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Abstract
We study the problem of designing scalable algo-
rithms to find effective intervention strategies for
controlling stochastic epidemic processes on net-
works. This is a common problem arising in agent
based models for epidemic spread. Previous ap-
proaches to this problem focus on either heuris-
tics with no guarantees or approximation algo-
rithms that scale only to networks corresponding to
county-sized populations, typically, with less than
a million nodes. In particular, the mathematical-
programming based approaches need to solve the
Linear Program (LP) relaxation of the problem us-
ing an LP solver, which restricts the scalability of
this approach. In this work, we overcome this
restriction by designing an algorithm that adapts
the multiplicative weights update (MWU) frame-
work, along with the sample average approxima-
tion (SAA) technique, to approximately solve the
linear program (LP) relaxation for the problem. To
scale this approach further, we provide a memory-
efficient algorithm that enables scaling to large net-
works, corresponding to country-size populations,
with over 300 million nodes and 30 billion edges.
Furthermore, we show that this approach provides
near-optimal solutions to the LP in practice.

1 Introduction
Due to the complex factors underlying disease spread, mathe-
matical models based on the Susceptible-Infected-Recovered
(or SIR) process are used extensively to understand the trade-
off between the cost of interventions (e.g., vaccination and so-
cial distancing), and the benefit (e.g., the number of infections
averted), e.g., [Medlock and Galvani, 2009; Marathe and Vul-
likanti, 2013; Halloran et al., 2008; Eubank et al., 2004;
Germann et al., 2006]. As an example, the CDC Scenario
Hub [CDC, 2021; Truelove et al., 2021] involves the use of
a variety of models—deterministic models based on differen-
tial equations, e.g., [Medlock and Galvani, 2009; Anderson
and May, 1991], and stochastic models based on networks,
referred to as networked SIR models, e.g., [Marathe and
Vullikanti, 2013; Halloran et al., 2008; Eubank et al., 2004;
Germann et al., 2006; Chen et al., 2021]—in order to evaluate
the benefits of different interventions, and find most effective
ones.

We refer to the problem of designing an intervention to
minimize the number of infections as EPICONTROL (note
that this is a very general and complex problem, and we
only study a very specific form of the problem, which is de-
fined formally in Section 2). Such epidemic analyses im-
plicitly try to find near-optimal solutions (or solutions better
than current policies) to EPICONTROL to understand (a) how
much benefit they can provide, or (b) structural properties
of near-optimal solutions, which can give insights for more
implementable policies, e.g., [Medlock and Galvani, 2009;
Chen et al., 2021; Sambaturu et al., 2020]. We note that
though the problem, in reality, is much more complex than
the simplified version we study, even that is open, in general
networks and disease model, making this a natural starting
point.

Near-optimal solutions to EPICONTROL in models based
on differential equations can be computed by local search
methods, as in [Medlock and Galvani, 2009]. However, solv-
ing the EPICONTROL problem in network or agent based
models is very hard [Eubank et al., 2006; Hayrapetyan et
al., 2005]. A number of heuristics have been considered,
e.g., prioritizing based on degree, centrality, or spectral prop-
erties e.g., [Cohen et al., 2003; Miller and Hyman, 2007;
Saha et al., 2015; Chen et al., 2021], but it is possible to
show that they have Ω(n) worst case bounds, in general,
where n is the number of nodes in the network (we summa-
rize other related work in Section 6). An approach that has
been effective for some versions of the problem is using linear
programming (LP) and randomized rounding [Hayrapetyan
et al., 2005] (for the special case where the transmission
probability is 1). This approach, combined with the sam-
ple average approximation (SAA) technique [Kleywegt et
al., 2002] (which is a powerful tool from stochastic opti-
mization, and reduces the problem to solving a determin-
istic problem on a set of samples) has been used for han-
dling the more realistic regime of EPICONTROL with trans-
mission probability less than 1 [Sambaturu et al., 2020;
Babay et al., 2022]. [Babay et al., 2022] obtain the first rigor-
ous approximation bounds for some settings; [Sambaturu et
al., 2020] show that this approach works well in practice.

