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Given an input stream S of size N, a ¢-heavy hitter is an item that occurs at least N times in S. The problem
of finding heavy-hitters is extensively studied in the database literature.

We study a real-time heavy-hitters variant in which an element must be reported shortly after we see its
T = ¢N-th occurrence (and hence it becomes a heavy hitter). We call this the Timely Event Detection (TED)
Problem. The TED problem models the needs of many real-world monitoring systems, which demand accurate
(i.e., no false negatives) and timely reporting of all events from large, high-speed streams with a low reporting
threshold (high sensitivity).

Like the classic heavy-hitters problem, solving the TED problem without false-positives requires large space
(Q(N) words). Thus in-RAM heavy-hitters algorithms typically sacrifice accuracy (i.e., allow false positives),
sensitivity, or timeliness (i.e., use multiple passes).

We show how to adapt heavy-hitters algorithms to external memory to solve the TED problem on large
high-speed streams while guaranteeing accuracy, sensitivity, and timeliness. Our data structures are limited
only by I/O-bandwidth (not latency) and support a tunable trade-off between reporting delay and I/O overhead.
With a small bounded reporting delay, our algorithms incur only a logarithmic I/O overhead.

We implement and validate our data structures empirically using the Firehose streaming benchmark. Multi-
threaded versions of our structures can scale to process 11M observations per second before becoming CPU
bound. In comparison, a naive adaptation of the standard heavy-hitters algorithm to external memory would
be limited by the storage device’s random I/O throughput, i.e., ~ 100K observations per second.
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1 INTRODUCTION

Real-time monitoring of high-rate data streams, with the goal of detecting and preventing malicious
events, is a critical component of defense systems for cybersecurity [47, 59, 62] as well as for
physical systems, e.g., for water or power distribution [8, 45, 48]. In such a monitoring system,
the stream elements represent the changes to the state of the system. Each detected/reported
event could trigger an intervention. Analysts use more specialized tools to gauge the actual threat
level. Newer systems are even beginning to take defensive actions, such as blocking a remote
host automatically based on detected events [40, 51]. Accuracy (i.e., few false-positives and no
false-negatives) and timeliness of event detection are essential to these systems.

Central to these applications is the problem of timely reporting of heavy hitters. In the heavy-
hitters problem, we are given a stream S = (s3,...,sn) and a reporting threshold T = ¢N, and
we must report all elements that occur at least T times in S. In the preliminary version of this
paper [58], we introduced the real-time version of the heavy-hitters problem called the Timely
Event Detection (TED) problem. In the TED problem, each heavy hitter must be reported soon after
its Tth occurrence, where the acceptable reporting delay is defined by the application.

In network-security monitoring applications, N is huge and T can be very small. This is because
anomalies in network streams are often small-sized events that develop slowly, appearing normal
in the midst of large amounts of legitimate traffic [49, 61]. As an example of the demands placed on
event-detection systems, the US Department of Defense (DoD) and Sandia National Laboratories
developed the Firehose streaming benchmark suite [4, 5] to measure the performance of TED
algorithms. In the FireHose benchmark, the reporting threshold is preset to the representative value
of T =24,ie,¢$ =24/N =o(1).

The classic streaming algorithms for reporting heavy-hitters were designed assuming that only
an in-RAM data structure can keep up with high-speed streams. The challenge of detecting events
entirely within RAM has inspired a deep and beautiful literature on streaming algorithms and
database systems [3, 17, 19, 20, 22, 23, 30, 35-38, 46, 50].

However, streaming algorithms sacrifice accuracy in order to get solutions that can fit in RAM.
First, most streaming heavy-hitter algorithms only work for high reporting thresholds, e.g., T is
a constant fraction of N. Second, they allow false positives. Third, many streaming algorithms
perform some kind of sampling, which leads to false negatives. These inaccuracies are not the fault
of the streaming algorithms. They are an inherent limitation when you have a large stream and
a much smaller RAM size. See Section 9 for a motivating application, where any of these three
limitations would lead to failure.

Combining streaming and external memory. This work challenges the assumption that only
in-RAM data structures can keep up with real-world streams and shows that by using modern
storage devices and building upon recent advances in external-memory dictionaries, we can design
on-disk data structures that can process millions of stream events per second.

In particular, we present algorithms in the external-memory model that support both exact and
approximate reporting of heavy hitters. In the external-memory model [2], RAM has fixed size M,
and accessing it is free. The disk has unbounded size and accessing it costs an I/O. An I/O transfers
data between RAM and disk in blocks of size B. The algorithmic advantage of external memory is
that there is unbounded storage. The algorithmic challenge is that I/Os are expensive.
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External-memory enables us to overcome longstanding limitations in accuracy (i.e. no false-
positives or negatives) and sensitivity (i.e. small ¢) while maintaining timeliness in event reporting,
but necessitates developing new heavy-hitters algorithms that use I/Os efficiently.

Our contributions. In this paper, we present I/O-efficient external-memory algorithms that sup-
port both exact and approximate reporting of heavy hitters. Specifically, our TED algorithms can
be generalized to solve the (¢, ¢)-heavy hitters problem—where every item that occurs > ¢N
times must be reported, no item that occurs < (¢ — ¢) N times should be reported. Items with count
in between (¢ — €) N and §N may be reported and these are false positives.

The present paper serves as the journal version for [58], and it also contains technical im-
provements. Our first contribution is theoretical. We include proofs for all lemmas and theorems,
unlike [58], which, for space reasons, omitted essentially all proofs. Explaining and proving these
results has more than doubled the length of the paper, and thus includes results that are indeed
reproducible. Furthermore, we generalize the results for power-law streams presented in [58] by
specifying the precise relationship between the reporting threshold ¢ and the power-law exponent
0; for details see Section 5.

Our second contribution is experimental. We include all of the experiments from [58] along
with additional ones. In particular, we give empirical analysis of the birthtime versus lifetime of
items in the active-set generator of the Firehose streaming benchmark [4, 5]. Also, in the interest
of reproducibility, we have included pseudocode for all data structures and algorithms.

Finally, we provide detailed explanation of how the constraints of the TED problem are motivated
from practice. In particular, in Section 9, we discuss the national-security application that moti-
vates the Firehose benchmark [4, 5], and how the TED problem captures the main computational
bottleneck of this application.

Timeliness, not ingestion, is the challenge in external memory. Stream ingestion is not the
bottleneck for on-disk data structures. Optimal external-memory (EM) dictionaries (including
write-optimized dictionaries such as B®-trees [11, 13, 14, 26], COLAs [12], xDicts [25], buffered
repository trees [27], write-optimized skip lists [16], log structured merge trees [56], and optimal
external-memory hash tables [32, 43]) can ingest new observations at a significant fraction of disk
bandwidth. The fastest can index using O(% log %) I/Os per stream item, which is far less than one
I/O per item. In practice, this means that even a system with just a single disk can ingest hundreds
of thousands to millions of items per second.

For example, prior work at SuperComputing 2017 showed that a single computer can easily
maintain an on-disk B®-tree [26] index of all connections on a 600 gigabit/sec network [10]. The
system could efficiently answer offline queries. What the system could not do was detect events
online.

Existing external-memory data structures do not solve the TED problem because queries are too
slow. For example, consider a straw-man solution in which we use an external-memory dictionary
to implement the standard heavy-hitters algorithm, Misra Gries [54]. Since Misra-Gries performs
a query for each stream observation, this approach is bottlenecked on the dictionary searches.
Once the dictionary is larger than RAM, for a random stream, most queries will miss the cache and
require an I/O, and hence will be bottlenecked on the latency of the storage device.

In this paper, we show how to perform timely event detection for essentially the same cost as
simply inserting the data into a B*-tree or other optimal external-memory dictionary. Even so, we
manage to answer the standing heavy-hitter query for each new stream element.
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1.1 Results

In this paper, we present external-memory algorithms for the TED problem. We evaluate these
algorithms theoretically and empirically. In both cases, we show that these algorithms perform
much less than one I/O per query and are limited only by I/O bandwidth (not latency). Furthermore,
we show how to provide a tradeoff between reporting delay and I/O cost. We call these data
structures leveled external-memory reporting tables (LERTs).

We begin by formally defining an event that must be reported in the TED problem. Given a
stream S = (s, 82, . ..,SN), a ¢-heavy hitter is an element that occurs at least N times in S. The
heavy-hitters problem is to report all #-heavy-hitters in S.

In the TED problem, we say that there is a ¢p-event at time step t if stream element s; occurs
exactly [¢N] times in (s1, Sz, . . ., s¢) . Thus for each ¢-heavy hitter there is a single ¢-event, which
occurs when the element’s count reaches the reporting threshold T = [¢N]. In the TED problem,
the goal is to report ¢-events as soon as they occur.

Our first data structure, the Misra-Gries LERT, adapts the Misra-Gries heavy-hitter algorithm
to solve the TED problem in external-memory with immediate reporting. In particular, the
Misra-Gries LERT reports each ¢-event as soon as it occurs (no delay) at an amortized cost of
O((1/B) log(N/M)) 1/Os, for sufficiently large ¢. The guarantees of the Misra-Gries LERT hold for
any input distribution; see Corollary 1.

The Misra-Gries LERT serves as the basis of our main algorithms that support much smaller ¢,
but permit some delay in reporting. We define two types of delay: time stretch and count stretch.
We say an event-detection algorithm has time stretch 1 + « if each item s is reported at most aF;
time steps after s’s Tth occurrence, where F; is the number of time steps between s’s first and Tth
occurrences. We say that an event-detection algorithm has count stretch 1 + w, if each item is
reported before the item’s count reaches (1 + w)T.

We design a data structure, the time-stretch LERT, that solves the TED problem for any input
stream and any ¢ > 1/M with time stretch 1 + « at an amortized cost ofO(“TH% log 1]\\[—4) I/Os per
stream item. For constant «, this is asymptotically as fast as simply ingesting and indexing the
data [12, 26, 27]. The time-stretch LERT guarantees hold for any input distribution; see Corollary 2.

In our evaluations, the time-stretch LERT with stretch 2 can ingest at ~ 500K insertions/sec
using a single thread. We also observed that the average empirical time stretch is 43% smaller than
the theoretical upper bound.

Our count-stretch LERT is tailored to guarantee count-stretch on input stream distributions
where the count for each item is drawn from a power-law distribution. In particular, given an input
stream with item counts distributed according to a power-law with parameter 6 > 2, which is
the typical range [1, 17, 24, 31, 55], and parameters T and o, such that wT > % (%) ﬁ, we
show that the count-stretch LERT solves the TED problem with count stretch 1+ w at an amortized
I/O cost O(% log %) per stream item with high probability (w.h.p.). Thus, the count-stretch LERT
avoids expensive point queries, matching the ingestion rate of write-optimized data structures.
In our evaluations, we find that the count-stretch LERT with stretch 1.583 can ingest at * 1M
insertions/sec using a single thread. With multi-threading and de-amortization, the count-stretch
LERT scales to more than 11M insertions/sec, and the variance of the instantaneous throughput goes
down by several orders of magnitude relative to the amortized, single-threaded version; see Figure 9.
Moreover, the average empirical count stretch is 21% smaller than the theoretical upper bound.

