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Abstract

Multiplanetary systems are prevalent in our Galaxy. The long-term stability of such systems may be disrupted if a
distant inclined companion excites the eccentricity and inclination of the inner planets via the eccentric Kozai–
Lidov mechanism. However, the star–planet and the planet–planet interactions can help stabilize the system. In this
work, we extend the previous stability criterion that only considered the companion–planet and planet–planet
interactions by also accounting for short-range forces or effects, specifically, relativistic precession induced by the
host star. A general analytical stability criterion is developed for planetary systems with N inner planets and a
relatively distant inclined perturber by comparing precession rates of relevant dynamical effects. Furthermore, we
demonstrate as examples that in systems with two and three inner planets, the analytical criterion is consistent with
numerical simulations using a combination of Gauss’s averaging method and direct N-body integration. Finally,
the criterion is applied to observed systems, constraining the orbital parameter space of a possible undiscovered
companion. This new stability criterion extends the parameter space in which an inclined companion of multiplanet
systems can inhabit.

Unified Astronomy Thesaurus concepts: Dynamical evolution (421); Exoplanet dynamics (490); General relativity
(641); Planetary dynamics (2173); Star-planet interactions (2177)

1. Introduction

Recent ground- and space-based observations suggest that
multiplanet systems are abundant in our galaxy (e.g., Lissauer
et al. 2011, 2012; Tremaine & Dong 2012; Rowe et al. 2014).
Many of these systems contain multiple planets on tight orbits
(e.g., Howard et al. 2012; Brewer et al. 2018; Wu et al. 2019).
The NASA Kepler Mission detected hundreds of multiplanet
systems with semimajor axis smaller than 1 au (e.g., Borucki
et al. 2011). Some systems even have multiple planets all
residing within Mercury’s semimajor axis, such as the system of
TRAPPIST-1 (see Gillon et al. 2017). Ultrashort-period planets
with periods less than 1 day have also been detected (e.g.,
Livingston et al. 2018; Winn et al. 2018; Santerne et al. 2018).
Additionally, these planets seem to have low eccentricities (e.g.,
Lithwick et al. 2012; Van Eylen & Albrecht 2015). It is
suggested that gravitational interactions between planets in these
compact systems help stabilize it against perturbations from
external bodies (e.g., Fang & Margot 2013; Pu & Wu 2015;
Volk & Gladman 2015; Pu & Lai 2018; Denham et al. 2019).

Meanwhile, the population of giant planets and massive
stellar companions are also substantial. They are frequently
found to inhabit long-period orbits (e.g., Raghavan et al. 2010;
Knutson et al. 2014; Bryan et al. 2016; Konopacky et al. 2016;
Zhu & Wu 2018; Bryan et al. 2019), as is the case in our solar
system. These faraway and massive companions are crucial in
shaping the inner orbits’ architecture and, in particular,
determining the dynamical stability of the system. For example,
a giant planet with an inclined and distant orbit can excite
eccentricities and inclinations of the inner planets via the
eccentric Kozai–Lidov (EKL) mechanism through angular
momentum exchange (e.g., Takeda & Rasio 2005; Takeda et al.
2008; Naoz 2016; Pu & Lai 2018; Denham et al. 2019).

The presence of such inclined and massive companions may
undermine our ability to detect other planets on the inner orbits
(e.g., Becker & Adams 2017; Hansen 2017; Mustill et al.
2017). Specifically, the disrupting effect from the outer
companion may change the inclinations of inner orbits (e.g.,
Becker & Adams 2016), inducing them to oscillate out of the
transiting plane, and therefore making them undetectable by the
transit method, which is by far the most productive method of
detecting exoplanets. Eccentricities of the inner planets may
also be excited to such high values that bring about close
encounters or orbit crossings, possibly resulting in planets
colliding into the star or being ejected out of the system due to
the strong gravitational interactions (e.g., Fabrycky & Murray-
Clay 2010; Naoz et al. 2012; Fabrycky et al. 2014; Li et al.
2014a, 2014c, 2020). Consequently, these misaligned, collided,
or ejected planets are no longer detectable.
Previous works have studied the secular (i.e., long-term)

perturbations both from distant companions and within
compact systems. Specifically, the long-time interactions
between adjacent planets are studied dating back to Laplace,
Lagrange, and Poincaré. They found that angular momentum
exchange between planets will induce orbital precession, which
is later referred to as the Laplace–Lagrange (LL) secular theory.
The disturbing influence from an inclined distant massive
companion is described by the EKL effect (Lidov 1962;
Kozai 1962; Naoz et al. 2011; Naoz 2016). The EKL
mechanism dictates that an inclined perturber6 may excite the
eccentricity of an inner planet. However, any effect that causes
precession of the inner orbits tends to stabilize the system
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6 In some cases when both the inner and outer objects are eccentric, a nearly
coplaner outer companion can also excite both the eccentricity and inclination
of an inner object (see Li et al. 2014b, 2014a).
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against the gravitational perturbation from the faraway
companion (see Innanen et al. 1997). Angular momentum
exchange between the inner planets turns out to be one of the
stabilizing effects (Pu & Lai 2018; Denham et al. 2019). For
example, Denham et al. (2019), focusing on systems with two
planets and a faraway companion (2+1 configuration), derived
an analytical criterion and tested the stability of the system. The
method proposed in this work can be used to estimate and
constrain the parameter space of a possible hidden companion
of an observed multiplanet system. Furthermore, Boué &
Fabrycky (2014) studied the stellar spin–orbit excitations in
compact planetary systems with an inclined companion. Martin
et al. (2015) also examined the effect of a distant star on a
circumbinary system.

Aside from the planet–planet interactions, the influence of
the star on the stability of the system cannot be neglected when
the orbits of the planets are close enough to the star. Many such
close planets are already observed, such as in planetary systems
TRAPPIST-1, Kepler-20, Kepler-42, and Kepler-90, to name a
few. General relativity (GR) also causes precession of the
orbits, where due to the weak field nature of the problem we
consider only the first-order post-Newtonian approximation.
When the summation of the precession rates of the GR and LL
effects is much faster than that of EKL’s, further eccentricity
excitations will be suppressed. However, when the synthesized
precession rate of the GR and LL effects is comparable to or
slower than that of EKL’s, a resonant-like behavior takes place
that tends to excite the eccentricity of the inner member (e.g.,
Naoz et al. 2013).

In this work, we extend the previous stability criterion
derived in Denham et al. (2019) by incorporating short-range
forces or effects, such as general relativity, and comparing the
precession rates of different effects. Moreover, we generalize
the treatment beyond 2+ 1 to general N+ 1 systems and show
2+ 1 and 3+ 1 systems as examples. We find that general
relativity indeed suppresses the excitation from the outer
companion and helps stabilize the system. The example
systems are numerically integrated to test our analytical
criterion. Finally, we apply our criterion to two observed
systems to constrain the parameter space in which a hidden
companion may reside.

Below we first introduce the interactions and relevant
equations in Section 2. Then in Section 3, we develop a
relativistic analytical stability criterion that predicts the long-
time stability of a N+ 1 system from its initial conditions by
comparing the precession rates of different dynamical effects.
Numerical methods used in the rest of this work to test the
criterion are introduced in Section 4. As a proof of concept, we
apply and test the criterion on a set of hypothetical 2+ 1 and
3+ 1 systems in Sections 5 and 6, respectively. After that, we
demonstrate how the criterion can be applied to observed
systems to constrain the orbital parameters of a potentially
undiscovered companion in Section 7. Finally, we conclude
with a discussion of this study in Section 8.

2. Physical Processes and Equations

Consider a hierarchical system with N inner planets and a
distant companion indexed as 1, 2, ..., N for the planets and c
for the companion orbiting around a star of mass M. Their
corresponding masses, semimajor axes, eccentricities, inclina-
tions, longitude of the periapsides, longitude of the ascending
nodes, and true anomalies are denoted by mj, aj, ej, ij, ϖj, Ωj,

and νj, respectively, where the subscript index j ranges from 1
to N for the inner planets and c for the companion (see Figure 1
for an illustration of the system). Based on the aforementioned
observational findings, we assume that the inner planets are
initially on tightly packed and nearly circular orbits with small
mutual inclinations. We inspect three major mutual interactions
within the system that shapes its dynamical features: the
companion–planet interaction described by the EKL effect, the
planet–planet LL secular evolution, and the star–planet general
relativistic (GR) interaction. Here, we describe the effects that
the three interactions have on planet j and present their
associated timescales.

