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Bounded remainder sets for rotations on higher-dimensional adelic tori

Akshat Das, Joanna Furno and Alan Haynes

We give a simple, explicit construction of polytopal bounded remainder sets of all possible volumes for
any irrational rotation on the d-dimensional adelic torus Ad/Qd. Our construction involves ideas from
dynamical systems and harmonic analysis on the adeles, as well as a geometric argument that reduces
the existence argument to the case of an irrational rotation on the torus Rd/Qd.

1. Introduction

Let G be a compact, metrizable, Abelian group, written additively. There is a unique Haar probability
measure on G and, for each α ∈ G, the measure-preserving map Tα : G→ G defined by Tα(x)= x +α
is referred to as rotation by α on G. Bounded remainder sets (BRS’s) for Tα are measurable sets A with
the property that there exists a constant C = C(A) such that, for almost every x ∈ G (with respect to
Haar measure) and for any N ∈ N, ∣∣∣∣N−1∑

n=0

χA(x + nα)− N |A|
∣∣∣∣≤ C,

where |A| denotes the Haar measure of A. BRS’s are allowed to be multisets, equivalently, χA is allowed
to be a finite sum of indicator functions of measurable sets.

The study of BRS’s for rotations on the groups Td
= Rd/Zd, d ∈ N, has a history of nearly 100 years.

For d = 1 the first results were obtained by Hecke [1922], Ostrowski [1927; 1930], and Kesten [1966],
who proved that, for an irrational rotation by α on the circle R/Z, an interval A will be a BRS if and
only if

|A| ∈ αZ+Z.

In the d = 2 case, Szüsz [1954] constructed infinite families of BRS parallelograms. The d ≥ 2 case
was subsequently studied by Liardet [1987], Rauzy [1984], Ferenczi [1992], Oren [1982], and Zhuravlev
[2005; 2011; 2012], as well as other authors (e.g., [Haynes and Koivusalo 2016]). It follows from work
of Furstenberg, Keynes, and Shapiro [Furstenberg et al. 1973] and Halász [1976] that for any d and for
any α for which Tα is ergodic, the set of all volumes of BRS’s for α is

{n ·α+m ≥ 0 : n ∈ Zd , m ∈ Z}.

Recent work of Grepstad and Lev [2015] provides examples of parallelotope BRS’s of all possible vol-
umes. After Grepstad and Lev’s results, it was observed that the construction of BRS’s for toral rotations
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is closely related to the construction of mathematical quasicrystals with rigid deformation properties (see
[Duneau and Oguey 1990]). This led to another simple geometric explanation for why the parallelotopes
in Grepstad and Lev’s work are in fact BRS’s [Haynes et al. 2017].

Subsequent to the results described in the previous paragraph, in [Furno et al. 2019] attention was
turned to the problem of constructing BRS’s for rotations on compact subgroups of the adelic torus A/Q.
The results of Halász mentioned in the previous paragraph also apply in this more general setting to give
a description of the set of all volumes of BRS’s. Therefore the emphasis is on actually constructing such
sets in a geometrically appealing way. The proofs given in [Furno et al. 2019] involved new constructions
using p-adic cut and project sets, and they are significant in that they extend previous results on the real
torus to uncountably many topological group isomorphism classes of connected, compact, metrizable,
Abelian groups. The goal of this paper is to complete this direction of inquiry by giving a simple
geometric construction of BRS’s of all possible volumes for all ergodic rotations on adelic tori Ad/Qd

in dimensions d ≥ 1.
In order to state our main result, let A denote the ring of adeles over Q with the usual restricted product

topology, and let P denote the collection of all prime numbers (more detailed definitions are given in
the next section). Suppose Q is a (finite or infinite) subset of P , write Q = {p1, p2, . . . }, and let AQ
be the projection of A onto the coordinates indexed by the infinite place and the elements of Q. We
take AQ with the natural restricted product topology, which is also the final topology with respect to this
projection. The additive group 0Q = Z[1/p1, 1/p2, . . . ] can be embedded diagonally in AQ via the map
γ 7→ (γ, γ, . . . ), and we identify 0Q with its image under this embedding, which is a discrete subgroup
of AQ. The quotient group

