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Abstract—We consider the processing of statistical samples
X ~ Py by a channel p(y|z), and characterize how the statistical
information from the samples for estimating the parameter
# € R? can scale with the mutual information or capacity of the
channel. We show that if the statistical model has a sub-Gaussian
score function, then the trace of the Fisher information matrix
for estimating 0 from Y can scale at most linearly with the
mutual information between X and Y. We apply this result to
obtain minimax lower bounds in distributed statistical estimation
problems, and obtain a tight preconstant for Gaussian mean
estimation. We then show how our Fisher information bound
can also imply mutual information or Jensen-Shannon divergence
based distributed strong data processing inequalities.

I. INTRODUCTION

In this work, we consider the processing of statistical
samples X ~ Py by a channel p(y|x), and try to understand
how the statistical information from the samples for estimating
the parameter 6 can scale with the mutual information or
capacity of the channel. In particular, we begin by looking
at the Fisher information for estimating € from the processed
data Y. Fisher information describes the curvature of the
statistical model as one moves around the parameter space, and
immediately implies lower bounds for the error in estimating
0 from the statistical samples via the well-known Cramér-Rao
lower bound [1]], [2] for unbiased estimators. It can also imply
lower bounds for arbitrarily biased estimators in an asymptotic
sense [3[], or in a Bayesian setting via the van Trees inequality
[4].

Fisher information satisfies a data processing inequality in
the sense that it must decrease during processing [5]. In our
main result, we develop a strong data processing inequality
that more precisely quantifies the maximum possible Fisher
information from Y — in terms of the mutual information
between X and Y - after processing the data. This is a
generalization of recent results on Fisher information due to
the authors in both the communication constrained [6] and
privacy constrained [7]] settings. Other works such as [8] have
also considered statistical inference under general channels
and obtain some bounds for communication and privacy
constrained channels in particular. In concurrent work by the
same authors [9], they obtain bounds for mutual information
constrained channels that are similar to those in the present
paper. Their work differs in that they only treat discrete output
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spaces Y, they do not obtain lower bounds for fully interactive
communication protocols, and they use a slightly different
sub-Gaussianity assumption. One application where general
mutual information constrained channels are needed is when
communication of statistical samples is done over an analog
channel such as an additive white Gaussian noise channel or
Gaussian multiple access channel, such as in recent works [10]
and [L1] which seek to jointly study the communication and
estimation problem.

In our main result, we show that if the score of the statistical
model is sub-Gaussian — an assumption that is also used
in previous works [6], [7] — then the trace of the Fisher
information matrix for estimating 6 from Y can scale at most
linearly with the mutual information between X and Y. We
also show by the example of the Gaussian location model that
the preconstant we obtain is optimal and cannot be improved.
We then apply this result in a distributed setting where there
are n nodes each with a sample X; taken independently from
Py, and where the nodes can communicate in multiple rounds
of communication via a public blackboard. We show how
Fisher information from the total blackboard transcript can
be similarly bounded, and develop minimax lower bounds in
this distributed estimation setting. Finally, in the last section,
we show how our Fisher information upper bound can also
imply mutual information or Jensen-Shannon divergence based
distributed strong data processing inequalities similar to those
from [12]].

II. PRELIMINARIES

Suppose that {Py}gco is a family of probability distribu-
tions parametrized by § € © C R? that is dominated by
some sigma-finite measure u. Let py be the density of P with
respect to u. Let X be a statistical sample drawn from Fy, and
let Y be the output of a channel with transition probability
density p(y|x) (with respect to some dominating measure v
on the sample space ))) when z is the input. In this paper
we analyze the Fisher information for estimating 6 from the
processed sample Y and show how it can scale with the mutual
information I4(X;Y)[]

Recall some Fisher information basics. The score for X is
defined as

So(X) = Vg logpy(X) .
"'We use Io(X;Y) to denote the mutual information between X and Y

when X is drawn from Py. In the case that there is a prior distribution on 6
this is the same as I(X;Y|0).
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The Fisher information matrix for the processed samples Y is
Iy (69) = E [(Vo logps(Y)) (Vo log ps(¥))”
and we can characterize the trace of this matrix by
Tr(Iy (0)) = Ev |[Ex[So(X)[V]II3 - M

The decomposition in (1)) is one of the main tools used
by the authors in [6], [7], and we defer its proof to those
references. The proof is a straightforward computation, but
requires the interchange of limiting operations, specifically the
interchange between integration over the sample space X and
differentiation with respect to the parameter components 6;.
This interchange can be justified under the following regularity
conditions (see [13] §26 Lemma 1):

(1) The square-root density /ps(x) is continuously differ-
entiable with respect to each component 6; at p-almost
all z.