Finally, we show how to modify the count-stretch LERT to support immediate reporting. We
call the resulting data structure the immediate-report LERT and show that it solves the TED

problem much faster than the Misra-Gries LERT for input streams with element counts drawn from
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power-law distributions; see Theorem 9 for the formal I/O cost. In our evaluation, we find that the
immediate-report LERT can ingest at = 500K insertions/sec using a single thread.

Additional Related Work

Heavy-hitter algorithms. The heavy-hitter problem has been extensively studied in the database
literature; we refer readers to the survey by Cormode and Hadjieleftheriou [33].

Two main strategies have been used: deterministic counter-based approaches [20, 37, 44, 50, 52,
54] and randomized sketch-based approaches [30, 34]. The first is based on the classic Misra and
Gries (MG) algorithm [54], which generalizes the Boyer-Moore majority finding algorithm [21].

Randomized sketch-based algorithms such as count-min sketch [34] maintain a small sketch of
the frequency vectors using compact hash functions.

More recent work has focused on generalizations of the heavy-hitters problem. Ting [60] con-
siders aggregating subset sums, rather than counts, and Ben-Basat et al. [9] generalize the heavy
hitter problem to sliding windows. Multiple researchers [53, 63, 64] have designed heavy-hitter
algorithms for detecting top flows in networking applications.

Database iceberg queries. The TED problem is related to the problem of answering iceberg
queries in databases [18, 39, 41, 42]. An iceberg query computes an aggregate function over some
database attribute and reports the values that are above some predetermined threshold. The main
distinctions between the two problems is: (a) iceberg queries are offline, i.e., performed on a static
dataset, and (b) the number of reported results in iceberg queries is usually small; while the number
of reported events can be large in the TED.

Database continuous queries. The TED problem is an instance of a continuous or standing
query over a database [6, 7, 29]. A continuous query, once issued, runs as the database is updated
through inserts and deletes. The system reports new query matches as the database is updated. In
TED, the database D consists of the items from the stream seen so far, and the continuous query
over D is whether there is an item with count exactly [¢N].

2 PRELIMINARIES

We formalize our model and review several building blocks of our data structures: the Misra-Gries
heavy-hitters algorithm [54], counting quotient filters (CQF) [57], and cascade filters (CF) [12].

TED problem and model. The TED problem is: given stream S = (s1, sz, ..., Sn), for each i, if
there is a ¢-event at time i, report s; before time j, such that the reporting delay, j — i, is within an
acceptable degree of tolerance. In the Misra-Gries LERT in Section 3.2, there is no reporting delay.
In the time-stretch LERT in Section 4, the reporting delay is dependent on the flow time of the item
(the time it takes for the item’s count to go from zero to T = ¢N), and in the count-stretch LERT
in Section 5.2, the reporting delay is count-dependent.

We measure time in terms of the number of stream observations. That is, in each time step, the
algorithm reads one stream observation, performs an arbitrary amount of computation and I/O,
and generates an arbitrary number of reports. We say all reports generated during the ith time step
occur at time i.

The Misra-Gries frequency estimator. The Misra-Gries (MG) algorithm estimates the frequency
of items in a stream. Given an estimation error ¢ and a stream S of N items from a universe U, the
MG algorithm uses a single pass over S to construct a table C with at most [1/¢] entries. Each table
entry is an item s € U with a count, denoted C[s]. For each s € U not in table C, let C[s] = 0.
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Let f; be the number of occurrences of item s in stream S. The MG algorithm guarantees that
Cls] < fs <C[s] +eNforalls € U.

MG initializes C to an empty table and processes items in the stream as described below. For

eachs; in S,

e If 5; € C, increment counter C|[s;].

o Ifs; ¢ Cand |C| < [1/€], insert s; into C. Set C[s;] « 1.

o If s; ¢ C and |C| = [1/¢], then for each x € C decrement C[x] and delete its entry if C[x]

becomes 0.

To see why this algorithm ensures that C[s] < f; < C[s] + ¢N for all s € U, note that a C[s] is
incremented only for an occurrence of s in S. Thus C[s] < f;. For the upper bound, whenever we
decrement C[s], then [1/¢] other items have their count decremented. This can happen at most
LN/[1/e + 1]] times. Thus, f; < C[s] + eN.

The MG algorithm can be used to solve the (¢, ¢)-heavy hitters problem as follows. Run the
MG algorithm on the stream with error parameter ¢. Then iterate over the set C and report any
item s with C[s] > (¢ — ¢)N.

For a frequency estimation error of ¢, Misra-Gries uses O([1/¢]) words of storage, assuming
each stream item and each count occupy O(1) words.

Analogous to the (¢, ¢)-heavy hitters problem, we define the approximate TED problem as:
report all ¢-events soon after they occur, do not report any item with count < (¢ — £) N. Reported
items with count in between are false positives.

Counting Quotient Filter. The counting quotient filter (CQF) [57] can be viewed as a hash table
based on Robin-Hood hashing [28]. The CQF consists of an array Q of 27 slots and a hash function h
mapping stream elements to p-bit integers, where p > g. Robin-Hood hashing is a variant of linear
probing in which we try to place an element a in slot h(a)/2P~9, but shift elements down when
there are collisions. Furthermore, Robin-Hood hashing maintains the invariant that, if h(a) < h(a’),
then a will be in an earlier slot than a’.

The CQF supports efficient insertions, queries, updates, and deletions, just like any Robin-Hood
hash table. Thus, it is straightforward to implement the Misra-Gries algorithm on top of a CQF, by
using the CQF to store the table C.

Cascade Filter. The cascade filter (CF) [15] is a write-optimized data structure based on the
CQF [57] and the COLA [12]. The CF consists of multiple levels with exponentially increasing
sizes where each level is a CQF. The first level Qp is in RAM and the rest are on SSD. There are
L =log,(N/M) + O(1) levels, where M is the size of RAM, N is the size of the dataset, and r is the
factor by which levels grow in size.

Since the cascade filter is also a map, we can use it as the basis for an EM Misra-Gries algorithm.
The total table size is N = ©(1/¢). The amortized I/O cost to update the table for each stream
element is O(% log, (ﬁ)) However, if we want to support immediate reporting in a CF, then a
query is triggered after each insert which costs O(log, (1/eM)) I/Os. Thus the overall algorithm is
bottlenecked on the queries performed for each stream element.

3 IMMEDIATE REPORTING

In this section, we first design an efficient external-memory version of the core Misra-Gries
frequency estimator and then extend our external-memory Misra-Gries algorithm to solve the TED
problem with immediate reporting.

When ¢ = 0(1/M), then simply running the standard Misra-Gries algorithm can result in a
cache miss for every stream element, incurring an amortized cost of Q(1) I/Os per element. Our
construction reduces this to O(3 log (7)), which is 0(1) when B = w(log (-;))-
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3.1 External-memory Misra-Gries

Our external-memory Misra-Gries data structure is a sequence of Misra-Gries tables, Cy, . .., Cr-1,
where L = 1+ [log,(1/(eM))] and r (> 1) is a parameter we set later. The size of the table C; at
level i is r'M, so the size of the last level is at least 1/e.

Each level acts as a Misra-Gries data structure. Level 0 receives its input from the stream. Level
i > 0 receives its input from level i — 1, the level above. Whenever the standard Misra-Gries
algorithm for the table C; at level i would decrement an item count, the external-memory MG data
structure decrements that item’s count by one on level i and sends one instance of that item to the
level below (i + 1). The decrements from the last level L are deleted.

The external-memory MG algorithm processes the input stream by inserting each item in the
stream into Cy. To insert an item x into level i, do the following:
e If x € C;, then increment C;[x].
o If x ¢ C;, and |C;| < r'M — 1, then C;[x] « 1.
e If x ¢ C; and |C;| = r'M, then, for each x’ in C;, decrement C;[x’]; remove x’ from C; if C;[x’]

becomes 0. If i < L — 1, recursively insert x” into Cj4;.

We call the process of decrementing the counts of all the items at level i and incrementing all
the corresponding item counts at level i + 1 a flush.

Lemma 1 shows that every prefix of levels Cy, . . ., C; in the external-memory MG data structure
is an MG frequency estimator, with the accuracy of the estimates increasing with j.

LEMMA 1. Let CA‘] [x] = 1::0 Ci[x] (where C;[x] = 0 ifx ¢ C;). Then, the following holds:
o Cj[x] < f < Ci[x] + (N/(r'M)), and,

o Croilx] < fi < Croalx] +eN.

Proor. Decrementing the count for an element x in level i < j and inserting it on the next level
does not change 6’] [x]. This means that 6’] [x] changes only when we insert an item x from the
input stream into Cy or when we decrement the count of an element in level j. Thus, as in the MG
algorithm, C;[x] is only incremented when x occurs in stream, and is decremented only when the
counts for 7/ M other elements are also decremented. The first inequality follows from this and the
MG analysis. The second inequality follows from the first, and the fact that r/~'M > 1/e. O

Thus, to report (¢, ¢)-heavy hitters (at the end of the stream), we can iterate over the sets C; and

report any element x with counter Cr1 [x] > (¢ —¢)N.
For the I/O analysis, we assume that each level of the external-memory MG structure is imple-
mented as a cascade filter [15].

LEMMA 2. Given ¢ > 1/N, the amortized I/O cost of insertion in the external-memory MG data
structure is O(Il3 log ﬁ)

Proor. A flush from level i to level i + 1 in a cascade filter is implemented by scanning both
both levels, which can be done in O(r**!M/B) 1/Os. Each such flush moves at least riM stream
elements down one level, so the amortized cost to move one stream element down one level is
O(%/(riM)) = O(r/B) I/Os. Each stream element can be moved down at most L levels. Thus, the
overall amortized I/O cost is O(rL/B) = O((r/B) log,(1/(eM))), which is minimized atr =e. O

When no false positives are allowed, that is, ¢ = 1/N, the I/O complexity is O(% log %)

3.2 Misra-Gries LERT

We extend our external-memory MG data structure to support immediate reporting. That is, we
show that for a threshold ¢ that is sufficiently large, it can report ¢-events as soon as they occur.
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A first attempt to add immediate reporting is to compute éL_l [si] for each stream event s; and
report s; as soon as Cr_1[si] > (¢ — £)N. However, this requires querying C; fori =0,...,L — 1 for
every stream item and can cost up to O(log(1/eM)) I/Os per stream item.