However, such LP based approaches (which use standard
solvers, such as Gurobi) only scale to small county-sized net-
works (with up to 105 nodes). To put this in perspective, the
CDC Scenario Hub models run on state level network based
models with millions of nodes. Further, such studies involve
large experimental designs (due to the number of parameters),



Method Runtime Space
SAAROUND [Sambaturu et
al., 2020]

O((n + nM)2.5) O((n + nM)mM)

MWUROUND Õ(ϵ−2nmM) O(nM + mM)

MWUROUND-SCALABLE Õ(ϵ−2nmq) O(m + nM)

Table 1: Runtime and space requirements of the different algorithms (see Table 2 for definitions
of these quantities). We note that the space for MWUROUND can be improved by a factor of M by
using disk storage.

which requires solving intervention design problems on thou-
sands of network models. Therefore, algorithms which can
scale to networks with millions of nodes are necessary for
supporting such policy analyses.
Key contributions: We design algorithms MWUROUND
and MWUROUND-SCALABLE for finding near-optimal vac-
cination strategies in networked SIR models in large networks
with hundreds of millions of nodes (Section 3); see summary
in Table 1. Our algorithms adapt the multiplicative weights
update (MWU) [Arora et al., 2012] to run the sample average
approximation and LP rounding steps of [Sambaturu et al.,
2020]. More specifically,
• We show that our problem can be reduced to a covering

type problem, for which prior MWU based algorithms ex-
ist [Arora et al., 2012; Fleischer, 2000]; we show that by
exploiting the problem structure, we can get an improve-
ment of more than a factor of M (the number of samples)
over the standard use of MWU (Section 3). This also im-
proves both the running time and space of SAAROUND by
more than a factor of mM—this is many orders of magni-
tude in massive networks.

• We design a more scalable algorithm MWUROUND-
SCALABLE, by running the MWU computations on ran-
dom samples computed on-the-fly, leading to almost a fac-
tor M improvement in running time, and a factor M im-
provement in space. This allows MWUROUND-SCALABLE
to run on national scale networks.

• We show that our approach can be extended to the
FAIREPICONTROL problem, which incorporates fairness
constraints with respect to the budget. Our results show
that such fairness constraints have a significant impact on
epidemic outcomes.

These performance gains (runtime and memory) are achieved
without compromising on the approximation quality. In Sec-
tion 5, we present a detailed experimental evaluation of the
proposed algorithms on a number of real-world and synthetic
networks; the largest is a country-scale contact network con-
taining over 334M nodes. Though the version of EPICON-
TROL we consider is admittedly the simplest possible (which
itself has not been fully resolved), e.g., compared with other
models in [CDC, 2021], our results show that the sample av-
erage approximation, linear programming and rounding, and
MWU techniques can help in scaling interventions in net-
worked SIR models.

The supplementary information, including proofs and fur-
ther details, can be found in the full version 1.

2 Preliminaries
Let G = (V,E) be a contact network, where V is the set of
people or nodes, and e = (u, v) ∈ E when nodes u, v ∈ V

1Link to full version: https://tinyurl.com/mwuroundfullversion

Notation Definition
G = (V,E) Contact network
S Set of sources of infection
p transmission probability
H ′

j =
(VH′

j
, EH′

j
)

A sampled graph of G

xu Indicator for node u getting vaccinated
yvj Indicator for node v getting infected in

sampled graph H ′
j

M Number of sampled graphs
X Set of vaccinated nodes
#infections(X) Number of infections if set X is vacci-

nated
B Number of vaccinations
Hj =
(VHj , EHj )

Augmented sampled graph

a(u, j) Copy of node u, referred to as a stub, at-
tached to u in Hj

A(j) Set of stub nodes in Hj

Pv,j Set of paths from S to stub v = a(u, j)
in Hj

Pj Set of paths from S to all stubs in A(j)
P =

⋃
j∈[M ] Pj , i.e., set of all paths

ℓ(u) Length of node u
ℓ(v) for v =
a(u, j)

Length of a stub node a(u, j)

ℓ(P ) for P ∈ P Sum of lengths of nodes (including stub
node) in path P

z(P ) Flow on path P
z Vector of flow variables

Table 2: Summary of notation: Preliminaries.

come into direct contact. Let |V | = n and |E| = m. Let us
assume the following simple SIR model of disease spread.