(i) The Fisher information for each component 6;,

2
E [(a%j logpg(X)) ], exists and is a continuous func-
tion of 0;.

One consequence of these two conditions is that the score
random vector has mean zero, i.e.,

E[Sp(X)] =0 .

One additional regularity condition is needed in the present
paper to interchange limits because we are not assuming that
the channel p(y|x) has a finite output alphabet ) (such as in
[6]), or a point-wise local differential privacy condition (such
as in [7]):
(iii) The channel p(y|z) is square integrable in the sense that
[ p(y|z)?pe(z)dpu(z) < oo at v-almost all y for each 6.
Finally, recall some basic facts about sub-Gaussian random
variables. We say that a mean-zero random variable X is sub-
Gaussian with parameter N if

A2N2

E[e’\x] <e 2

for all A € R. Furthermore, such random variables X satisfy

ax2 1
E [ezz\ﬂ} <

T V1=
for each A € [0,1) (see, for example, [14] §2.1 and §2.4).

III. FISHER INFORMATION BOUND

In this section we state and prove the following main result
concerning how Fisher information can scale with the mutual
information between X and Y.

Theorem 1. Suppose that (u,Se(X)) is sub-Gaussian with
parameter N for any unit vector u € R Under regularity
conditions (i)-(iii) above,

Tr(Iy(0)) < 2N?I4(X;Y) .

Note that if Y € [1 : 2¥], i.e. Y is constrained to being a
k-bit message, then Iy(X;Y) < H(Y) < k and we recover

the sub-Gaussian case from Theorem 2 of [6] as a special
case. Similarly, if p(y|z) is a locally differentially private
mechanism in the sense that p((;’llf,)) < ¢f for any z,2',y,
then Ip(X;Y) = O(min{e, ?}) which recovers Propositions
2 and 4 from [7], again as a special case.

Note also that the mutual information Iy(X;Y") is upper
bounded by the capacity of the channel p(y|x) since the
capacity is the maximum mutual information over all possible
input distributions. In this way we can also think of the above
theorem as an upper bound on Fisher information in terms of
the capacity of the channel that processes the samples.

Proof. We begin by “lifting” the problem to higher dimensions
by considering a new dB-dimensional statistical model

B
X ~Py=]] P
1=1

where 0 = (0y,...,05), X = (X1,...,Xp), and Y =
(Y1,...,YB). Each X; is drawn independently according to
Py, from the original d-dimensional model, and each Y; is the
corresponding output of the channel. Note that

B
Tr(Iy () = Y Tr(Iy.(6:)) 2)
i=1
and that when g = 6; = ... = 0 we have
We will therefore proceed by analyzing Tr(Iy (f)) evaluated
at the specific 6 values with 6y = 6; = ... = 6p. Note that

by taking scaled sums of independent sub-Gaussian random
variables, the new dB-dimensional model has a score function
that is sub-Gaussian with the same constant [V as that of the
original model. We use the decomposition shown in () for
the new dB-dimensional model:

Tr(Iy(8)) = Ey ||Ex[Ss(X)|Y]|13
—Ey l(Ex [p (Y1X) <uY,Se(X)>D ] )

po(Y)

where
__Ex[S%(X)[Y]

IEx [So (X)Xl
The key point, and the reason for doing the lifting step, is
that the ratio inside the expectation in concentrates around
eBloo(X3Y) a5 B gets large. More concretely, by the strong
law of large numbers,

uy

pylx) _ 1, 7y Pl
py) B gg Po, (i)
B

— L% og p(yilz:)

B =" po,(y:)