2.1. Eccentric Kozai–Lidov Effect

In a hierarchical system, the Hamiltonian can be decom-
posed into the summation of Keplerian terms and a coupling
term describing the interaction between planet j and the
companion (see Naoz 2016). This term can be expanded in the
power series of aj/ac, which is a small parameter. By
expanding the Hamiltonian up to the quadrupole order and
with the help of the equations of motion, we find that the
z− component of the angular momentum of planet j,
J e i i1 cosz j j c

2 ( )= - - , is conserved. Therefore, the eccen-
tricity and inclination of planet j will oscillate in a trade-off
manner due to the presence of the companion. When the
eccentricity is excited to extreme values, orbit crossing will
happen, therefore destabilizing the system. The associated
timescale of the EKL effect from the companion on planet j is
(Antognini 2015)
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where G is the gravitational constant. Note that this is the
shortest timescale for eccentricity excitations (i.e., the quadru-
pole level expansion). If this short timescale is already
suppressed, higher values will also be suppressed.

Figure 1. An illustration of the N + 1 system. We consider N inner planets and
a distant companion with masses mj, semimajor axes aj, eccentricities ej, and
inclinations ij, where the index j ranges from 1 to N for the inner planets, and c
for the companion. The inner planets are initially on circular and aligned orbits
(i.e., small mutual inclinations). The distant companion is misaligned with
respect to the inner planets.
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2.2. Laplace–Lagrange Secular Evolution

The LL secular interaction describes the long-term perturba-
tions between near planets. Consider two inner planets j and k.
The LL interaction leads to precession in their orbits through
angular momentum exchange. The timescale of the periapsis
precession of planet j due to the gravitational perturbation of
planet k is given by (e.g., Murray & Dermott 2000, Section 7.7)
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These equations were used in Denham et al. (2019) to find the
analytical stability criterion7 in the absence of general relativity
effects. Here the equations are generalized to account for the
influence on planet j from more than one planet.

Substituting Equations (3)–(10) into Equation (2) yield
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In addition to Denham et al. (2019), we find that during
relativistic evolution, cos k j( )v v- and cos k j( )W - W in
Equation (11) can both vary between −1 and 1. Combined
with the fact that the integrals in Equation (7) and Equation (8)
are positive for any given αjk between 0 and 1, we can therefore
constrain the LL precession timescale with an upper and a
lower limit by allowing the cosine terms to vary to their limits:
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We will soon show in Section 3 that the two limits enclose an
area in the parameter space, which is a transition zone between
stable and unstable systems. If the change in the orientation of
the planet’s orbit is fast enough to average out the eccentricity
excitations brought by the EKL effect, the system will remain
stable over time (e.g., Denham et al. 2019; Pu & Lai 2018).

2.3. General Relativity

General relativity is another effect that induces orbital
precession for close-in planets. When relativistic precession is
fast enough, the EKL eccentricity excitation can be suppressed.
The associated timescale of planet j is the period for its orbit to
precess one cycle (e.g., Misner et al. 1973):
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The shortest eccentricity excitation timescale due to the
perturbations from the companion is proportional to the EKL-
quadrupole timescale (i.e., Equation (1)). Therefore, the
maximum eccentricity that planet j can be excited to is due
to the quadrupole level of the EKL approximation. For an
initially circular inner orbit, the maximum eccentricity that
planet j can reach throughout its evolution in the presence of
GR is determined by the cubic equation
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7 Note that Denham et al. (2019) had a typo in the equivalent equations for
the A and B coefficients (Equation (3)–(6)), but it did not propagate into the
actual calculations.
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where J e1 jmin ,max
2= - is the minimum dimensionless

angular moment and e T T1 jGR
2

EKL GR( )= - (Liu et al.
2015; Naoz 2016). Notice that òGR∼ 1 when TGR and TEKL are
of comparable magnitude, and ej≈ 0 in our configuration. It is
worth mentioning that if the inner orbit is not initially circular
then the resonance nature changes and the maximum
eccentricity takes a different value (e.g., Hamers 2021; Hansen
& Naoz 2020). Solving for ej,max via Equation (15) and
substituting it back in Equation (14) gives the shortest
timescale of relativistic precession TGR,min.
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In what follows we generalize the stability criterion
developed in Denham et al. (2019) to (1) include GR effects
and (2) expand beyond two planets with a companion (i.e., 2
+1) to multiplanets with a companion (i.e., N+ 1)
configuration.

3. Analytical Stability Criterion

As discussed in Section 2, the distant companion can excite
the eccentricities and inclinations of the inner orbits. Mean-
while, GR along with other dynamical processes, such as LL
and EKL, induces precession of the inner orbits. If the
combined precession rate induced by GR and LL effects is
faster than that of EKL, eccentricity excitations will be
suppressed (e.g., Naoz et al. 2013; Denham et al. 2019).8

Therefore, to explore whether a system is stable, we need to
inspect and compare all the precession rates among the
aforementioned processes (see Section 2).

The inner system undergoes accumulated precession due to
GR, LL, and any other short-range effects that may affect the
system, such as tidal and magnetic interactions (e.g., Hut 1981;
Eggleton et al. 1998; Eggleton & Kiseleva-Eggleton 2001;
Fabrycky & Tremaine 2007; Liu et al. 2015; Ahuir et al. 2021).
In fact, any short-range effect that causes apsidal precession
can suppress the eccentricity excitations brought by the EKL
effect (e.g., Innanen et al. 1997; Liu et al. 2015). For the inner
planets to survive, these precession rates need to be faster than
the induced precession from the EKL, which is responsible for
the eccentricity excitations. Therefore, the general stability
criterion can be written as:

⎧
⎨⎩

, stable,
, unstable,

17EKL
LL GR,max SR

LL GR,max SR


  
  

( )w
w w w
w w w

< + +
> + +

where T1LL LLw = , T1GR,max GR,minw = , T1EKL EKLw = ,
and SRw stand for the precession rate of other short-range
forces or effects. Notice that while in the previous section we
considered the precession timescale, we find that the stability
criterion is better characterized in terms of the time derivative
of the resonant angle, i.e., the precession rate of the argument
of periapsis. Even though it is not the resonant angle of the LL
secular evolution, the argument of periapsis is relevant because
it is the resonant angle of the EKL-quadrupole level of
approximation. Moreover, the precession rates of different

stabilizing effects can be added directly because the argument
of periapsis, ω, is one of the canonical variables of the system,
the Delaunay’s elements (e.g., Valtonen & Karttunen 2006).
According to Hamilton’s equations, the time derivative of ω
can be added because the Hamiltonian of interactions between
different objects can be added directly.
Equation (17) generalizes the previous analytical criterion,

which neglected other short-range effects and is straightforward
to extend beyond 2+ 1 configuration to multiplanet systems.
We first introduce the numerical methods we use throughout
this work in Section 4. In Section 5 we then consider a two-
planet system with one faraway companion (2+1), and extend
the stability criterion to include GR effects. Furthermore, in
Section 6 we show the extension of the criterion to 3+ 1
systems.

4. Numerical Methods

In the rest of this work, we test our analytical criterion with
numerical approaches. We use a combination of the Rings
code9 and the N-body integration package REBOUNDx (Rein &
Liu 2012; Tamayo et al. 2020).
The Rings code adopts the Gauss’s averaging method,

which considers the interactions between planets by treating
each object as a ring of material whose mass is spread across its
orbit, instead of a mass point (Murray & Dermott 2000; Touma
et al. 2009). Orbital evolution is then calculated by the
interactions between different rings. The Rings code is an
adaptive time-step integrator, and the initial time step is not
specified and left as a default in our simulations. The
robustness of this algorithm was verified in many different
studies for noncrossing orbits (e.g., Touma et al. 2009; Touma
& Tremaine 2014; Nesvold et al. 2016; Sridhar & Touma 2016;
Denham et al. 2019). We modified the Rings code to include
the GR effect up to the first-order post-Newtonian expansion
(e.g., Tremaine & Dong 2012; Naoz et al. 2013; Will 2017).10

The Gauss’s averaging method provides a relatively fast
integration for systems that do not experience close encounters.
Therefore, we primarily use this method for a few slowly
varying stable systems.
REBOUNDx is a direct N-body simulation code with GR

effects we primarily use. We choose the “WHFast” integrator
(Wisdom & Holman 1991; Rein & Tamayo 2015) with the
default time step of 0.001/2π yr in all of our simulations. We
repeatedly integrate systems on a basis of 24 hr of running time
and inspect the results at the end of each day’s run. This
corresponds to roughly 3–6Myr of system evolution time
every 24 hr depending on different configurations. Systems are
integrated until the number of unstable systems remains
unchanged between two consecutive 24 hr runs. Upper limits
of system evolution time are given case-by-case in corresp-
onding sections below. N-body integration with GR is
significantly slower but more accurate for close encounters
(see Tamayo et al. 2020). Therefore, all the unstable systems
are integrated using this method. We double checked the
consistency between the Rings code and REBOUNDx by
comparing their simulation results on the same systems and
found conformity between them.
As Denham et al. (2019) did, we utilize the same proxy

log 1( )d- to quantify the stability of the system, where δ is a
8 Note that in some cases the LL level of interaction can excite eccentricities
between the inner orbits, but GR precession may also suppress these excitations
(e.g., Section 7.7 Murray & Dermott 2000; Faridani et al. 2021).

