network is exploited for weight broadcast.

Meanwhile, as we allocate corresponding output features on

different ofmaps to PEs on a chiplet, single-chiplet broadcast

capability of the proposed photonic network is exploited

for input feature broadcast. From the PE point of view,

both types of input data required for convolution operations,

weights and input features, are transmitted through broadcast

communications.

Figure 8 (c) describes the detailed computation operations

and data communications involved in one iteration of the

c loop (line13) in Figure 9. Since R=S=2 according to

Figure 8 (a), the computation operations are performed in



1 // package level
2 for e1 = [ 0 : E1 )
3 for f1 = [ 0 : F1 )
4 parallel_for k1 = [ 0 : K1 )
5 parallel_for e2 = [ 0 : E2 )
6 parallel_for f2 = [ 0 : F2 )
7 // chiplet level
8 for k2 = [ 0 : K2 )
9 parallel_for e3 = [ 0 : E3 )

10 parallel_for f3 = [ 0 : F3 )
11 parallel_for k3 = [ 0 : K3 )
12 // PE level
13 for c = [ 0 : C )
14 for r = [ 0 : R )
15 for s = [ 0 : S )
16 k = k3 + K3 * (k2 + K2 * k1)
17 e = e3 + E3 * (e2 + E2 * e1)
18 f = f3 + F3 * (f2 + F2 * f1)
19 O [k e f] += W [k r s c] * I [r + e – 1 s + f – 1 c]

Figure 9. SPACX dataflow nested loop representation.

four steps. We focus on computation operations and data

communications related to two PEs labeled 0.A and 0.F.

Computation operations and data communications related

to other PEs can be easily inferred from Figure 8 (c). In

Step1, weight labeled 0.0 and in the green weight kernel

is simultaneously transmitted to PEs labeled 0.A and 0.F
using cross-chiplet broadcast communication on wavelength

λ0. Meanwhile, input features labeled 0.a and 0.g are

transmitted to PEs labeled 0.A and 0.F using single-chiplet

broadcast communications on wavelengths λ8 and λ15,

respectively. PEs labeled 0.A and 0.F perform computation

operations and generate psums 0.0×0.a and 0.0×0.g,

respectively. Similar data communications and computation

operations are performed in the following three steps and the

generated intermediate psums are locally accumulated. This

concludes the completion of one iteration of the c loop. The

psums generated in all iterations of the c loop are locally

accumulated to obtain the output features.

V. BROADCAST GRANULARITY EXPLORATION

Maintaining the mapping algorithm shown in Figure 8

(a) and (b) could lead to low PE utilization for particular

convolution layers. For example, consider a convolution

layer with parameters [r s e f c k]=[2 2 2 2 3
16], in which the number of output features on an ofmap is

e×f=4 while the number of output channels is k=16. When

mapping this convolution layer to the SPACX architecture

shown in Figure 5, we observe that only 4 chiplets are utilized

(e×f<M). Meanwhile, the computation operations along the

k dimension have to be iteratively performed (k>N) even

though there are idle chiplets in the system. To resolve this

issue, we divide the chiplets into two groups and perform

cross-chiplet broadcast communication within each group

instead of across all chiplets in the system. This approach

enables line4 of the SPACX dataflow shown in Figure 9.

Figure 10 shows how chiplets are divided into two groups:

Chiplet0 - Chiplet3 in Group0 and Chiplet4 -

Chiplet7 in Group1. To realize independent cross-chiplet

broadcast communication in each group, one additional

global waveguide is implemented as shown in Figure 10
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0
0 73 4

Group 0 Group 1

(a) Broadcast groups (b) Network configuration
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…
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Figure 10. Limit cross-chiplet broadcast communication in separate groups
and the corresponding network configuration (configuration B in Table I).
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Figure 11. Limit single-chiplet broadcast communication in separate groups
and the corresponding network configuration (configuration C in Table I).