1
5 log

converges almost surely to

Ex v [1og p(Y|X)

MWJ:%MJ)



as B — oo. Therefore

< eB(IQO (X;Y)-l—EB)

with probability at least 1 — ¢p for some ep that con-

verges to zero as B — oo. Let Ap be the event
{(x,y) €XBxYP ; x geBer(X%YHEB)} and let
AS be its complement. Following from (@),

We bound the term (@) as follows:

eXp// L (x.y) y|x)>% <<uy,]sve<x>>)2
“po(x)po(y) du(x)dv(y)

< [[Eb o <1A3<x,y>§ () fj(x”)2>
 po(x)po(y) d(x)dv(y)

<o [ 2 g (3 (L))

<EB+63<190<XY+EB>/AB exp(2 (<uy,]sve< >>>2>

- po(%)po(y) dpu(x)dv(y)
“po(x)pe(y) dp(x)dv(y)

63(190 (X;Y)-i—EB)

VvV1i—=2A

<ep-+

for 0 < X\ < 1. Taking logs,

//AB poly) Y

¥ (
< —1loglep+

So(x))*pe(x)pe(y) dp(x)dv(y)

eB(Ieo (X;Y)-l—EB) )

Vi M

A

For the other term (6,

I S
< [ i

< (aB //pe(&.V)IISe(X)IIE‘du(X)dV(y)>é

1
2 1
— (20 [ mGISn00) " < (renamyn?)’
C))
for some absolute constant c;. To get (8) we have used the
Cauchy-Schwarz inequality, and () follows by using the sub-

Gaussianity of each of the (dB)? different terms in ||Sp(X)]|3
to bound their fourth moments. Combining and (@),

Tr(Iy (60)) = éTr(Iy(G))

So(x))*pa(x)pe

(v) du(x)dv(y)

)II8o(x)13 dpu(x)dv(y)

®)

63(190 (X;Y)-l—EB) )

<2—N210 (E +
=B g\ €B T\

+ (61€Bd2N4)%
and taking B — oo and then A — 1 gives the final result. [

IV. DISTRIBUTED STATISTICAL ESTIMATION

The upper bound on Fisher information from Section [T can
be of particular interest in a distributed setting, where there
are n distinct nodes each with a sample X; taken i.i.d. from
Py. In this setting, the nodes communicate information about
their samples via a “public blackboard” in multiple rounds
of communication, and then a centralized estimator uses the
blackboard transcript after communication to construct an
estimate 6 of the parameter 6.

More formally, on round ¢t = 1,...,7 of communication,
each node 7 = 1,...,n communicates a random variable Y; ;
according to its local data X; and the previous information
written on the transcript Y;_1 4, Yo, ..., Y14, i1, ... 111
via a channel p(y;¢|®i, yi—1,4s---,Y1,6,T—1,-..,m1). Here
we define m = (y1,¢,-..,Yn,¢) to be the information written
to the public blackboard after communication on round ¢. The
estimator @ is then a function of the total blackboard transcript

= (IIy,...,I7) .

By using Theorem [Il we have the following upper bound on
Fisher information from the transcript II.

Corollary 1. Suppose that (u,Se(X)) is sub-Gaussian with
parameter N for any unit vector uw € R Under regularity
conditions (i)-(iii) above,

Tr(In(0)) < 2N?Ig(X1,..., Xn; 1) .

Proof. Using the equivalent of in this interactive commu-
nication setting,

- | B

’ (10)



where

Pir(Ti) = Hp(yi,t|$i7yi—1,t, e ;1)

t
The decomposition (IQ) is detailed in Appendix E of [7].
Using Theorem [l above, each term in the sum in (I0) can be
upper bounded by 2N?214(X;;1I). Thus by the independence
of the X,

s YLty Tt—1,- - -

Tr(In(f)) < 2N°Ip(X1,..., Xn; 1) .

O

We now consider the special case of the Gaussian location
model where Py = N(6,0%1;) and © = [—1,1]%. Tt can be
readily checked that in this case Sg(X) ~ N (0, 25 14) . This
leads to the following upper bound on Fisher information,
where we will see shortly that the constant on the right-hand
side is optimal.