We avoid these expensive queries by using the properties of the in-memory MG estimates Cy.
If Co[si] < (¢ — 1/M)N, then we know that f;, < N and we therefore do not have to report s;,
regardless of the count for s; in the lower levels of the external-memory data structure.

We describe the new data-structure, the Misra-Gries LERT. Whenever we increment Cy|s; ]
from a value that is at most (¢ — 1/M)N to a value that is greater than (¢ — 1/M)N, we compute
5L_1 [si] and report s; if éL_l [si] = [(¢ — €)NT. For each entry Cy[x], we store a bit indicating
whether we have performed a query for Cr-1 [x], along with a second count Dy [x] that stores
the number of occurrences of x needed to hit reporting threshold [(¢ — e)N]. We set Dy[x]
appropriately whenever we compute CL-1[x] without reporting x. When an instance of x arrives,
Co[x] is incremented as in external-memory MG, and if the search bit is set, then we also decrement
Dy [x]; if a decrement of Dy[x] causes it to become zero then we report x. As in our external-
memory MG structure, if the count for an entry Cp[x] becomes 0, we delete that entry (along with
its metadata). This means we might query for the same item more than once; as we see below, this
has no effect on the overall I/O cost of the algorithm.!

In order to avoid reporting the same item more than once, we can maintain, with each entry in
C;, a bit indicating whether that item has already been reported.

Whenever we report a item x, we set the “reported” bit in Cy[x]. Whenever we flush an item
from level i to level i + 1, we set the bit for that item on level i + 1 if it is set on level i. When we
delete the entry for a item that has the bit set on level L — 1, we add an entry for that item on a
new level Cyr. This new level contains only items that have already been reported. When we are
checking whether to report a item during a query, we stop checking further and omit reporting as
soon as we reach a level where the bit is set.

I/0 complexity. For the analysis, we assume that the levels of the data structure are implemented
as sorted arrays with fractional cascading, and thus computing C;_ [x] requires O(L) I/Os.

THEOREM 3. Given a stream of size N and parameters ¢ and ¢, where ¢ € [1/N,¢) and ¢ €
(1/M, 1), the approximate TED problem can be solved with immediate reporting at amortized I/O cost
o((+ W+)N) log ;) per stream item.

Proor. The amortized cost of performing insertions is O((1/B) log(1/eM)).

To analyze the query costs, let ¢ = 1/M, i.e., the frequency error of the in-memory level. Since
we perform at most one query each time an item’s count in Cy goes from 0 to (¢ — &)N, the total
number of queries is at most N/((¢ — &)N) = 1/($ — &) = M/(¢M — 1). Since each query costs
O(log(1/eM)) I/Os, the overall amortized I/O complexity of the queries is O((W)ML_I)N) log ﬁ) O

Exact reporting. To solve the problem exactly, that is, with no false positives we set ¢ = 1/N
in Theorem 3, and get the following corollary.

Corollary 1. Given a stream of size N and ¢ € (1/M, 1), the TED problem can be solved with
immediate reporting at amortized I/O cost O((5 + WL—DN) log &%) per stream item.

Remark 1. The following example shows that the analysis of the Misra-Gries LERT is asymptotically
tight. In particular, when the RAM threshold is reached for an item (its count in RAM reaches (¢ —

It is possible to prevent repeated queries for an item but we allow it as it does not hurt the asymptotic performance.
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1/M)N), then the item’s counts are spread across all L levels of the data structure, requiring a full sweep
to consolidate its count and report; and that the total number of such queries can be Q(M/(pM — 1))).

Let N = 2!M and r = 2, so the Misra-Gries LERT has L = € + 1 levels. Let the threshold ¢N = 20 +1,
which satisfies the condition that PN > N /M, and let e = 1/N. Consider the stream S defined below.

S= (a, X11, X125 - - +» X1M>
a, X21, X22, - - - » X2M>
a, X31, X32, - - - » X3M,
a, XK1, Xk25 - - - XkM>
a, a, yl,---’yM—Z”—l)

where k = 2° — 1, all the x;;’s and y; s are all distinct and not equal to item a. For this stream, every
(2'M + 1) unique element causes a decrement to the count of all items at the ith level, pushing
instances of item a down to level i + 1. When item a reaches the reporting threshold of N during the
last phase, its instances occur all the way down to the last level in the Misra-Gries LERT.

Thus, when the instance of a that triggers a report enters the system, we must collect at least one
instance of a from every single level to recognize the need to report. Furthermore, every unique element
of the stream triggers a query in RAM (since the RAM threshold is pN — N/M = 1), and there are
Q(N) such queries.

Summary. The Misra-Gries LERT supports a throughput at least as fast as optimal write-optimized
dictionaries [12, 14, 16, 25-27], while estimating the counts as well as if it had an enormous RAM. It
maintains count estimates at different granularities across the levels. Not all estimates are actually
needed, but given a small number of levels, we can refine the estimates by looking in only a few
additional locations.

The external-memory MG algorithm helps us solve the TED problem. The smallest MG sketch
(which fits in memory) is the most important estimator here, because it serves to sparsify queries
to the rest of the structure. When such a query gets triggered, we need the total counts from the
remaining log % levels for the (exact) online event-detection problem but only log ELM levels when
approximate thresholds are permitted. In the next two sections, we exploit other advantages of this
cascading technique to support much lower ¢ without sacrificing I/O efficiency.

4 TIME STRETCH

The MG LERT described in Section 3.2 reports events immediately, albeit at a high amortized I/O
cost to perform queries to recognize the need for reporting. In this section, we show that if we allow
a bounded reporting delay proportional to the time it takes an item to become a ¢-event, we can
significantly improve the I/O performance—in particular, we can perform timely event detection
asymptotically as cheaply as if we reported all events only at the end of the stream.

Our data structure guarantees a time-stretch of 1 + @. That is, it reports an item x no later than
time t; + (1 + «)F; = t; + aF;, where t; is the time of the first occurrence of x, t, is the time of the
¢Nth occurence of x and F; = t, — t; is the flow time of x.

4.1 Time-stretch LERT

We design a data structure to guarantee time-stretch, the time-stretch LERT. Similar to the Misra-
Gries LERT, the time-stretch LERT consists of L = log,(1/(eM)) levels Cy, . .., Cr—1. The ith level
has size r'M. Items are flushed from lower to higher levels.
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Unlike the Misra-Gries LERT, all events are detected during the flush operations. Thus, we never
need to perform point queries. This means: (1) we can use simple sorted arrays to represent each
level and, (2) we don’t need to maintain the invariant that level 0 is a MG data structure on its own.

Data structure layout. We split the table at each level i into ¢ = 1 + [1/a] equal-sized bins
bi,...,bL, each of size r'M/c. The capacity of a bin is defined by the sum of the counts of the items
in that bin, i.e., a bin at level i can become full because it contains r’M/c items, each with count 1,
or 1 item with count r’M/c, or any other such combination. See Figure 1.

¢c=1+ [l/a] bins
—_—

[ » v

EM

| ™

bin size = r'M/c

Fig. 1. A depiction of bins at each level of the Time-stretch LERT; « is the time-stretch parameter. EM stands
for external memory. All bins are equal sized.

Flushing schedule. We maintain a strict flushing schedule to obtain the time-stretch guarantee.
The flushes are performed at the granularity of bins (rather than entire levels). The scheduling
algorithm is described below.

o Let bi, e, bé be the bins (in order) on level i, where level 0 is RAM,and 0 <i < L — 1.

e Each stream item is inserted into b(l), the first bin in RAM.

e Whenever a bin bi becomes full, we shift all the bins on level i over by one, that is, we move
the contents of bin b; to the adjacent bin b;. .1- The elements of the last bin at level i, b, are
moved to b’f’l, the first bin on the next level.

Since the bins in level i + 1 are r times larger than the bins in level i, bin bi“ becomes full after
exactly r flushes from b,. When this happens, we perform a shift and flush the last bin on level
i+ 1and soon.

Count consolidation. Finally, during a flush involving levels 0, . . ., i, where i < L — 1, we scan
these levels and for each item k, we sum its counts. If the total count is greater than (¢ — ¢)N, (and
we have not reported it before?) then we report k.

4.2 Analysis of Time-stretch LERT

Correctness. We show that our data structure guarantees time stretch.

LEMMA 4. The time-stretch LERT with stretch-parameter a reports each ¢-event s; occurring at
timet by time t + aF;, where F, is the flow time of s;.

For each reported item, we set a flag in RAM that indicates it has been reported, to avoid duplicate reporting of events.
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Proor. Consider an item s; with flow time F;. Let £ be the largest level containing an instance
of s; at time ¢ when it hits the threshold count of ¢ N. The flushing schedule guarantees that, for
each level i < ¢, the item s, must have waited ¢ — 1 bins of size r’M/c on that level before being
inserted to level ¢, where ¢ = 1+ [1/«a]. This is dominated by waiting time on level £ — 1. That is,

-1
r'—m
Ft > (C - 1) . (1)
Level ¢ participates in a flush again after ~ FCIM inserts, which is the number of observations that
fill up a bin on level ¢ — 1. Using Eq(1), we get that @ < CFT’I = fliiﬂ < aF;. Thus, s; is reported
at most aF; time steps after ¢. m}

I/0 complexity. For the analysis, we treat each level as a sorted array.

THEOREM 5. Given a stream of size N and parameters ¢, ¢ € (1/M,1) and « > 0, where ¢ €
[1/N, $), the approximate TED problem can be solved with time-stretch 1 + a at amortized I/O cost
O(“T“(% log j[)) per stream item.

ProoF. A flush from level i to i + 1 costs O( ’HI;M) 1/0s, and moves r’M/c stream items down
one level, where ¢ = 1+ [1/a]. Thus, the amortized cost to move one stream item down one level

is O(Z5M /- ypinf) = O( % 1) 1/Os.

a+1
Each stream item can be moved down at most L levels, thus the overall amortized I/O cost of an
insert is O(%1 L) = O (%1 £ log, 1), which is minimized at r = e. o
a a r eM

For exact reporting (no false positives), we set ¢ = 1/N.

Corollary 2. Given a stream of size N, « > 0, and ¢ € (1/M, 1), the TED problem can be solved
with time stretch 1+ a at amortized I/O cost O(“T”(% log %)) per stream item.

4.3 Implementation of time-stretch LERT

We implement each level in the time-stretch LERT as an exact counting quotient filter [57]. In
addition to the count, we store a few additional bits with each item to keep track of its age.