(b). In addition to potentially improving PE utilization, this

approach also has implications on the number of required

wavelengths. The two shaded chiplets (Chiplet0 and

Chiplet4 in Figure 10 (a)) can share one wavelength

for single-chiplet broadcast communication, as they are

physically separated and connected to Waveguide0 and

Waveguide1, respectively.

Consider another convolution layer with parameters [r
s e f c k]=[2 2 4 4 3 4], in which the number of

output features on an ofmap is e×f=16 while the number of

output channels is k=4. This represents an opposite situation

as compared to the previous example. When mapping this

convolution layer to the SPACX architecture shown in Figure

5, we observe that only 4 PEs on each chiplet are utilized

(k<N). Meanwhile, the computation operations along the

e/f dimensions have to be iteratively performed (e×f>M)

even though there are idle PEs on each chiplet. To resolve this

issue, we divide the PEs on each chiplet into two groups and

perform single-chiplet broadcast communication within each

group instead of across all PEs on the chiplet. This approach

enables line9 and line10 of the SPACX dataflow shown

in Figure 9. Figure 11 shows how PEs on each chiplet

are divided into two groups: PE0 - PE3 in Group0 and

PE4 - PE7 in Group1. To realize independent single-chiplet

broadcast communication in each group, one additional global

waveguide and one additional local waveguide on each chiplet

are implemented as shown in Figure 11 (b).

Implementing multiple cross-chiplet and single-chiplet

broadcast groups enables fine-grained mapping of DNN

layers with diverse layer parameters on the SPACX architec-

ture, potentially increasing PE utilization. Furthermore, this

approach has implications on system scalability and energy

efficiency of data communication. Table I lists four SPACX

photonic network configurations corresponding to different

broadcast granularities. Configuration A is the original



Table I
FOUR DIFFERENT CONFIGURATIONS OF THE SPACX ARCHITECTURE.

Configuration A B C D
No. of global waveguide 1 2 2 4
No. of local waveguide per chiplet 1 1 2 2
No. of wavelengths 16 12 12 8
No. of PEs per waveguide 64 32 32 16
No. of MRRs in interfaces 80 80 96 96

SPACX photonic network architecture shown in Figure 5.

Configurations B and C are architectures with finer cross-

chiplet and single-chiplet broadcast granularities, respectively.

Configuration D simultaneously achieves fine cross-chiplet

and single-chiplet broadcast granularities. Configuration D,

which can be considered as the combination of configurations

B and C, only exhibits moderate increase in implementation

cost (the number of required MRRs). This is because the

number of interposer interfaces per chiplet increases to 2

while the number of MRRs on each interposer interface

decreases to 6 (4 optical tunable splitters and 2 optical filters).

Enabling fine broadcast granularity as in configuration D
incurs significant decrease in required laser power at the cost

of moderate increase in the overall MRR power. This is how

the energy efficiency of data communication in the SPACX

architecture is improved.

VI. FLEXIBLE BANDWIDTH ALLOCATION

The PE architecture shown in Figure 7 has equal communi-

cation bandwidth for weights and input features. However, in

many DNN layers, the communication bandwidth demands

for weights and input features are different due to several

factors such as the layer parameters and data reuse status in

PE local buffers. We develop a flexible bandwidth allocation

scheme discussed in this section to address this issue.

The proposed scheme achieves bandwidth allocation by

tuning the numbers of wavelengths for transmission of

weights and input features. In particular, the scheme sup-

ports cross-chiplet input feature multicast using wavelengths

originally allocated for cross-chiplet weight broadcast. This

feature leverages the convolution reuse [1] of input features.