9 Available at https://github.com/farr/Rings.
10 Available at https://github.com/Wei-Lingfeng/Rings-GR.
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parameter representing the closest distance between two inner
orbits of planets j and k throughout their evolution:

⎡
⎣⎢

⎤
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a e a e

a a
min

1 1
, 18

j j k k

j k
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( ) ( )
( )d

- - +

-

assuming j> k. The closer the inner orbits are, the smaller δ is.
When the two orbits cross, i.e., log 1 0( )d- , strong
gravitational interactions will almost certainly result in
unpredictable and violent behaviors. Therefore, systems that
undergo orbit crossings are defined as unstable systems.

We are aware that there are different proxies that can be used
to indicate whether a system is stable or not, such as the
Lyapunov characteristic exponent and the Mean Exponential
Growth of Nearby Orbits (MEGNO; see Cincotta & Simó 2000;
Goździewski et al. 2001). However, instead of inspecting the
rate of separation of different orbits, focusing only on the
separation itself serves its purpose in this work, as we will
show in Sections 5 and 6. Therefore, we adopt the more easily
calculated and more intuitive proxy δ defined in Equation (18).

5. Example of 2 + 1 Systems

As a proof of concept, we consider two sub-Earth-sized inner
planets and a distant Jupiter-sized companion orbiting around a
1Me star. We initialize the two inner planets on nearly circular
orbits with low mutual inclinations. Planet 1ʼs semimajor axis
is 0.03 au and planet 2ʼs semimajor axis is allowed to vary from
0.05 to 0.3 au. The outer companion is initialized on a 5 au
orbit with an inclination of 85° with respect to the inner ones.11

The eccentricity of the companion is chosen as another free
parameter that ranges from 0 to 0.9. The initial conditions are
listed in Table 1. All other orbital elements that are not listed
here are initialized to be 0, including the argument of periapsis
ωj, the longitude of ascending node Ωj, and the true anomaly νj.

In this specific 2+ 1 configuration, we find that within the
varying range of the free parameters in Table 1, the
corresponding GR precession rates of planet 1 are always
much faster compared to EKL’s and LL’s, which is reasonable
as it is the closest planet to the star and the furthest one from
the disturbing companion. Consequently, planet 1 is always
stable in our configuration. Therefore, we focus on the
precession rates of planet 2 from now on.

The precession rate of each effect on planet 2, with the
choice of ec= 0.5 as an example, is plotted as a function of a2
in Figure 2. As can be seen, the precession rate of GR is

generally faster than that of LL in this case. Consequently, the
intersections between LL GR w w+ (red curves) and EKLw (blue
curves), or the maximum a2 that planet 2 can survive for a long
time, is relaxed to higher values compared with nonrelativistic
predictions.
From the timescale argument presented in Section 2, we can

find a stability criterion for the companion’s eccentricity as a
function of planet 2ʼs semimajor axis a2 according to
Equation (17). The stability criterion can be easily rearranged
to account for other unknown variables in the system (for
example, companion eccentricity and period) for an observed
system see Section 7. Equating the two sides in Equation (17)
with the choice of j= 2 yields a critical eccentricity for the
companion:
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where 2,stabw stands for the summation of all the precession
rates of stabilizing effects on planet 2:

. 202,stab 2,LL 2,GR,max   ( )w w w= +

In Equation (19), ec,crit denotes the critical eccentricity of the
companion that separates the stable and unstable systems in the
ec− a2 parameter space. Note that the limits of the critical
eccentricity, ec,crit 2,LL,min( )w and ec,crit 2,LL,max( )w , are obtained
by substituting the minimum and maximum LLw (reciprocal of
Equations (12)–(13)) into Equation (19). Our analytical
criterion in Equation (17) then becomes
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The region between the two critical eccentricities is a transition
zone from stable to unstable systems, where systems are nearly
or completely unstable. It is straightforward to incorporate

Table 1
Initial Condition of 2+1 Systems

Object Mass (Me) a (au) e i

Star 1
Planet 1 10−6 0.03 10−3 10−3 rad
Planet 2 10−6 0.05–0.3 10−3 10−3 rad
Companion 10−3 5 0 − 0.9 85°

Note. The 2 + 1 configuration is initialized with two sub-Earth sized inner
planets and a massive, distant companion. The semimajor axis of planet 2 and
the eccentricity of the companion are chosen as two free parameters that vary
within a specific range. Eccentricities and inclinations of inner planets are set to
small values to avoid peculiar behaviors of the integrator.

Figure 2. Precession rates of different effects on planet 2. We choose ec = 0.5
to show the dependency of precession rates of various effects on a2. When

LL GR w w+ (red curve) is faster than EKLw (purple curve), the system is
predicted stable, and unstable vice versa. Within the transition zone, the system
are expected to undergo large eccentricity excitations, but orbit crossing may
happen late in time.

11 The value of the initial mutual inclination has a negligible effect on the
stability, as long as it is higher than the Kozai angle (Denham et al. 2019).
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other short-range physical processes in addition to GR by
simply adding corresponding terms to 2,stabw .

To test the criterion derived above in a numerical approach,
we integrate the 2+ 1 systems with planet 2ʼs semimajor axis
increasing from 0.05 to 0.3 au in steps of 0.025 au, and the
eccentricity of the distant companion ranges from 0 to 0.9 in
steps of 0.1. In addition, we add more densely populated
integrated systems in the parameter space where it is close to
the critical eccentricity ec,crit (see Figure 3). The systems are
integrated up to 170Myr or until orbit crossing. As mentioned,
we use a combination of Gauss’s method and N-body
integration to check for consistency.

In Figure 3, each scattered point represents a simulated
system, and their colors reflect the minimum distance between
planet 1 and 2 (δ in Equation (18)) for each system throughout
its evolution. Stable orbits are represented as deep blue colors,
whereas closer or even crossing orbits are plotted in yellow. All
the systems that experience orbit crossing are circled with a
black contour. Here we impose a minimum cutoff value of
−0.2 on log 110( )d- in color representation. In other words,
all stable systems whose log 110( )d- are less than −0.2 are
represented as the same deepest blue color, so as to better
illustrate the transition from stability to instability. For
comparison, the relativistic and nonrelativistic analytical
stability criteria derived in the presence of GR and in Denham
et al. (2019) are overplotted as red and blue curves,
respectively. Relativistic systems are predicted to be stable
below the red curves and unstable above them. Shaded regions
represent their corresponding transition zones, in which
systems are likely to experience large eccentricity oscillations
but orbit crossing happens after a long time, possibly exceeding
the limit of our integration time. Systems between the blue and
red curves are what relativistic and nonrelativistic criteria
predict differently. Compared with the nonrelativistic criterion,

the relativistic one expands the stable region in the parameter
space.
There is a slight discrepancy on the lower-right part of the

parameter space due to the limited integration time. We
emphasize that the criterion developed here predicts unstable
systems if orbit crossing happens at any time during their
evolution regardless of timescale. Therefore, the simulated
results may not reach instability within the limited numerical
integration time. Integrating to gigayears is challenging in the
presence of GR precession. Thus, the simulation results tend to
underestimate the unstable region in the parameter space (e.g.,
Mylläri et al. 2018). Nonetheless, the systems that are expected
to be unstable but do not experience orbit crossing all have very
close orbital distance δ (as close as 10−3 au). As depicted in
Figure 3, our analytical prediction is close to the numerical
results.
To illustrate the effect of the GR precession in stabilizing the

system, we select three representative systems from the grid,
marked as A, B, and C as indicated in Figure 3. They
correspond to stable, relativistic stable (unstable by nonrelati-
vistic predictions) and unstable systems, respectively. The
evolution of the aphelion, perihelion, and inclination is plotted
as a function of time in Figure 4.
According to the nonrelativistic criterion, system B should

be unstable. Indeed, when we integrate system B without
adding GR effects, the orbits cross and planet 2 collides with
the star after about 1.5 million years, as can be seen from the
zoomed-in plot in the top middle panel of Figure 4. However,
with the help of general relativity, the excited oscillations in
eccentricity and inclination from the distant companion are
largely suppressed, rendering stable evolution. The simulation
results validate the relativistic analytical criterion proposed in
Section 3.

