

Photosensitization reactions of biomolecules: definition, targets and mechanisms

Maurício S. Baptista^{*1}, Jean Cadet^{*2}, Alexander Greer^{*3,4} and Andrés H. Thomas^{*5}

¹Instituto de Química, Universidade de São Paulo, São Paulo 05508-070, Brazil

²Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada

³Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States

⁴Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States

⁵Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina

*Corresponding authors e-mails: baptista@iq.usp.br (Maurício S. Baptista);

jean.cadet@usherbrooke.ca (Jean Cadet); agreeer@brooklyn.cuny.edu (Alexander Greer);
athomas@inifta.unlp.edu.ar (Andrés H. Thomas)

18	Table of Contents
19	ABSTRACT
20	GRAPHICAL ABSTRACT
21	INTRODUCTION
22	Unifying definitions of biological photosensitization reactions
23	GENERAL CLASSIFICATION OF THE MECHANISMS OF
24	PHOTOSENSITIZATION REACTIONS
25	TYPE I PHOTOSENSITIZATION REACTIONS
26	General features
27	One-electron oxidation of nucleobases
28	DNA-protein cross-links
29	Amino acids
30	Photosensitized lipid membrane leakage
31	TYPE II photosensitized oxidation
32	General features
33	Singlet oxygen oxidation of nucleic acids
34	Singlet oxygen oxidation of amino acids
35	PHOTOSENSITIZED CYCLOADDITION.
36	Mono- and intra-strand psoralen-DNA photoadducts
37	TRIPLET-TRIPLET ENERGY TRANSFER
38	Sensitized formation of cyclobutane pyrimidine dimers (CPDs)
39	Internal DNA photosensitizers as CPD generators
40	Photosensitized formation of spore photoproduct
41	CELLULAR PHOTOSENSITIZATION REACTIONS
42	Type I photosensitized reactions: one-electron oxidation of guanine in cellular DNA.
44	Type II photosensitized reactions: singlet oxygen oxidation of guanine.
45	Photosensitized formation of cyclobutane pyrimidine dimers.
46	Chemiexcited formation of dark cyclobutane pyrimidine dimers.
47	UVA-sensitized formation of DNA damage: oxidized purine and pyrimidine bases
48	CONCLUSION
49	<i>Acknowledgements</i>
50	REFERENCES
51	

52 **ABSTRACT**

53 Photosensitization reactions have been demonstrated to be largely responsible for the
54 deleterious biological effects of UV and visible radiation, as well as for the curative actions
55 of photomedicine. A large number of endogenous and exogenous photosensitizers, biological
56 targets and mechanisms have been reported in the past few decades. Evolving from the
57 original definitions of the type I and type II photosensitized oxidations we now provide
58 physical-chemical frameworks, classifications and key examples of these mechanisms in
59 order to organize, interpret, and understand the vast information available in the literature
60 and the new reports, which are in vigorous growth. This review surveys in an extended
61 manner all identified photosensitization mechanisms of the major biomolecule groups such
62 as nucleic acids, proteins, lipids bridging the gap with the subsequent biological processes.
63 Also described are the effects of photosensitization in cells in which UVA and UVB
64 irradiation triggers enzyme activation with subsequent delayed generation of superoxide
65 anion radical and nitric oxide. Definitions of photosensitized reactions are identified in
66 biomolecules with key insights in cells and tissues.

67

68 **INTRODUCTION**

69 During the past few decades, reports of photosensitization reactions of biomolecules
70 including proteins, lipids, and nucleic acids, became available together with their implication
71 in various biological effects such as cell lethality, carcinogenesis, aging, as well as, in light-
72 based medical treatments. Details of the photosensitization mechanisms have increased, but
73 key steps in these processes are only found scattered in the scientific literature and are usually
74 disregarded in several proposed mechanistic explanations. Indeed, the effects of UVA/visible
75 light radiation in human skin can only be understood by considering both oxygen dependent
76 and independent sensitized reactions with target molecules. This concerns, in particular, type
77 I and type II photosensitization oxidation mechanisms that were initially proposed by Foote
78 (1) and recently partly revisited (2). We avoid the increase in the numerical types of
79 mechanisms, for example type III or IV mechanisms, which have recently proposed in the
80 literature to classify O₂-independent photosensitized reactions. The main aim of the present
81 survey is to critically review, in an extended manner, all identified photosensitization
82 mechanisms of biochemical molecules, by providing a few relevant examples. We also cope
83 with the increasing need to clarify the relevant mechanisms of photosensitization of nucleic
84 acids, proteins and unsaturated lipids, inferred from model studies and to also evaluate the
85 subsequence cellular responses. Direct and indirect evidence provides clues to the roles of
86 intermediates. Often reliant on model reactions, reaction patterns and definitions are needed.
87 Better articulated definitions to biomolecules would be of benefit to the field. The review
88 article is completed by the presentation of photosensitized reactions that were identified in
89 cells/animal tissues.

90 **Unifying definitions of biological photosensitization reactions**

91 Definitions supplied from studies of simple organic reactions are a starting point that needs
92 a more sophisticated approach to be expanded to biological systems, which have their specific
93 boundary conditions. We propose that in biological systems, the terms photosensitization
94 reaction (or process), photosensitized reaction (or process) and, simply, photosensitization
95 should be considered synonymous and can be defined as a process by which a chemical
96 change occurs in one compound, the substrate or target, as a result of initial electronic
97 absorption of UV/visible radiation by the photosensitizer or just the sensitizer. While the
98 substrate is always consumed in the process, the photosensitizer may or may not be
99 consumed, depending on the mechanism.

100 Photosensitization has different meaning from photocatalysis and the words should
101 not be used as synonyms. According to the definition of photocatalysis and photocatalyst
102 given in the IUPAC “Glossary of terms used in photochemistry” (3), a photocatalyst absorbs
103 radiation in the process and always regenerates itself after each cycle of interactions with the
104 reaction partners. Whereas, the first condition is always fulfilled by the photosensitizer, the
105 second is not. This differentiation between both terms can be controversial and there are
106 authors that considerer that the photosensitizer must be recovered in the process, that is, each
107 molecule of photosensitizer must convert many substrate molecules into photoproducts.
108 However, we are inclined to accept a definition more extensive and pragmatic. In fact, many
109 compounds widely accepted as photosensitizer are consumed in the photochemical process.
110 Although the word photosensitizer is not synonymous with heterogeneous photocatalysis,
111 nanoparticles can function as photosensitizers, for example, in dye-coated particles in the
112 photoinactivation of microorganisms.

113 Photosensitizers can be endogenous or exogenous compounds. In the former group,
114 many natural heterocyclic compounds can act as photosensitizers, such as porphyrins,
115 flavins, pterins and lumazines (4). Some products of oxidation of normal components of the

116 cells can be added to this group; for instance, some products of oxidation of Trp (5,6,7).
117 Although the endogenous photosensitizers are usually present at very low concentrations and
118 their photoactivity is limited, they explain part of the deleterious effects of UVA and visible
119 solar radiation. In addition, they can accumulate under certain pathological situations,
120 increasing the photodamage. Among the latter group, a large number of xenobiotics can be
121 found, mainly pharmaceutical drugs and pollutants. Apart from the harmful effects induced
122 in biological systems, photosensitization reactions can be beneficial for medical and
123 environmental applications, such as photodynamic therapy to destroy tumors (PDT) (8,9,10),
124 photodynamic inactivation of microorganisms (PDI) (11,12,13), and contaminant
125 photodegradation (14,15,16,17). A large number of compounds have been designed to act as
126 photosensitizers for such applications. It is worth commenting on the term “photodynamic”.
127 This word involves the participation of O₂ and, therefore, PDT and PDI expressions, which
128 are widely used in medicine, pharmaceutical sciences and microbiology, refer to processes
129 in which the appropriate combination of electromagnetic radiation, a photosensitizer and O₂
130 are used to destroy a cell target (cancer cell or pathogenic microorganism).

131 The group of biological molecules that may be the targets of photosensitization
132 reactions is large and diverse. However, considering their susceptibility, concentration in
133 living organisms and the biological consequences induced by the photosensitized
134 modifications, it is worth mentioning among the main targets a few amino acids [tryptophan
135 (Trp), tyrosine (Tyr), histidine (His), methionine (Met), cysteine (Cys), etc.], nucleobases
136 (guanine (G), adenine (A), thymine (T), cytosine (C)), and unsaturated fatty acids. These
137 biomolecules can be damaged by photosensitization reactions when they are free, part of
138 macromolecules including proteins or nucleic acids, or a supramolecular structure, such as a
139 biomembrane.