Algorithm 1 Time-stretch LERT flush schedule

1: max_age « onum_age_bits > num_age_bits is the number of bits to represent the age of a level
2: flush_size < levels[0].size/max_age > flush_size is the number of observations after which a flush is invoked
3: procedure NEED_FLUSH(num_obs)
4: if num_obs mod flush_size = 0 then
5: return TRUE
6: return FALSE
7:
8: procedure FIND_NUM_LEVELS
9: foriinl...(TOTAL_LEVELS — 1) do > r is the ratio of the sizes of level i + 1 and i.
10: if levels[i].flushes < r — 1 then » levels[i].flushes is the number of flushes from level i — 1 since the last flush to level i + 1
11: break
12: return i
13:
14: procedure PERFORM_MERGE_IF_NEEDED
15: if NEED_FLUSH(num_obs) then
16: num_levels «— FIND_NUM_LEVELS()
17: foriin1...num_levels do > Increment the age for each level involved in the flush before the flush
18: levels[i].age < (levels[i].age + 1) mod max_age > levels is the array of levels
19: MERGE(num_levels)
20: foriin1...num_levels do > Increment the flush counter for each level involved in the flush
21: levels[i].flushes « (levels[i].flushes + 1) mod r
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Algorithm 2 Time stretch LERT flush

1: procedure 1s_AGED(age, level) > If the age of an item is the same as the level age then it is ready to be flushed
2: if age = level.age then
3: return true
4: return false
5:
6: procedure MERGE(nlevels) > nlevels is the number of levels involved in a flush
7: elem « —co
8: while true do
9: elem «— MERGE_STEP(nlevels, elem)
10: if elem = oo then
11: break
12:
13: procedure MERGE_STEP(nlevels, prev) > Aggregate count of the smallest key across nlevels and flush it
14: min « co
15: count « 0

16: age < 0
17: level < 0

18: next « [] > an array of {key, age, level, count}
19: foriin0...nlevels do

20: next[i] « levels[i].succ(prev) > succ returns the smallest key larger than prev in level i
21: if min > next[i] then

22: min <« next[i]

23: if min = co then

24: return oo

25: for iin0...nlevels do

26: if min = next[i] then > Aggregate count. Record the lowest level where the key is and the age of the key on that level
27: count « count +next|[i].count

28: level « i

29: age < next[i].age

30: levels[i].DELETE (min) > DELETE remove key from level i
31: if count >= T then

32: REPORT(min) > Report key
33: else

34: if level < nlevels and 1s_aGED(age, level) then > If key is aged at level move it to the next level
35: 1_age « levels[level + 1].age

36: levels[level + 1].INSERT (min, count, 1_age) > key gets the current age of the level
37: else

38: levels[level ] .INSERT (min, count, age) > Else insert the key at level with aggregate count
39: return min

In the time-stretch LERT, each level is split into ¢ = 1 + [1/a] equal-sized bins. In our implemen-
tation, instead of actually splitting levels into physical bins we assign a value (i.e., age of the item)
of size [log ¢] bits to each item which determines its bin. The age of the item on a level determines
whether the item is ready to be flushed down from that level during a flush.

We also assign an age to each level, initialized to 0. Before a flush, the age of each level involved
in the flush is incremented. The age of a level wraps back to 0 after ¢ increments. The age of the
level during the flush determines which items are eligible to be flushed down—if an item’s age
is the same as the level’s age, then the item has survived ¢ flushes on that level, and is therefore
eligible to flush. When an item is inserted in a level, its age is set to the level’s age. However, if the
level already has an instance of the item, then we just increment the count of the existing instance
whatever its age.

We follow a fixed schedule for flushes. We trigger a flush after every group of (%)M stream
observations. Every rith flush, level i flushes to level i + 1. That is, after every r — 1 flushes to level
i > 1,level i + 1 is involved in the next (rth) flush. To determine the number of levels involved in a
flush, we maintain a counter per level for the number of times level £ has been involved in a flush
from ¢ — 1 since its last flush to £ + 1. Algorithm 1 shows the pseudocode for the flush schedule of
the levels in a time-stretch LERT.
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Note that only “eligible items” are flushed down a level during these flush operations, in particular,
items that have aged enough to be in the last bin at a level—or equivalently, items whose age is
equal to the level’s age.

Consolidating item-counts during a flush is implemented as a k-way merge sort. We first aggregate
the count of an item across all k levels involved in the flush. We then decide based on the age of
the instance of the item in the last level whether to move it to the next level. If the instance of the
item in the last level is aged then we insert the item with the aggregate count in the next level.
Otherwise, we update the count of the instance in the last level to the aggregate count. Algorithm 2
shows the pseudocode for flushing items in a time-stretch LERT. We use T = ¢N to denote the
reporting threshold in the implementation.

Summary. By allowing a little delay, we can solve the timely event-detection problem at the same
asymptotic cost as simply indexing our data [12, 14, 16, 25-27].

Recall that in the online solution the increments and decrements of the MG algorithm determined
the flushes from one level to the other. In contrast, these flushing decisions in the time-stretch
solution are based entirely on the age of the items. The MG style count estimates came essentially
for free from the size and cascading nature of the levels. Thus, we get different reporting guarantees
depending on whether we flush based on age or count.

Our experimental results for TED problem with immediate reporting and with time stretch show
that there is a spectrum between completely online and completely offline, and it is tunable with
little I/O cost.

5 POWER-LAW DISTRIBUTIONS

Our results in Section 3 and Section 4 hold for worst-case input streams. In this section, we design TED
algorithms tailored to perform well on practical input streams, in particular where the item-counts
follow a power-law distribution. Note that the order of arrivals can still be adversarial.

The item counts in the stream follow a power-law distribution with exponent 6 if the probability
that an item has count c is equal to Z - ¢ % where Z is the normalization constant.

Berinde et al. [17] consider streams where the item counts follow a Zipfian distribution. A stream
follows a Zipfian distribution with exponent « if and only if it follows a power-law distribution
with exponent 6 = 1+ 1/a [1]. They show that for Zipfian distributions with a > 1 (power-law
distributions with 6 < 2), the MG algorithm can solve the approximate heavy-hitter problem with
error ¢ using only £~/ words. Alternatively, on such Zipfian distributions, the MG algorithm
achieves an improved error bound ¢ using 1/ words. The error bound ¢ is in fact stronger as it
can be applied to the tail frequency of the stream, rather than the whole stream. In particular, if
¢; is the true count of item i, and ¢; is the estimate, then on zipfian distributions with 1/¢ space,
¢; — €; < €* Ny, where Ny, is the sum of counts of all keys except the top-(1/¢) most frequent
keys [17]. Our Misra-Gries LERT data structure based on the MG algorithm automatically inherits
these improved bounds.

We give improved results for power-law streams with exponent 6 > 2, a range which is represen-
tative of power-law distributions observed in practice [55]. In Section 5.1, we study the exact TED
problem and design algorithms tailored for such a distribution. In Section 5.2, we present a data
structure that has improved I/O performance and guarantees a count-dependent bounded delay.
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Preliminaries. We use the continuous power-law definition [55]: the count of an item with a
power-law distribution has a probability p(x) dx of taking a value in the interval from x to x + dx,
where p(x) = Z - x %, where 6 > 1 and Z is the normalization constant.?

00 0 Z [ -11° Z
_ _ -0 _ _
1_/1 p(X)dx_Z/I * dx_e—l[xe—l]l‘e—l'

Thus, Z = (0 - 1)4
We use the cumulative distribution of a power law:

Prob (x > ¢) = / R T — ®)
j= c

For our analysis, we assume that the input stream S is constructed offline as follows. Let U denote
the number of distinct keys in the stream S. The count for each key is drawn independently from a
power-law distribution. Then the instances of the keys in S are ordered arbitrarily. That is, we do
not make any assumptions on the arrival order of keys. Next, we analyze some properties of the
input stream.

LEMMA 6. In the input stream with U distict keys, where the count of each key is drawn independently
from a power-law distribution with 8 > 2, the following holds with high probability with respect to U:

(1) the number of keys with count greater than c is 09—1{1;

(2) the size of the stream N = (%) U.

Proor. Let x;. denote the indicator random variable which is 1 if key i has count greater than
¢ and 0 otherwise. Let X, = Zgl xic. Then E[X,] = E[ Z-Lil Xic] = Z?:l Elxic] = Zgil Prob (xj.) =
v (:9%1 = Cg%. This also holds with high probability with respect to U using Chernoff bounds.

This proves (1) in the above lemma.

Next, let y;. be the random variable denoting that key i has count c. Let Y. = /:1 Yicand Y =
) [ o0 U 0 U =9
Joo, Yede. Then B[Y] = [~ E[Yldc = [~ [ Elyiclde = [ [ ¢ Prob (yie)de = U [~ (6 -
e %c = U%[—cz_‘g o= U%.

The result holds with high probability with respect to U using a Chernoff bound argument. O

5.1 Immediate-report LERT

First, we present the layout of our data structure, the immediate-report LERT, and then we
present its main algorithms, shuffle merge and immediate-reporting query. Finally we analyze
its correctness and I/O performance.

Data structure layout. Similar to the data structures in the previous sections, the immediate-
report LERT consists of a cascade of tables, where M is the size of the table in RAM. There are
L =log,(N/M) levels on disk, where N is the size of the stream. The size of level i is N/(E ).
Each level on disk has an explicit upper bound on the number of instances of an item that can be
stored on that level. This is different from the MG algorithm, where this upper bound is implicit
and is based on the level’s size. In particular, each level i in the immediate-report LERT has a level
threshold r; for 1 < i < L,(r; =2 7, > ... > 1), where 7; indicates the maximum count of a key
that can be stored on level i.
3In general, the power-law distribution may hold above some value cyin. For simplicity, we let cpin = 1—for this choice
Z=60-1and 6 > 1.

“In principle, one could have power-law distributions with 6 < 1, but these distributions cannot be normalized and are not
common [55].
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Threshold invariant. We maintain the invariant that at most 7; instances of an item can be stored
on level i. Later, we show how to set the 7;’s based on the input stream’s power-law exponent 6.

Shuffle merge. The Misra-Gries LERT and time-stretch LERT use two different flushing strategies.
Here we present a third strategy called the shuffle merge.

e The level in RAM receives inputs from the stream one at a time.

e When attempting to insert to a level i that is at capacity, we find the smallest level j > i that
has enough empty space to hold all items from levels 0, 1,... ., j.

e We aggregate the count of each item k on levels 0, . . ., j, resulting in a consolidated count Ci.

o If ci > @N, (and we have not reported it before®) we report k. Otherwise, we distribute in-
stances of k in a bottom-up fashion on levels j to 0, while maintaining the threshold invariant.
In particular, we place min{ci, 7j} instances of k on level j, and min{ci - (Z{;z g+ Ty), Ty}
instances of k on level y for 0 <y < j — 1.

In the above algorithm, notice that items can end up in higher levels (compared to the level they
were before), which is why we call this operation a shuffle-merge instead of a merge. Also, observe
that the threshold invariant prevents us from flushing too many counts of an item down. Thus,
items can get packed at a level and cannot be flushed down. Specifically, we say an item is packed
at level ¢ if its count exceeds Y-, ;.

