Moscow Journal, of

Combinatorics and [
Number Theory “V0k10 A8, 2
v

N ?b | A )
. e d-} - o~
W v | o>



Moscow Journal of Combinatorics and Number Theory
Vol. 10, No. 2, 2021

https://doi.org/10.2140/moscow.2021.10.111

Bounded remainder sets for rotations on higher-dimensional adelic tori

Akshat Das, Joanna Furno and Alan Haynes

We give a simple, explicit construction of polytopal bounded remainder sets of all possible volumes for
any irrational rotation on the d-dimensional adelic torus A? /Q“. Our construction involves ideas from
dynamical systems and harmonic analysis on the adeles, as well as a geometric argument that reduces
the existence argument to the case of an irrational rotation on the torus R?/Q¢.

1. Introduction

Let G be a compact, metrizable, Abelian group, written additively. There is a unique Haar probability
measure on G and, for each « € G, the measure-preserving map 7, : G — G defined by 7,,(x) =x + o
is referred to as rotation by o on G. Bounded remainder sets (BRS’s) for T, are measurable sets A with
the property that there exists a constant C = C(A) such that, for almost every x € G (with respect to
Haar measure) and for any N € N,

N-1

D xalx+na) = N|A|| < C,

n=0

where |A| denotes the Haar measure of A. BRS’s are allowed to be multisets, equivalently, x4 is allowed
to be a finite sum of indicator functions of measurable sets.

The study of BRS’s for rotations on the groups T¢ = R¢ /79, d € N, has a history of nearly 100 years.
For d =1 the first results were obtained by Hecke [1922], Ostrowski [1927; 1930], and Kesten [1966],
who proved that, for an irrational rotation by o on the circle R/Z, an interval A will be a BRS if and
only if

Al eaZ + 7.

In the d = 2 case, Sziisz [1954] constructed infinite families of BRS parallelograms. The d > 2 case
was subsequently studied by Liardet [1987], Rauzy [1984], Ferenczi [1992], Oren [1982], and Zhuravlev
[2005; 2011; 2012], as well as other authors (e.g., [Haynes and Koivusalo 2016]). It follows from work
of Furstenberg, Keynes, and Shapiro [Furstenberg et al. 1973] and Haldsz [1976] that for any d and for
any « for which Ty, is ergodic, the set of all volumes of BRS’s for « is

n-a+m>0:ne2% mez).

Recent work of Grepstad and Lev [2015] provides examples of parallelotope BRS’s of all possible vol-
umes. After Grepstad and Lev’s results, it was observed that the construction of BRS’s for toral rotations
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is closely related to the construction of mathematical quasicrystals with rigid deformation properties (see
[Duneau and Oguey 1990]). This led to another simple geometric explanation for why the parallelotopes
in Grepstad and Lev’s work are in fact BRS’s [Haynes et al. 2017].

Subsequent to the results described in the previous paragraph, in [Furno et al. 2019] attention was
turned to the problem of constructing BRS’s for rotations on compact subgroups of the adelic torus A/Q.
The results of Haldsz mentioned in the previous paragraph also apply in this more general setting to give
a description of the set of all volumes of BRS’s. Therefore the emphasis is on actually constructing such
sets in a geometrically appealing way. The proofs given in [Furno et al. 2019] involved new constructions
using p-adic cut and project sets, and they are significant in that they extend previous results on the real
torus to uncountably many topological group isomorphism classes of connected, compact, metrizable,
Abelian groups. The goal of this paper is to complete this direction of inquiry by giving a simple
geometric construction of BRS’s of all possible volumes for all ergodic rotations on adelic tori A4 /Q?
in dimensions d > 1.

In order to state our main result, let A denote the ring of adeles over @ with the usual restricted product
topology, and let P denote the collection of all prime numbers (more detailed definitions are given in
the next section). Suppose Q is a (finite or infinite) subset of P, write Q = {p;, p2,...}, and let Ag
be the projection of A onto the coordinates indexed by the infinite place and the elements of Q. We
take Ao with the natural restricted product topology, which is also the final topology with respect to this
projection. The additive group I'g = Z[1/p1, 1/p2, ...] can be embedded diagonally in Ag via the map
y — (y,v,...), and we identify I'g with its image under this embedding, which is a discrete subgroup
of Ag. The quotient group

Xo =Ag/Tq

is easily seen to be a connected, compact, metrizable, Abelian group.
For d € N, we are interested in bounded remainder sets for rotations on Xg = Aé / I“é (taken with the
product topology). Since it is convenient to examine all the coordinates at each place at once, we consider

A‘é as a subset of RY x [ peo @?I,. Thus, we consider elements of the form & = (&too, Ap,, &p,., - - . ), Where
aOO - (aoo,l’ aOO,27 ce ey aOO,d)’
ap=(ap1,p2,...,0p4q) forpe.