140 **GENERAL CLASSIFICATION OF THE MECHANISM OF**
141 **PHOTOSENSITIZATION REACTIONS**

142 The initial physical event in a photosensitization reaction is the absorption of a UV/visible
143 photon by the photosensitizer. For most organic photosensitizers, the resulting singlet excited
144 state undergoes intersystem crossing to yield a longer lived triplet excited state. The first
145 bimolecular step of the process is the reaction of the singlet or triplet excited state of the
146 sensitizer with the substrate or with dissolved molecular oxygen (O_2) (Scheme 1).
147 Photosensitized reactions that apply to biomolecules may be generally classified as oxygen
148 dependent and independent. It is important to emphasize that this classification is not based
149 on whether the excited sensitizer reacts with O_2 , but whether O_2 is needed in the overall
150 process. That means that in photosensitized oxidations O_2 may react with the electronically
151 excited photosensitizer or participate in a secondary step, such as the reaction with radicals
152 issued from the photosensitizer or substrate. The well-documented type I and type II
153 mechanisms, originally defined by Foote (1) and recently revisited (2) are mainly restricted
154 to photosensitized oxidations (oxygen dependent processes), with exceptions that will be
155 discussed later.

156 Type I photosensitized reactions involve electron transfer and lead to the initial
157 formation of radicals and the participation of O_2 in subsequent steps involved in the oxidation
158 process. A type I mechanism is initiated by an electron transfer reaction between the excited
159 sensitizer ($Sens^*$) and the substrate. This redox reaction can take place in both directions, that
160 is, the substrate can be reduced or oxidized, however oxidation is almost always observed for
161 biomolecules (reaction 1). The initial process is an electron transfer from the biological target
162 to $Sens^*$ giving rise to the corresponding pair of radical ions ($Sens^{\cdot-}$ and $S^{\cdot+}$), which in turn,
163 can be in equilibrium with their corresponding neutral radicals [$SensH^{\cdot}$ and $S(-H)^{\cdot}$].
164 However, it is worth mentioning that several electron-transfer processes in biological systems

165 occur coupled to a proton transfer. Therefore, formally one should also consider proton-
166 coupled electron transfer (PCET), in which the electron transfer reaction is affected by the
167 concomitant transfer of one or more protons. In effect, PCET can be a simple hydrogen atom
168 transfer (HAT), when both the electron and the proton are transferred from the same bond.

169 Alternatively, the other first bimolecular reaction that can initiate a type I mechanism
170 is reaction 2, in which excited sensitizer reduces O_2 leading to the formation of superoxide
171 anion radical ($O_2^{\cdot-}$). In the initial classification proposed by C. S. Foote (1), reaction 2 was
172 considered as a type II mechanism because the excited sensitizer reacts with O_2 , as in the
173 case of 1O_2 formation. However, we classify this reaction as type I because we define type I
174 on the basis of the formation of radicals.

175 On the other hand, type II mechanism involves an initial energy transfer from the
176 triplet excited state of the sensitizer to dissolved O_2 , which is in its ground triplet state
177 [$O_2(^3\Sigma_g)$ (denoted as O_2)], yielding singlet molecular oxygen [$O_2(^1\Delta_g)$, denoted throughout as
178 1O_2], the lowest excited state of molecular oxygen (reaction 3) (18,19,20,21,22,23).
179 Molecular oxygen in this activated (metastable) state is far more reactive than in the ground
180 state.

181 <Scheme 1>

182 Several mechanisms can be involved in the oxygen independent photosensitization.
183 One of the most relevant photosensitized reactions involves energy transfer from the excited
184 sensitizer to the substrate (triplet-triplet energy transfer, TTET) (reaction 4). Once in the
185 excited state, the substrate may react with a vicinal molecule to form a dimeric photoproduct
186 according to a [2 + 2] photocycloaddition reaction. A second group of oxygen independent
187 reactions give rise to the formation of photoadducts in which the sensitizer and the substrate
188 are covalently bound (reaction 5). Although different mechanisms can be involved in the

189 formation of photoadducts, the [2 + 2] cycloaddition (photocycloaddition) is perhaps the most
190 important.

191 In reactions 1, 4 and 5 the excited sensitizer directly reacts with the substrate and
192 therefore can be assumed as contact dependent processes, that is, an encounter between the
193 two molecules occurs. In fact these reactions are in cells only efficient when the
194 photosensitizer and the target are in close vicinity. If the reaction is a dynamic process the
195 rate is controlled by diffusion. In contrast, if there is a previous association between the two
196 molecules, the process is not limited by diffusion and can be much faster. That is why in
197 some cases the association of the sensitizer in its ground state with the substrate may make
198 much more efficient a contact dependent photosensitized process. On the other hand,
199 reactions 2 and 3 are contact independent processes, that is, the photosensitization does not
200 require an encounter between the excited sensitizer and the substrate and the reaction can
201 occur even when both species are physically separated if the reactive intermediate is able to
202 reach with the target molecule. In particular, ${}^1\text{O}_2$ that only reacts significantly with dedicated
203 biomolecules (*vide infra*) may diffuse to a certain extent in cells before reaching its targets.

204 Despite much progress, details underlying the definitions are difficult to dissect.
205 There is some ambiguity and confusion in the definitions and classification of the
206 mechanisms that we would like to clarify. Sometimes it is accepted that all possible
207 mechanisms of photosensitization are divided into type I and type II, but it is important to
208 emphasize that this is just the classification of the processes involving O_2 . The processes
209 initiated by reactions 4 and 5 are also photosensitization mechanisms that however do not
210 fall within the definition of type I and type II mechanisms. Other mistaken idea is that
211 photosensitization always takes place involving a reactive oxygen species (ROS) and that
212 $\text{O}_2^{\cdot-}$ and ${}^1\text{O}_2$ are the intermediates responsible for the photodamage caused by type I and type
213 II photooxidations, respectively. Although ${}^1\text{O}_2$ is in fact the oxidizing species involved in

214 type II mechanism, $O_2^{\cdot-}$ plays a minor role if any since it does not exhibit significant
215 reactivity toward most biomolecules (*vide infra*). The chemical changes in type I
216 photooxidations are mainly due to the reactions undergone by organic radicals $[S^{\cdot+}/S(-H)^{\cdot}]$ in
217 reaction 1] that further react, almost always, with the participation of O_2 .

218 The mechanisms operating in a given photosensitized process and their rates depend
219 on many factors and it is usual that several competitive pathways involving different
220 mechanisms participate. After the initial bimolecular reactions listed in Scheme 1, many
221 different subsequent reactions can take place, which depends on the experimental conditions
222 and the nature of the reactive species generated, in the contact dependent processes $[S^{\cdot+}/S(-$
223 $H)^{\cdot}, S^{\cdot}]$, and the reactivity of the substrate towards the reactive intermediate ($O_2^{\cdot-}, {}^1O_2$), in
224 the case of contact independent processes.

225 In the next sections, some typical subsequent reactions that take place after the initial
226 bimolecular reactions (Scheme 1) are given for each type of mechanism. Additionally, a few
227 selected examples of photosensitized reactions for which relevant mechanistic insights were
228 gained from experimental and/or theoretical studies on either model compounds or
229 preferentially the entire biomolecules are provided. In no way the next sections will provide
230 a complete and exhaustive review of the countless photosensitized reactions reported in the
231 literature, but they will shed light on the diversity and complexity of photosensitization-
232 mediated degradation pathways of biomolecules (nucleic acids, proteins, and unsaturated
233 lipids) that may induce adverse biological effects or are the bases of beneficial medical and
234 environmental applications.

235 **TYPE I PHOTOSENSITIZED OXIDATIONS**

236 **General features**

237 A considerable portion of the transformations induced by excited states occurs by type I
238 photosensitized oxidations. Generally speaking, upon light absorption with the transient
239 formation of excited state species, stronger oxidizing and stronger reducing agents are
240 formed. Whether or not the excited state will engage in a redox process (reaction 1) depends
241 on many factors, including the molecular contact of the excited state with biological targets
242 and the energetics and the relative rate of the electron transfer reaction in comparison with
243 other photophysical processes, in particular deactivation of the triplet excited state by energy
244 transfer to O_2 to form 1O_2 (reaction 3). The possibility of an electron-transfer reaction can be
245 estimated by considering the thermodynamic tendency of the molecules to receive or donate
246 electrons (redox equilibria). Consequently, excited-state redox potentials have considerable
247 utility in predicting type I redox reactivity (*vide infra*) (24,25,26).