To maintain efficient shuffle merges, the number of packed items at a level should not occupy
more than a constant fraction of the size of the level. In Lemma 7, we show that given a power-law
stream with exponent 6, we can set the thresholds based on 8 so as to satisfy this requirement.

LEMMA 7. Let the counts of U distinct items in the stream of size N follow a power-law distribution
with exponent 0 > 2. Let 7; = re T for1<i<L-1landr = ro-i. The number of keys packed at
level i is at most % times the size of level i.

Proor. We prove by induction on the number of levels. We start at level L — 1. An item is packed
at level L — 1 if its count is greater than 7 = re. By Lemma 6 (1), there are U/Tf’1 =U/r such
items. By Lemma 6 (2), the size of the stream N = (%)U The size of level L—1is N/r = (%) %
Thus, number of items packed at level L — 1 is % times the size of level L — 1.

Suppose the lemma holds for level i + 1. We show that it holds for level i. An item is packed at
level i + 1 if its count is greater than Y% .., 7;. Using Lemma 6 (1), and the induction hypothesis,
the expected number of such items is

U < U < 9 —_ 2 N (3)
(Xfeiet T[)e_l T2 T \0—1) i1’
=i

Finally, an item is packed at level i if its count is greater than Y%, 7,. Using Lemma 6 (1) and
Inequality (3), the expected number of items packed at level i is

U < U _ U
6-1 o 6-1y R 6-1
(Zteinr ) (zna”7) (rﬂ : Ti+2)

1 _ U _1(6-2) N _(0-2\N
Ty (tig2?™ 1) ~ r\0—1)rL-i-1 “\o—1) i

Immediate reporting. As soon as the count of an item k in RAM reaches a threshold of pN -3 % | 7;,
the data structure triggers an immediate-reporting query, which sweeps all L levels, consolidates

SEach reported item is stored in a separate table in RAM to avoid duplicate reporting of events.
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the counts of k at all levels into RAM and reports if the consolidated count reaches threshold
T = §N. Reported items are remembered, so that each event is reported exactly once.

Analysis. Next, we prove correctness of the immediate-report LERT and analyze its I/O complexity.
We set r = e, which minimizes the insertion cost (in Theorem 9).
First, we prove that the immediate-report LERT reports all ¢-events as soon as they occur.

LEMMA 8. Let S be a stream of size N where the item counts follow a power-law distribution with
exponent 8 > 2. The immediate-report LERT solves the TED problem with immediate reporting on S
with high probability.

ProoOF. Let ¢; denote the count estimate of key i in RAM in the immediate-report LERT. Because
of the threshold invariant at most Y5_, 7, instances of a key can be stored on disk at any time.

Suppose &, the count in RAM for key i, is incremented to the search threshold T, = ¢N — YL 7,
at time ¢. This triggers an immediate-report query. The counts from all levels of the disk are added
to ¢; to give an accurate count c;. Because of the threshold invariants, we have ¢; < §N — Zf:l Ty +
Z%:l 7, = ¢N.If ¢; = ¢N, then we report item i at time ¢, exactly as its count reaches the reporting
threshold. Otherwise, the system sets a bit to indicate the count includes all occurences of the key
in the data structure; when this (accurate) count ¢; reaches ¢ N, it is reported immediately. O

Next, we analyze the I/O complexity of the immediate-report LERT. Similar to Section 3.2, we
assume the levels of the immediate-report LERT are implemented as a cascade filter [15].

THEOREM 9. Let S be a stream of size N where the item counts follow a power-law distribution with

exponent 0 > 2. Then the immediate-report LERT can solve the TED problem on S w.h.p. for thresholds

1/(6-1) 1/(6-1)
ON > y, wherey = ef/(g,l)_l . (%)

o((% + W) log %) per stream item.

. The amortized I/O complexity of the data structure is

Proor. During a shuffle-merge at level i, the items that are not packed are flushed down to level
i + 1 incurring an I/O cost of O(r**!M). We can charge this to r'M(1 — %) unpacked items that
get flushed down, and the amortized cost is O(r(6 — 1)/B). This can happen at most L time and
thus the amortized insert cost is O(rL(6 — 1)/B). This cost is minimized at r = e.

We perform at most one query each time an item’s count in RAM reaches ¢ = §N — Z%:l ;. We
upper bound the total number of items in the stream that have count at least c, given that r = e.

S g=

L L
=1 =

101 _ /(0 eL/(6-1) _ 4 . e(L+D/(6-1) _ e1/(6-1) . ﬂ 1/(6-1) )

1 e/0-D) _ 1] = o001 eu6-D _1 \M Y
Thus, ¢ = ¢N — 2%:1 7p = ¢N — y. The total number of items in the stream with count at least c

is CH—I{I by Lemma 6 (1). Using the lower bound on ¢, we get that CG—U,I < (¢N——Uy)3’1'

A query in a cascade filter costs O(L) I/Os as it requires one I/O per level. Thus, the overall

amortized I/O complexity of the queries over N elements is O (W) =0( (%) .

Putting it all together, substituting L = log, Aﬂ,[ and ignoring multiplicative factors of 6, we
conclude that the amortized I/O complexity of the data structure is O((§ + W) log ). O

Remark 2. The relationship between the reporting threshold N and the power-law exponent 0
identified in Theorem 9 for the immediate-report LERT is a generalization of the relationship presented

in [58], which provides a weaker bound.
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Supporting smaller reporting thresholds for power-law streams. The immediate-report
LERT—tailored for power-law streams—lets us support smaller reporting-thresholds N com-
pared to the Misra-Gries LERT for immediate reporting (in particular, the reporting threshold in
Corollary 1). To see why this is true, notice that y the lower bound on §N in Theorem 9, consists

of two parts multiplied together: the first term % depends only on 6, and for the range-of-
interest 2 < 6 < 3, this term is a small constant. Specifically, for 8 < 2.96, % < 2.5. The

second term (%) 1/(8-1)

¢N that Misra-Gries LERT can support must be at least as large as A—J\,]I
Thus, under reasonable conditions on N, M and 0, the immediate-report LERT can support
smaller reporting thresholds for immediate reporting than previous data structures. For example,

1/(6-1) ye-n N\1/(0-1) N
when 6 > 2+ 1/(log,(N/M)), where t = —75=5—, we have y = —fmn— - (37) < 3

decreases exponentially as 0 increases. Conversely, the reporting threshold

5.2 Count-stretch LERT

In this section, we show that if we eliminate expensive immediate-reporting queries from the
immediate-report LERT, the data structure still supports bounded-delay reporting with a count-
dependent delay. We say that a TED algorithm has count stretch 1 + o if it reports each key by
the time its count hits (1 + w)¢N. In particular, the notion of count stretch relaxes the reporting
threshold, which leads to reduced random disk accesses.

The count-stretch LERT is the following modification of the immediate-report LERT: we
eliminate immediate-reporting queries and report an item when its count in RAM hits §N. The
data structure layout, thresholds and shuffle-merges (including reporting during shuffle-merges)
are the same as in the immediate-report LERT.

A count-stretch guarantee does not imply any time-stretch guarantee. This is because the item’s
arrival distribution may be irregular: a sudden burst may give a key a count of ¢ N quickly, with
unfortunate shuffle-merge timing moving the maximum number of occurences to disk before the
RAM count hits ¢N. It could take much longer to get from the $Nth occurrence to the (1+ w)¢pNth
occurrence.

THEOREM 10. Let S be a stream of size N where the item counts follow a power-law distribution

- 1
with exponent 0 > 2, and let parameters ¢, w be such that ¢N - w > %(%) 9-1. Then the
count-stretch LERT solves the TED problem on S w.h.p. with count stretch 1 + « at amortized I/O cost

O(% log A—A,;) per stream item.

Proor. The amortized I/O complexity of the count-stretch LERT follows from the insertion cost
of Theorem 9, without the expensive immediate-reporting queries. Recall that the insertion cost is
minimized by setting r = e.

For a count stretch of 1 + w it is sufficient to show that when an item hits a count of ¢N in RAM,
there are at most w@®N occurrences of that item stored in the lower levels of the data structure on
disk.

By the threshold invariant of the count-stretch LERT, we can bound the total occurrences of an
item in levels 1, 2, ... L on disk as ZI-LZI 7;. Below, we show that this quantity must be at most w@N.

For r = e, we can upper bound this sum as follows:

L
2,1~

=1

71

L
< = .
£ e/ (0-1) 1) = g/(0-1) 1 ¢l/(6-1) _ 1

160 _ 110D (eL/(G—l) _ 1) o (L+1)/(0-1) e1/(0-1)

1
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1/(6-1)

1/(6-1) 1/(6-1
£ (N) I ) occurrences of an

Since 1; = (A—I\/]I) , it follows that there can be at most o7 (31

item stored on disk at any time. Thus, when the count estimate of an item in RAM reaches ¢N, its

. V©O-1) N 1/(6-1)
true count is at most ¢N + m(ﬂ) < ¢N(1+ w). O

Remark 3. For power-law exponent 2 < 0 < 3, a range that is typically observed in practice [1, 17, 24,

0-1) . /(0-1)
31, 55], the term % in Theorem 10 is a small constant. For example, for 6 < 2.96, % < 2.5,

1

and thus, the count-stretch LERT can support parameters ¢, o such that N - w > 2.5(%) (=

Remark on dynamically setting thresholds. If the power-law exponent 0 is not known ahead of
time, but a feasible setting of level thresholds exist, then we can dynamically update the thresholds to
ensure that no level of the data structure has too many packed items. In particular, to satisfy Lemma 7,
for 0 < 3, it is sufficient to ensure that the number of items packed at any level i does not exceed
82 < Lits size.

We incrementally update the level thresholds to satisfy this condition as follows. Initially, 7; = 0
for each level i. During a shuffle merge involving the first j levels on disk, we set r;_; to the
minimum value such that the number of keys packed at level j is no more than half its size. Thus,

we increment 7’s monotonically from 0 to their feasible settings, without relying on the exponent 6.

Summary. With a power-law distribution, we can support a much lower threshold ¢ for the TED
problem. In the Misra-Gries LERT (Section 3.1), the upper bounds on the counts at each level are
implicit. We show that for power-law distributions, we can achieve better performance by explicitly
setting these bounds in the form of thresholds.

5.3 Implementation of count-stretch and immediate-report LERT

We describe the implementation details of the count-stretch and immediate-report LERT, including
further optimizations. Similar to the time-stretch LERT, each level is an exact counting quotient
filter [57]. In the count-stretch LERT, in addition to the count of each key, we store a few additional
bits to mark whether an item has its absolute count at a level (its aggregate count across all the
levels).