Figure 3. Stability criterion and simulation results for 2 + 1 systems. We compare the stability criterion with simulation results for 2 + 1 systems. Relativistic and
nonrelativistic stability criteria based on Equation (19) are plotted as red and blue curves, respectively. Each scattered point represents a numerically integrated system
accounting for GR effects in the ec − a2 parameter space. Systems are integrated up to a maximum of 170 Myr. The color code represents how close the orbit of the
two inner planets become defined by log 1( )d- (see Equation (18)) throughout their evolution. Deep blue represents large separations between planet 1 and planet 2
without orbit crossing, whereas yellow stands for close encounters. The points with the black contours represent systems that experience orbit crossing. Here we plot
all the values of log 1( )d- at or below −0.2 in the same deepest blue color in order to show the transition from stable to unstable systems more clearly. In Figure 4
we show the time evolution of three representative systems in different regions marked as A, B, and C in this plot.
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6. Example of 3 + 1 Systems

As another example of the criterion’s application, we now
inspect the stability of systems with three inner planets and a
distant companion, or 3+ 1 systems. The systems are
initialized with three close-in sub-Earth-sized planets and a
Jupiter-sized companion orbiting around a star of M= 1Me.
Planet 1 and the companion lie on the same orbit as in the 2+ 1
case. The initial conditions of the system are listed in Table 2.

After applying the generalized stability criterion Equation (17)
to each planet, we find that planets 1 and 2 are stable in the
varying range of a3 and ec. However, planet 3 is not.
The precession rates of different effects on planet 3, with the
choice of ec= 0.8 as an example, are plotted in Figure 5.

As before, equating the two sides in Equation (17) for planet
3 gives a similar critical eccentricity of the companion ec,crit:

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

e
a

a

G

M m

m
1

15

16
,

22

c
c k k

c
,crit

3
3 2

3
1

3
3,stab

2 3 1 2



( )

w
= -

+ å =

where

. 233,stab 3,LL 3,GR,max   ( )w w w= +

The general criterion in Equation (17) then becomes
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The only difference from the 2+ 1 case is the subscripts
changing from 2 to 3. Recall that 3,LLw includes the
contribution of LL effects from all the planets, according to
Equations (12) and (13).
We simulate the evolution of systems with different initial

conditions in the ec− a3 parameter space as a test of the
derived criterion. Systems are integrated up to 90Myr or until
orbit crossing. The simulation results are plotted in Figure 6.
The same legend in Figure 3 applies here. Each system is
represented as a scattered point, and their colors reflect the

Figure 4. Time evolution of three representative systems. We show the time evolution of aphelion and perihelion (top row) and inclination (bottom row) for planet 1
(solid blue) and planet 2 (solid red) in three representative relativistic systems labeled as A, B, and C in Figure 3. For system B, nonrelativistic evolution of aphelion
and perihelion are overplotted in light blue and light red for comparison. Inset figure in the top middle panel zoom in the first 2 Myr to illustrate the system behavior in
the nonrelativistic case. The three systems share the following initial orbital parameters in common: M = 1Me, m1 = m2 = 10−6Me, mc = 10−3Me, a1 = 0.03 au,
ac = 5 au, e1 = e2 = 0.001, i1 = i2 = 0.001 rad, ic = 85°, and ω1 = ω2 = ωc = Ω1 = Ω2 = Ωc = 0. The only differences are a2 and ec. For the stable system A,
a2 = 0.1, ec = 0.5. For relativistic stable system B (only stable when considering GR), a2 = 0.175, ec = 0.6. Finally, for unstable system C, a2 = 0.25, ec = 0.7.

Table 2
Initial Conditions for 3 + 1 Systems

Object Mass (Me) a (au) e i

Star 1
Planet 1 10−6 0.03 10−3 10−3 rad
Planet 2 10−6 0.05 10−3 10−3 rad
Planet 3 10−6 0.1 − 0.3 10−3 10−3 rad
Companion 10−3 5 0 − 0.9 85°

Note. All other unspecified orbital elements are initialized to be zero.

Figure 5. Precession rates of different effects on planet 3. We choose ec = 0.8
to show the dependency of precession rates on a3. When LL GR w w+ (red
curve) dominates over EKLw (purple curve), the system is predicted stable, and
unstable vice versa. Within the transition zone, the system is expected to
experience large eccentricity excitations, but orbit crossing may happen late in
time. When the precession rates from the three effects are equal, we observe a
resonance-like behavior in the simulation, which is discussed in the Appendix
in detail.
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closest distance between planet 3 and its nearest neighbor
planet 2 throughout the evolution. A minimum cutoff value of
−0.3 is imposed on log 1( )d- in color representation to show
the transition from stable to unstable more clearly. The
relativistic and nonrelativistic critical eccentricities are plotted
as red and blue curves in Figure 6, respectively. Systems lying
below the red curves should be stable, while the ones above
them should be unstable.

Most of the systems’ behaviors agree with our expectations.
It is worth mentioning that the simulation results conform with
the criterion better than the 2+ 1 case, mainly because the
precession rates of planet 3 are faster due to the presence of a
closer neighboring planet 2, as can be seen from Figures 2 and
5. The limitation on integration times are therefore mitigated.
An exception at a3= 0.14 and ec= 0.8 is investigated in the
Appendix. We expect that this system undergoes a resonant-
like behavior because of equal precession rates from all three
effects (see Figure 5). GR precession tends to destabilize the
resonant angle, inducing eccentricity excitations (e.g., Naoz
et al. 2013; Hansen & Naoz 2020). Notice that within the
relativistic transition zone, only part of the systems experience
“true” orbit crossing, while others all have very close orbital
distances (as close as 5× 10−3 au), suggesting that longer
integration timescale may indeed yield instability. This is
consistent with the notion that systems in the transition zone
will experience large eccentricity excitations and are on the
brink of instability, but orbit crossing may happen very late in
their evolution, exceeding our simulation capabilities.

Similarly to the 2 + 1 case, in Figure 7 we plot the time
evolution of three representative systems A, B, and C marked
in Figure 6, corresponding to stable, relativistic stable, and
unstable cases. Relativistic and nonrelativistic criteria disagree
on the behavior of system B, and it is indeed the case according
to the top middle panel and the zoomed-in overplot in Figure 7.

Without GR, the eccentricity of planet 3 oscillates largely, and
thus the orbits of inner planets cross and finally collide with the
star (planet 1) or become ejected out of the system (planet 2)
after only about 6 Myr. In comparison, once GR is taken into
account, the same system behaves stable over timescales of
100Myr with no close encounters. Again, this is a convincing
proof of our analytical criterion.
To illustrate the stabilizing effects of the LL and GR

interactions comprehensively, we present another set of time
evolution results of one of the 3+ 1 systems initialized in
Table 2, with the choice of a2= 0.05 au and e3= 0.5. As
shown in Figure 8, we systematically add one or more planets
into the system and inspect their influence on the eccentricity
excitation of planet 3. Specifically, from left to right, we begin
with the configuration including the star, planet 3, and the
companion. Then in the second panel, we add planet 1 only,
followed by adding planet 2 only in the third panel. Lastly, in
the fourth panel, we consider the full 3+ 1 system. The lines in
solid colors represent the evolution in the presence of
relativistic precession, while the lines in light colors represent
the nonrelativistic case. As shown Figure 8, each time one or
more planets are added into the system, the eccentricity
oscillation is suppressed. The closer the added planet is, or for a
higher multiple of planets, the larger the suppression of the
eccentricities is. This trend is a direct reflection of the
stabilizing effect of the LL interaction. Additionally, in each
panel, the eccentricity excitation of the relativistic case (solid
color lines) is always much smaller than the nonrelativistic case
(light color line), highlighting the efficiency of GR precession
in suppressing the eccentricity excitations induced by the EKL
effect from the companion. A combined effect of LL
interactions and short-range forces or effects such as general
relativity contributes to stabilizing observed systems against a
faraway companion.