XQ = AQ/0Q

is easily seen to be a connected, compact, metrizable, Abelian group.
For d ∈ N, we are interested in bounded remainder sets for rotations on Xd

Q
∼= Ad

Q/0
d
Q (taken with the

product topology). Since it is convenient to examine all the coordinates at each place at once, we consider
Ad
Q as a subset of Rd

×
∏

p∈Q Qd
p. Thus, we consider elements of the form Eα= (Eα∞, Eαp1, Eαp2, . . . ), where

Eα∞ = (α∞,1, α∞,2, . . . , α∞,d),

Eαp = (αp,1, αp,2, . . . , αp,d) for p ∈Q.

Rotation by Eα on Xd
Q is the map TEα : Xd

Q→ Xd
Q defined by TEα(Ex)= Ex + Eα. Our main theorem provides a

construction of adelic polytope BRS’s for TEα , of all possible volumes, in the generic case when this map
is ergodic.

Theorem 1.1. Suppose Q⊆ P and Xd
Q is defined as above. Suppose Eα ∈ Xd

Q and 1, α∞,1, . . . , α∞,d are
linearly independent over Q. Then the set of all volumes of BRS’s for TEα is{ d∑

j=1

(
γ jα∞, j −

∑
p∈Q

{γ jαp, j }p

)
+ η ≥ 0 : γ j ∈ 0Q, η ∈ Z

}
, (1-1)

where { · }p :Qp→ R is the p-adic fractional part. Furthermore, for every volume in this set, there is
a BRS for TEα of that volume which is the projection to Xd

Q of the Cartesian product of a parallelotope in
Rd with balls centered at 0 in the p-adic directions (all but finitely many of which have radius 1).



BOUNDED REMAINDER SETS FOR ROTATIONS ON HIGHER-DIMENSIONAL ADELIC TORI 113

The p-adic fractional part is defined in the next section. The condition that the numbers 1,α∞,1, . . . ,α∞,d
are linearly independent over Q is necessary and sufficient to ensure that the map TEα is ergodic. Further-
more, ergodicity in this setting is equivalent to unique ergodicity, and also to the requirement that every
orbit of TEα is dense in Xd

Q. See Lemma 2.2 below for references and proofs of these statements.
The layout of this paper is as follows: In Section 2 we present background material and notation. In

Section 3 we show that, for Eα satisfying the hypothesis of our main theorem, the volume of any BRS for
TEα must belong to the set (1-1). In Section 4 we construct BRS’s for each of these allowable volumes,
by scaling the sets and translations in order to shift the focus to the Archimedean coordinates.

2. Background

For background material on p-adic analysis and Fourier analysis over local fields we refer the reader to
[Koblitz 1984, Chapter 1] and [Ramakrishnan and Valenza 1999, Chapter 3].

Let p be a prime number, let Qp denote the field of p-adic numbers, and let | · |p denote the usual
p-adic absolute value on this field. The ring of p-adic integers Zp is the set of x ∈ Qp with |x |p ≤ 1.
Every element x ∈Qp can be expressed as a sum of the form

x =
∞∑

i=N

xi pi ,

where xi ∈ {0, 1, . . . , p− 1} for all integers i ≥ N. We define the p-adic fractional part and the p-adic
integer part of such an element by

{x}p =
−1∑

i=N

xi pi and bxcp =

∞∑
i=0

xi pi ,

respectively, with the usual convention that the empty sum is 0. To parallel the p-adic notation, we will
use | · |∞, { · }∞, and b · c∞ to denote the usual Archimedean absolute value, fractional part, and integer
part on R.

The field Qp is locally compact and its additive group has Pontryagin dual Q̂p ∼=Qp. To make this
isomorphism explicit, let e(z)= e2π i z and, for y ∈Qp, define ψy ∈ Q̂p by

ψy :Qp→ C, x 7→ e({yx}p).