248 After the initial one-electron oxidation (reaction 1), both radicals formed participate
249 in a complex set of competitive pathways, which are summarized in Scheme 2. In general,
250 the photosensitizer radical anion reacts with O_2 to regenerate the sensitizer and to form $O_2^{\cdot-}$
251 (reaction 6) (27). This represents the main source of $O_2^{\cdot-}$ in photosensitized reactions, being
252 much more relevant than the direct reduction of O_2 by excited sensitizer (reaction 2). $O_2^{\cdot-}$
253 that is predominant at physiological pH, is in equilibrium ($pK_a = 3.6$) with its protonated form
254 HO_2^{\cdot} (reaction 7) and disproportionate to hydrogen peroxide (H_2O_2) (reaction 8), another low
255 reactive ROS. This compound, as well as $O_2^{\cdot-}$ and HO_2^{\cdot} , does not exhibit significant reactivity
256 toward most biomolecules (28). However, H_2O_2 upon reduction triggered by transition metals
257 (Fe^{2+} , Cu^{+}) or ascorbate is able to generate highly reactive hydroxyl radical ($\cdot OH$) (reaction
258 9) that reacts with biological substrates at the site where it is produced (reaction 10).

259 <Scheme 2>

260 The radical formed from the one-electron oxidation of the target molecule ($S^{++}/S(-$
261 $H)$) may undergo a large number of reactions (Scheme 2). The predominant pathway

262 depends on the experimental conditions (concentrations, pH, etc) and on the chemical nature
263 of the radical. It is worth mentioning that reaction 1, that initiates most type I processes, does
264 not involve the participation of O_2 . Almost always, as discussed later, in the series of
265 subsequent chemical reactions occurring from the initial radical to the final product, O_2 is
266 involved in at least one step.

267 The recovery pathways leading back to the original substrate S compete with
268 reactions that lead to the formation of oxidation products. Among the former group the
269 recombination of the radicals formed in the first step may recover both the substrate and the
270 sensitizer (reaction 11) (29). This pathway is frequently the predominant one in the absence
271 of O_2 and consequently no net substrate consumption is observed under anaerobic condition,
272 even when radicals are formed, that is, reaction 11 counteracts the initial one-electron
273 oxidation (reaction 1). The substrate can also be regenerated by reduction by O_2^{2-} (reaction
274 12) or by an electron donor present in the medium, such as a thiol (reaction 13).

275 Many reactions of the substrate radical can initiate pathways that eventually give rise
276 to oxygenated products. Besides the deprotonation, a common reaction of the radical cation
277 (S^{2+}) is hydration that often yields C-carbon centered radicals (reaction 14). Both neutral
278 radicals ($S(-H)^{\cdot}$ and $^{\cdot}S-OH$) may be ranged into several distinct reactive intermediates with
279 different chemical reactivity according to the target molecule. In particular, $^{\cdot}S-OH$ may
280 further react with O_2 by either addition or by one-electron oxidation (reaction 15), whereas
281 $S(-H)^{\cdot}$ may also further react with O_2 (reaction 16) or with O_2^{2-} (reaction 17). In Scheme 2
282 S(ox) represents a vast and heterogeneous group of oxidized substrates, most of which are
283 oxygenated, such as those arising from the reactions of O_2 or O_2^{2-} with the radicals formed
284 in the initial step (reaction 1). It is worth mentioning that S(ox), by no means, represents final
285 and stable products. In contrast, S(ox) can be thermally or photochemically unstable or can
286 undergo further photosensitization at least in model systems giving rise to countless pathways

287 with rates depending on the environmental conditions.

288 Finally, two $S(-H)^\bullet$ can react to give rise to a dimer S_2 (reaction 18). In the sequence
289 of reactions O_2 does not participate. In some cases, O_2 is needed in the overall process to
290 avoid the recovery of the substrate via reaction 11, that is, O_2 , by quenching $Sens^\bullet-$ (reaction
291 6), prevents the recombination of radicals and favors the reaction between two $S(-H)^\bullet$ (30).
292 In other cases, O_2 is not needed at all and S_2 can be formed under anaerobic conditions, even
293 with higher efficiencies than in the presence of O_2 (31). If O_2 favors or hinders the
294 photosensitized formation of S_2 through these mechanisms depend on many factors. In
295 particular, it depends on the result of the rate of the competitive pathways for a given system.
296 To give just some simple examples: if the recombination reaction 10 is fast and the reactions
297 13-16 are slow, the formation of S_2 will be favored in the presence of O_2 ; in contrast, if
298 reaction 10 is slow and reactions 13-16 are fast S_2 will be favored in the absence of O_2 . In
299 addition, $S^\bullet+/S(-H)^\bullet$ can react with radicals coming from a different substrate giving rise to
300 the formation of adducts $S1-S2$. Apart from O_2 concentration, sensitizer properties and other
301 conditions affect the efficiency of the dimerization of the substrate. Indeed, high sensitizer
302 and substrate concentrations and high radiation intensity will increase the concentration of
303 radicals and favor the dimerization.

304 The case that we have just considered, radical-mediated dimerization of the substrate
305 (reaction 18), can be classified as type I photooxidation or not. Strictly, the dimerization is
306 an oxidation, but without the incorporation of oxygen atoms to the products. Therefore, if a
307 type I reaction needs O_2 , this processes should be excluded from this category. If type I means
308 oxidation initiated by generation of radicals, dimerization can be accepted within this group.
309 This issue is controversial and there is no consensus in the literature. The discussion remains
310 open on this point with the hope of coming to an agreement in the near future.

311 At this point, it is worth analyzing the thermodynamics of type I mechanism.

312 Considering direct oxidation by photosensitization, the tendency of a photosensitizer to act
313 as a photochemical oxidant can be quantified in terms of its one-electron pseudo-reduction
314 potential ($E'_{ox}(Sens^*/Sens^-)$) (24) (Equation 19). The feasibility of the electron-transfer
315 process will also depend on the one-electron reduction potential of the substrate (S) and on
316 the net work required to bring products and reactants close together (Δw) (Equation 20)
317 (25,32).

318 $E'_{ox}(Sens^*/Sens^-) = E'_{1/2}(Sens/Sens^-) + \Delta E$ (eV) (19)

319 ΔG (eV) = $E_{ox}(Sens^*/Sens^-) - E'_{1/2}(S/S^-) + \Delta w$ (eV) (20)

320 Values of Δw are < 0.1 eV in water or one or two orders of magnitude smaller than
321 the pseudo-reduction potentials of the photochemical oxidants. Consequently, Δw is
322 negligible (24). Therefore, the feasibility of a type I photooxidation process can be estimated
323 by comparing the pseudo-reduction potentials of the photochemical oxidants with the formal
324 reduction potential of the S. Table 1 lists $E'_{ox}(Sens^*/Sens^-)$ values for a series of important
325 photochemical oxidants, organized in two general categories: endogenous, *i.e.*, those
326 photosensitizers that are naturally present in cells and are responsible for photosensitization
327 phenomena induced by the direct light exposure in living organisms, and exogenous, *i.e.*,
328 natural or synthetic molecules that are not found in human skin and are typically used as
329 photosensitizers in medical treatments.

330 <Table 1>

331 References Table 1: 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
332 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76.

333 In order to facilitate the discussion and, in many cases to compensate for the lack of
334 data on triplet state energies, we only show the estimated (0,0) energy levels for the singlet
335 excited states (Table 1). Although, both singlet and triplet excited states can engage in type I

336 reactions, singlet excited states have a higher excitation energy (by 0.2-0.6 eV) compared to
337 the lowest triplet excited state (77). In pterins, for example, the lowest singlet and triplet
338 excited states are respectively 3.1 eV and 2.5 eV above the ground state (78). However, the
339 triplet state has a much longer lifetime and in practice the triplet excited pterin can diffuse
340 much further to encounter the electron acceptor, while the singlet excited state will react only
341 if it is already in close proximity to the substrate.

342 Any molecule that can accept an electron is a potential photochemical oxidant.
343 Excitation of a molecule in the UV or visible increases the photosensitizer oxidizing tendency
344 by 4 to 1.5 eV, transforming poor ground state oxidants, such as the purine and pyrimidine
345 bases, into strong excited state oxidants. Photoactive aminoacids (Phe, Tyr, Trp) do not have
346 stable one-electron reduction curves and, consequently, can not work as photochemical
347 electron acceptors. On the other hand, these aminoacids can be oxidized at relatively small
348 potentials and consequently, work as strong photochemical electron donors (Table 1). Several
349 enzymatic cofactors for example, flavins and pterins are known to behave as endogenous
350 photosensitizers (79,80,81). Their excited states become strong oxidant agents with pseudo
351 reduction potentials in the order of 2-3 V. The same range of oxidizing power is found for
352 endogenous pigments like lipofuscin and melanin. Synthetic photosensitizers employed in
353 PDT usually absorb in the visible range and have pseudo-reduction potentials smaller than 2
354 V. Nevertheless, for molecules that have formal reduction potentials between -0.5 and +0.5,
355 which includes different types of photosensitizers like phenothiazinium ions, chlorins,
356 bacteriochlorins, porphyrazines, their excited states will still have pseudo-reduction potentials
357 above 1 V.