Figure 6. Stability criterion and simulation results for 3 + 1 systems. As before, the stability criterion is compared with simulation results for 3 + 1 systems.
Relativistic and nonrelativistic stability criterion based on Equation (22) are plotted as red and blue curves, respectively. Each scattered point represents a numerically
integrated system accounting for GR effects in the ec − a3 parameter space. Systems are integrated up to a maximum of 90 Myr. The color code represents how closely
the orbits of the two planets become defined by log 1( )d- (see Equation (18)) throughout their evolution. Deep blue represents large separations between planet 2 and
planet 3 without orbit crossing, whereas yellow stands for close encounters. The points with the black contours represent systems that experience orbit crossing. Here
we plot all the values of log 1( )d- at or below −0.3 in the same deepest blue color in order to show the transition from stable to unstable systems more clearly. In
Figure 7 we show the time evolution of three representative systems in different regions marked as A, B, and C in this plot.
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7. Application on Observed Systems

The stability criterion developed in Section 3 can be used to
constrain the space of orbital parameters in which a hidden
companion may reside (Faridani et al. 2021). As an application,
we apply the criterion to two representative observed two-
planet systems and identify the parameter space that an
undiscovered companion may inhabit. Unlike Figure 3, here
we focus on the companion’s ec− ac parameter space. The
companion’s critical eccentricity ec,crit as a function of ac
divides the parameter space into stable and unstable regions.
The systems are then numerically integrated in the presence of
an additional companion spanning across the ec− ac parameter
space to test our prediction. As before, the companion is
assumed to have one Jupiter mass MJ with an inclination of 85°
with respect to the first planet in the system. K2-223 and K2-
229 are the systems of interest, since they both comprise ultra-
short period planets whose GR induced precession rates are
faster than that of LL. Note that Faridani et al. (2021) compared
the GR and LL precession rates for all observed two-planet
systems orbiting single stars with both planet masses known.
They found that for a certain fraction of the systems, GR
precession may contribute to their stabilization. Here, we are
selecting two specific systems that do not require a too far away
companion to distinguish the non-GR and GR criterion, thus
less computationally expensive in terms of integration time.

K2-223 is a 1.06 Me star orbited by two planets of 0.9 M⊕
and 5.0 M⊕ with semimajor axes of 0.0127 au and 0.0549 au,
respectively (Livingston et al. 2018). K2-229 is a K-type main-
sequence star of 0.837 Me, orbited by two confirmed planets of
2.59 M⊕ and 21.3 M⊕, at distances of 0.012888 au and
0.07577 au (Santerne et al. 2018).12 Unavailable parameters are
assumed to be zero or near zero values to avoid peculiar
behaviors of the integrator. Initial conditions for both systems
are listed in Table 3.

Figure 9 illustrates the theoretical predictions of relativistic
and nonrelativistic criteria in the ec− ac space as red and blue
curves, respectively. The enclosed light red and light blue areas
depict the transition zones. Potential companions are prohibited
to inhabit the parameter space above the red curves according
to the relativistic stability criterion. Note that the different
shape of the curves in Figure 9, compared to Figures 3 and 6, is
due to our focus on the companion’s parameter space, rather
than one orbital element of the inner planets. As before, each
scattered point represents a corresponding numerically inte-
grated system. The systems are integrated up to a maximum of
2.7Myr for K2-223 and 3.0Myr for K2-229. Stable systems
with no orbit crossing are colored in deep blue, while unstable
systems with orbit crossings are painted in bright yellow with a
black contour. It is clear that the simulation results agree
flawlessly with our analytical prediction. The successful
application of the criterion developed in this work on observed
systems enables a confident constraint on hidden inclined
companions.

8. Discussion

Multiplanet systems are a pervasive configuration in our
Galaxy (e.g., Tremaine & Dong 2012; Fabrycky et al. 2014;
Lissauer et al. 2014; Rowe et al. 2014). Many of them are
believed to be compact systems with tight planetary orbits (e.g.,
Howard et al. 2012; Brewer et al. 2018; Weiss et al. 2018;
Winn et al. 2018; Wu et al. 2019; Weiss & Petigura 2020). The
close distance to the star makes it possible for general relativity
to shape their dynamical features. Meanwhile, stellar systems
with faraway companions, either planets or stars, are also
abundant (e.g., Raghavan et al. 2010; Knutson et al. 2014;
Bryan et al. 2016; Konopacky et al. 2016; Zhu & Wu 2018;
Bryan et al. 2019). While these two populations are detected
using different methods, existing evidence shows that multi-
planet systems may be accompanied by faraway companions
(e.g., Lai & Pu 2017; Becker et al. 2020).

Figure 7. Time evolution of representative systems. We show the time evolution of aphelion and perihelion (top row) and inclination (bottom row) for planet 1 (solid
orange), planet 2 (solid blue), and planet 3 (solid red) in three representative relativistic systems labeled as A, B, and C in Figure 6. For system B, nonrelativistic evolution of
aphelion and perihelion are overplotted in light orange, light blue, and light red for comparison. Inset figure in the top middle panel zoom in the first 2 Myr to illustrate the
system behavior of the nonrelativistic case. The three systems share the following initial orbital parameters in common: M = 1Me, m1 = m2 = m3 = 10−6Me,
mc = 10−3Me, a1 = 0.03 au, a2 = 0.05 au, ac = 5 au, e1 = e2 = e3 = 0.001, i1 = i2 = i3 = 0.001 rad, ic = 85°, and ω1 = ω2 = ω3 = ωc = Ω1 = Ω2 = Ω3 = Ωc = 0. The
only difference lies in a3 and ec. For the stable systemA, a3 = 0.16, ec = 0.4. For relativistic stable systemB (only stable when considering GR), a3 = 0.2, ec = 0.5. Finally,
for unstable system C, a3 = 0.24, ec = 0.6.

12 Unconfirmed candidate planet K2-229 d is not considered here.
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In this work, we have examined the orbital stability of
hierarchical planetary systems with multiple nearly coplanar
close-in planets and an inclined, distant, massive companion,
i.e., the N+ 1 configuration (illustrated in Figure 1). The
companion tends to excite the eccentricities of inner planets
and possibly drive the system to instability via the EKL
mechanism (see Naoz 2016). However, both the LL planet–
planet interaction and the short-range interactions, such as
relativistic precession induced by the star, can help suppress the
EKL eccentricity excitations from the companion.

We have developed a general analytical criterion that
predicts the long-time stability of the system based on its
initial conditions by comparing the precession rates from the
relevant effects (see Equation (17)). Systems with fast EKL
precession rates, compared to the aforementioned interactions,
can be driven to instability. Conversely, the LL planet–planet
interactions and short-range forces or effects, such as
relativistic precession, can stabilize the system against
eccentricity excitations if their precession rates are faster than
that of EKL’s. Similar to Denham et al. (2019), we have
identified a transition zone in the parameter space between
stable and unstable systems. Within the transition zone, the
inner planets’ eccentricities are excited to large values but they
do not necessarily always undergo orbit crossing.

Aside from the general relativity we consider here, other
possible short-range interactions, such as tidal forces (e.g.,
Hut 1981; Eggleton et al. 1998; Eggleton & Kiseleva-
Eggleton 2001; Fabrycky & Tremaine 2007; Liu et al. 2015)
and magnetic interactions (e.g., Ahuir et al. 2021) between the
planets and the star can also contribute to the stabilization of

such systems. We believe that any extra short-range forces or
effects in addition to GR, which we consider in this work, can
be accounted for by incorporating corresponding precession
rates in the ωSR term in the general criterion in Equation (17).
Two different configurations are inspected in this work.