Similar to the flush schedule in the time-stretch LERT, we follow a fixed shuffle-merge schedule.
A shuffle-merge is invoked from RAM after every M observations. The level thresholds determine
how many instances of an item can be stored at that level. To satisfy threshold constraints, during a
shuffle merge, we first aggregate the count of each item and then smear it across all levels involved
in the shuffle-merge in a bottom-up fashion without violating the thresholds. Algorithm 3 shows
the pseudocode for the shuffle-merge in a count-stretch LERT.

Optimization. We also implement an optimization in the count-stretch LERT that further reduces
I/O costs by following a “greedy” flushing schedule instead of a fixed schedule. This is based on
the observation that unlike time stretch, the count stretch does not depend on the number of
observations in the stream. Therefore, we do not need to perform shuffle merges at regular intervals.
We only invoke a shuffle-merge if it is needed, i.e., when the RAM is at capacity. The greedy flushing
optimization is implemented as an additional input flag which can be turned on or off.

The CQF uses a variable-length encoding for storing counts and uses much less space compared
to a unary-encoding. Therefore, the actual number of slots needed for storing M observations can
be much smaller than M slots, if there are duplicates in the stream. This is the case for streams such
as the one from Firehose, where counts have a power-law distribution. The greedy shuffle-merge
schedule avoids unnecessary 1/Os that a fixed schedule would incur during shuffle-merges.
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Algorithm 3 Count-stretch LERT shuffle-merge

1: procedure SHUFFLE_MERGE(nlevels, 7[]) > 7[] is an array of all 7 values for levels
2 elem « —co
3 while true do
4: elem « SHUFFLE_MERGE_STEP(nlevels, 7, elem)
5 if elem = co then
6 break
7:
8: procedure SHUFFLE_MERGE_STEP(nlevels, 7[], prev) > Aggregate count of the smallest key across nlevels and distribute
9: min < oo
10: next « [] > an array of {key, age, level, count}
11: for i in 0 ...nlevels do
12: next[i] « levels[i].succ(prev) > succ returns the smallest key larger than prev in level i
13: if min > next[i| then
14: min « next[i]
15: if min = co then
16: return co
17: count < 0
18: for i in 0 ...nlevels do
19: if min = next[i] then
20: count «— count + next[i].count
21: levels[i].DELETE (min) > DELETE remove key from level i
22: if count >= T then
23: REPORT(min) > Report key
24: else
25: for i in nlevels ...0 do > This is a reverse loop
26: if count > 7[i] then
27: levels[i].INSERT (min, 7[i]) > Insert key in level i with count 7[i]
28: count « count —7[i]
29: else if count > 0 then
30: levels[i].INSERT (min, count) > Insert key in level i with count count
31: else
32: break
33: return min

As explained in Section 5.1, in the immediate-report LERT we perform an immediate-reporting
query when the count in RAM reaches T — Zle 7;. To compute the aggregate count we perform
point queries to each level on disk and aggregate the counts. If the aggregate count in RAM and
on disk is T we report the item. Otherwise we insert the aggregate count in RAM and set a bit,
the absolute bit, that indicates that all the counts for the item have been found. This avoids
unnecessary point queries to disk later on. We use a lazy policy to delete the instances of items
from disk. They are garbage collected during the next shuffle merge.

6 DEAMORTIZATION TO SUPPORT CONSISTENT INGESTION RATES

The LERTs consider observation f to occur exactly one time step before observation ¢+ 1. In practice,
however, observation ¢ might trigger a significant rebuild of the data structure, delaying observation
t + 1. In a high-speed streaming context, that observation, and potentially millions after it, would
be dropped while a rebuild is going on.

To mitigate this problem, we now describe how to deamortize LERTs. Our deamortization
strategy works in serial, and also provides the foundation of the multithreading strategy we
introduce in Section 7.

To deamortize, we decompose the data structure into C independent parts called cones that
partition the space of hashed items. Each stream item is mapped to exactly one of these cones
using a uniform-random hash function. A cone is an independent instance of the LERT with the
same expansion factor r and the same number of levels, each of which is 1/C-th the size of the
corresponding complete level.
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Each cone is independent, following its own merge schedule. Incoming items are routed to the
appropriate cone for independent insertion and potential reporting. Thus, given uniform-random
hashing, each cone accounts for roughly 1/C-th of the aggregate I/O.

Deamortization timeliness guarantees. We consider the timeliness guarantees for the deamor-
tized serial version of the count-stretch and time stretch LERT. When streams are split into
substreams based on hash values, we must revisit these guarantees. We note that count-stretch is
unaffected:

LEMMA 11. A deamortized count-stretch LERT provides the same count stretch guarantee as the
original count-stretch LERT when run on the same input stream.

Proor. The count stretch of an item in a count-stretch LERT depends only upon the item’s final
count when it is reported. This final count is independent of the rest of stream. In the deamortized
count-stretch LERT, all observations of an item go to a single cone, and each cone independently
provides the same count stretch as the amortized count-stretch LERT for items mapped to that
cone. o

LEMMA 12. There exists an input stream for which the deamortized time-stretch LERT provides no
global time stretch guarantee.

Proor. We construct an arrival distribution that causes an arbitrarily long time stretch for an
item in a deamortized time-stretch LERT. It begins with T — 1 observations of an item I followed by
enough distinct items that all go to the item I’s cone (C) to cause a flush in cone C. The sequence
then has one more observation of item I followed by an arbitrarily long sequence of observations,
none of which go to cone C. Thus, cone C has an arbitrary delay before its next merge and item I
has an unbounded reporting delay. O

THEOREM 13. Consider a random stream where each arriving item maps to a cone via a fixed
probability distribution. If cone i runs a time-stretch LERT guaranteeing a time stretch of (1 + @), then
the deamortized time-stretch LERT will have a time stretch of (1 + «) in expectation with respect to
the full stream.

ProoF. Suppose each item maps to cone i with probability ;. Consider a key k that maps to
cone i with its first appearance at index Iy and its Tth occurence at index Ir. Let Ly = Iy — I,.
The time-stretch LERT without cones will report k by time (index) Tp = Ty + (1 + a)L. In the
deamortized version, cone i receives 1;Lx items between indices I and I in expectation. So it will
report k when another an;L; items arrive at cone i. But cone i should receive that many items
in the aLy items after Ir. Thus we expect cone i to report k at time Tp. A similar argument holds
when the stream is a random permutation of a finite stream with ;N elements from cone i. O

7 MULTI-THREADING

We now describe thread-safe versions of the deamortized count-stretch and time-stretch LERT. A
thread-safe implementation enables ingesting observations using multiple threads. This is crucial
for two reasons: (1) we can scale the ingestion throughput to support high-speed streams, and (2)
multiple threads performing I/Os simultaneously can utilize the full SSD bandwidth which would
be wasted otherwise.

We use two types of locks in our design, a cone-level lock and a CQF-level lock. The cone-level
lock is a distributed readers-writer lock implemented using a partitioned counter (i.e., a per-CPU
counter). This ensures that readers do not thrash on the cache line containing the count of the
number of readers holding the lock. The CQF-level lock is a spin lock as described by Pandey et
al. [57].
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Fig. 2. A depiction of multi-threading with cones in a LERT.

We assign a small local insertion buffer to each thread. See Figure 2. Each insertion thread
performs the same set of operations. It starts by first receiving a packet of observations over a
network port or reading a small chunk (usually 1024) of observations from an input file. It then
processes each observation in the packet one-by-one.

Each thread must acquire two locks to do an insertion: one read lock on the item’s cone and one
lock on the region of the CQF (i.e., the RAM level of the cone) to which the item hashes. It tries
once to acquire each lock. It does not spin or sleep upon failing to acquire either lock. If it does not
get either of the locks in the first attempt then it releases any acquired lock, inserts the observation
in its local insertion buffer, and continues to the next observation. When the local buffer is full,
the thread dumps the items in the buffer into theirrespective cones. When dumping a buffer, the
threads wait for the locks.

If a thread acquires both the locks in the first attempt, then it performs the insertion and releases
the lock on the relevant region of the CQF. It then checks whether the cone needs to perform a
flush or shuffle-merge. If so, it first releases the read lock and then tries to acquire a write lock on
the cone. If it gets the write lock in the first attempt then it performs the flush/shuffle-merge. If it
fails to acquire the write lock in its first attempt, then some other thread is already performing a
flush/shuffle-merge. This thread can continue.

We avoid heavy contention among threads via the local buffers, even when every thread tries to
lock the same cone. This is because threads do not wait to acquire a lock on the cone for every
insertion and continue to make progress. Also, item counts are consolidated in local buffers. Thus
during the buffer dump, only one insertion for each item is required instead of multiple insertions
for each instance of the same item. Our method scales well with increasing number of insertion
threads even for streams with skewed distributions. We show this empirically in Section 8.8.

Using readers-writer locks at the cone level allows multiple threads to simultaneously insert in
different regions of the RAM CQF of a cone by acquiring a read lock. A thread upgrades to a write
lock when it needs to do a flush/shuffle-merge. Readers-writer locks allows us to use more threads
than cones. Even if all cones flush simultaneously, there would still be threads processing incoming
observations.

7.1 Timeliness with multi-threading

We now discuss the effect of multithreading on the timeliness guarantees of the count-stretch and
time-stretch LERT.
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Measuring time. One issue that immediately arises when trying to analyze time- and count-stretch
in the multi-threaded case is: how do we measure time? In the single-threaded case, we measure
time in terms of the number of stream observations that the process has ingested, i.e., in each
time step, the algorithm gets to read one stream observation, perform an arbitrary amount of
computation and I/O, and generate an arbitrary number of reports. We say all reports generated
during the ith time step occur at time i.

We generalize this in the multi-threaded model: when a thread reports items, it uses the index of
the last observation pulled by any thread as the reporting time. This can cause the reporting index
of an item be much higher compared to the single-threaded case because multiple threads each pull
a chunk (usually 1024) of observations simultaneously. Therefore, multi-threading adds an extra
delay to the timeliness guarantees of the time-stretch LERT and extra counts to the guarantees of
the count-stretch LERT. We analyze this empirically in Section 8.4.

Count stretch. The multi-threaded count-stretch LERT has only one new source of delay: the
time that an item might spend sitting in a thread’s local buffers. In the worst case, an item could
accumulate up to T — 1 occurrences in each thread’s local buffer, in addition to T — 1 occurrences in
the main data structure, so that it doesn’t get reported until it reaches a count of (T —1)(P — 1) + 1.

To limit this pathological case, we implement a policy to upper bound the total count that an
item can have in a thread’s local buffer. For example, we enforce that no thread can hold more than
% instances of an item in its local buffer. Whenever the count of an item in the local buffer equals
II; the thread must move that item from the thread’s local buffer to the main data structure. This
way we can bound the maximum count of an item when it is reported.

LEMMA 14. Given w and T such that T > P, where P is the number of threads, a multi-threaded
count-stretch LERT guarantees a count stretch of 2 + w.