358 The other important variable in the equation 20 is the reduction potential of the
359 substrate (Table 2). The tendency of a biomolecule to donate an electron to a photochemical
360 oxidant will increase with the decrease in the reduction potential of their respective one-

361 electron oxidation product. According to this, in the case of nucleobases and amino acids the
362 tendency to undergo one-electron oxidation is G > A > T, C (82,83,84,85) and Tyr > Trp >
363 His (86), respectively. Note that lipids, especially poly-unsaturated lipids, are the easiest to
364 oxidize, with $E^{\circ'}$ close to those of anti-oxidants such as tocopherol and ascorbic acid (Table
365 2). Even saturated lipids or any other molecule with allylic or *bis*-allylic hydrogens (such as
366 carotenoids, for example), will have $E^{\circ'}$ below 1 V, making them possible targets for most of
367 the sensitizers mentioned in Table 1. Several amino acids (cysteine, tyrosine, tryptophan),
368 lipid hydroperoxides (Table 2) and small redox-active molecules (Table 2), hydrogen
369 peroxide, nitrite (Table 3), are prone to be oxidized by the majority of the endogenous and
370 exogenous photosensitizers. $E^{\circ}_{\text{ox}}(\text{Sens}^*/\text{Sens}^-)$ values for porphyrins are well below 1V,
371 meaning that they will not have enough driving force to abstract electron from most of the
372 biological targets (Table 2). No wonder that studies performed in membrane mimetic systems
373 seem to indicate that porphyrin sensitizers only engage in type II photosensitized oxidation
374 reactions (87).

375 <Table 2>


376 References Table 2: 88,89,90,91,92,93

377 <Table 3>

378 References Table 3: 94,95,96,97,98,99

379 A second type I process, not included in Scheme 1 because it is less common, is the
380 direct reduction of the substrate by the excited state photosensitizer, i.e., the photosensitizer
381 acts as a photochemical reductant (Equation 21). In this case, any photosensitizer that has a
382 one-electron oxidation peak in the voltammogram can potentially be a very strong excited
383 state reducing agent. It is worth mentioning here the case of positively-charged
384 photosensitizers such as phenothianizium salts that do not have an oxidation peak and

385 therefore cannot act as a photochemical reductant.

387 Note also that $-\text{E}'_{\text{red}}(\text{Sens}^{*+}/\text{Sens}^*)$ values are highly favorable (close or above 1V) for
388 most endogenous and exogenous photosensitizers (Table 1). However, there are not many
389 biomolecules that can accept an electron. NAD^+ , which is a strong two-electron biological
390 oxidant, has an unfavorable value for one-electron reduction (-0.9, Table 3). O_2 has a
391 reduction potential of -0.3V and is also highly prevalent in many tissues. Therefore, O_2 can
392 potentially receive an electron from most photosensitizers forming $\text{O}_2^{\cdot-}$ (Reaction 2).
393 However, as mentioned before, the formation of $\text{O}_2^{\cdot-}$ by photosensitizer oxidation is not the
394 most prevalent interaction between the sensitizer and O_2 . Intersystem crossing of the
395 photosensitizer to the triplet excited state followed by energy transfer to O_2 to form $^1\text{O}_2$ is
396 usually much more probable.

397 In the case of PCET (see Section 3), in general terms, this process combines redox
398 with acid–base equilibria and the energy necessary for breaking a X–H bond (C–H, O–H, N–
399 H) is given by the homolytic bond-dissociation free energy (BDFE), which can be estimated
400 by using Equation 22 (100).

402 The constant C_G includes the $\text{H}^+/\text{H}^{\cdot}$ standard reduction potential and the formation
403 free energy of H^{\cdot} in a specific solvent. The value of C_G in water (for NHE) is 57.6 kJ mol^{-1} .
404 As indicated in Equation 5, changes in the reduction potential (E°) can be counter-balanced
405 by changes in pK_A and vice versa. Overall, acidic or conjugate acid species are stronger
406 oxidants. In order to evaluate the possibility that an excited state can break a specific X–H
407 bond, one can use in equation 5 the pseudo-reduction potentials from Table 1. Likewise, in
408 order to evaluate the strength of an X-bond in a biological substrate, one could use the

409 reduction potential values from Table 2. The abstraction of hydrogen from biological targets
410 with allylic/bis-allylic hydrogens or with hydroperoxyl radicals in membranes is fundamental
411 to the initiation and the progress of the lipid peroxidation reactions (101). Indeed, recent
412 evidences indicate that type I photosensitized oxidation reactions, involving HAT both from
413 the original lipid double bond or from the lipid hydroperoxides are necessary and sufficient
414 to form lipid truncated aldehydes, which are the molecules that facilitate membrane leakage
415 (102). Likewise, the abstraction of hydrogen from amino acids (tyrosine, for example) or
416 nitrogen heterocycle bases (guanine, for example) is fundamental to the understanding of the
417 consequences of the photosensitized oxidations and the autoxidation process in cells and
418 tissues (103).

419 Many other reactive oxidants (RO) can be formed as the result of the redox reactions
420 initiated by type I photosensitization. It is worth mentioning that several different definitions
421 are currently used for ROS, which makes that the species included in this group differs for
422 different authors. The term RO is broader than ROS and includes any chemical entity able to
423 oxidize biomolecules. In Table 3, we mention the most important oxidizing radicals and two-
424 electron oxidants, with their respective reduction potentials. We also include information of
425 the reactivity towards glutathione, which is an important player in the maintenance of the
426 redox homeostasis. Note that several RO are strong oxidants (E° above 1 V), with second
427 order rate constant in the reaction with glutathione above $10^7 \text{ M}^{-1}\text{s}^{-1}$ (HO^\bullet , $\text{CO}_3^{\bullet-}$, $\text{O}_3^{\bullet-}$, NO_2^\bullet ,
428 and HOCl). Others like $\text{O}_2^{\bullet-}$ and H_2O_2 are not so reactive, but exert fundamental role in redox
429 signaling and their accumulation invariably will lead to the formation of other RO like HO^\bullet (104). It should be noted that the pseudo-reduction potential of several photochemical
430 oxidants is as high as that of HO^\bullet (Table 1). Therefore, it is important to consider that an
431 abundant number of photosensitized oxidant events will be driven by the photosensitizers
432 working as photochemical oxidants.

434 **One-electron oxidation of nucleobases**

435 The reactivity of the nucleobases in type I photosensitized one-electron oxidation is
436 modulated in double-stranded DNA by the occurrence of efficient charge transfer reaction
437 that leads through hopping mechanisms to the redistribution of initially generated base
438 radical cations with preferential trapping of positive holes at guanine sites in a highly
439 sequence dependence manner (85). Similarly, type I reactions are facilitated by electron-
440 transfer photooxidations with the use of electron-deficient sensitizers, such as *N*-
441 methylquinolinium tetrafluoborate, 10-methylacridine hexafluorophosphate, or 2-(4-
442 methoxyphenyl)-4,6-diphenylpyrylium in their photosensitized reactions with sulfides
443 (105,106,107,108).

444 The base cation (S^{+}) that is issued from one-electron oxidation of the target is
445 expected to undergo two competitive reactions (hydration, deprotonation) in aqueous
446 solutions that represent suitable conditions for mimicking reactivity and subsequent chemical
447 reactions of oxidizing radicals in cells (109,110). Both reactions give rise to neutral radicals
448 that may be ranged into several distinct reactive intermediates with different chemical
449 reactivity according to the target molecule. The main processes for nucleobases and amino
450 acids can be summed-up as follows:

451 (a) Hydration of pyrimidine S^{+} gives rise to C-centered radicals (Scheme 3a) that efficiently
452 react with O_2 to produce peroxy radicals; these transient species may be either reduced,
453 likely by $O_2^{-\cdot}$, into related hydroperoxides or react selectively with vicinal bases/sugar
454 moiety in DNA, thus forming intra-strand tandem lesions (111,112).

455 <Scheme 3>

456 (b) Hydration of S^{+} derived from purine bases generates aminyl type radicals that are not
457 prone to O_2 addition (113,114). However, 8-hydroxy-7,8-dihydroguan-7-yl radical, the
458 hydration product of guanine radical cation reaction (Scheme 4a) may be converted into

459 8-oxo-7,8-dihydroguanine (8-oxoG) by O₂-mediated one-electron oxidation (115).
460 Competitive one-electron reduction of the latter radical that already occurs in aqueous
461 solution is enhanced in cells by the presence of thiol components. This leads to the
462 formation of 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), a non-oxidation
463 modified product of guanine (115,116) (Scheme 4a).