First, we apply the criterion to a set of 2+ 1 systems with
different initial conditions where GR plays a nonnegligible
role, extending the criterion developed in Denham et al. (2019)
by including GR effects. This extension of the stability zone is
depicted in Figure 3, where we plot the nonrelativistic and
relativistic criteria as blue and red curves, respectively. To
validate our theory, a series of different systems in the ec− a2
parameter space are integrated numerically using a combination
of N-body integration and Gauss’s averaging method. Our
simulation results conform well with our analytical predictions,
though there is a slight difference due to our limited integration
time. Time evolution of three example systems in Figure 4 also
proves our theory. Specifically, the eccentricity excitation in
the presence of GR is found to be significantly suppressed
compared to the nonrelativistic case (see case B in Figure 4).
This effect contributes to stabilizing observed two-body
exoplanet systems against perturbations from external compa-
nions (Faridani et al. 2021).
As a further generalization, the analytical criterion is then

applied to a set of 3+ 1 systems as another example.
Simulations using the same numerical techniques show
consistency between analytical criterion and numerically
integrated results in the ec− a3 parameter space (see
Figure 6). Time evolution of three example systems are
presented in Figure 7 and authenticates the prediction of the
analytical criterion again. Notice that only part of the systems
in the transition zone undergo orbit crossing, while others
experience close orbit encounters. This confirms the notion that
systems in the transition zone are on the brink of instability.
Finally, the criterion is applied to two observed systems, K2-

223 and K2-229, with a hypothetical companion of 1MJ and an
inclination of 85° with respect to the first planet in the system.
As shown in Figure 9, the simulation results are consistent with
our analytical stability criterion. The agreement suggests that
the methodology outlined here (i.e., the analytical criterion) can
be applied to a wide range of systems to constrain the
configuration of possible companions, such as stars or planets.

We thank the anonymous referee for comments. We also
thank Dan Fabrycky for useful suggestions. L.W. and S.N.
acknowledge the support from the Cross-Disciplinary Scholars

Figure 8. Illustration of the stabilizing effect from inner planets. From left to right, we systematically add planet 1 at a1 = 0.03 au, planet 2 at a2 = 0.05 au, and both
planet 1 and 2 into a system with initial conditions listed in Table 2 with the choice of a3 = 0.2 au and ec = 0.5. It is clear by comparison of different panels how the
existence of planet 1 and 2 can help suppress the EKL eccentricity excitation on planet 3 via LL secular interactions. Additionally, in each panel, the eccentricity
excitation with GR (solid color lines) is much less than that without GR (light color lines). In fact, GR helps prevent orbit crossing in an nonrelativistic unstable
system.

Table 3
Initial Conditions of K2-223 and K2-229 with a Hypothetical Companion

Object Mass a (au) e i

K2-223 1.06Me

K2-223 b 0.9M⊕ 0.0127 10−3 10−3 rad
K2-223 c 5.0M⊕ 0.0549 10−3 10−3 rad
Companion 1.0MJ 0.5 − 2.0 0 − 0.9 85°

K2-229 0.837Me

K2-229 b 2.59M⊕ 0.012888 10−3 10−3 rad
K2-229 c 21.3M⊕ 0.07577 10−3 10−3 rad
Companion 1.0MJ 0.5 − 2.5 0 − 0.9 85°

Note. The parameters of stars and inner planets are obtained from Livingston
et al. (2018) for K2-223 and Santerne et al. (2018) for K2-229.
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Appendix
A Resonant-like System

Figure 6 shows a system that lies deep within the stable
region but undergoes orbit crossing at a2= 0.14 au and
ec= 0.8. As one can tell from Figure 6, its neighboring
systems with either a smaller or larger semimajor axis of planet
2 are mostly stable. Together with its time evolution, which is
shown in Figure 10, we are convinced that this anomaly stems
from a resonant-like behavior. In this appendix, we show that

this orbital crossing is a result of GR destabilizing the system.
It was shown that GR precession can destabilize the resonant
family, especially when the GR precession rate is similar to that
of EKL, and sometimes even when the GR precession is shorter
(e.g., Ford et al. 2000; Naoz et al. 2013; Hansen & Naoz 2020).
According to Figure 5, the precession rates of EKL, GR, and
LL are all comparable for planet 3 at a2= 0.14 au and ec= 0.8,
thus yielding a resonant-like behavior, as is suggested in the
three-body case (Naoz et al. 2013).
In Figure 10, we consider this configuration in both

nonrelativistic and relativistic perspectives (top and bottom
rows, respectively) and systematically remove one different
object from the system each time. Specifically, from left to
right in Figure 10, we remove the companion, planet 2, planet
1, and present the full 3+ 1 system respectively. One may
wonder if the orbit crossing is a result of an LL resonance. In
fact, as depicted in the first column of Figure 10, this system is
stable in the absence of a faraway companion, both with and

Figure 9. Application of stability criterion to observed systems. Stability criterion is applied to two observed systems, K2-223 and K2-229, to constrain the orbital
elements of a possible hidden companion. We assume the presence of a hypothetical companion of 1MJ with inclination 85°. Relativistic and nonrelativistic criteria are
plotted in red and blue, respectively, dividing the ec − ac space. The companion is prohibited to reside above the red curves, as the system would be unable to survive.
As before, each scattered point represents a simulated system. The systems are integrated up to a maximum of 2.7 Myr for K2-223 and 3.0 Myr for K2-229. Stable
systems are depicted in deep blue, while systems experiencing close encounters are painted in yellow. Black contours around yellow points indicate orbit crossings.
The boundary of black contours and the relativistic criterion agrees well.

Figure 10. Illustration of a resonant system in Figure 6 at a3 = 0.14, ec = 0.8. We remove the companion, planet 2, and planet 1 in the first three columns,
respectively, to identify the reason for the resonant behavior of the 3 + 1 system. The last column shows the full 3 + 1 configuration. The resonance behavior can only
be observed when all planets and the companion are present, as well as GR effects.
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without GR precession, excluding the possibility of LL
resonance among the inner planets. Analytical calculations of
maximum eccentricities due to LL interactions alone also
precludes this explanation. We then add either planet 1 (second
column) or planet 2 (third column) to show that the GR
precession, in fact, stabilizes the system in the 2+ 1 case.
Finally, under the full 3+ 1 configuration, the resonant
behavior only appears when GR is added, confirming the
explanation that it is GR that brings about the resonance.

ORCID iDs

Lingfeng Wei (魏凌枫) https://orcid.org/0000-0002-2612-2933
Smadar Naoz https://orcid.org/0000-0002-9802-9279
Thea Faridani https://orcid.org/0000-0003-3799-3635
Will M. Farr https://orcid.org/0000-0003-1540-8562

References

Ahuir, J., Strugarek, A., Brun, A.-S., & Mathis, S. 2021, A&A, 650, A126
Antognini, J. M. O. 2015, MNRAS, 452, 3610
Becker, J., Batygin, K., Fabrycky, D., et al. 2020, AAS Division of Dynamical

Astronomy Meeting, 51, 403.05
Becker, J. C., & Adams, F. C. 2016, MNRAS, 455, 2980
Becker, J. C., & Adams, F. C. 2017, MNRAS, 468, 549
Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 736, 19
Boué, G., & Fabrycky, D. C. 2014, ApJ, 789, 111
Brewer, J. M., Wang, S., Fischer, D. A., & Foreman-Mackey, D. 2018, ApJL,

867, L3
Bryan, M. L., Knutson, H. A., Lee, E. J., et al. 2019, AJ, 157, 52
Bryan, M. L., Knutson, H. A., Howard, A. W., et al. 2016, ApJ, 821, 89
Cincotta, P. M., & Simó, C. 2000, A&AS, 147, 205
Denham, P., Naoz, S., Hoang, B.-M., Stephan, A. P., & Farr, W. M. 2019,

MNRAS, 482, 4146
Eggleton, P. P., Kiseleva, L. G., & Hut, P. 1998, ApJ, 499, 853
Eggleton, P. P., & Kiseleva-Eggleton, L. 2001, ApJ, 562, 1012
Fabrycky, D., & Tremaine, S. 2007, ApJ, 669, 1298
Fabrycky, D. C., & Murray-Clay, R. A. 2010, ApJ, 710, 1408
Fabrycky, D. C., Lissauer, J. J., Ragozzine, D., et al. 2014, ApJ, 790, 146
Fang, J., & Margot, J.-L. 2013, ApJ, 767, 115
Faridani, T., Naoz, S., Wei, L., & Farr, W. M. 2021, arXiv:2107.07529
Ford, E. B., Kozinsky, B., & Rasio, F. A. 2000, ApJ, 535, 385
Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al. 2017, Natur, 542, 456
Goździewski, K., Bois, E., Maciejewski, A. J., & Kiseleva-Eggleton, L. 2001,