Corollary 2. Suppose that Py = N(0,0°%1,). Then
2
TF(IH(Q)) S ;I@(Xl, N ,XW;H) .

By using Corollary 2] along with the multivariate van Trees
inequality from [4], we immediately get the following lower
bound on the minimax risk in estimating 6 from the transcript
II.

Corollary 3. Suppose that Py = N(0,0%1;) and © =

[—1,1]% Then

A 9 d?
EEBEHO(H) o2 = 0—22 supgeo lo(X1, ..., Xp; 1) + 72d
In order to see that the constant 2 in Corollaries [2] and [3] is
optimal, consider the following example. Letd =1l and T =1
and suppose that communication is done independently over
additive white Guassian noise channels so that Y; = X; + W;
where W; ~ N(0,02..) and I = (Y1,...,Y,,). In this case

» Y noise

2
Ig(Xl,...,Xn;H)zﬁlog(H > )
2 Gnoise

and Corollary [3] gives a lower bound of

0,2

nlog (1 + 0‘722 )

noise

sup E[(0(T1) - 0)°] >
0cO

assuming that n is large enough so that the second term
in denominator is negligible. The simple averaging esti-

mator A(II) = L5 Y, is unbiased and has variance
2 2 .
< (1 + %) . In the regime where 02, >> o2, both the
2
g,

lower bound and expected squared error become -2, and
thus any constant less than 2 in Corollary 2 would lead to a
contradiction.

The distributed estimation setting considered here is
the same setting that is considered in past works [6],
[7], except that here we do not assume the channels
P(Yi i, Yiz1,t, - - - Y10, Te—1, - - - , 1) have a particular com-
munication or privacy-constrained structure, and instead leave

them general and have the constraint be the total mutual in-
formation Ip(X1, ..., X,;II). The distributed data-processing
inequality from [12] can also apply to general mutual infor-
mation constrained settings, but requires a bounded likelihood
ratio assumption that we do not make. One of the benefits of
our Fisher information bound is that it can be applied to the
Gaussian location model directly, without the need to truncate
the Gaussians so that they satisfy this bounded likelihood ratio
assumption. In the subsequent section we show how our Fisher
information bounds can also imply Jensen-Shannon divergence
based strong data processing inequalities that are very similar
to those from [12].

V. RELATION TO DIVERGENCE BOUNDS

Because of Fisher information’s interpretation as a second-
order approximation of KL divergence (or Jensen-Shannon
divergence) as one moves around the parameter space O, the
above upper bounds on Fisher information can also imply sim-
ilar upper bounds on the divergence between two distributions
from {Qg}pco Where Qy = Pj' o Prjx, ... x, is the induced
distribution for II.

Instead of working with KL divergence directly, we will in-
stead analyze the related Jensen-Shannon divergence because
of its nicer properties. In particular, its square root satisfies
the triangle inequality which we describe and use below. Let

J5(P|Q) = KL (P P+Q> KL <Q %)

2
be the Jensen-Shannon divergence between distributions P and
Q@ where KL(P||Q) is the usual KL divergence. The square-
root of the Jensen-Shannon divergence satisfies the triangle
inequality [[15] in that

VIS(PIQ) < vIS(PIR) + vIS(QIIR)

for any distributions P, @, and R.
In this section we will need the following additional regu-
larity condition.
(iv) Suppose that JS(Qp||Qo+ae) can be represented by its
Taylor expansion

IS(Qol1Qu+ 20) = 726" Fn(6)A0 + O A0])

in such a way that the constants in the Big-O term can
be made independent of the choice of § € ©.
For the Jensen-Shannon divergence we will prove the follow-
ing data processing bound.

Theorem 2. Suppose 0y, 01 € O are such that 0y = \01+(1—
A0 for A € 0,1] are contained in ©. Under the assumptions
in Theorem [Il above and regularity condition (iv),

a2 1
15(@ay Qo) < =PI [ s xsman.
0

Note that if we consider the random variable V' to repre-
sent a prior that chooses the parameter 6y or #; each with
probability %, then

1ViT1) = 55(@0,1Q0,)



and we can write the result from Theorem [2] as

9 _9 2N2 1
1161 — OollzN" / Ip (X1,..., X
0

I(V;1I) <
(vimn) < = —

IMdx. (11)
We compare this to the following theorem. Let 3(Py,, Py, ) be
the strong data processing inequality (SDPI) constant defined
to be the minimum value 3 such that

I(V;1) < BI(X;1II)

where V' — X — II is a Markov chain and V' ~ Bern(1/2)
picks whether X is drawn from Py, or Py, as above.