464 <Scheme 4>

465 (c) Deprotonation of thymine and 5-methylcytosine radical cations produces C-carbon
466 centered radicals (Scheme 3b) to which O₂ efficiently adds to generate peroxy radicals
467 as observed for the hydration reactions of pyrimidine base radical cations (110).
468 (d) Deprotonation of S⁺ derived from guanine, tyrosine and tryptophan gives rise to highly
469 oxidizing S(-H)[•] radicals that do not react with O₂ but with O₂^{•-} to produce identified
470 oxidation products. A complex multi-step pathway subsequent to O₂^{•-} addition at C5 of
471 G(-H)[•] has been proposed for the formation of 2,2,4-triamino-5(2H)-oxazolone, the final
472 one-electron oxidation guanine product (115,117) (Scheme 5). Evidence has been
473 provided for chemical repair of G(-H)[•] by HO₂[•]/O₂^{•-} and also by thiols.

474 <Scheme 5>

475 **DNA-protein cross-links**

476 Another interesting example of subsequent reactions in type I mechanisms is the
477 formation of DNA-protein cross-links (DPCs), a wide variety of biomolecular damage that
478 may be generated by various chemical and physical agents including *bis*-electrophilic agents,
479 low-intensity UVC light and ionizing radiation (118). Thus, high-intensity UV laser pulses
480 (119,120) and several type I photosensitizers (such as methylene blue and riboflavin) that are
481 able to ionize nucleobases were shown to induce the formation of protein/amino acid adducts
482 mostly to the guanine moiety of either nucleic acids or model compounds (121,122,123,124).

483 The free ϵ -amino group of central lysine in trilysine peptide (KKK) bound to TGT was found
484 to compete efficiently with surrounding water molecules for the nucleophilic reactions
485 underwent by G^+ , generated by riboflavin photosensitization in aerated aqueous solution
486 (125). The major photoproduct that was isolated by HPLC and unambiguously characterized
487 by 1H NMR and exact mass spectrometry measurement was assigned as N^{ϵ} -(guanin-8-yl)-
488 lysine adduct arising from the addition of the lysine residue to C8 of guanine, similarly to the
489 hydration of G^+ (Scheme 4b). A recent *ab initio* molecular dynamics simulation study with
490 protonated methylamine as the model amino acid has provided further mechanistic
491 information on the formation of the guanine-lysine cross-link (126). It is proposed that initial
492 deprotonation of G^+ is followed by hydrogen transfer from the ammonium $-NH_3^+$ to $G(-H)^\bullet$
493 with subsequent regeneration of guanine by chemical repair. Concomitantly, this leads to the
494 formation of a nitrogen centered radical that reacts with guanine by addition at C8. Similar
495 cross-links were found to be generated by nucleophilic attachment of three polyamines
496 including putrescine, spermine and spermidine to DNA at C8 of G^+ upon riboflavin
497 photosensitization (127,128). Furthermore, advanced glycation endproducts were reported to
498 function as sensitizers and induce oxidation and crosslinking of bovine lens proteins by
499 mainly a type I reaction (129).

500 **One-electron oxidation of amino acids**

501 Several amino acids can undergo reaction 1 and the resulting radicals $S^{\bullet+}/S(-H)^\bullet$
502 participate in many different subsequent processes. Studies performed with Trp and Tyr free
503 and in proteins allow describing a general behavior. Radicals can react with O_2 to generate
504 peroxy radicals as precursors of multiple oxygenated products including hydroperoxides and
505 carbonyls (86,130). These reactions compete with self-reactions of radicals, which lead to
506 intra- or inter-molecular crosslinks (131) (*vide supra*). Several studies using riboflavin as
507 photosensitizer have evidenced the competition between these pathways (7,31,132). Under

508 aerobic conditions the O_2 concentration is much higher than the concentration of the radicals
509 generated by type I photosensitizers. However, self-reactions of radicals are relevant and
510 kinetic analysis provides an explanation for this fact. While the bimolecular rate constant of
511 the reaction of Trp and Tyr radicals with O_2 are low ($k < 10^6 \text{ M}^{-1}\text{s}^{-1}$) (133,134), the reactions
512 between radicals are close to the diffusional limit ($k \sim 10^8\text{-}10^9 \text{ M}^{-1}\text{s}^{-1}$) (135,136). Many
513 studies with other sensitizers have provided evidence for the complexity of the reactions, in
514 which many factors affect the distribution of products and the overall competition of type I
515 and type II mechanisms (6,137,138,139,140,141).

516 **One-electron oxidation of lipids**

517 Photoinduced lipid oxidation has similarities and differences compared with chemically-
518 initiated lipid oxidation. The main similarity relates with the self-sustained continuation of
519 its free-radical chain reactions. Several reactive free-radicals, such as carbon-centered,
520 peroxy, alkoxy, can react with oxygen and/or abstract hydrogens from allylic hydrogens to
521 continue the degradation of the biomembranes. The main difference concerns the initiation
522 step (101,102). Purely chemical initiation is highly dependent on bis-allylic hydrogens
523 present in poly-unsaturated fatty acids (PUFA), since the reduction potential of PUFA lipids
524 ($\sim 0.6 \text{ V}$) is greatly decreased compared with the reduction potential of lipids with a single
525 double bond ($\sim 1 \text{ V}$, Table 2). Photoinduced lipid oxidation does not depend on the presence
526 of PUFA lipids, since both type I and type II reactions can be highly efficient in single
527 saturation lipids. Most photosensitizers have pseudo-reduction potentials above 1 V,
528 allowing the oxidation of single double bonds (Table 1). No wonder that light-induced
529 oxidation is one of the major factors responsible for food waste (142).

530 Type I photosensitization of phospholipids is complex and involves a large number
531 of competitive pathways giving rise to many photoproducts, whose distribution depends on
532 many factors, starting with the nature of the reactant. However, as mentioned in the previous

533 paragraph, the first event is always the abstraction of an allylic hydrogen from the unsaturated
534 fatty acyl group. This reaction in PUFAs leads to a radical (L[•]), with its free electron
535 delocalized over five carbons, that reacts with O₂ to give a peroxy radical (LOO[•]) (143).
536 Scheme 6 shows the reactions that take place for a typic glycerophospholipid (LH) bearing a
537 linoleoyl group (18:2-9,12). L[•] reacts with O₂ preferentialy at positions 9 and 13 to form the
538 corresponding LOO[•] radicals. In the propagation phase, the subsequent reaction of these
539 radicals with LH generates the 9- and 13-hydroperoxides and new L[•] that will react with O₂.
540 The chain reactions are limited by the availability of O₂ and oxidizable lipids, and the
541 presence of antioxidants that can donate a hydrogen atom to LOO[•] (143). It is worth
542 mentioning, that we have respected the most common nomenclature found in literature for
543 lipids, where LH represents the intact substrate (S) and L[•] is the radical resulting from the
544 loss of an hydrogen atom (S(-H)[•]).

545 <Scheme 6>

546 TYPE II PHOTOSENSITIZED OXIDATION

547 General features

548 Type II photosensitized oxidations involve ¹O₂, generated in reaction 3 that reacts with
549 biomolecules. Singlet oxygen is a more selective oxidant than 'OH and one-electron oxidants.
550 Reactions of unsaturated compounds with ¹O₂ include 'ene' (reaction 23), [2 + 4] (reaction
551 24), and [2 + 2] (reaction 25) reactions to yield hydroperoxides, endoperoxides and
552 dioxetanes, respectively (Scheme 7). Other relevant reactions of ¹O₂ include heteroatom
553 oxidation (reactions 26 and 27) and phenol hydroperoxidation (reaction 28) (Scheme 7)
554 (18,22,144.). Singlet oxygen is also important in inflammation processes (145).