A&A, 378, 569
Hamers, A. S. 2021, MNRAS, 500, 3481
Hansen, B. M. S. 2017, MNRAS, 467, 1531
Hansen, B. M. S., & Naoz, S. 2020, MNRAS, 499, 1682
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357
Howard, A. W., Marcy, G. W., Bryson, S. T., et al. 2012, ApJS, 201, 15
Hunter, J. D. 2007, CSE, 9, 90
Hut, P. 1981, A&A, 99, 126
Innanen, K. A., Zheng, J. Q., Mikkola, S., & Valtonen, M. J. 1997, AJ,

113, 1915

Knutson, H. A., Fulton, B. J., Montet, B. T., et al. 2014, ApJ, 785, 126
Konopacky, Q. M., Rameau, J., Duchêne, G., et al. 2016, ApJL, 829, L4
Kozai, Y. 1962, AJ, 67, 591
Lai, D., & Pu, B. 2017, AJ, 153, 42
Li, D., Mustill, A. J., & Davies, M. B. 2020, MNRAS, 496, 1149
Li, G., Naoz, S., Holman, M., & Loeb, A. 2014a, ApJ, 791, 86
Li, G., Naoz, S., Kocsis, B., & Loeb, A. 2014b, ApJ, 785, 116
Li, G., Naoz, S., Valsecchi, F., Johnson, J. A., & Rasio, F. A. 2014c, ApJ,

794, 131
Lidov, M. L. 1962, P&SS, 9, 719
Lissauer, J. J., Ragozzine, D., Fabrycky, D. C., et al. 2011, ApJS, 197, 8
Lissauer, J. J., Marcy, G. W., Rowe, J. F., et al. 2012, ApJ, 750, 112
Lissauer, J. J., Marcy, G. W., Bryson, S. T., et al. 2014, ApJ, 784, 44
Lithwick, Y., Xie, J., & Wu, Y. 2012, ApJ, 761, 122
Liu, B., Muñoz, D. J., & Lai, D. 2015, MNRAS, 447, 747
Livingston, J. H., Endl, M., Dai, F., et al. 2018, AJ, 156, 78
Martin, D. V., Mazeh, T., & Fabrycky, D. C. 2015, MNRAS, 453, 3554
Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation (Princeton,

NJ: Princeton Univ. Press)
Murray, C. D., & Dermott, S. F. 2000, Solar System Dynamics (Cambridge:

Cambridge Univ. Press)
Mustill, A. J., Davies, M. B., & Johansen, A. 2017, MNRAS, 468, 3000
Mylläri, A., Valtonen, M., Pasechnik, A., & Mikkola, S. 2018, MNRAS,

476, 830
Naoz, S. 2016, ARA&A, 54, 441
Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., & Teyssandier, J. 2011,

Natur, 473, 187
Naoz, S., Farr, W. M., & Rasio, F. A. 2012, ApJL, 754, L36
Naoz, S., Kocsis, B., Loeb, A., & Yunes, N. 2013, ApJ, 773, 187
Nesvold, E. R., Naoz, S., Vican, L., & Farr, W. M. 2016, ApJ, 826, 19
Pu, B., & Lai, D. 2018, MNRAS, 478, 197
Pu, B., & Wu, Y. 2015, ApJ, 807, 44
Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, ApJS, 190, 1
Rein, H., & Liu, S. F. 2012, A&A, 537, A128
Rein, H., & Tamayo, D. 2015, MNRAS, 452, 376
Rowe, J. F., Bryson, S. T., Marcy, G. W., et al. 2014, ApJ, 784, 45
Santerne, A., Brugger, B., Armstrong, D. J., et al. 2018, NatAs, 2, 393
Sridhar, S., & Touma, J. R. 2016, MNRAS, 458, 4129
Takeda, G., Kita, R., & Rasio, F. A. 2008, ApJ, 683, 1063
Takeda, G., & Rasio, F. A. 2005, ApJ, 627, 1001
Tamayo, D., Rein, H., Shi, P., & Hernandez, D. M. 2020, MNRAS, 491,

2885
Touma, J., & Tremaine, S. 2014, JPhA, 47, 292001
Touma, J. R., Tremaine, S., & Kazandjian, M. V. 2009, MNRAS, 394, 1085
Tremaine, S., & Dong, S. 2012, AJ, 143, 94
Valtonen, M., & Karttunen, H. 2006, The Three-Body Problem (Cambridge:

Cambridge Univ. Press)
Van Eylen, V., & Albrecht, S. 2015, ApJ, 808, 126
Volk, K., & Gladman, B. 2015, ApJL, 806, L26
Weiss, L. M., & Petigura, E. A. 2020, ApJL, 893, L1
Weiss, L. M., Marcy, G. W., Petigura, E. A., et al. 2018, AJ, 155, 48
Will, C. M. 2017, PhRvD, 96, 023017
Winn, J. N., Sanchis-Ojeda, R., & Rappaport, S. 2018, NewAR, 83, 37
Wisdom, J., & Holman, M. 1991, AJ, 102, 1528
Wu, D.-H., Zhang, R. C., Zhou, J.-L., & Steffen, J. H. 2019, MNRAS,

484, 1538
Zhu, W., & Wu, Y. 2018, AJ, 156, 92

12

The Astrophysical Journal, 923:118 (12pp), 2021 December 10 Wei et al.