SIR Epidemic model on networks. An agent based SIR
model of disease spread can be viewed as a diffusion pro-
cess on a network [Marathe and Vullikanti, 2013; Halloran
et al., 2008]. Each node in the network is in one of the fol-
lowing three states: Susceptible (S), Infectious (I), or Recov-
ered/Removed (R). In its simplest form, we have a discrete
time model, and in each time step, an infected node spreads
infection to each of its susceptible neighbors with a proba-
bility p — called transmission probability. An infected node
recovers after its infectious duration (and doesn’t get infected
after that). We assume that the disease starts at a fixed set
of externally infected nodes S ⊆ V and |S| = k (our re-
sults extend to more general starting conditions, e.g., a ran-
dom source).
We assume that interventions have 100% efficacy. Let
#infections(X) denote the number of infections that result if
set X of nodes is vaccinated; this is a random variable, and
our goal is to minimize E[#infections(X)].
EPICONTROL problem:
Instance. Given a contact network G = (V,E), a simple SIR
model of disease spread, a fixed set of sources of infection S
where |S| = k, and a budget B on the number of interven-
tions.
Goal. Find a set of nodes X ⊆ V such that |X| ≤ B and
the expected number of infections E[#infections(X)] is min-
imized.

Our results extend to more general settings with non-

https://tinyurl.com/mwuroundfullversion


uniform transmission probabilities, and other starting condi-
tions, such as random sources. However, the EPICONTROL
stated above is admittedly much simpler than the ones that
need to be considered in public health analyses, e.g., requir-
ing adaptive interventions, which have limited efficacy, and
with a lot of uncertainty in the model.

Next, we consider fairness with respect to the budget. We
have a partition of V into groups V1, . . . , Vc, and a budget Bi

for each group (e.g.,proportional to the size of each Vi).
FAIREPICONTROL problem:
Instance. Given a contact network G = (V,E), a simple SIR
model of disease spread, a fixed set of sources of infection S
where |S| = k, a partition of V = ∪c

i=1Vi, and a budget Bi

for each group Vi.
Goal. Find a set of nodes Xi ⊆ Vi such that |Xi| ≤
Bi, for each i, and the expected number of infections
E[#infections(X1, . . . ,Xc)] is minimized.

Note that there are many other more complex fairness mod-
els [Barocas et al., 2019], but the EPICONTROL is challeng-
ing even in the simplest setting, e.g., [Dinitz et al., 2022].

2.1 SAA based algorithm
We briefly summarize the stochastic optimization based algo-
rithm of [Sambaturu et al., 2020], referred to as SAAROUND,
which is our starting point. It involves the following steps (we
only give a short description here, and refer to [Sambaturu et
al., 2020] for details).

• Construct a sampled graph H ′
j = (VH′

j
, EH′

j
), for j =

1, . . . ,M , by picking each edge e ∈ E to be in EH′
j

with
a probability p.

• Solve the following linear program (LPsaa):
min 1

M

∑
j

∑
v yvj , subject to: (1) ∀j, ∀u ∈ V : yuj ≤

1−xu, (2) ∀j, ∀u ∈ V, (w, u) ∈ Ej : yuj ≥ ywj −xu,
(3) ∀s ∈ S : ysj = 1, (4)

∑
u∈V xu ≤ B (5)

All variables ∈ [0, 1]

• Let x, y be the optimal fractional solution to
LPsaa. For each v, set Xv = 1 with probability
min{1, 2xv log(4nMN)}, where N is the maximum
number of paths from S to any node v in H ′

j .

• X = {v : Xv = 1} is the set of nodes vaccinated.