555 <Scheme 7>

556 **Singlet oxygen oxidation of nucleic acids**

557 Only guanine among the 5 main canonical pyrimidine and purine DNA bases exhibits a
558 detectable reactivity towards ${}^1\text{O}_2$ in aqueous solutions as shown from extensive chemical
559 studies (18,146,147). The selective ${}^1\text{O}_2$ reactivity that is in agreement with the highest
560 chemical quenching rates of guanine components has recently received further support from
561 the conclusions of theoretical studies (148,149). Early evidence has shown that 8-oxoG, a
562 ubiquitous oxidation product of guanine (115), was generated in isolated DNA by thiazin
563 dyes that mostly act as type II photosensitizers (150,151,152). It was confirmed by using
564 thermo-labile naphthalene endoperoxides as clean sources of ${}^1\text{O}_2$ that 8-oxoG is the only ${}^1\text{O}_2$
565 degradation product formed in isolated DNA under mild oxidation conditions (147) in
566 agreement with recent reactivity studies involving molecular dynamics simulation (148). The
567 formation of 8-oxoG that was found to be almost barrierless (148) is rationalized in terms of
568 [2 + 4] Diels-Alder cycloaddition of ${}^1\text{O}_2$ across the 4,5- and 7,8-ethylenic bonds of the
569 imidazole ring to give rise to a 4,8-endoperoxide (115) (Scheme 8) that has been only
570 characterized in CD_2Cl_2 solutions of photosensitized 2',3',5'-*O*-(*tert*-butyldimethylsilyl)-8-
571 methylguanosine at $-78\text{ }^\circ\text{C}$ (153). Further mechanistic information of the ${}^1\text{O}_2$ oxidation
572 pathway of guanine in either isolated 2'-deoxyguanosine or embedded into a double-stranded
573 DNA fragment was gained from extensive theoretical studies. Thus, nucleophilic attack of
574 ${}^1\text{O}_2$ onto guanine C8 gives rise to the 4,8-endoperoxide via a zwitterionic peroxylate ($-\text{OO}^-$)
575 according to a two-step pathway (148). The exclusive formation of 8-oxoG in DNA is
576 rationalized in terms of predominant rearrangement of the endoperoxide into 8-
577 hydroperoxyguanine (154) as further supported by a combination of DFT and *ab initio*
578 computational studies (155). This is followed by the conversion of the unstable peroxide
579 intermediate into 8-hydroxyguanine that is in dynamic equilibrium with 8-oxo-7,8-
580 dihydroguanine (8-oxoG) (Scheme 8b), the more stable tautomer in solution (154,115). In

581 contrast a more complex oxidation pathway is observed for dGuo and short oligonucleotides
582 with the predominant formation of spiroiminodihydantoin (Sp) over 8-oxoG (156). This is
583 explained by a water assisted rearrangement of the endoperoxide (148) giving rise to a
584 reactive quinonoid (154,157) that via two successive steps including hydration and acyl type
585 rearrangement leads to Sp. The quinonoid has been also shown to efficiently react with amino
586 group of lysine to form guanine-lysine cross-link as substituted Sp derivatives (158).
587 However, both water and lysine addition reactions are abolished in ds-DNA since the
588 endoperoxide rearrangement leading to the quinonoid is kinetically prevented due to a lack
589 of accessibility of reactive intermediates to water molecules (148).

590 <Scheme 8>

591 Quenching of triplet-excited 4-thiouracil, a minor component of tRNA, was
592 monitored by ultrafast time resolved spectroscopy (159) as an efficient generator of ${}^1\text{O}_2$ in
593 aqueous solution with a quantum yield of 20% (160). 4-Thiouracil, a strong endogenous
594 UVA sensitizer, is able to efficiently react with ${}^1\text{O}_2$ giving rise to uracil (161) and uracil-6-
595 sulfonate according to oxidative pathways that were elucidated by DFT computations (159).

596 Singlet oxygen oxidation of amino acids

597 Mechanistic details of the type II (${}^1\text{O}_2$) oxidation of methionine have been reported (162)
598 (Scheme 9). Methionine sensitized photooxidation likely leads to a persulfoxide intermediate
599 ($\text{R}_2\text{S}^+\text{OO}^-$). This persulfoxide is zwitterionic, where a reaction with a second methionine leads
600 to two moles of methionine sulfoxide. Whether a similar reaction between a methionine
601 persulfoxide site and a second methionine site in proteins is uncertain, due to potential steric
602 isolation (163). The reaction of methionine with ${}^1\text{O}_2$ in solution at $\text{pH} \leq 6$ leads to a single
603 product, methionine sulfoxide. However, at $\text{pH} 6-10$, a heterocyclic N–S compound
604 (dehydromethionine) forms, which hydrolyzes to methionine sulfoxide with formation of

605 H_2O_2 as a by-product. In addition to methionine, organic sulfides exhibit detectable reactivity
606 with $^1\text{O}_2$ as has been reported in extensive studies (164,165). Sulfides show \sim 100% chemical
607 reactivity with $^1\text{O}_2$ in protic solvents, but only \sim 5% in aprotic solvents. In the latter case,
608 physical quenching of $^1\text{O}_2$ leading to $^3\text{O}_2$ is the main path (\sim 95%). The reason for the efficient
609 reaction in protic media is due to conversion of the persulfoxide to a hydroperoxy sulfurane
610 [$\text{R}_2\text{S}(\text{OH})\text{OOR}'$] via the addition of the OH group from water or methanol. A 1996 report
611 (166) proposed a mechanism involving $^1\text{O}_2$ and formation of a persulfoxide followed by
612 reaction with methanol to give a hydroperoxy-methoxy sulfurane, which is consistent with
613 the results. In methanol, only a single intermediate was proposed and suggested to be either
614 a hydrogen-bonded persulfoxide or a hydroperoxysulfurane. The chemical quenching rate
615 constants (k_{r}) increase by an order of magnitude upon addition of as little as 1.5% methanol
616 in benzene solvent. This large rate enhancement is attributed to a mechanism, which
617 circumvents the energetically costly interconversion of the persulfoxide. In other reactions,
618 mainly aprotic solvents, evidence points to the intermediacy of thiadioxirane (cyclic- R_2SO_2)
619 and hydroperoxy sulfonium ylides [$\text{R}(\text{R}'\text{CH}-)\text{S}^+\text{OO}^-$]. Computational evidence has also been
620 reported for these sulfur peroxy intermediates (167).

621 <Scheme 9>

622 Singlet oxygen reacts with other amino acids, including Trp, His, Cys, and Tyr
623 (168,169,170). Methionine has been reported to undergo type I and type II reactions based
624 on the reaction conditions (171). For example, the formation of the endogenous
625 photosensitizer, 3-hydroxykynurenine (from Trp), leads to methionine sulfoxide (from Met)
626 and DOPA (from Tyr), mainly by the type I reaction because Φ_{Δ} values were relatively low
627 ($<20\%$) (172). On the other hand, a di-cyan-hemin sensitized reaction showed evidence for
628 a type II process in the conversion of methionine to methionine sulfoxide, in contrast to

629 cysteine and tryptophan oxidation reactions that involve mixed type I and type II reactions
630 (139,173).

631 **Singlet oxygen oxidation of lipids**

632 Singlet oxygen can react directly with unsaturated fatty acids to yield hydroperoxides with
633 double bonds shifted to the allylic position. This process is an “ene” reaction (Reaction 23,
634 Scheme 6) and with no intervention of free radical intermediates (143). Although the “ene”
635 reaction is faster for PUFA lipids, it occurs for both allylic and bis-allylic hydrogens (174).
636 In contrast to type I photosensitization, the oxidation of PUFAs by ${}^1\text{O}_2$ gives rise to four
637 hydroperoxide isomers. For example, in the case of the linoleoyl group, besides the 9 and 13
638 hydroperoxides, the 10 and 12 isomers are also formed (Scheme 6).

639 **PHOTOSENSITIZED CYCLOADDITION**

640 In a photosensitized cycloaddition, the photosensitizer reacts with the substrate and two
641 covalent bonds are formed between the two molecules giving rise to a cyclic product.
642 Although different types of photocycloaddition have been described, in biological
643 photosensitization more relevant is the $[2 + 2]$ photocycloaddition, in which the excited
644 photosensitizer with a double bond reacts with a substrate bearing a double bond, to form a
645 product with a cyclobutane cycle.

646 **Mono- and intra-strand psoralen-DNA photoadducts**

647 Natural and synthetic bi-functional psoralens and other furocoumarins including
648 monofunctional psoralens (Scheme 10) and angular angelicins are potent UVA sensitizing
649 agents used for PUVA (psoralen + UVA) photochemotherapy of several skin diseases
650 including psoriasis, vitiligo and mycosis fungoides (175,176,177). Extracorporeal
651 photophoresis is another relevant clinical application of 8-methoxysoralen (8-MOP) for the

652 phototreatment of cutaneous T-cell lymphoma, scleroderma and organ rejection (178,179).
653 Major information on the photoreactivity of psoralens towards nucleic acids was gained from
654 model studies more than 50 years ago (180). Early evidence was provided for efficient [2+2]
655 photocycloaddition of UVA excited psoralens through either the 3,4-ethylenic bond of the
656 pyrone ring or the 4',5'-double bond of the furan moiety to the 5,6-ethylenic bond of thymine
657 (Scheme 11) and to a lesser extent of cytosine (181,182,183,184).