Rotation by & on X is the map T3 : Xg — Xé defined by T5(X) = X + a&. Our main theorem provides a
construction of adelic polytope BRS’s for T3, of all possible volumes, in the generic case when this map
is ergodic.

Theorem 1.1. Suppose Q € P and Xg is defined as above. Suppose a € Xé and 1, deo 1, - -+, Ooo.d A€
linearly independent over Q. Then the set of all volumes of BRS’s for Ty is

d
iZ(Vjaoo,j_Z{Vjap,j}p)"i‘nzozyjEFQv HGZ}, (1'1)

Jj=1 5%

where { -}, : Q, — R is the p-adic fractional part. Furthermore, for every volume in this set, there is
a BRS for Ty of that volume which is the projection to Xg of the Cartesian product of a parallelotope in
R? with balls centered at 0 in the p-adic directions (all but finitely many of which have radius 1).
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The p-adic fractional part is defined in the next section. The condition that the numbers 1, oo 1, - - - » Qo0,d
are linearly independent over Q is necessary and sufficient to ensure that the map 7T} is ergodic. Further-
more, ergodicity in this setting is equivalent to unique ergodicity, and also to the requirement that every
orbit of Tj is dense in Xg. See Lemma 2.2 below for references and proofs of these statements.

The layout of this paper is as follows: In Section 2 we present background material and notation. In
Section 3 we show that, for & satisfying the hypothesis of our main theorem, the volume of any BRS for
T; must belong to the set (1-1). In Section 4 we construct BRS’s for each of these allowable volumes,
by scaling the sets and translations in order to shift the focus to the Archimedean coordinates.

2. Background

For background material on p-adic analysis and Fourier analysis over local fields we refer the reader to
[Koblitz 1984, Chapter 1] and [Ramakrishnan and Valenza 1999, Chapter 3].

Let p be a prime number, let @, denote the field of p-adic numbers, and let | - |, denote the usual
p-adic absolute value on this field. The ring of p-adic integers Z, is the set of x € Q, with [x], < 1.
Every element x € Q, can be expressed as a sum of the form

o0
X = E xip',
i=N

where x; € {0, 1, ..., p — 1} for all integers i > N. We define the p-adic fractional part and the p-adic
integer part of such an element by

-1 00
=Y xp and [x],=) xp
i=N i=0

respectively, with the usual convention that the empty sum is 0. To parallel the p-adic notation, we will
use | - |oos {* }oo»> and | - oo to denote the usual Archimedean absolute value, fractional part, and integer
part on R.

The field Q,, is locally compact and its additive group has Pontryagin dual Q » = Q. To make this
isomorphism explicit, let e(z) = ™% and, for y € Q,, define ¥, € Q p by

¥y :Q, —C, x> e({yx})).

The map y — v, is then a topological group isomorphism between Q,, and 0 p-
Let P be the set of all prime numbers, and let @ = {p;, p»2, ...} be a nonempty subset of P. As a set,
Ay is defined to be the collection of elements

= (Aoo, Ap;, Upy,...) ERX 1_[@1’
peQ

which satisfy o, € Z,, for all but finitely many primes p € Q. It follows from the strong triangle inequality
for the non-Archimedean absolute values that the elements of Ay form a ring under pointwise addition
and multiplication. A natural topology on Ag is the restricted product topology, with respect to the
sets Z,, for p € Q. With this topology the additive group of Ag is a locally compact topological group.
This group is also self-dual, with an explicit isomorphism given by the map from Ag to KQ defined by
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B wﬁg, where
YR (@) = e(Boottoo) - | | e(=(Bperp)p)-
peQ
Note that in this product, all but finitely many terms are equal to 1.