[Sambaturu et al., 2020] show that using M = Ω(n2 log n)
samples, the above approach gives a bicrteria approximation,
vaccinating O(log(4nMN)B), while ensuring that the ex-
pected number of infections is at most six times the optimal.
Solving the LP in SAAROUND is the main bottleneck, as it has
n+ nM variables and

∑
j |Ej | constraints—they report that

this only scales to contact networks with up to 105 nodes.

3 Algorithm
We improve the approach of [Sambaturu et al., 2020] by by-
passing the need to use a solver to directly solve the LP. In-
stead, we adapt the multiplicative weights update technique
[Arora et al., 2012] to find a near-optimal solution to the LP.
It will be easier to present the LP in a slightly different form.
Let yvj be an indicator whether the node v gets infected in
the sampled outcome H ′

j . Let P ′
v be the set of paths from S

to node v in any outcome H ′
j for j ∈ [M ].

(LPpath) ZLP = min
1

M

∑
j

∑
v∈VH′

j

yvj s.t. (1)

∀v ∈ VH′
j
\ S, ∀P ∈ P ′

v ,
∑
u∈P

xu + yvj ≥ 1 (2)∑
u∈V

xu ≤ B; xu, yvj ∈ [0, 1] (3)

By adding up the constraints for each edge of a path of
LPsaa, it can be verified that we get the constraint (2) of
LPpath, which is summarized below.
Observation 1. The above LP is equivalent to LPsaa.
Main ideas and steps.
1. Lagrangian multiplier for budget: The dual of LPpath

is complicated due to a negative coefficient associated with
the budget constraint (3). We simplify it by changing the ob-
jective to 1

M

∑
j

∑
v∈VH′

j

yvj + λ
∑

u∈V xu, with the multi-

plier λ for the cost of the solution. The budget constraint is
dropped; we refer to this LP as LPLM . This simplifies the
resulting LP, since it only has covering constraints. As λ in-
creases,

∑
u xu will decrease in the optimal solution. Since

values for λ are not known a priori, a binary search can be
employed to find a suitable value λ′ such that

∑
u xu ≤ B,

which is done in Algorithm LSEARCH-SAA. The x′, y′ val-
ues returned by Algorithm 1 for λ′ provides an approximate
solution to LPsaa.
2. Constructing augmented sampled graphs. For sim-
plifying the presentation, we construct M sampled graphs
Hj = (VHj

, EHj
) in the following manner: Hj is initially

the same as H ′
j , constructed as in the first step of SAAROUND.

Let A(j) = {a(u, j) : u ∈ VH′
j
− S}, where a(u, j) denotes

a copy of node u in Hj , and is referred to as a stub. Let
A =

⋃
j∈[M ] A(j) be set of all stubs. Each stub a(u, j) is

attached to u by an edge (u, a(u, j)). Overloading the defini-
tions, let Pv,j denote the set of paths from S to a stub node
v = a(u, j) ∈ A(j) in Hj . Let Pj =

⋃
v∈A(j) Pv,j and

P =
⋃

j∈[M ] Pj .
3. Variables and costs. We associate a length to each node
u ∈ (V − S)

⋃
A denoted by ℓ(u). For a node u ∈ V ,

ℓ(u) will correspond to the variable xu, while for a node v =
a(u, j) ∈ A, ℓ(v) will correspond to the variable yuj . The
length of any path in P ∈ P is given by the sum of lengths of
nodes on this path. Let ℓ = ⟨ℓ(u) : u ∈ V

⋃
A⟩ denote the

vector of length variables. Let c(u) = λ for u ∈ V \S denote
its capacity, whereas c(u) = 0 for u ∈ S. Let c(v) = 1

M for
v = a(u, j) ∈ A denote the capacity of a stub v. We will
keep track of flows on the network; let z(P ) denote the flow
on the path P ∈ P . Let z = ⟨z(P ) : P ∈ P⟩ denote the
vector of flow variables.
4. Simplified LP. The above discussion reduces our LP to the
following:

LPℓ(λ) : ZLR(λ) = min
∑
u

ℓ(u)c(u) s.t.