658 <Scheme 10>

659 <Scheme 11>

660 This is in agreement with a specific binding of most psoralens including 8-MOP to
661 5'-TpA (3'side) and 5'-ApT (5'-side) sequences of DNA as inferred from the predominant
662 formation of thymine-8-MOP-thymine diadducts at 5'-TpA cross-linkage sites of DNA (185)
663 and the gel sequencing distribution of 8-MOP-thymine photocycloadducts in DNA fragments
664 (186). UVA excitation of intercalated furocoumarins in native DNA gives rise predominantly
665 as primary photoproducts to pairs of *cis-syn* diastereomers of furan-side monoadducts to
666 thymidine that were carefully characterized by extensive NMR analyses and other
667 spectroscopic measurements for 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) (187), 8-
668 MOP, 4,5',8-trimethylpsoralen (TMP) (188) and 5-methoxypsonal (5-MOP) (189).
669 Subsequent absorption of an UVA photon by furan-side mono monoadducts to thymidine
670 leads to the efficient formation of interstrand cross-link as single pairs of *cis-syn*
671 diastereomers (190). The photocycloaddition of the coumarin moiety of furan moiety of 8-
672 MOP to the thymidine on the opposite side is an efficient photoreaction that occurs with a 4-
673 fold higher quantum yield than that of initial formation of the monoadduct (185). It was also
674 found that UV irradiation of furan-side HMT-thymidine monoadduct wavelength above 313
675 nm lead to quantitative photo-cross-linking whereas competitive photoreversion is observed
676 at shorter wavelengths (191). Evidence was also provided for the UVA-induced formation of

677 DNA-8-MOP-protein cross-link through the reaction of furan-side monoadduct with amino
678 acid (192). Pyrone-side monoadducts of bifunctional psoralens to thymidine do not absorb in
679 the UVA range and therefore are unable to be converted into cross-links (187,188). The low
680 formation efficiency together with the instability of the pyrone-side monoadducts explains
681 the difficulty to unambiguously assign the stereocongiration of most thymidine adducts at
682 the exception of those of 5-MOP that were identified as two *cis-syn* diastereomers (193). 3-
683 Carbethoxypsonalen (3-CPs) and 7-methylpyrido[3,4-c]psoralen (MePyPs) for which the
684 pyrone moiety exhibits either a bulky substituent or a fused pyridine ring are only able to
685 react with pyrimidine bases through the photoreactive 4',5'-furan ethylenic bond. Thus the
686 two *cis-syn* diastereomers of furan-side monoadducts of either 3-CPs (194,195,196) and 7-
687 methyl-pyrido[3,4-c]psoralen (MePyPs) (197) to thymidine have been fully characterized. 3-
688 CPs furan-side monoadducts to 2'-deoxycytidine represent only 1% of the pyrimidine
689 adducts, thus suggesting that intercalation of 3-CPs takes place preferentially at AT sites as
690 previously observed for bifunctional furocoumarins.

691 The quantum yield and reactivity of the UVA triplet-excited furocoumarins including
692 8-MOP, 5-MOP, TMP, 3-CPs (198,199,200) and furan-side thymidine monoadducts (201)
693 were determined by laser flash photolysis. However, no transient was observed upon
694 intercalation of the psoralens into DNA (199,202). This was recently explained by an
695 efficient photo-electron electron transfer reaction from guanine to intercalated AMT inside
696 either DNA (203,204) or human telomeric G-quadruplex (205) as shown by femtosecond
697 transient absorption spectroscopy. Further information on excited psoralen transients,
698 photobinding of bifunctional furocoumarins to thymine and the reactivity of the resulting
699 furan- and pyrone-side monoadducts was gained from quantum chemistry studies
700 (206,207,208). The inability for pyrone-side adduct of 8-MOP to thymine to be converted
701 into interstrand cross-links was explained by the blue-shift of their S₁ excitation energy with

702 respect to isolated photosensitizer, thus preventing any further UVA-mediated reaction
703 (207,208). It was shown from ONIOM and hybrid DFT calculations that the formation of
704 furan- and pyrone-side monoadducts to thymine involves a psoralens triplet excited state as
705 the precursor of a biradical. In subsequent steps, a covalent bond is formed between either
706 the furan or the pyrone moiety and C6 thymine before cyclobutane ring closure (209). Similar
707 conclusions were reached for AMT, 8-MOP, 5-MOP and TMP from detailed studies
708 including nanosecond UV-vis and IR absorption spectroscopy together with IR computation
709 (210,211).

710 **TRIPLET-TRIPLET ENERGY TRANSFER**

711 Two main types of triple-triplet energy transfer (TTET)-mediated photosensitization
712 reactions of nucleic acids and their pyrimidines bases have been observed. Cyclobutane
713 pyrimidine dimers (CPDs) with predominance of cyclobutane thymine dimers ($T\leftrightarrow T$) are
714 formed in aqueous solutions via [2 + 2] cycloaddition of an excited thymine to a vicinal
715 pyrimidine base in the ground state. A different structural isomer of $T\leftrightarrow T$ and also TT
716 pyrimidine (6-4) pyrimidone photoproduct ((6-4)PP) that was characterized as (5*R*)-5-
717 (thyminyl)-5,6-dihydrothymine (212), the so-called “spore photoproduct” (SP) is generated
718 in either frozen aqueous solutions or the dry state (213). In both cases the triplet energy (E_T)
719 of the donor has to be higher or at least similar to that of the pyrimidine base for triggering
720 the formation of either CPDs or SP (214). In addition, the efficiency of the intersystem
721 crossing that allows the conversion of the singlet excited state of the photosensitizer into its
722 triplet excited state and the life time of the triplet excited state are also critical parameters.

723 **Sensitized formation of cyclobutane pyrimidine dimers (CPDs)**

724 The first evidence for the photosensitized formation of $T\leftrightarrow T$ in isolated DNA (215) was
725 provided using acetophenone as the triplet photosensitizer. Simultaneously, other UVA-

726 excited ketones including acetone, propriophenone, and benzophenone were found to
727 generate cyclobutane pyrimidine dimers for several pyrimidine bases including thymine
728 (216), 1,3-dimethyluracil (217) and orotic acid (218). These early findings have provided a
729 strong impetus to the assessment of additional photosensitizer features (for an earlier
730 comprehensive review, see 219) and further development of mechanistic studies involving
731 relevant biochemical photosensitizers in the last three decades. These include among others
732 pyridopsoralens (220,221,222), fluoroquinolones (FQ) (223,224,225,226,227) and non-
733 steroidial ketoprofen derivatives (228). Accurate information on the quantitative distribution
734 of photosensitized generation via TTET mechanism of the three thymine containing-CPDs
735 in isolated DNA is available from quantitative HPLC-MS/MS measurements (223,227).
736 Thus, predominant generation of *cis-syn* T \leftrightarrow T over relatively minor T \leftrightarrow C and C \leftrightarrow T
737 photoproducts is observed upon photosensitization by either ketones or fluoroquinolones,
738 with lomefloxacin and norfloxacin being the most efficient. It was confirmed using an
739 optimized HPLC-MS/MS method that C \leftrightarrow C are generated in very low amounts (227) in
740 agreement with the higher energy triplet of cytosine with respect to thymine by about 20
741 kJ/mol. Interestingly, the comparison of the efficiency for 5 selected FQ with different triplet
742 energies to generate T \leftrightarrow T has led to an estimation of the triplet energy of thymine in double-
743 stranded DNA that is close to 270 kJ/mol (224,225). This is about 30 kJ/mol lower than the
744 E_T value for isolated thymine or thymidine 5'-monophosphate.

745 **Internal DNA photosensitizers as CPD generators**

746 Several photo-induced and oxidatively generated base lesions have been identified as
747 potential intrinsic sensitizers to UVA radiation of cyclobutane thymine dimers (T \leftrightarrow T) in
748 isolated DNA and thymine model compounds.

749 As the first evidence of such photosensitized reactions it was shown that a furan-side
750 7-methyl-pyrido(3,4-*c*)psoralen (MePyPso) monoadduct to thymine generated in a double-

751 stranded EcoR1-HindIII DNA fragments was able to induce the formation of T<=>T in its
752 close vicinity upon subsequent UVA irradiation (229). The efficient sequencing mapping of
753 psoralen adduct and T<=>T that was applied provided support for an efficient thymine
754 dimerization at tetranucleotide 5'-TATT-3' sequence. This complements previous studies
755 showing that isolated mono-functional pyridopsoralens including MePyPso were able to
756 photosensitize pyrimidine base dimerization via the TTET mechanism at 5'-AT-3' sites
757 where they preferentially intercalate (221,222) (Scheme 12).