The map y 7→ ψy is then a topological group isomorphism between Qp and Q̂p.
Let P be the set of all prime numbers, and let Q= {p1, p2, . . . } be a nonempty subset of P . As a set,

AQ is defined to be the collection of elements

α = (α∞, αp1, αp2, . . . ) ∈ R×
∏
p∈Q

Qp

which satisfy αp ∈Zp for all but finitely many primes p ∈Q. It follows from the strong triangle inequality
for the non-Archimedean absolute values that the elements of AQ form a ring under pointwise addition
and multiplication. A natural topology on AQ is the restricted product topology, with respect to the
sets Zp for p ∈Q. With this topology the additive group of AQ is a locally compact topological group.
This group is also self-dual, with an explicit isomorphism given by the map from AQ to ÂQ defined by
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β 7→ ψQ
β , where

ψQ
β (α)= e(β∞α∞) ·

∏
p∈Q

e(−{βpαp}p).

Note that in this product, all but finitely many terms are equal to 1.
Now let d be a positive integer, and consider Ad

Q with the product topology, and with elements Eα ∈ Ad
Q

denoted as in the Introduction. The group 0Q = Z[1/p1, 1/p2, . . . ] embeds in AQ by the map γ 7→
(γ, γ, γ, . . . ), and we identify it with its image under this map. With this identification, it is easy to
check that 0Q is a discrete and closed subgroup of AQ, and that a strict fundamental domain for the
quotient group XQ = AQ/0Q is given by the collection of points

[0, 1)×
∏
p∈Q

Zp ⊆ AQ.

It follows that Xd
Q = Ad

Q/0
d
Q is a compact group with strict fundamental domain

Fd
Q = [0, 1)d ×

∏
p∈Q

Zd
p

and that its dual group is the subset of characters on Ad
Q which are trivial on 0d

Q. Explicitly, the map
from the discrete group 0d

Q to X̂d
Q given by Eγ = (γ1, . . . , γd) 7→ ψQ

Eγ
, where

ψQ
Eγ
: Xd

Q→ C, Eα 7→

d∏
j=1

(
e(γ jα∞, j )

∏
p∈Q

e(−{γ jαp, j }p)

)
,

is a topological group isomorphism.
If the translation TEα is uniquely ergodic, then the convergence of the Birkhoff sums to their ergodic

averages is independent of the starting point Ex ∈ Xd
Q. This is important in what follows, as it implies

that all translates of BRS’s for TEα are also BRS’s for TEα. Recall the following general form of Weyl’s
criterion.

Lemma 2.1 [Kuipers and Niederreiter 1974, Chapter 4, Corollary 1.2]. Suppose that G is a compact
Abelian group. A sequence {xn}n∈N ⊆ G is uniformly distributed in G with respect to Haar measure if
and only if , for every nontrivial character χ ∈ Ĝ,

lim
N→∞

1
N

N∑
n=1

χ(xn)= 0.

We now demonstrate how Lemma 2.1 can be used to easily classify the collection of all Eα ∈ Xd
Q for

which TEα is uniquely ergodic.

Lemma 2.2. The translation TEα is uniquely ergodic if and only if it is ergodic, and it is ergodic if and
only if the real numbers

1, α∞,1, α∞,2, . . . , α∞,d

are linearly independent over Q.

Proof. First of all, it is clear that the linear independence over Q of the real numbers in the statement of the
lemma does not depend on the choice of representative for Eα in Xd

Q. For rotations on compact metrizable
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groups, the existence of a dense orbit is equivalent to unique ergodicity of the rotation, with Haar measure
as the unique ergodic measure (see [Einsiedler and Ward 2011, Theorem 4.14]). In particular, for a fixed
rotation, every orbit is dense if and only if the orbit of 0 is dense. Thus, we focus on whether or not
{nEα}n∈N is dense in Xd

Q.
One direction is easy and does not require Weyl’s criterion. If 1, α∞,1, α∞,2, . . . , α∞,d are linearly

dependent over Q, then {nEα}n∈N is not dense in Xd
Q, which implies that TEα is not uniquely ergodic.

For the converse, suppose that 1, α∞,1, α∞,2, . . . , α∞,d are linearly independent over Q. Let Eγ =
(γ1, . . . , γd) be a nonzero element of 0d

Q. Then

θ =

d∑
j=1

(
γ jα∞, j −

∑
p∈Q

{γ jαp, j }p

)
is an irrational number. (Recall that the inner sum in the definition of θ has only finitely many nonzero
terms.) For any prime p, any integer j such that 1≤ j ≤ d , and any n ∈ Z,

n{γ jαp, j }p −{nγ jαp, j }p ∈ Z.