∀P ∈ P :
∑

u∈P−S

ℓ(u) ≥ 1; ∀u : ℓ(u) ≥ 0



Algorithm 1 MWUSAA (λ)
Input: parameter λ (we assume the network G = (V,E), S, sub-
graphs H1, . . . , HM , ϵ are fixed, δ = (1 + ϵ)((1 + ϵ)L)−

1
ϵ where

L is the max. number of nodes on any path in G
Output: ℓ

1: Initialize ℓ(u) = δ for all u ∈ (V − S) ∪A,
z(P ) = 0 for all P ∈ P .

2: Set c(u) = λ for u ∈ V − S and c(v) = 1/M for v ∈ A
3: for r = 1 to ⌊log1+ϵ

1+ϵ
δ
⌋ do

4: for j = 1 to M do
5: while there exists path P ∈ Pj such that ℓ(P ) < δ(1+ϵ)r

do
6: Let c(P ) = minu∈P c(u)
7: Let d ≥ 1 be the smallest integer such that∑

v∈P−S ℓ(v)
(
1 + ϵc(P )

c(v)

)d

≥ δ(1 + ϵ)r

8: z(P )← z(P ) + d · c(P )

9: For v ∈ P − S, ℓ(v)← ℓ(v)
(
1 + ϵc(P )

c(v)

)d

10: end while
11: end for
12: end for
13: for each v ∈ V − S, ℓ(v) = ℓ(v)

ℓmax
where ℓmax =

maxv∈V \S ℓ(v)
14: Return ℓ

Figure 1: Example showing two samples H1, H2, and stub nodes
a(v, j).

5. Incremental computation of ℓ(·). Algorithm MWUSAA
computes an approximate solution to LPℓ, using the mul-
tiplicative weight update technique [Arora et al., 2012]. It
starts by initializing the length ℓ(v) = δ for each u ∈
(V \ S)

⋃
A, where δ has a very small value determined

in the analysis. The ℓ(v) for v ∈ S is initialized to zero.
Also, for each u ∈ V − S, we set a capacity c(v) = λ,
whereas for v ∈ A the capacity c(v) = 1

M . In each iter-
ation r of the algorithm, and for each augmented sampled
graph Hj , we update the lengths of nodes on the paths in
Pj corresponding to an augmented sampled graph Hj un-
til all the paths in Pj have length at least δ(1 + ϵ)r — this
value is referred to as threshold(r) for the rth iteration.
The algorithm terminates after rmax = ⌊log1+ϵ

1+ϵ
δ ⌋ itera-

tions. Since, the threshold(rmax) for the rmax iteration is
in [log1+ϵ

1+ϵ
δ − 1, log1+ϵ

1+ϵ
δ ], we are guaranteed that, at

termination, all paths in P are of length in range [1, 1 + ϵ],
thereby satisfying the constraints of the linear program.
Subroutine LSEARCH-SAA(M,B): starting with λ = 1

MB ,
use binary search to find largest λ that has

∑
u∈V \S ℓ(u) ≤

B: compute ℓ = MWUSAA(λ), and increase λ if the condi-
tion on

∑
u ℓ(u) is still satisfied (see full version for details).

Algorithm 2 MWUROUND(G,S,M,B, p, ϵ)

1: ℓ = LSEARCH-SAA(M, B)
2: Using the randomized rounding in [Sambaturu et al., 2020],

round the fractional solution ℓ to an integral solution X
3: X = {u : u ∈ V \ S and X(u) = 1} is the set of nodes picked

for intervention
4: return X

Analysis. We show below that Algorithm MWUSAA gives
an approximate solution to LPℓ(λ). Theorem 1 summarizes
its running time. Note that this is a factor M better than di-
rectly using the MWU technique of [Fleischer, 2000] (see full
version).

Theorem 1. MWUSAA can be implemented using
O(n log1+ϵ

1+ϵ
δ ) shortest path computations, and has a total

running time of Õ(ϵ−2nmM).

3.1 Incorporating fairness
We briefly mention how to adapt our approach to solve
FAIREPICONTROL. We now have a separate lagrangian
multiplier λi for group Vi, and the objective becomes
1
M

∑
j

∑
v∈VH′

j

yvj +
∑c

i=1 λi

∑
u∈Vi

xu. As in Algorithm

MWUSAA, we search over the space of the λi’s, till the bud-
gets are all within the required bounds.