As shown in Figure 12, the same input feature 0.f is

utilized to generate output features 0.A, 0.B, 0.D, and

0.E. Since these output features are generated in PE0
on Chiplet0, Chiplet1, Chiplet3, and Chiplet4,

the original wavelength λ0 for cross-chiplet broadcast

communication can be utilized for cross-chiplet multicast

of input feature 0.f if it is available. To support the cross-

chiplet multicast communication, it is necessary to identify

the subset of chiplets sharing a particular input feature. From

Figure 12 we observe that min(S,F2)×min(R,E2)×K1
chiplets share an input feature. We construct the subset of

chiplets sharing a particular input feature by tuning the optical

tunable splitters on interposer interfaces attached to chiplets

outside the subset at off-resonance while tuning the optical

tunable splitters on interposer interfaces attached to chiplets

in the subset to appropriate split ratios. Along the e/f
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Figure 12. Cross-chiplet input feature multicast using the wavelength
originally designated to cross-chiplet weight broadcast.

dimensions, cross-chiplet input feature multicast can only

be performed sequentially on each specific wavelength in

wavelength group X. Along the k dimension, cross-chiplet

input feature multicast can be done in parallel using different

wavelengths in wavelength group X.

Similarly, the proposed scheme also supports single-chiplet

weight multicast using wavelengths originally allocated for

single-chiplet input feature broadcast. This feature leverages

the convolution reuse [1] of weights. A particular weight is

shared by E3×F3 local PEs in each chiplet and multicast

to these PEs using the wavelength originally designated

to single-chiplet input feature broadcast. To support the

single-chiplet multicast communication, it is necessary to

identify the subset of PEs sharing a particular weight. This

is done by tuning the optical tunable splitters attached to

PEs outside the subset at off-resonance while tuning the

optical tunable splitters attached to PEs in the subset to

appropriate split ratios. Along the k dimension, single-chiplet

weight multicast can only be performed sequentially on each

specific wavelength in wavelength group Y. Along the e/f
dimensions, single-chiplet weight multicast can be done in

parallel using different wavelengths in wavelength group Y.

VII. EVALUATION METHODOLOGY

A. Simulation Platform

In order to evaluate the SPACX architecture and other

chiplet-based DNN accelerators [13], [30], we extend the

open-source MAESTRO simulator [51] to support the non-

uniform latency and bandwidth distribution between local PEs

and PEs on separate chiplets. The execution time includes

computation time and communication time. The extended

simulator tracks the number of arithmetic operations and the

number of accesses to each memory hierarchy (e.g., local

buffer, GB, off-chip DRAM) and derives the computation

time and communication time, respectively. The derivation

takes the hierarchical network architecture into account and

enforces the communication bandwidth limit of each link.

The delay for tuning optical tunable splitters is set to be 500

ps [47] and included in the communication time. We also

assume that the communication time is maximally overlapped

by the computation time.

B. Power Model

We evaluate the power consumption of arithmetic opera-

tions using Synopsys Design Compiler. The power



Table II
NETWORK PARAMETERS

Simba
Chiplet level

Electrical mesh
20 Gbps / PE read / write bandwidth

Package level
Electrical mesh

320 Gbps / chiplet read / write bandwidth

POPSTAR

Chiplet level
Electrical mesh

20 Gbps / PE read / write bandwidth

Package level

Photonic crossbar
310 Gbps / chiplet read bandwidth

100 Gbps / chiplet write bandwidth
10 wavelengths, 10 Gbps / wavelength

SPACX

Chiplet level
20 Gbps / PE read bandwidth

10 Gbps / PE write bandwidth (shared)

Package level
340 Gbps / chiplet read bandwidth
20 Gbps / chiplet write bandwidth

24 wavelengths, 10 Gbps / wavelength

consumption values of accessing in-package memory hi-

erarchies (local buffer and GB) and off-chip DRAM are

obtained using CACTI 6.0 [52] and DRAMSim2 [53],

respectively. The power consumption values of metallic-based

interconnects are obtained using DSENT [54] and parameters

in [55], while the power consumption values of photonic

interconnects are derived from Equation (1):

Ptotal = PTX + PRX + Plaser (1)

The overall power consumption Ptotal includes power

consumption of transmitter circuitry PTX, power consumption

of receiver circuitry PRX, and laser power Plaser. We

calculate PTX and PRX using the same parameters as in [56],

[57] and scale to 28 nm technology [58]. Please note that

the power consumption of MRR thermal heating has already

been included in PTX and PRX. The values of PTX and PRX
are 2.9 mW and 2.6 mW, respectively, when a moderate 2 mW
[59] MRR thermal heating power consumption is assumed.