https://orcid.org/0000-0002-2612-2933
https://orcid.org/0000-0002-2612-2933
https://orcid.org/0000-0002-2612-2933
https://orcid.org/0000-0002-2612-2933
https://orcid.org/0000-0002-2612-2933
https://orcid.org/0000-0002-2612-2933
https://orcid.org/0000-0002-2612-2933
https://orcid.org/0000-0002-2612-2933
https://orcid.org/0000-0002-9802-9279
https://orcid.org/0000-0002-9802-9279
https://orcid.org/0000-0002-9802-9279
https://orcid.org/0000-0002-9802-9279
https://orcid.org/0000-0002-9802-9279
https://orcid.org/0000-0002-9802-9279
https://orcid.org/0000-0002-9802-9279
https://orcid.org/0000-0002-9802-9279
https://orcid.org/0000-0003-3799-3635
https://orcid.org/0000-0003-3799-3635
https://orcid.org/0000-0003-3799-3635
https://orcid.org/0000-0003-3799-3635
https://orcid.org/0000-0003-3799-3635
https://orcid.org/0000-0003-3799-3635
https://orcid.org/0000-0003-3799-3635
https://orcid.org/0000-0003-3799-3635
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0003-1540-8562
https://orcid.org/0000-0003-1540-8562
https://doi.org/10.1051/0004-6361/202040173
https://ui.adsabs.harvard.edu/abs/2021A&A...650A.126A/abstract
https://doi.org/10.1093/mnras/stv1552
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.3610A/abstract
https://ui.adsabs.harvard.edu/abs/2020DDA....5140305B/abstract
https://doi.org/10.1093/mnras/stv2444
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.2980B/abstract
https://doi.org/10.1093/mnras/stx461
https://ui.adsabs.harvard.edu/abs/2017MNRAS.468..549B/abstract
https://doi.org/10.1088/0004-637X/736/1/19
https://ui.adsabs.harvard.edu/abs/2011ApJ...736...19B/abstract
https://doi.org/10.1088/0004-637X/789/2/111
https://ui.adsabs.harvard.edu/abs/2014ApJ...789..111B/abstract
https://doi.org/10.3847/2041-8213/aae710
https://ui.adsabs.harvard.edu/abs/2018ApJ...867L...3B/abstract
https://ui.adsabs.harvard.edu/abs/2018ApJ...867L...3B/abstract
https://doi.org/10.3847/1538-3881/aaf57f
https://ui.adsabs.harvard.edu/abs/2019AJ....157...52B/abstract
https://doi.org/10.3847/0004-637X/821/2/89
https://ui.adsabs.harvard.edu/abs/2016ApJ...821...89B/abstract
https://doi.org/10.1051/aas:2000108
https://ui.adsabs.harvard.edu/abs/2000A&AS..147..205C/abstract
https://doi.org/10.1093/mnras/sty2830
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.4146D/abstract
https://doi.org/10.1086/305670
https://ui.adsabs.harvard.edu/abs/1998ApJ...499..853E/abstract
https://doi.org/10.1086/323843
https://ui.adsabs.harvard.edu/abs/2001ApJ...562.1012E/abstract
https://doi.org/10.1086/521702
https://ui.adsabs.harvard.edu/abs/2007ApJ...669.1298F/abstract
https://doi.org/10.1088/0004-637X/710/2/1408
https://ui.adsabs.harvard.edu/abs/2010ApJ...710.1408F/abstract
https://doi.org/10.1088/0004-637X/790/2/146
https://ui.adsabs.harvard.edu/abs/2014ApJ...790..146F/abstract
https://doi.org/10.1088/0004-637X/767/2/115
https://ui.adsabs.harvard.edu/abs/2013ApJ...767..115F/abstract
http://arxiv.org/abs/2107.07529
https://doi.org/10.1086/308815
https://ui.adsabs.harvard.edu/abs/2000ApJ...535..385F/abstract
https://doi.org/10.1038/nature21360
https://ui.adsabs.harvard.edu/abs/2017Natur.542..456G/abstract
https://doi.org/10.1051/0004-6361:20011189
https://ui.adsabs.harvard.edu/abs/2001A&A...378..569G/abstract
https://doi.org/10.1093/mnras/staa3498
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.3481H/abstract
https://doi.org/10.1093/mnras/stx182
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467.1531H/abstract
https://doi.org/10.1093/mnras/staa2602
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1682H/abstract
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://doi.org/10.1088/0067-0049/201/2/15
https://ui.adsabs.harvard.edu/abs/2012ApJS..201...15H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://ui.adsabs.harvard.edu/abs/1981A&A....99..126H/abstract
https://doi.org/10.1086/118405
https://ui.adsabs.harvard.edu/abs/1997AJ....113.1915I/abstract
https://ui.adsabs.harvard.edu/abs/1997AJ....113.1915I/abstract
https://doi.org/10.1088/0004-637X/785/2/126
https://ui.adsabs.harvard.edu/abs/2014ApJ...785..126K/abstract
https://doi.org/10.3847/2041-8205/829/1/L4
https://ui.adsabs.harvard.edu/abs/2016ApJ...829L...4K/abstract
https://doi.org/10.1086/108790
https://ui.adsabs.harvard.edu/abs/1962AJ.....67..591K/abstract
https://doi.org/10.3847/1538-3881/153/1/42
https://ui.adsabs.harvard.edu/abs/2017AJ....153...42L/abstract
https://doi.org/10.1093/mnras/staa1622
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496.1149L/abstract
https://doi.org/10.1088/0004-637X/791/2/86
https://ui.adsabs.harvard.edu/abs/2014ApJ...791...86L/abstract
https://doi.org/10.1088/0004-637X/785/2/116
https://ui.adsabs.harvard.edu/abs/2014ApJ...785..116L/abstract
https://doi.org/10.1088/0004-637X/794/2/131
https://ui.adsabs.harvard.edu/abs/2014ApJ...794..131L/abstract
https://ui.adsabs.harvard.edu/abs/2014ApJ...794..131L/abstract
https://doi.org/10.1016/0032-0633(62)90129-0
https://ui.adsabs.harvard.edu/abs/1962P&SS....9..719L/abstract
https://doi.org/10.1088/0067-0049/197/1/8
https://ui.adsabs.harvard.edu/abs/2011ApJS..197....8L/abstract
https://doi.org/10.1088/0004-637X/750/2/112
https://ui.adsabs.harvard.edu/abs/2012ApJ...750..112L/abstract
https://doi.org/10.1088/0004-637X/784/1/44
https://ui.adsabs.harvard.edu/abs/2014ApJ...784...44L/abstract
https://doi.org/10.1088/0004-637X/761/2/122
https://ui.adsabs.harvard.edu/abs/2012ApJ...761..122L/abstract
https://doi.org/10.1093/mnras/stu2396
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447..747L/abstract
https://doi.org/10.3847/1538-3881/aaccde
https://ui.adsabs.harvard.edu/abs/2018AJ....156...78L/abstract
https://doi.org/10.1093/mnras/stv1870
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.3554M/abstract
https://doi.org/10.1093/mnras/stx693
https://ui.adsabs.harvard.edu/abs/2017MNRAS.468.3000M/abstract
https://doi.org/10.1093/mnras/sty237
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476..830M/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.476..830M/abstract
https://doi.org/10.1146/annurev-astro-081915-023315
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..441N/abstract
https://doi.org/10.1038/nature10076
https://ui.adsabs.harvard.edu/abs/2011Natur.473..187N/abstract
https://doi.org/10.1088/2041-8205/754/2/L36
https://ui.adsabs.harvard.edu/abs/2012ApJ...754L..36N/abstract
https://doi.org/10.1088/0004-637X/773/2/187
https://ui.adsabs.harvard.edu/abs/2013ApJ...773..187N/abstract
https://doi.org/10.3847/0004-637X/826/1/19
https://ui.adsabs.harvard.edu/abs/2016ApJ...826...19N/abstract
https://doi.org/10.1093/mnras/sty1098
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478..197P/abstract
https://doi.org/10.1088/0004-637X/807/1/44
https://ui.adsabs.harvard.edu/abs/2015ApJ...807...44P/abstract
https://doi.org/10.1088/0067-0049/190/1/1
https://ui.adsabs.harvard.edu/abs/2010ApJS..190....1R/abstract
https://doi.org/10.1051/0004-6361/201118085
https://ui.adsabs.harvard.edu/abs/2012A&A...537A.128R/abstract
https://doi.org/10.1093/mnras/stv1257
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452..376R/abstract
https://doi.org/10.1088/0004-637X/784/1/45
https://ui.adsabs.harvard.edu/abs/2014ApJ...784...45R/abstract
https://doi.org/10.1038/s41550-018-0420-5
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..393S/abstract
https://doi.org/10.1093/mnras/stw542
https://ui.adsabs.harvard.edu/abs/2016MNRAS.458.4129S/abstract
https://doi.org/10.1086/589852
https://ui.adsabs.harvard.edu/abs/2008ApJ...683.1063T/abstract
https://doi.org/10.1086/430467
https://ui.adsabs.harvard.edu/abs/2005ApJ...627.1001T/abstract
https://doi.org/10.1093/mnras/stz2870
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.2885T/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.2885T/abstract
https://doi.org/10.1088/1751-8113/47/29/292001
https://ui.adsabs.harvard.edu/abs/2014JPhA...47C2001T/abstract
https://doi.org/10.1111/j.1365-2966.2009.14409.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.394.1085T/abstract
https://doi.org/10.1088/0004-6256/143/4/94
https://ui.adsabs.harvard.edu/abs/2012AJ....143...94T/abstract
https://doi.org/10.1088/0004-637X/808/2/126
https://ui.adsabs.harvard.edu/abs/2015ApJ...808..126V/abstract
https://doi.org/10.1088/2041-8205/806/2/L26
https://ui.adsabs.harvard.edu/abs/2015ApJ...806L..26V/abstract
https://doi.org/10.3847/2041-8213/ab7c69
https://ui.adsabs.harvard.edu/abs/2020ApJ...893L...1W/abstract
https://doi.org/10.3847/1538-3881/aa9ff6
https://ui.adsabs.harvard.edu/abs/2018AJ....155...48W/abstract
https://doi.org/10.1103/PhysRevD.96.023017
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96b3017W/abstract
https://doi.org/10.1016/j.newar.2019.03.006
https://ui.adsabs.harvard.edu/abs/2018NewAR..83...37W/abstract
https://doi.org/10.1086/115978
https://ui.adsabs.harvard.edu/abs/1991AJ....102.1528W/abstract
https://doi.org/10.1093/mnras/stz054
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.1538W/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.1538W/abstract
https://doi.org/10.3847/1538-3881/aad22a
https://ui.adsabs.harvard.edu/abs/2018AJ....156...92Z/abstract

	1. Introduction
	2. Physical Processes and Equations
	2.1. Eccentric Kozai–Lidov Effect
	2.2. Laplace–Lagrange Secular Evolution
	2.3. General Relativity

	3. Analytical Stability Criterion
	4. Numerical Methods
	5. Example of 2 + 1 Systems
	6. Example of 3 + 1 Systems
	7. Application on Observed Systems
	8. Discussion
	AppendixA Resonant-like System
	References