4 Algorithm MWUROUND-SCALABLE

The main bottleneck in MWUSAA is that in each iteration,
the algorithm has to iterate over all the M sampled graphs,
which affects its memory efficiency (as it needs to stores all
the M sampled graphs in memory). This can be handled
by storing the sampled graphs in files, so only one sampled
graph is loaded in the memory at any time, but this affects
the total runtime. Our next algorithm addresses these issues.

Main ideas in MWUSCALABLE.
1. Generate random stubs. The intuition behind this
approach is that the actual samples do not matter, as long
as we are able to generate the paths that would appear in
these samples in each iteration of the algorithm. Let the
probability that u is reachable from S in a sampled graph
be denoted by sp(u), and is referred to as stub probability.
This can be estimated from our sampling process as follows:
sp(u) ≈ reachable(u,S,M)

M , where reachable(u, S,M)
denotes the number of samples in the M sampled graphs
in which u is reachable from sources S. At the start of
MWUSCALABLE, we generate the random set of stubs
Asp(u) for each node u as follows: for each u ∈ V and
j ∈ 1, · · · ,M , the stub a(u, j) is generated with probability
sp(u). Let Asp =

⋃
u Asp(u). The initial length ℓ(v) = δ

for each v ∈ Asp.

2. Generate sampled graphs on the fly. In every
iteration r, we generate only q ≪ M sampled graphs,
H ′

j = (VH′
j
, EH′

j
) for j ∈ [1, q]. The algorithm then works

on one sampled graph at a time. Therefore, at any time, the
algorithm needs to store only one sampled graph in memory.



3. Phases and iterations of the algorithm. In each
phase, q iterations are performed. In each iteration q of
phase r, the algorithm generates a random sampled graph
H ′

j . Then, independently attaches a random stub for each
node reachable from sources in H ′

j to form Hj . Then, it
iteratively updates lengths of paths in the sampled graph
Hj until there is no path of length less than threshold(r).
The algorithm terminates after rmax = ⌊log1+ϵ

1+ϵ
δ ⌋ phases

(same as MWUSAA). The pseudocode of this algorithm is
provided in the full version.

4. Computation of y values. Some of the ℓ(u) for u ∈ V
could have a value in [1, 1 + ϵ]. Therefore, to make the so-
lution x feasible, we scale ℓ(u) = ℓ(u)

ℓmax
for u ∈ V where

ℓmax = maxu∈V ℓ(u). Since the sampled graphs Hr gener-
ated in each iteration are a combination of paths from many
sampled graphs, the ℓ(v) variables for v ∈ Asp will not be
meaningful. Therefore, we use the ℓ(u) for u ∈ V obtained
after scaling, and re-compute ℓ(v) (corresponding to yvj vari-
ables) for v = a(u, j) as follows: for each sampled graph H ′

j ,
find a shortest path tree of H ′

j with S as sources using ℓ(u)
for u ∈ V \ S as weights. For each u ∈ VH′

j
, let Puj be a

shortest path to node u that has length ℓ(Puj). Then, for the
stub v = a(u, j), we set ℓ(v) = min{0, 1− ℓ(Puj)}.
Lemma 1. The solution ℓ computed by MWUSCALABLE is
a feasible solution to LPℓ(λ).

The search over λ values is an embarrassingly parallel task,
as these computations are independent of each other. There-
fore, to further scale this approach to very large networks, we
implement a parallel version of this algorithm.

5 Experiments
We address the following questions in our experiments:
1. Performance. What are the empirical guarantees of our
methods? How does the performance of our approach com-
pare to the baselines for this problem? When to choose our
approach instead of SAAROUND or vice-versa?
2. Impact of parameters. How do the runtime and solu-
tion quality of our methods vary with changes in transmission
probability p and error parameter ϵ?
3. Scaling: How does the runtime of our approach grow with
that of size of the network? Does our approach scale to net-
works corresponding to state- and country-level populations?
4. Parallelism: What is the throughput of our parallel ap-
proach? How does the runtime vary with the number of
threads used?
5. Cost of fairness: What is the cost of incorporating fairness
constraints?