Theorem 3 ([12] Theorem 1.1). Suppose Py,, Py, are two
probability distributions with %Pgo < Py, < cPy, for some
constant ¢ > 1. Let B(Py,, Ps,) be the SDPI constant defined
above. Then

I(V;II) < KcB(Py,, Pp,) min

IU(le ERE
v€{00,01}

X3 IT) (12)

for a universal constant K.

Note that in Theorem [3 we have only presented the special
case V ~ Bern(1/2) so that the left-hand side can be written
as the mutual information, whereas the general theorem does
not assume even probabilities and instead the left-hand side is
written as a Hellinger distance term.

To compare (1) and (I2) consider what happens in the
Gaussian case where Py ~ N (0,01,). In this case the SDPI
constant 3(Py,, Pp,) = O ”90;%”3 as used in [12]] and
shown in [16]. In this case the right-hand sides of the two
bounds are very similar with only some minor differences.
In particular, has the minimum mutual information over
the two parameter values, but has an extra factor of c to
compensate. In contrast, (IT) is written in terms on the average
mutual information along the linear path from 6y to 6#; in
the parameter space. One benefit of (II) over (I2) is that
it does not need this bounded likelihood ratio assumption,
instead assuming the sub-Gaussian score function property
from Theorem and therefore it can be applied to the
Gaussian case directly without any need for truncation.

A. Proof of Theorem 2]
Using a multivariate Taylor expansion of JS(Qgl||Qo+ae) at
AH =0,
1
JS(Qol|Qo+a0) :ZA9TIH(9)A9 +O([ag]%) . (13)

Given two parameter values fp,0; € © C R? we can upper
bound the Jensen-Shannon divergence between (g, and Qg,
as follows. For any real number 0 < A < 1 we define 0, =
A1 + (1 — X)bp. By the triangle inequality,
@)
M

M
V3IS(Qo,Qa,) < >4 /IS (Qe%
1=1

and then by squaring and using Jensen’s inequality,

JS(Q90||Q91)
M 2
< <Z Js (Qe% Qeﬁ»)>
T
<MY s (QeiMl Qe&>
M 6, — o\ " 0, — 6o
_I;< = > IH(91M1)<7M )

=1
3
L MO (‘ ) (14)

where the last line follows from (13). Continuing from
(L4),

01— 0

M
15(@u1Qn) <3101~ ol 3T (1n (0::))
3
+MO <‘ ) )

Taking M — oo we get that
1 1
IS(Qayl1Qer) < ~1161 — 602 / Tr (I (63)) dA .
0

where we have used the Riemann integrability of the entries
of Ir1(fy) which can be shown using regularity conditions (i)
and (ii). The result then follows from Corollary

0, — 6o
M

B. One-Parameter Families of Distributions

In this section we apply Theorem[2]to the case where we are
given two distributions pg and p; that do satisfy the bounded
likelihood ratio assumption, even if they are not part of a
parametric family. Suppose the two distributions have densities
fo(z) and fi(z), respectively. In this case we can define a
one-parameter family of distributions between the two using
an exponential twist such as in [I7]. For 6 € [0, 1] we define
a new density fy by

folw) = Cief{’(:c) 1-0(z)

where Cp = [ f{(z)fs ?(x)dz in order to normalize the
density. The score function for this one-parameter family is
filz) G
Se(x) =lo - =
o(z) =log @)~ Co

If, like in [12], we make the bounded likelihood ratio assump-
tion

%fo(x) < filz) < cfo(x)

then | Sp(x)| < 2logec for all 2. This implies the score function
is sub-Gaussian with a parameter that is O(logc), and yields

1
I(V;10) gK(logc)Q/ (X1, .., X TdA
0

for an absolute constant K.
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