The laser power Plaser includes four parts: photodetector

sensitivity Prs, overall insertion loss Closs, extinction ratio

power penalty Pextinction, and system margin Msystem as

shown in Equation (2):

Plaser = Prs + Closs + Pextinction +Msystem (2)

Table III and Table IV list the moderate and aggressive

photonic parameters, respectively, from which the laser power

Plaser can be derived. We adopt the moderate photonic

parameters listed in Table III for power and energy estimation,

unless otherwise stated. Pextinction represents the power

penalty cased by extinction ratio which is assumed to be 2

dB [60]. System margin Msystem is assumed to be 4 dB [61].

The purpose of the system margin is to allocate a certain

amount of power to additional sources of power penalty that

may develop during the system lifetime.

C. Chiplet-based DNN Accelerators for Comparison

The proposed SPACX architecture is compared against two

other chiplet-based DNN accelerators named Simba [13] and

POPSTAR [30]. Simba includes metallic-based interconnects

Table III
MODERATE PHOTONIC PARAMETERS

Component Value Component Value

Laser source 5 dB [45] Ring drop 1 dB [62]
Coupler 1 dB [45] Ring through 0.02 dB [54]
Splitter 0.2 dB [46] Photodetector 0.1 dB [45]
Waveguide 1 dB/cm [45] Waveguide-to-receiver 0.5 dB [63]
Waveguide bend 1 dB [63] Receiver sensitivity -20 dBm [45]
Waveguide crossover 0.05 dB [63] Ring heating 2 mW [59]

Table IV
AGGRESSIVE PHOTONIC PARAMETERS

Component Value Component Value

Laser source 5 dB [45] Ring drop 0.7 dB [54]
Coupler 1 dB [45] Ring through 0.01 dB [64]
Splitter 0.2 dB [46] Photodetector 0.1 dB [45]
Waveguide 1 dB/cm [45] Waveguide-to-receiver 0.5 dB [63]
Waveguide bend 0.01 dB [65] Receiver sensitivity -26 dBm [66]
Waveguide crossover 0.05 dB [63] Ring heating 320 μW [57]

implemented at both package and chiplet levels. To the best of

our knowledge, there are no chiplet-based DNN accelerators

with pure photonic interconnects. Hence, we select a chiplet-

based architecture POPSTAR originally designed for generic

applications and replace the CPU chiplets with accelerator

chiplets in Simba to construct another chiplet-based DNN

accelerator for comparison purpose. We assume that SPACX

architecture and the two other chiplet-based DNN accelerators

all include M=32 chiplets and N=32 PEs per chiplet. SPACX

architecture adopts broadcast granularities of e/f=8 and

k=16 unless otherwise stated. To maintain the same PE

computation capability, MAC vector width in SPACX is

set to be 32. SPACX PE buffer size is 4 kB while the PE

buffer size of Simba and POPSTAR is 43 kB [13]. The

difference in PE buffer size reflects the SPACX design

philosophy of trading data locality for massive broadcast

communications. Simulation results shown in Section VIII

prove its effectiveness when metallic-based interconnects are

completely replaced by photonic interconnects. SPACX GB

size is set to be 2 MB, which is the same as in Simba and

POPSTAR [13]. Weights and input features are assumed to

be 8-bit wide while psums are assumed to be 24-bit wide

[13]. The network parameters of the SPACX architecture

and two other chiplet-based DNN accelerators are listed

in Table II. We attempt to keep the bandwidth values at

both package and chiplet levels comparable. However, some

bandwidth values cannot be tuned to be exactly the same

due to the specific features of different network architectures.

The purpose of including Simba and POPSTAR in evaluation

is to evaluate the benefits from technology and architecture

design, respectively.