5.1 Datasets and Methods
In our experiments, we considered networks of different
classes and varying sizes (Table 3) for evaluating the per-
formance and scalability of our approach—these range from
random networks (PA1) based on the preferential attachment
model [Barabási and Albert, 1999], collaboration networks,
such as CA-GrQc and CA-HepTh [Leskovec et al., 2007]),
synthetic contact networks for Montgomery county VA and
Portland city from [Sambaturu et al., 2020], and for Virginia

0.04 0.06 0.08 0.10 0.12 0.14

ε

1.0

1.1

1.2

1.3

1.4

1.5

1.6

ap
pr
ox
im

at
io
n
ra
ti
o

LSearch-Saa (PA1)

LSearch-Scalable (PA1)

LSearch-Saa (CA-GrQc)

LSearch-Scalable(CA-GrQc)

0.06 0.08 0.10 0.12 0.14

tranmission prob. p

1.00

1.02

1.04

1.06

1.08

1.10

1.12

ap
pr

ox
im

at
io

n
ra

ti
o

PA1

CA-GrQc

CA-HepTh

Figure 2: (Left) Comparison of approximation ratios of fractional solutions obtained
by MWUROUND and MWUROUND-SCALABLE. B = 50. (Right) Impact of transmis-
sion probability p on approximation ratio of fractional solution obtained by LSEARCH-
SCALABLE. The value of ϵ is set to 0.015.

from [Chen et al., 2021], and networks Regional and US-size
— which are generated by connecting many copies (5 and 44
respectively) of the Virginia network using random edges, in
order to study scaling.

Dataset Nodes Edges
Preferential1 (PA1) 1000 1996
CA-GrQc 5242 14496
CA-HepTh 9877 25998
Montgomery 75457 648667
Portland 2336693 8307767
Virginia 7605430 165533061
Regional 35024319 2068241728
US-size 334638920 32740251903

Table 3: Description of datasets

Methods and baselines. In our experiments, we consider the
following methods listed below: (1) SAAROUND [Sambaturu
et al., 2020], (2) DEGREE: select top B nodes in V \S for in-
tervention, (3) NO-ACTION: Baseline with no interventions,
(4) MWUROUND, and (5) MWUROUND-SCALABLE and its
parallel implementation.

5.2 Performance.
The full version provides details of performance measures
used in our experiments.

Approximation ratio of fractional solutions. Figure 2
(Left) shows that the approximation ratio of the fractional
solution ℓ obtained by MWUROUND is within 1.2, even for
ϵ = 0.15. In comparison, the approximation ratio of the frac-
tional solution obtained by MWUROUND-SCALABLE (for
q = 1) is at most 1.3 (Figure 2) (Left) for ϵ = 0.04. We
note that the approximation ratio goes up to 1.7 for ϵ = 0.15,
which is within a factor of (1 + 5ϵ).
Figure 2 (Right) shows that MWUROUND-SCALABLE has
significantly better performance for small values of ϵ. The
performance of MWUROUND-SCALABLE is better on higher
values of p on the collaboration networks. The approximation
ratio of the fractional solution obtained by MWUROUND-
SCALABLE is at most 1.12 × the optimal for all the p values
and over all the networks considered in this experiment.

5.3 Runtime performance.
Figure 3 (Left) shows that for smaller values of ϵ, the run-
time of MWUROUND is about 1

50× that of MWUROUND-
SCALABLE.