Now let d be a positive integer, and consider Adg with the product topology, and with elements & € A‘é
denoted as in the Introduction. The group I'g = Z[1/p1, 1/p2, ...] embeds in Ag by the map y +—
,y,v,-...), and we identify it with its image under this map. With this identification, it is easy to
check that I'g is a discrete and closed subgroup of Ag, and that a strict fundamental domain for the
quotient group Xo = Ag/I'g is given by the collection of points

0. ) x []Z, € Ae.
peQ
It follows that Xé = AdQ / FS is a compact group with strict fundamental domain
FS =10, ) x ]_[ 7
peQ

and that its dual group is the subset of characters on A‘é which are trivial on Fé. Explicitly, the map
from the discrete group Fg to Xé givenby ¥ = (Y1, ..., ya) — wVQ, where

d
v X§—>C, ar H(e(y,aoo, Ral e(—{yjap,,,-}p>),
Jj=1 peQ
is a topological group isomorphism.

If the translation T} is uniquely ergodic, then the convergence of the Birkhoff sums to their ergodic
averages is independent of the starting point X € Xé. This is important in what follows, as it implies
that all translates of BRS’s for 75 are also BRS’s for 7. Recall the following general form of Weyl’s
criterion.

Lemma 2.1 [Kuipers and Niederreiter 1974, Chapter 4, Corollary 1.2]. Suppose that G is a compact
Abelian group. A sequence {x,}nen € G is uniformly distributed in G with respect to Haar measure if
and only if , for every nontrivial character x € G,

N

.1
lim - > x(xa) =0.

n=1
We now demonstrate how Lemma 2.1 can be used to easily classify the collection of all & € Xg for
which Tj is uniquely ergodic.

Lemma 2.2. The translation Ty is uniquely ergodic if and only if it is ergodic, and it is ergodic if and
only if the real numbers

17 aOO,l’ aOO,27 ceey aoo,d
are linearly independent over Q.

Proof. First of all, it is clear that the linear independence over (D of the real numbers in the statement of the
lemma does not depend on the choice of representative for & in Xg. For rotations on compact metrizable
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groups, the existence of a dense orbit is equivalent to unique ergodicity of the rotation, with Haar measure
as the unique ergodic measure (see [Einsiedler and Ward 2011, Theorem 4.14]). In particular, for a fixed
rotation, every orbit is dense if and only if the orbit of 0 is dense. Thus, we focus on whether or not
{na},en is dense in Xg.

One direction is easy and does not require Weyl’s criterion. If 1, oo 1, 0oo .25 - - - » Ooo,4 are linearly
dependent over @, then {na},cy is not dense in Xé, which implies that 75 is not uniquely ergodic.
For the converse, suppose that 1, ¢teo 1, ¥s0,2, - - - » @0, are linearly independent over Q. Let y =
(1, ..., vq) be a nonzero element of Fé. Then
d
0 = Z(Vj%o,j - Z{Vj%,j}p)
j=1 peQ

is an irrational number. (Recall that the inner sum in the definition of 6 has only finitely many nonzero
terms.) For any prime p, any integer j such that 1 < j <d, and any n € Z,

n{yjop,jtp —{nyjap jlp € Z.

N N
v Z_; Ymi) =+ Z_;e(ne),

which tends to 0 as N — oo by the irrationality of #. By Lemma 2.1, this implies that {na},cy is dense
in Xé, so T3 is uniquely ergodic. O

Thus,

3. Restriction of possible volumes of BRS’s

In this section we prove that, if & satisfies the hypothesis of Theorem 1.1, then the volume of any BRS
for T; must be an element of the set in (1-1). The argument for Xg is analogous to the argument for Xo
in [Furno et al. 2019]. Moreover, similar arguments appear in many places, such as [Furstenberg et al.
1973; Haldsz 1976, Theorem 2; Grepstad and Lev 2015, Section 2.2; Gottschalk and Hedlund 1955,
Chapter 14], so the underlying ideas in this section are not new. We include these arguments only for
completeness, since the Fourier analysis in the proof is taking place in a slightly different setting than
usual. The following lemma relates the existence of BRS’s to the existence of dynamical coboundaries
for the map T5.

Lemma 3.1. A measurable set A C Xé is a BRS for Ty if and only if there exists a bounded, measurable
Sfunction g : Xé — R satisfying

xa(X) — Al =g(X) —g(X +a) (3-1)
forall X € Xé.