D. Benchmarks

We utilize four DNN models in our evaluation, ResNet-50

[3], VGG-16 [2], DenseNet-201 [4], and EfficientNet-B7

[5]. ResNet-50 includes more variations of weight kernel

size and computation intensity, while VGG-16 includes more

communication-intensive fully connected layers that can test

network performance in extreme scenarios. There are 21
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Figure 13. Per-layer execution time breakdown of chiplet-based DNN accelerators for ResNet-50 and VGG-16 DNN models (normalized to Simba).
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Figure 14. Per-layer energy breakdown of chiplet-based DNN accelerators for ResNet-50 and VGG-16 DNN models (normalized to Simba).

and 12 different convolution or fully connected layers in

ResNet-50 and VGG-16. We test all 33 layers in layer-by-

layer manner, as each layer has different layer parameters

which have implications on performance and energy of

the SPACX architecture and other two chiplet-based DNN

accelerators. Please note that we have removed redundant

layers with the same layer parameters in ResNet-50 and

VGG-16. For example, res2a_branch1 in ResNet-50 has

been removed because it has the same layer parameters as

res2[a-c]_branch2c. In addition, we accumulate the

execution time and energy values of all layers to obtain an

implication of the overall execution time and energy in a

complete inference pass. Please note that only the convolution

and fully connected layers are taken into account during the

accumulation process. We do not report the layer-by-layer

execution time and energy of DenseNet-201 and EfficientNet-

B7 due to the large layer counts in these two DNN models.

VIII. EXPERIMENT RESULTS

A. Execution Time and Energy

1) Layer-by-Layer Execution Time and Energy: Figure 13

shows the per-layer execution time comparison of chiplet-

based DNN accelerators for ResNet-50 and VGG-16. Execu-

tion time is broken down into two parts: computation time

including accessing local buffers and performing arithmetic

operations, and communication time between PEs and the GB

or off-chip DRAM. SPACX achieves 46% and 24% reduction

in execution time on average, respectively, when compared to

Simba and POPSTAR. The execution time reduction mainly

comes from decrease in communication time part. POPSTAR

has lower communication time than Simba due to low-latency

inter-chiplet communication enabled by the photonic crossbar.

SPACX achieves lower communication time than POPSTAR

because the proposed photonic network provides low-latency

intra-chiplet communication, and also adequate broadcast

communication support that alleviates the contention at the

GB side. Note that execution time reduction is significant

in layers with intensive data communication like the fully

connected layers L21 and L31-L33. In these layers, the

computation time in SPACX is higher than that in Simba

and POPSTAR because the small e/f values have led to

low chiplet utilization.

Figure 14 shows the per-layer energy comparison of chiplet-

based DNN accelerators for ResNet-50 and VGG-16. Overall

energy can be broken down into two parts: network energy,

and energy of the MAC units and memory hierarchy labeled

as other. SPACX achieves on average 52% and 37%

reduction in energy, respectively, as compared to Simba and

POPSTAR. The energy reduction is mainly from decrease in

execution time and network energy. POPSTAR achieves lower

network energy than Simba because of the implementation

of energy-efficient photonic interconnects. SPACX achieves

lower network energy than POPSTAR due to fewer MRRs

and associated heaters required and less frequent E/O and O/E

signal conversions. Note that energy reduction is significant

in layers with intensive data communication.

2) Overall Execution Time and Energy: In addition to the

layer-by-layer estimation of execution time and energy, we

present the overall execution time and energy of chiplet-based

DNN accelerators for four different DNN models in Figure

15. Unlike in layer-by-layer experiment where each layer

is separately executed and data is always initially stored in

off-chip DRAM, we exploit the data reuse in the GB between

successive layers here. The execution time and energy only

account for the convolution layers and fully connected layers

in the four DNN models. POPSTAR achieves on average 39%

and 28% reduction in execution time and energy, respectively,

as compared with Simba. We consider this as benefits from

adopting photonics technology. SPACX achieves on average

64% and 65% reduction in execution time and energy when

compared with POPSTAR. We consider this as benefits from

the proposed architectural design as both architectures adopt

photonics technology. SPACX achieves on average 78% and

75% reduction in execution time and energy, respectively,

when compared with Simba, indicating the combined effects

of technology and architecture innovations of SPACX.
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Figure 15. Execution time (left) and energy (right) breakdown of chiplet-
based DNN accelerators for a complete inference pass (normalized to Simba).
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Figure 16. Communication latency (left) and throughput (right) of chiplet-
based DNN accelerators for a complete inference pass (normalized to Simba).