ProOF. Because the maximum count of an item in a thread’s local buffer is %, for P threads the
maximum count for any item is % X P = T. An individual cone with count-stretch guarantee o will
report an item when it holds at most (1 + w)T instances of that item. Thus the maximum number
of instances in the system at the time of the report is (2 + w)T. O

Time stretch. It is harder to provide a time-stretch guarantee with multiple threads compared to
the count-stretch guarantee. This is because time stretch depends on the arrival distribution of
other items in the stream, while count stretch is independent of that.

When multiple threads are simultaneously performing ingestion, each thread can pick a chunk of
observations from the stream. These observations can be inserted in the data structure out-of-order
based on the contention among threads. To guarantee a time stretch with multiple threads we need
a global ordering on the observations.

Model. In each time step, a thread gets to read one observation from the stream and perform all
the work on that observation. The work includes taking a lock and inserting the observation in the
cone, inserting the observation in the local buffer, dumping contents of the local buffer in cones,
and performing a flush/shuffle-merge on the cone. As above, we constrain how long a thread can
go before dumping its local buffer. Every thread has to dump its local buffer after every t time steps.

Based on the above model and constraints, we can now guarantee that the time stretch in the
multi-threading case will not be much worse than the single-threaded case.

Observation 1. In a multi-threaded time-stretch LERT in which each thread dumps its local buffer
every t time steps, we guarantee that an item s is reported in at most aF; + t additional time steps
(after the item-count reaches T ), where F; is the flow time of s.
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Fig. 3. Birthtime vs. the lifetime of each reportable item in the active-set generator dataset consisting
of 50M observations.

8 EVALUATION

In this section, we evaluate our implementations of the time-stretch LERT (TSL), count-stretch
LERT (CSL), and immediate-report LERT (IRL) for timeliness, robustness to input distributions, I/O
performance, insertion throughput, and scalability with multiple threads. Our implementation is
publicly available at https://github.com/splatlab/lerts.

We compare our implementations against Bender et al’s cascade filter [15] as a baseline for
timeliness. This baseline is an external-memory data structure with no timeliness guarantee. We
show that reporting delays can be quite large when data structures take no special steps to ensure
timeliness.

We also evaluate an implementation of the Misra-Gries data structure as a baseline for in-memory
insertion throughput. We implement the Misra-Gries data structure with an exact counting data
structure (counting quotient filter) to forbid false positives. This gives an upper bound on the
insertion throughput one can achieve in-memory while performing immediate event-detection.
The objective of this baseline is to evaluate the effect of disk accesses during flushes/shuffle-merges
in our implementations of the TSL, CSL, and IRL.

We address the following performance questions for the time-stretch, count-stretch and
immediate-report LERT:

(1) How does the empirical timeliness of reported items compare to the theoretical bounds?

(2) How robust is the time-stretch LERT to different input distributions?

(3) How does deamortization and multi-threading affect the empirical timeliness of reported items?
(4) How does the buffering strategy affect count stretch and throughput?

(5) How does LERT total I/O compare to theoretical bounds?

(6) What is the insertion throughput of the time-stretch, count-stretch and immediate-report LERT?
(7) How does deamortization and multiple threads affect instantaneous throughput?

(8) How does insertion throughput scale with number of threads?
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Fig. 4. Data structure configuration: RAM level: 8388608 slots in the CQF, levels: 4, growth factor: 4, level
thresholds: (2, 4, 8), cones: 8, threads: 8, number of observations: 512M. Data structures: Cascade filter (CF),
count-stretch LERT (CSL), time-stretch LERT (TSL), (CSL and TSL) with cones, (CSL and TSL) with cones and
threads. Time-stretch LERT with age bits 1 (TSL1) & = 1, 2 (TSL2) & = 0.33, 3 (TSL3) a = 0.14, and 4 (TSL4)
a = 0.06.

8.1 Experimental setup

In this section, we describe how we designed experiments to answer the questions above and
describe our workloads,

Our experiments fall into two categories: validation experiments and scalability experiments.
The validation experiments require an offline analysis of the dataset to compute the lifetime and
measure the stretch of every key to perform the validation. We use smaller datasets (64 million) for
the validation experiments. For scalability experiments, we use bigger datasets (4 billion).

Workload. Firehose [5] is a suite of benchmarks simulating a network-event monitoring workload.
A Firehose benchmark consists of a generator that feeds keys to the analytic, being benchmarked.
The analytic must detect and report each key that has 24 observations.

Firehose includes two generators: the power-law generator selects from a static ground set
of 100,000 keys according to a power-law distribution, while the active-set generator allows the
ground set to drift over an infinite key space. We use the active-set generator because an infinite
key space more closely matches many real world streaming workloads. To simulate a stream of
keys drawn from a huge key-space we increase the key space of the active set to one million.

Figure 3 shows the distribution of birthtime (the index of the first occurrence of an item) vs. the
lifetime (number of observations between the first and the T-th occurrence) of items in the stream
from active-set generator. The stream contains 50M observations and the active-set size is 1M.
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Fig. 5. Data structure configuration: RAM level: 8388608 slots in the CQF, levels: 4, growth factor: 4, level
thresholds for on-disk level: (2, 4, 8), cones: 8, threads: 8, number of observations: 512M.

The longest lifetime is ~ 22M. Whenever a new item is added to the active set it is assigned a
count value from the set of counts based on the power-law distribution. Therefore, we see bands of
items that have similar lifetime but are born at different times throughout the stream. The lifetime
of items in these bands tend to increase slightly as the items are born later in the stream due to
different selection probabilities of items from the active set. In all of our experiments we have used
dataset from the active-set generator unless noted otherwise.

Other workloads. Apart from Firehose, we use four other simulated workloads to evaluate the
empirical stretch in the time-stretch LERT. These four workloads are generated to show the
robustness of the data structure to non-power-law distributions. In the first distribution, M (where
M is the size of the level in RAM) keys appear with a count between 24-50 and rest of the keys are
chosen uniformly at random from a big universe. In the second, M keys appear 24 times and the
rest of the keys appear 23 times. In the third, M keys appear round robin each with a count > 24.
In the fourth, for each key we pick the count uniformly at random between 1-25.
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(b) Distribution of time stretch vs lifetime of reported items in a TSL with 8 cones and 8
threads.

Fig. 6. Data structure configuration: RAM level: 8388608 slots in the CQF, levels: 4, growth factor: 4, level
thresholds for on-disk level: (2, 4, 8), cones: 8, threads: 8, number of observations: 512M.

Reporting. During insertion, we record each reported item and the index in the stream at which
it is reported by the data structure. We record by inserting the reported item in an exact CQF
(anomaly CQF) and encoding the index as the count of the item in the anomaly CQF. We also use
the anomaly CQF to check if an incoming item has already been reported. We only insert the item
if it is not reported yet. This prevents duplicate reports.

Timeliness. For the timeliness evaluation, we measure the reporting delay after its Tth occurrence.
We have two measures of timeliness: time stretch and count stretch.

The time-stretch LERT upper bounds the reporting delay of an item based on its lifetime (i.e.
time between its first and Tth instance). To validate the timeliness of the time-stretch LERT, we
first perform an offline analysis of the stream and calculate the lifetime of each reportable item.
Given a reporting threshold T, we record the index of the first occurrence of the item () and the
index of the T-th occurrence of the item (Ir). During ingestion, we record the index (Ig) at which
the time-stretch LERT reports the item. We calculate the time stretch (¢s) for each reported item as
ts = (Ir — )/ (It — Iy) and verify that ts < (1 + ).
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Multiple threads process chunks of 1024 observations from the input stream. We consider
all reports a thread generates while processing the ith observation to occur at time i. Due to
concurrency, two observations of the same key may be inserted into the data structure in a different
order than they are pulled off of the input stream. This may introduce some noise in our time-stretch
measurements. However, our experimental results with and without multi-threading were nearly
identical, indicating that the noise is small.

In the count-stretch LERT, the upper bound is on the count of the item when it is reported. To
validate timeliness, we first record indexes at which items are reported by the count-stretch LERT
(Ir). We then perform an offline analysis to determine the count of the item at index I (Cy,) in the
stream. We then calculate the count stretch (cs) as ¢s = Cr, /T and validate that cs < (T + Zle 7;)/T.

To perform the offline analysis of the stream we first generate the stream from the active-set
generator and dump it in a file. We then read the stream from the file for the analysis and for
streaming it to the data structure. For timeliness validation experiments we use a stream of 512
Million observations from the active-set generator.

I/0 performance. In our implementation of the time-stretch, count-stretch and immediate-report
LERT, we allocate space for the data structure by mmap-ing each level (i.e., the CQF) to a file on
SSD. To force the data structure to keep all levels except the first one on SSD we limit the RAM
available to the insertion process using the “cgroups” utility in linux. We calculate the total RAM
needed by the insertion process to only keep the first level in RAM by adding the size of the first
level, the space used by the anomaly CQF to record reported keys, the space used by thread-local
buffers, and a small amount of extra space to read the stream sequentially from SSD. We then
provision the RAM to the next power-of-two of the total sum.

To measure the total I/O performed by the data structure we use the “iotop” utility in linux.
Using iotop we can measure the total amount of reads and writes in KB performed by the process
doing insertions.

To validate, we calculate the total amount of I/O performed by the data structure based on the
number of merges (shuffle-merges in case of the count-stretch LERT) and time-stretch LERT and
sizes of levels involved in those merges.

Similar to empirical stretch validation, we first dump the stream to a file and then feed the stream
to the data structure by streaming it from the file. We use a stream of 64 Million observations from
the active-set generator.

Average insertion throughput and scalability. To measure the average insertion throughput,
we first generate the stream from the active-set generator and dump it in a file. We then feed the
stream to the data structure by streaming it from the file and measure the total time.

To evaluate scalability, we measure how data-structure throughput changes with increasing
number of threads. We evaluate power-of-2 thread counts between 1 and 64.

To deamortize the data structures we divide them into 2048 cones. We use a stream of 4 Billion
observations from the active-set generator. We evaluate the insertion performance and scalability
for three values (16, 32 and 64) of the DatasetSize-to-RAM-ratio (i.e., the ratio of the data set size to
the available RAM).

Instantaneous insertion throughput. We also evaluate the instantaneous throughput of the
data structure when run using either a single cone and thread or multiple cones and threads. We
approximate instantaneous throughput by calculating throughput (using system timestamps) every
k observations. In our evaluation, we fix x = 217,

Machine specifications. The OS for all experiments was 64-bit Ubuntu 18.04 running Linux kernel
4.15.0-34-generic The machine for all timeliness and I/O performance benchmarks had an Intel

, Vol. 1, No. 1, Article 1. Publication date: January 2021.