Proof. Suppose that A is a measurable subset of Xg and that there exists a bounded, measurable function
g: Xg — R satisfying (3-1) for all X € Xg. Then we have

N—1

Z xa(X +na) — NIA|| =1g(¥) — (X + Na)| < 2]|gloo,

n=0

where ||g]loo = SUPsexd lg(¥)|. Hence, A is a BRS for Tj.
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Conversely, suppose that A C Xé is measurable and a BRS for 7;. Then the function g : Xé —- R

defined by Nt

g(¥) = ljivniioréf(; xa(X 4+ na) — N|A|)

is well-defined, bounded, and measurable (by Fatou’s lemma). By rearranging sums, we can write

N—-1 N
Xa@ = [Al+ D GG+ (n+ Da) — [AD) =) (xa@E +na) — A)).
n=0 n=0
Taking the limit inferior of both sides, we see that (3-1) holds. O

Next we use Lemma 3.1 together with a Fourier analysis argument to prove the following result.

Proposition 3.2. Suppose that a € Xg and that the numbers

19 aOO,la aOO,29 L] aOO,d

are linearly independent over Q. If a measurable set A C Xg is a BRS for Ty, then there exist y € Fé

and n € Z such that
d

Al = Z(Vf“ooyf - Z{Vj%,j}p) +1. (3-2)

j=1 peQ
Proof. Suppose that A C Xg is a measurable set that is a BRS for 7;. By Lemma 3.1, there exists a
bounded, measurable function g : Xg — R satisfying (3-1) for all X € Xg. Define

h:X§—C, I e(g®).
It follows that
h(x 4 a) = e(g(X) — xa(X) + |A]) = e(JADA(X).
Let fz(ﬁ), y € I'¢, denote the Fourier coefficients of 4. Then
0=e(|ADhE) —hE +@) = ) (e(JAD — ¥ 2@)hF)V3 ().
yerg

Since h(X) is not identically zero, Plancherel’s theorem implies that some coefficient is zero, so e(]A|) =
W;Q (@) for some y € I'g. By the definition of W;Q’ there exists an 1 € Z such that (3-2) holds. O

4. Construction of BRS’s of all allowable volumes

Fix a € Xg, and suppose that 1, &0 1, 00,25 - - - » ¥co.d € R are linearly independent over Q. Define
T : Xé — Xg by T5(X) = X + a. Suppose y1, ¥2, - .., va € [o\{0} and n € Z are chosen such that

d
V=Z<yjaoo,j—2{yjap,j}p)+n>0. 4-1)
j=1

peQ

We will explain how to deal with the case when some of the y; are O at the end of the proof. For 1 < j <d,
let §; be the denominator of y;, that is, the product of all |y;|, such that |y;|, > 1. Then there exist
gj € Z such that y; = g;/8;. Let D be the d x d diagonal matrix with §1, d, ..., 84 on the diagonal.
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Since 81, &2, ..., 84 € I'g\{0}, the matrix D is invertible. Moreover, the diagonal entries of D~ are also
in To\{0}. As with elements of I'g, we will abuse notation and consider D and D! as acting on R,
@;’,, A‘é, and Xg, interpreted appropriately in each case. Let

o (o) e )
J peQ J P 8 peQ 8 p

Since g1, &2, - .., gq are integers, the number
n’=22<gj{ ;f’} —{ jaé’j} >+n
j=1peQ Jdp 7 Jp
is also an integer. Thus, g1, g2, ..., g4, and n’ are integers satisfying the equation
d
aOO,j apsj /
V= ; — —= .
Yo -E5 )
j=1 J peQ 7 Jp
Take Pp to be a parallelotope in R¢ with volume V, spanned by vectors vy, Vs, ..., Ug € ZB + 79 This

is possible because of [Grepstad and Lev 2015, Corollary 2], and it also follows from Theorem 1 of that
work that Pp is a BRS for the toral rotation S FE R?/7? — R?/7% defined by

S5(¥) =% +B.