B. Network Latency and Throughput

Figure 16 presents the communication latency and through-

put comparison of chiplet-based DNN accelerators for four

different DNN models. We monitor these two network-related

metrics to illustrate the benefits from the proposed photonic

network over electrical mesh and photonic crossbar. Latency

is the time elapsed between generating and receiving of

a data packet, while throughput is defined as the average

number of data packets received in a unit time period. As

compared to Simba, POPSTAR and SPACX achieve 48% and

80% latency reduction, respectively, which indicates the low

communication latency enabled by photonic interconnects.

Meanwhile, POPSTAR and SPACX achieve 35% and 93%

throughput increase, respectively, as compared to Simba. Low

latency and high throughput of SPACX photonic network

comply with the significant decrease in communication time

of SPACX, compared to POPSTAR and Simba in Figure 15.

C. Impact of SPACX Dataflow

Figure 17 shows the execution time and energy comparison

when assuming different dataflows in the SPACX architecture.

WS is a weight-stationary dataflow [13] with parallel mapping

along k and c dimensions. The orthogonal broadcast feature

of the SPACX photonic network is not fully exploited as only

parallel mapping along k dimension leverages broadcast of

input features. Parallel mapping along c dimension incurs

spatial psum reduction, and leads to frequent and costly E/O

and O/E signal conversions. OS(e/f) is an output-stationary

dataflow [36] with parallel mapping along e/f dimensions.

The orthogonal broadcast feature is still not fully exploited

as parallel mapping along e/f dimensions only leverages

broadcast of weights. By contrast, SPACX dataflow perfectly

matches the underlying photonic network by enabling parallel

mapping along k and e/f dimensions. SPACX dataflow

achieves on average 68% and 21% reduction in execution

time, respectively, as compared to WS and OS(e/f). Energy

reduction achieved by SPACX dataflow is 75% and 27%.
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Figure 17. Execution time (left) and energy (right) when applying different
dataflows to SPACX architecture (normalized to weight-stationary dataflow).
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Figure 18. Execution time (left) and energy (right) comparison of SPACX
with or without bandwidth allocation (BA) (normalized to Simba).

D. Impact of Bandwidth Allocation Scheme

We evaluate the effectiveness of the bandwidth allocation

scheme discussed in Section VI by comparing the execution

time and energy of the SPACX architecture with SPACX

without bandwidth allocation (labeled SPACX-BA) for four

different DNN models. From Figure 18 we can observe

that, disabling the bandwidth allocation scheme leads to on

average 14% increase in execution time due to additional

stalls caused by network under-utilization. The impact of the

bandwidth allocation scheme on energy is more complicated.

On the one hand, it can potentially lead to decrease in energy

due to lower execution time. On the other hand, it generates

more multicast or even unicast communications, which incurs

higher E/O and O/E signal conversion energy.

E. SPACX Network Power and Energy Analysis

1) SPACX Photonic Network Power: Figure 19 and 20

show the overall, laser, and transceiver (MRRs and associated

heaters) power consumption of the SPACX photonic network

when respective moderate parameters shown in Table III and

aggressive parameters shown in Table IV are assumed. We

observe significant decrease in overall power, laser power, and

transceiver power when aggressive parameters are assumed,

indicating the potential power efficiency improvement of the

proposed photonic network from advances of related photonic

components. By examining the laser power shown in Figure

19 (b) and Figure 20 (b), we find that the minimal laser power

is achieved when both single-chiplet broadcast granularity

(k granularity) and cross-chiplet broadcast granularity (e/f
granularity) are at 4. Increasing either k or e/f granularity

incurs linear increase in insertion loss, hence exponential

increase in laser power. Meanwhile, decreasing either k or

e/f granularity after a certain point also leads to higher laser

power because the laser power decrease due to insertion loss

decrease is offset by laser power increase due to waveguide

duplication. By examining the transceiver power shown in

Figure 19 (c) and Figure 20 (c), we find that the minimal
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Figure 20. The overall (a), laser (b), and transceiver (c) power consumption
of SPACX photonic network when aggressive parameters are assumed.