Thus,

1
N

N∑
n=1

ψQ
Eγ
(nEα)= 1

N

N∑
n=1

e(nθ),

which tends to 0 as N →∞ by the irrationality of θ . By Lemma 2.1, this implies that {nEα}n∈N is dense
in Xd

Q, so TEα is uniquely ergodic. �

3. Restriction of possible volumes of BRS’s

In this section we prove that, if Eα satisfies the hypothesis of Theorem 1.1, then the volume of any BRS
for TEα must be an element of the set in (1-1). The argument for Xd

Q is analogous to the argument for XQ
in [Furno et al. 2019]. Moreover, similar arguments appear in many places, such as [Furstenberg et al.
1973; Halász 1976, Theorem 2; Grepstad and Lev 2015, Section 2.2; Gottschalk and Hedlund 1955,
Chapter 14], so the underlying ideas in this section are not new. We include these arguments only for
completeness, since the Fourier analysis in the proof is taking place in a slightly different setting than
usual. The following lemma relates the existence of BRS’s to the existence of dynamical coboundaries
for the map TEα.

Lemma 3.1. A measurable set A ⊆ Xd
Q is a BRS for TEα if and only if there exists a bounded, measurable

function g : Xd
Q→ R satisfying

χA(Ex)− |A| = g(Ex)− g(Ex + Eα) (3-1)
for all Ex ∈ Xd

Q.

Proof. Suppose that A is a measurable subset of Xd
Q and that there exists a bounded, measurable function

g : Xd
Q→ R satisfying (3-1) for all Ex ∈ Xd

Q. Then we have∣∣∣∣N−1∑
n=0

χA(Ex + nEα)− N |A|
∣∣∣∣= |g(Ex)− g(Ex + N Eα)| ≤ 2‖g‖∞,

where ‖g‖∞ = sup
Ex∈Xd

Q
|g(Ex)|. Hence, A is a BRS for TEα.
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Conversely, suppose that A ⊆ Xd
Q is measurable and a BRS for TEα. Then the function g : Xd

Q→ R

defined by

g(Ex)= lim inf
N→∞

(N−1∑
n=0

χA(Ex + nEα)− N |A|
)

is well-defined, bounded, and measurable (by Fatou’s lemma). By rearranging sums, we can write

χA(Ex)− |A| +
N−1∑
n=0

(χA(Ex + (n+ 1)Eα)− |A|)=
N∑

n=0

(χA(Ex + nEα)− |A|).

Taking the limit inferior of both sides, we see that (3-1) holds. �

Next we use Lemma 3.1 together with a Fourier analysis argument to prove the following result.

Proposition 3.2. Suppose that Eα ∈ Xd
Q and that the numbers

1, α∞,1, α∞,2, . . . , α∞,d

are linearly independent over Q. If a measurable set A ⊆ Xd
Q is a BRS for TEα, then there exist Eγ ∈ 0d

Q
and η ∈ Z such that

|A| =
d∑

j=1

(
γ jα∞, j −

∑
p∈Q

{γ jαp, j }p

)
+ η. (3-2)

Proof. Suppose that A ⊆ Xd
Q is a measurable set that is a BRS for TEα. By Lemma 3.1, there exists a

bounded, measurable function g : Xd
Q→ R satisfying (3-1) for all Ex ∈ Xd

Q. Define

h : Xd
Q→ C, Ex 7→ e(g(Ex)).

It follows that
h(Ex + Eα)= e(g(Ex)−χA(Ex)+ |A|)= e(|A|)h(Ex).

Let ĥ( Eγ ), Eγ ∈ 0d
Q, denote the Fourier coefficients of h. Then

0= e(|A|)h(Ex)− h(Ex + Eα)=
∑
Eγ∈0d

Q

(e(|A|)−ψQ
Eγ
(Eα))ĥ( Eγ )ψQ

Eγ
(Ex).