Let P, be the parallelotope of volume 8,8, - - - 84V in R? spanned by the vectors Dv;, Dvy, ..., Dv,,
and define sets A and B in Xg by

A=Pyx [[1Zpx 82, x -+ x842,), B=Pgx []Z8.
peQ peQ
Foreach 1 < j <d, thesetd;Z, is equal to Z, for all but finitely many p € Q because |5, =1 for all but
finitely many p € Q. The adelic polytopes A and B are measurable and have measure V (as multisets)

with respect to normalized Haar measure on Xg. The remainder of the proof will be devoted to proving

that A is a BRS for Tj.
Lemma 4.1. Foralln € N, we have x4(T; (0)) = xp(T}_,;(0)).

Proof. Let k, n € N. First note that
T}(0)=na and Tp ,.(0)=nD"'a.
If x4 (T2 (0)) = k, then there exist exactly k vectors g1, ..., i € Fé such that na +¢q; € A for 1 <i <k.
Moreover, na +¢; € A if and only if
n&oo—i-c_]', € P4 and nop j+4qij € (Sij

forall p€ Qand 1 < j <d. We have na, +¢; € P, if and only if there exist real numbers 71, 12, ..., t; €
[0, 1) such that
Nloo +q; = 11DV + 1DV + - - - + 14D Vg,
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which holds if and only if
Dil(lfl&oo +qi) =10 +hvy+---+1404 € Pp.

Moreover, na, j+q; j€8;Z,forall pe Qand 1 < j <dif and only if (nc, j+q; ;)/8; € Z, forall pe€ Q
and 1 < j <d. Thus, the vectors in I'§ such that nD~'a& + D~'g; € B are precisely DGy, ..., D™ 'qy,
and it follows that XB(T,';_l&(O)) =k.

The proof of the other direction, that x B(Tg_l&(O)) = k implies that x4 (T} (0)) = k, follows from a
similar argument. ]

A—E:Mbel.

peL

Lemma 4.2. For all A € I'g, we have

Proof. For each g € Q we have

‘x— > 0,

peEQ

< maxi|iA — {A , max {|{A <1.
= {Ix = {Aglq pEQ\{q}{I{ Yolgl}

Therefore

=Y (Mpez,

peQ
for all g € Q and the conclusion follows. ([l
Finally we have the following result, which reduces our problem to a problem on R¢/Z¢.
Lemma 4.3. Foralln € N, we have xp(T}_,,(0)) = xp, (SE(O)).
Proof. Letk,n € N. If xp(T}_,-(0)) =k, then there exist exactly k vectors g1, ..., g € I3 such that
nD'a+g eB forl<i<k.

Since na) j/8; +qij € Z), forall pe Qand 1 < j <d, we have {q; j}, = —{na, ;/§;}, forall p € Q
and 1 < j <d. By Lemma 4.2, there exist integers n; ; such that

no,
gi,j =nij+ Z{qz‘,j}p =n;;— Z{—(;)’J } .
J p

PeQ peQ
Hence, there are exactly k vectors n; = (n; 1, ni2, ..., Niq) € 7% such that the vectors
N, nap 1 Nloo,d nop.d
—Z T, ..., —Z +niqa
1 81 dd dd
peQ p peQ p

are in the polytope Pg. Foreach pe Qand 1 < j <d, let
lp.j=mnlepj/8jp —Anap j/8j}p,
and note that [, ; € Z. Then the vectors

n_;li = (ni,l =+ le,l, e ,ni,d‘i_ le,d> € Zd

peQ PeQ
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for 1 <i <k are exactly the integer vectors satisfying

nB—l—n?, = I’lD_l&oo +é, € Pg.
Hence, xp, (Sg(O)) =k.
Again, the proof of the other direction, that xp, (Sg (0)) = k implies that x B(Tl’;,la(O)) = k, follows
from a similar argument. U

In light of Lemmas 4.1 and 4.3, and the fact that Pg is a BRS for Sz, it is now clear that the set A
satisfies the conclusion of Theorem 1.1.

Finally, suppose that y;, v, ..., y4 € I'g and n € Z are chosen such that (4-1) holds, and that exactly
do > 0 of the y; are 0. If dy = d then we can take our BRS to be 1 copies of Xg. Otherwise, we can
repeat the argument above to construct a BRS of volume V in the d — dy coordinates for which y; # 0,
and then we can take the Cartesian product of this set with [0, 1) x [] peo Z, in the dy coordinates where
y; = 0. The resulting set is a BRS of volume V for 7j satisfying the conclusion of Theorem 1.1. This
completes the proof of our main result.
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