Figure 3 (Right) presents the runtime performance (for
a fixed λ) of MWUROUND-SCALABLE on various net-
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Figure 3: (Left) Runtime comparison of MWUROUND and MWUROUND-
SCALABLE. (Right) Runtime of MWUROUND-SCALABLE for a fixed λ and a medium
attack rate (10-20% infections in population)
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Figure 4: (Left) Number of λ values processed per hour by the parallel implementa-
tion of MWUROUND-SCALABLE on the Virginia network varying the budget. (Right)
Strong scaling study on parallel implementation of MWUROUND-SCALABLE for the
Virginia network. Varying the budget shows the input dependent behavior of the algo-
rithm.

works. The number of λ values considered by MWUROUND-
SCALABLE algorithm determines the runtime of the algo-
rithm. The depth of λ search decreases with the increase in
the budget B. MWUROUND-SCALABLE ran within a few
minutes (< 15 minutes averaged over a few runs), for a fixed
λ value, on the Portland network for problem, whereas it ran
in just about 2 days on the US-size network which has over
334 million nodes and 32 billion edges — for instances with
a high attack rate (> 40% population infected).

5.4 Parallel Implementation
Figure 4 (Right) shows that our parallel implementation
scales reasonably well (2.98× speedup) when going from 2
to 16 threads for B = 400. After 16 threads performance
started to degrade. Figure 4 shows how the throughput of
MWUROUND-SCALABLE changes when increasing the num-
ber of threads and varying the budget on the Virginia network.
The peak throughput observed, is between 16 and 32 threads,
for our computing platform. At its maximum throughput,
MWUROUND-SCALABLE scales graciously with the size of
the network.

5.5 Cost of incorporating fairness.
The nodes in Montgomery network are divided into two age
groups: (i) nodes with age at most 19, and (ii) nodes with
age over 19. We consider two settings: (i) without fairness:
budget B is allotted to all nodes, and (ii) with fairness: budget
B is allotted to each group as a proportion of its size. Figure
5 shows the ratio of the expected number of infections in a
fair allocation to that without fairness—observe that this ratio
can be as high as 1.4, which is the price of fairness.

5.6 Discussion.
The budget violation (ratio of interventions used to B) of our
algorithms is within 1.7 for ϵ = 0.15. Further, MWUROUND-
SCALABLE outperforms the degree baseline. These results
are shown in the full version.

Figure 5: Cost of incorporating fairness. Montgomery.

MWUROUND-SCALABLE is faster than the SAAROUND
which uses the LP solver for networks with more than 104

nodes. These runtimes can be improved using our parallel im-
plementation. Both, MWUROUND-SCALABLE and its paral-
lel version, scale well for networks larger than Portland such
as Virginia, Regional, and even the US-size network which
has over 334 million nodes and 32 billion edges.

6 Related work
There is a huge amount of literature on interventions for epi-
demic models, as mentioned in Section 1. Due to the limited
space, we only discuss network based models [Marathe and
Vullikanti, 2013; Halloran et al., 2008; Lofgren et al., 2014;
Eubank et al., 2004; Germann et al., 2006], which is our focus
here; see full version for details on other models and related
work. Such models have been found to be more powerful and
useful for epidemic spread on large heterogeneous popula-
tions, where the complete mixing assumptions of differential
equation models are not valid. However, these are harder to
set up, simulate and optimize over.
Therefore, a number of heuristics have been proposed, which
prioritize vaccination based on degree, centrality, or spectral
properties e.g., [Cohen et al., 2003; Miller and Hyman, 2007;
Saha et al., 2015; Minutoli et al., 2020]. These do not directly
give rigorous worst case guarantees; however, some of them
can be computed very efficiently. The influence based ap-
proach of [Minutoli et al., 2020] has been parallelized using
clever hill climbing techniques.

7 Conclusions
Our algorithms MWUROUND-SCALABLE and its parallel
implementation are the first to give near-optimal vaccina-
tion strategies and minimize the expected number of infec-
tions in SIR models on US-scale networks. The reduced
time and memory requirements result from the multiplicative
weights update method adapted for percolation processes—
in contrast, prior methods, which used the state-of-the-art LP
solvers, were not able to scale beyond county-scale contact
networks. Our work leads to several interesting open prob-
lems. Further improving the performance for US-scale net-
works is a natural question. In this paper we have focused
on non-adaptive interventions; extending this to more general
interventions is a challenging open problem. Finally, uncer-
tainty is an important component of all such models. The
SAA technique is easily amenable to handling some models
of uncertainty. Extending our work to incorporate uncertainty
is another important problem.
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