transceiver power is achieved when both k granularity and

e/f granularity are at 32. This is because coarser granularity

leads to fewer MRRs required in interposer interfaces, and

in the end, lower transceiver power. Since the minimal laser

power and transceiver power are achieved at different k
and e/f granularities, the aggregated overall power reaches

minimal value at another point where k granularity and e/f
granularity are both at 16. However, we choose broadcast

granularities of e/f=8 and k=16 to achieve balanced

improvement on both energy efficiency and execution time.

2) SPACX Photonic Network Energy: Figure 21 (a) shows

the energy breakdown of a ResNet-50 inference pass when

moderate and aggressive parameters are applied to POPSTAR

and SPACX. Using aggressive parameters brings additional

19% and 8% energy reduction for POPSTAR and SPACX,

respectively, as compared to Simba. The SPACX photonic

network consumes 23.9 mJ and 8.4 mJ for a ResNet-50

inference pass when moderate and aggressive parameters are

assumed, respectively, as shown in Figure 21 (b).

F. Scalability Exploration

We examine the the execution time and energy of the

SPACX architecture for a ResNet-50 inference pass when

varying the number of chiplets (M) and number of PEs per

chiplet (N). All values are normalized to the M=32 N=32
SPACX architecture. We make the following observations.

First, electrical interconnects can completely offset the benefit

from system scaling as we observe increase in execution

time when increasing M in Simba. Second, POPSTAR and

SPACX both scale better than Simba in terms of execution

time and energy due to the photonics technology. Third,

POPSTAR consumes higher energy than Simba when the

system scale is small because of the costly E/O and O/E signal

conversions. Fourth, the energy gap between POPSTAR and

SPACX increases as system scales up due to the much more
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Figure 22. Execution time (left) and energy (right) of SPACX architecture
by varying the number of chiplets (M) and number of PEs per chiplet (N).

MRRs and associated heaters required in POPSTAR.

G. Area Estimation

We calculate the SPACX PE area (excluding the trans-

mitter and two receivers) to be 0.72 mm2 using Synopsys
Design Compiler and a 28 nm technology library. We

assume that the area for a transmitter or a receiver is 0.0096

mm2 per wavelength [67]. Hence, the area overhead of the

peripheral circuity of transmitter and receivers in a PE is

around 4%. There are 132 MRRs underneath a chiplet which

has an area of 4.07 mm2. The overall MRR area is 0.01

mm2 when assuming 5 μm MRR radius [68]. The overall

micro-bump area is 0.68 mm2 when assuming 4 wires per

MRR and 36 μm micro-bump pitch size [69]. As most MRRs

and micro-bumps can be implemented under a chiplet, we

assume that they do not incur additional area overhead.

IX. CONCLUSION

In this paper, we propose a chiplet-based DNN accelerator

with photonic interconnects named SPACX. Salient features

of the SPACX architecture include a photonic network that

supports seamless orthogonal single-chiplet and cross-chiplet

broadcast communications, a tailored dataflow that exploits

high-performance and ease of broadcast communication of

photonic interconnects to maximize parallelism in DNN

inference applications, and a flexible bandwidth allocation

scheme that dynamically adjusts communication bandwidths

for different types of data based on layer and system param-

eters obtained prior to the execution of a DNN layer. The

combined benefits of these features provide adequate, flexible,

and energy-efficient communication support for scalable

chiplet-based DNN accelerators. Simulation studies using

multiple DNN models show that the SPACX architecture



achieves significant reduction in execution time and energy,

and exhibits better scalability, as compared to other state-of-

the-art chiplet-based DNN accelerators.
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