77
% =
20 |- Calculate Measure 22
S22
22eed
22 |Ee
[%2] 7770 lcc]
A ZAles
22 lee
ZAles
22 Jes
iR
o
e
g o s
iR
l®) 10 [ S5 EEE
22|eed
= 2o les
— 77/ L
2 les
22 Jes
i
e 22 JEs
| e
P e % s
I A | e
A Fes 22 |eed
o LEzm Ak ‘ kS A
| | g | | |
777
7
%
5% [
i
7| s
v 20 S5oHEEE
A ZlEE
22|k
2 les
s
2 les
o
iR
Ml 7770 |eed]
i
o 777 ccd]
10 - Zooeed
=
— R | I
ZAles
22 Jes
2 les
P73 [ 22 lee
| e
P e o s
A 2pee i
o e ARE P | 22 |EE
0 ‘ ‘ ‘ 2 %l

Data structures
(b) Writes

Fig. 7. Total I/O performed by the count-stretch, time-stretch and immediate report LERT. Data structure
configuration: RAM level: 4194304 slots in the CQF, levels: 3, growth factor: 4, number of observations: 64M.
Immediate-report LERT (IRL).

Skylake CPU (Core(TM) i7-6700HQ CPU @ 2.60GHz with 4 cores and 6MB L3 cache) with 32 GB
RAM and a 1TB Toshiba SSD. The machine for all scalability benchmarks had an Intel Xeon(R) CPU
(E5-2683 v4 @ 2.10GHz with 64 cores and 20MB L3 cache) with 512 GB RAM and a 1TB Samsung
860 SSD.

For all the experiments, we use a reporting threshold of 24 since it is the default in the Firehose
benchmarking suite.

8.2 Timely reporting

Cascade filter. Figures 4a and 4b show the distribution of count stretch and time stretch of reported
items in the cascade filter. The cascade filter’s maximum count-stretch is 3.0 and maximum time
stretch is > 12, much higher than any single-threaded count-stretch or time-stretch LERT.

Count-stretch LERT. Figure 4a validates worst-case count stretch for the count-stretch LERT.
The total on-disk count for an element is 14, so the maximum possible count when reported is 38
(i.e., 24 + 14), for a maximum count stretch of 1.583. The maximum reported count stretch is 1.583.

Time-stretch LERT. Figure 4b shows the time-stretch LERT meets the time-stretch requirements.
The maximum reported time stretch is 1.59 which is smaller than the maximum allowable time
stretch of 2. Figure 4c shows the distribution of empirical time stretches with changing « values.
The time stretch of any reported element is always smaller than the maximum allowable time
stretch. As the number of age bits increases, a decreases and the time stretch decreases.
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DatasetSize-to-RAM-ratio: 16, 32, and 64.
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Fig. 9. Instantaneous throughput of the count-stretch LERT with 1 cone and 1 thread and 1024 cones and 4
threads. Same configuration as Figure 4a.

8.3 Robustness with input distributions

Figure 5a shows the robustness of empirical time stretch (ETS) on four input distributions other
than the Firehose power-law distribution. The ETS is less than 2, the theoretical limit of the data
structure for all input distributions.

8.4 Effect of deamortization/threading

Figures 4a and 4b show the effect of deamortization and multi-threading on timeliness in the
count-stretch LERT and time-stretch LERT.

Using 8 cones instead of one does not change the timeliness of any reported item. This is because
the distribution of items in the stream is random (see Section 8.1) and we use a uniform-random
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hash function to distribute items to each cone. Each cone gets a similar number of items and the
cones perform shuffle-merges in sync (refer to Section 6).

Running the count-stretch and time-stretch LERT with 8 cones and 8 threads does affect timeliness
of reported items. Some items are reported later than the theoretical upper bound. The reported
maximum time- and count-stretch is > 5. This is because each thread inserts items into a local
buffer when it can not immediately acquire the cone lock. We empty local buffers only when they
are full. The maximum delay happens when an item’s lifetime is similar to the time it takes for a
cone to incur a full flush involving all levels of the data structure. Figure 6 shows the stretch of
reported items and their lifetime. The maximum-stretch items have a lifetime ~ 16M observations
which is the number of observations it takes for a cone to incur a full flush.

8.5 Effect of buffering

Figure 5b shows the empirical count stretch with three different buffering strategies. In the first,
we use buffers without any constraint on the count of a key inside a buffer. We dump the buffer
into the main data structure when it is full. In the second, we constrain the maximum count a key
can have in a buffer to T/P (for T = 24 and P = 8 the max count is 3). In the third, we don’t use
buffers. Threads try to acquire the lock on the cone and wait if the lock is not available.

The empirical stretch is smallest without buffers. However, not using the buffers increases
contention among threads and reduces insertion throughput. Using the buffers is 2.5x faster
compared to not using the buffer.

8.6 1/0 performance and throughput

Figure 7 shows the total amount of I/O performed by the count-stretch, time-stretch and immediate-
report LERT while ingesting a stream. For all data structures, the total I/O calculated and total I/O
measured using iotop is similar.

The count-stretch LERT does the least I/O because it performs the fewest shuffle-merges. The
I/O for the time-stretch LERT grows by a factor of two as the number of bins increases, as predicted
by the theory. The I/O for immediate-report LERT is similar to that of the time-stretch LERT with
stretch 2. This shows that when item counts follow a power-law distribution, we can achieve
immediate reporting with the same amount of I/O as with a time stretch of 2.

Insertion throughput. Figure 8a shows insertion throughput using the same configuration and
stream as the total-I/O experiments. The count-stretch LERT has the highest throughput because it
performs the fewest I/Os. The immediate-report LERT has lower throughput because it performs
extra random point queries. The time-stretch LERT throughput decreases as we add bins and
decrease the stretch.

The Misra-Gries data structure throughput is 2.2 Million ops/sec in-memory. This acts a
baseline for in-memory insertion throughput. The in-memory MG data structure is only twice as
fast as the on-disk count-stretch LERT.

8.7 Instantaneous throughput

Figure 9 shows the instantaneous throughput of the count-stretch LERT. De-amortization and multi-
threading improve both average throughput and throughput variance. With one thread and one
cone, the data structure periodically stops processing inputs to perform flushes, causing throughput
to crash to 0. With 1024 cones and four threads, the system has much smoother throughput, never
stops processing inputs, and has about 3Xx greater average throughput.

, Vol. 1, No. 1, Article 1. Publication date: January 2021.



TED database “Stream” small
il Full stream enough for
. -' Slower gh.

Y ® . ~utomated human inspection
y%';;‘ vl BB gy
'A .. " o matches ,._*, -

Fig. 10. The analysis pipeline that motivates our TED problem solution. Analysts associate a multi-piece
pattern, represented by the 4-piece puzzle, to a high-consequence event. The pieces arrive slowly over time,
mixed with innocent traffic in a high-throughput “firehose” stream. Our database stores many partial matches
to the pattern reporting all instances of the pattern. There still may be a fair number of matches, which are
pared down by an automated system to a small number (essentially droplets compared to the original stream)
of matches worthy of human inspection.

8.8 Scaling with multiple threads

Figure 8b shows count-stretch LERT throughput with increasing number of threads. The scalability
will follow for other variants since they all have the same insertion and SSD access pattern. The
insertion throughput increases with thread count. We used three values of DatasetSize-to-RAM-
ratio: 16, 32, and 64. All have similar scalability curves.

9 MOTIVATING NATIONAL SECURITY APPLICATION

In this section, we describe the more complex national-security setting that motivates our modeling
constraints. Firehose [4, 5] is a clean benchmark that captures the fundamental elements of this set-
ting. The TED problem in this paper in turn distills the most difficult part of the Firehose benchmark.
Therefore our solutions have direct line of sight to important national-security applications.

An ideal solution for TED would have 1) no false negatives, 2) no false positives, 3) immediate
reporting of a stream element that upon arrival hits the reporting threshold, and 4) speed sufficient
to keep up with real sensor data streams. To better allow (1) and (4), in this paper we relax (2) and
(3). Our algorithms limit false positives to keys that are “close” to reportable and bound reporting
delay by either time or count. Our use case explains why we can tolerate these relaxations. It also
explains why we can not relax the no-false-negative requirement. This critical aspect of the model
means we cannot consider sampling-based or randomized algorithms for finding reportable items,
since these can miss events.

We are motivated by monitoring systems for national security [4, 5], where experts associate
special patterns in a cyberstream to rare, high-consequence real-life events. These patterns are
formed by a small number of “puzzle pieces,” as shown in Figure 10. Each piece is associated with
a key such as an IP address or a hostname. The pieces arrive over time. When an entire puzzle
associated with a particular key is complete, this is an event, which should be reported as soon as
the final puzzle piece falls into place. In Figure 10, the first stage is like our TED problem algorithm,
except that it must store puzzle pieces with each key rather than a count and the reporting trigger
is a complete puzzle, not a count threshold.

There can still be a fair number of matches to this special pattern, most of which are still not the
critically bad event. This might overwhelm a human analyst, who would then not use the system.
However, automated tools, shown in the second stage of Figure 10, can pare these down to the few
events worthy of analyst attention.
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The first stage filter, like our TED problem solution, must struggle to handle a massively large,
fast stream. It is reasonable to allow a few false positives in the first stage to improve its speed. The
second stage can screen out almost all of these false positives as long as the stream is significantly
reduced. The second stage is a slower, more careful tool which cannot keep up with the initial
stream. This second tool cannot, however, repair false negatives since anything the first filter misses
is gone forever. So the first tool cannot drop any matches to the pattern. Experts have gone to great
effort to find a pattern that is a good filter for the high-consequence events. We do not allow false
negatives because the high-consequence events that match this carefully crafted pattern can and
must be detected.

Each of these patterns are small with respect to the stream size, so the detection algorithm must
be scalable, that is, must be able to support a small threshold T. The consequences of missing an
event (false negative) are so severe that it is not reasonable to risk facing those consequences just to
save a little space. Thus we must save all partial patterns, motivating our use of external memory.

The ability to tolerate a reporting delay depends upon how much lead time the search pattern
gives before possible damage. There will be some additional delay from the second-stage testing.
Reports are still “better late than never” Even if some damage has occurred, the system operators
still have significantly more information than they would have if they had received no report.

The DoD Firehose benchmark captures the essence of this setting [5]. In Firehose, the input
stream has (key,value) pairs. When a key is seen for the 24th time, the system must return a function
of the associated 24 values. The most difficult part of this is determining when the 24th instance
of a key arrives. Thus, like Firehose, the TED problem captures the essence of the motivating
application.

10  CONCLUSION

This work bridges external-memory and streaming algorithms. By taking advantage of external
memory, we can solve timely event detection problems at a level of precision that is not possible in
the streaming model, and with little or no sacrifice in terms of the timeliness of reports.

Even though streaming algorithms, such as Misra-Gries, were developed for a space-constrained
setting, we show that they can be made efficient in the external-memory setting, where storage is
plentiful but accessing the data is expensive.
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