Since h(Ex) is not identically zero, Plancherel’s theorem implies that some coefficient is zero, so e(|A|)=
ψQ
Eγ
(Eα) for some Eγ ∈ 0Q. By the definition of ψQ

Eγ
, there exists an η ∈ Z such that (3-2) holds. �

4. Construction of BRS’s of all allowable volumes

Fix Eα ∈ Xd
Q, and suppose that 1, α∞,1, α∞,2, . . . , α∞,d ∈ R are linearly independent over Q. Define

TEα : Xd
Q→ Xd

Q by TEα(Ex)= Ex + Eα. Suppose γ1, γ2, . . . , γd ∈ 0Q\{0} and η ∈ Z are chosen such that

V =
d∑

j=1

(
γ jα∞, j −

∑
p∈Q

{γ jαp, j }p

)
+ η > 0. (4-1)

We will explain how to deal with the case when some of the γi are 0 at the end of the proof. For 1≤ j ≤ d ,
let δ j be the denominator of γ j , that is, the product of all |γ j |p such that |γ j |p > 1. Then there exist
g j ∈ Z such that γ j = g j/δ j . Let D be the d × d diagonal matrix with δ1, δ2, . . . , δd on the diagonal.
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Since δ1, δ2, . . . , δd ∈ 0Q\{0}, the matrix D is invertible. Moreover, the diagonal entries of D−1 are also
in 0Q\{0}. As with elements of 0Q, we will abuse notation and consider D and D−1 as acting on Rd,
Qd

p, Ad
Q, and Xd

Q, interpreted appropriately in each case. Let

Eβ =

(
α∞,1

δ1
−

∑
p∈Q

{
αp,1

δ1

}
p
, . . . ,

α∞,d

δd
−

∑
p∈Q

{
αp,d

δd

}
p

)
∈ Rd .

Since g1, g2, . . . , gd are integers, the number

η′ =

d∑
j=1

∑
p∈Q

(
g j

{
αp, j

δ j

}
p
−

{
g jαp, j

δ j

}
p

)
+ η

is also an integer. Thus, g1, g2, . . . , gd , and η′ are integers satisfying the equation

V =
d∑

j=1

g j

(
α∞, j

δ j
−

∑
p∈Q

{
αp, j

δ j

}
p

)
+ η′.

Take PB to be a parallelotope in Rd with volume V, spanned by vectors Ev1, Ev2, . . . , Evd ∈ Z Eβ +Zd. This
is possible because of [Grepstad and Lev 2015, Corollary 2], and it also follows from Theorem 1 of that
work that PB is a BRS for the toral rotation S Eβ : R

d/Zd
→ Rd/Zd defined by

S Eβ(Ex)= Ex + Eβ.

Let PA be the parallelotope of volume δ1δ2 · · · δd V in Rd spanned by the vectors DEv1, DEv2, . . . , DEvd ,
and define sets A and B in Xd

Q by

A = PA×
∏
p∈Q

(δ1Zp× δ2Zp× · · ·× δdZp), B = PB ×
∏
p∈Q

Zd
p.

For each 1≤ j ≤ d , the set δ j Zp is equal to Zp for all but finitely many p ∈Q because |δ j |p = 1 for all but
finitely many p ∈Q. The adelic polytopes A and B are measurable and have measure V (as multisets)
with respect to normalized Haar measure on Xd

Q. The remainder of the proof will be devoted to proving
that A is a BRS for TEα.

Lemma 4.1. For all n ∈ N, we have χA(T n
Eα
(0))= χB(T n

D−1 Eα
(0)).

Proof. Let k, n ∈ N. First note that

T n
Eα (0)= nEα and T n

D−1 Eα
(0)= nD−1

Eα.

If χA(T n
Eα
(0))= k, then there exist exactly k vectors Eq1, . . . , Eqk ∈ 0

d
Q such that nEα+ Eqi ∈ A for 1≤ i ≤ k.

Moreover, nEα+ Eqi ∈ A if and only if

nEα∞+ Eqi ∈ PA and nαp, j + qi, j ∈ δ j Zp

for all p ∈Q and 1≤ j ≤ d . We have nEα∞+ Eqi ∈ PA if and only if there exist real numbers t1, t2, . . . , td ∈
[0, 1) such that

nEα∞+ Eqi = t1 DEv1+ t2 DEv2+ · · ·+ td DEvd ,
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which holds if and only if

D−1(nEα∞+ Eqi )= t1Ev1+ t2Ev2+ · · ·+ td Evd ∈ PB .

Moreover, nαp, j+qi, j ∈ δ j Zp for all p∈Q and 1≤ j ≤d if and only if (nαp, j+qi, j )/δ j ∈Zp for all p∈Q
and 1≤ j ≤ d . Thus, the vectors in 0d

Q such that nD−1
Eα+ D−1

Eq j ∈ B are precisely D−1
Eq1, . . . , D−1

Eqk ,
and it follows that χB(T n

D−1 Eα
(0))= k.

The proof of the other direction, that χB(T n
D−1 Eα

(0))= k implies that χA(T n
Eα
(0))= k, follows from a

similar argument. �

Lemma 4.2. For all λ ∈ 0Q, we have
λ−

∑
p∈Q

{λ}p ∈ Z.

Proof. For each q ∈Q we have∣∣∣∣λ−∑
p∈Q

{λ}p

∣∣∣∣
q
≤max

{
|λ−{λ}q |q , max

p∈Q\{q}
{|{λ}p|q}

}
≤ 1.

Therefore
λ−

∑
p∈Q

{λ}p ∈ Zq

for all q ∈Q and the conclusion follows. �

Finally we have the following result, which reduces our problem to a problem on Rd/Zd.

Lemma 4.3. For all n ∈ N, we have χB(T n
D−1 Eα

(0))= χPB (S
n
Eβ
(0)).

Proof. Let k, n ∈ N. If χB(T n
D−1 Eα

(0))= k, then there exist exactly k vectors Eq1, . . . , Eqk ∈ 0
d
Q such that

nD−1
Eα+ Eqi ∈ B for 1≤ i ≤ k.

Since nαp, j/δ j + qi, j ∈ Zp for all p ∈Q and 1≤ j ≤ d, we have {qi, j }p =−{nαp, j/δ j }p for all p ∈Q
and 1≤ j ≤ d . By Lemma 4.2, there exist integers ni, j such that

qi, j = ni, j +
∑
p∈Q

{qi, j }p = ni, j −
∑
p∈Q

{
nαp, j

δ j

}
p
.

Hence, there are exactly k vectors Eni = (ni,1, ni,2, . . . , ni,d) ∈ Zd such that the vectors(
nα∞,1
δ1
−

∑
p∈Q

{
nαp,1

δ1

}
p
+ ni,1, . . . ,

nα∞,d
δd
−

∑
p∈Q

{
nαp,d

δd

}
p
+ ni,d

)
are in the polytope PB . For each p ∈Q and 1≤ j ≤ d , let

lp, j = n{αp, j/δ j }p −{nαp, j/δ j }p,

and note that lp, j ∈ Z. Then the vectors

Emi =

(
ni,1+

∑
p∈Q

lp,1, . . . , ni,d +
∑
p∈Q

lp,d

)
∈ Zd
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for 1≤ i ≤ k are exactly the integer vectors satisfying

n Eβ + Emi = nD−1
Eα∞+ Eqi ∈ PB .

Hence, χPB (S
n
Eβ
(0))= k.

Again, the proof of the other direction, that χPB (S
n
Eβ
(0))= k implies that χB(T n

D−1 Eα
(0))= k, follows

from a similar argument. �

In light of Lemmas 4.1 and 4.3, and the fact that PB is a BRS for S Eβ , it is now clear that the set A
satisfies the conclusion of Theorem 1.1.

Finally, suppose that γ1, γ2, . . . , γd ∈ 0Q and η ∈ Z are chosen such that (4-1) holds, and that exactly
d0 > 0 of the γi are 0. If d0 = d then we can take our BRS to be η copies of Xd

Q. Otherwise, we can
repeat the argument above to construct a BRS of volume V in the d − d0 coordinates for which γi 6= 0,
and then we can take the Cartesian product of this set with [0, 1)×

∏
p∈Q Zp in the d0 coordinates where

γi = 0. The resulting set is a BRS of volume V for TEα satisfying the conclusion of Theorem 1.1. This
completes the proof of our main result.
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