758 <Scheme 12>

759 Pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), the second major class of UVB
760 bipyrimidine DNA photoproducts, have the potentiality for triggering the photosensitized
761 formation of CPDs. The triplet state energy of 5-methyl-2-pyrimidone (291 kJ/mol) a model
762 compound that mimics the UVB/UVA absorbance and photophysics features of the
763 pyrimidone (Pyo) moiety of 6-4PPs is higher than that of thymine (267 kJ/mol) as inferred
764 from the low temperature phosphorescence spectrum (230). It was also shown that the
765 presence of free Pyo (Scheme 13) in UVA-irradiated aqueous solutions of plasmid pBR322
766 gave rise to the formation of CPDs revealed as T4 endonuclease V-sensitive sites (230)
767 Further insights in the photophysics of embedded Pyo unit into ds DNA were gained from
768 detailed molecular-dynamics and DFT simulations, thus confirming occurrence of Dexter-
769 type TTET photosensitization mechanism (231). Similar findings on the photosensitizing
770 potential of relevant thymine 6-4PP that exhibits a 5-hydroxy-5,6-dihydrothymine
771 substituent were provided through a subsequent study involving determination of
772 photophysical features and CPD measurements (232). However, the efficiency of proposed
773 Trojan horse role that could play 6-4 PP in promoting pyrimidine base dimerization has been
774 recently questioned (233). Thus, the UVA sensitized formation of CPDs was not detectable
775 in double stranded DNA in which 6-4PPs were generated by UVB irradiation. This is

776 explained by predominant isomerization of 6-4 PPs into related Dewar valence isomers that
777 was previously shown to be a major modulation reaction of UVA component on initially
778 UVB generated DNA damage upon exposure to solar radiation (234,235).

779 <Scheme 13>

780 5-Formyluracil (5-forU) (Scheme 13), one of the main oxidatively generated products
781 of thymine by either hydroxyl radical (\bullet OH) or one-electron oxidants in isolated and cellular
782 DNA (110) has been found to UVA-sensitize the formation of CPDs in aqueous solutions of
783 pyrimidine-dyads and plasmid DNA (236). This was rationalized in terms of efficient
784 population of $^3\pi\pi^*$ triplet state of thymine via TTET from $^3\pi\pi^*$ excited 5-ForU ($E_T = 314$
785 kJ/mol) as supported by high-level modeling and simulations (237). Evidence was provided
786 for thymine photodimerization when 5-forU is embedded into a ds-DNA structure. Similarly,
787 5-formylcytosine (5-ForC) that can be generated in cellular DNA by radical oxidation
788 reactions (238) and also enzymatically as an epigenetic mark by ten-eleven translocation
789 dioxygenases (110) exhibits the ability to photosensitize the formation of CPDs, although
790 less efficiently than 5-ForU (239,240). The absorbance of 5-forC that essentially concerns
791 the UVB domain is less red-shifted than that of 5-ForU, thus making the oxidized cytosine a
792 rather poor UVA photosensitizer. Furthermore, 5-ForC shows a slower intersystem crossing
793 than 5-ForU. However, it remains to assess the efficiency for either 5-ForU or 5-ForC to
794 trigger the formation of CPDs when the oxidized methyl bases are present in DNA as intrinsic
795 photosensitizers. It may be reminded that the levels of 5-ForU or 5-ForC, both easily repaired
796 base lesions, are rather low reaching a maximum of a few modifications per 10^5 pyrimidine
797 bases in the DNA cells exposed to exogenous oxidants or endogenous enzymatic oxidation.
798 This is likely to affect the efficiency of photosensitized formation of CPDs.

799 **Photosensitized formation of spore photoproduct**

800 It is well documented that UVC irradiation of DNA as well as free thymidine in the
801 dry state or frozen aqueous favors the formation of the “spore photoproduct” (SP) at the
802 expense of CPDs and 6-4PPs (241,242,243). Evidence has been provided for the sensitized
803 formation of SP upon UVA-irradiation of thymidine as a film in the presence of either
804 pyridopsoralens (221) or benzophenone (244) that both are efficient TTET photosensitizers.
805 The formation of SP is also predominant over usual bipyrimidine photoproducts in
806 dehydrated spores (245,246). This is explained partly by conformational changes in the DNA
807 structure that result from the desiccation of the dormant spores (247) and the presence of α/β -
808 type small, acid soluble spore proteins (SASP) (248,249). Interestingly UVC irradiation of
809 either frozen aqueous solutions of thymidine or dry DNA film upon addition of pyridine-2,6-
810 dicarboxylic acid (dipicolinic acid, DPA), another key spore component led to a significance
811 increase in the SP yield (Scheme 14) with respect to other bipyrimidine photoproducts
812 together with a decrease in the ratio 6-4PPs/CPDs (250). Evidence was also provided for the
813 formation of CPD at the exclusion of 6-4PP upon exposure of aqueous solutions of thymidine
814 and DPA to UVC radiation (250). These data are strongly suggestive of the implication of
815 efficient photosensitization reactions of pyrimidine bases mediated by DPA via TTET. This
816 has recently received further confirmation from a comprehensive photophysical study of
817 DPA that mostly absorbs in the UVB range with a maximum centered at 300 nm (251). Thus,
818 an efficiently bimolecular quenching rate ($k_q = 5.3 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$) was determined for the
819 reaction of thymidine with DPA in the triplet excited state. In addition, the measured triplet
820 energy ($E_{at} = 328 \text{ kJ mol}^{-1}$) for DPA is much higher than that of thymidine thus accrediting
821 the predominance of TTET photosensitized reactions in the overwhelming formation of SP
822 in dry spores (252).

823 <Scheme 14>

824 **CELLULAR PHOTOSENSITAZION REACTIONS**

825 Information on photosensitized formation of damage to nucleic acids, lipids and proteins in
826 cells has been scarce until the development of accurate and sensitive detection methods. This
827 concerns in particular the measurement of oxidatively generated nucleobase modifications
828 that are formed in low yields (at best a few modifications per 10^5 nucleobases) and suffers
829 from several drawbacks according to the assay used. Thus, immunoassays that are relevant
830 for detecting bulky DNA lesions including cyclobutadipyrimidines (CPDs) and pyrimidine
831 (6-4) pyrimidone photoproducts (253) are not suitable for monitoring the formation of
832 oxidized bases, such as 8-oxoG due to cross-reactivity occurrence with overwhelming normal
833 bases (254,255). HPLC based methods that include either electrochemical detection or
834 tandem mass spectrometry as the detectors have the required sensitivity to measure 8-oxoG
835 the main photosensitized DNA oxidation product in cells and skin (254). However,
836 application of these methods is restricted to heavily oxidized DNA due to occurrence of
837 artefactual oxidation reactions during DNA extraction and subsequent work-up before HPLC
838 measurement. Sensitive but less specific detection of low amounts of oxidized purine and
839 pyrimidine bases is achieved using modified versions of either alkaline comet assay (256) or
840 alkaline elution technique (257) that involve a pre-incubation step with DNA repair *N*-
841 glycosylases to reveal base damage as additional strand breaks.

842 **Type I photosensitized reactions: one-electron oxidation of guanine in cellular
843 DNA**

844 One of the first examples of photosensitized formation of 8-oxoG in cellular has involved
845 riboflavin that predominantly operates through type I photosensitization mechanism
846 (258,259,260) (Scheme 4a). Visible light irradiation of either mouse lymphoma L5178 (261)
847 or mouse mammary FM3A cells (262) treated with riboflavin led to a significant increase in

848 the level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) over cellular background.
849 Evidence was also provided for a fast repair of photosensitized 8-oxodGuo since 60 to 70%
850 of the lesions were removed after 2h post-incubation (262) what is compatible with
851 implication of the base excision repair pathway. Model studies have shown that type I
852 riboflavin-mediated photosensitization of isolated DNA gave rise to 8-oxodGuo through
853 hydration of the radical cation of guanine and non-singlet oxidation reaction (263). This
854 recently received confirmation from sequencing DNA mapping experiments showing
855 preferential photosensitized formation of 8-oxodGuo at the 5'-site of GG doublets (264) that
856 exhibits a relatively lower ionization potential and was proposed as an indicator of type I
857 photosensitization mechanism (265,266). It remains to seek whether in cellular DNA FapyG,
858 another main degradation product of guanine radical cation (120,267) (Scheme 4a) is found,
859 an expected base modification of riboflavin type I photosensitized reaction (268).

860 **Type II photosensitized reactions: singlet oxygen oxidation of guanine**

861 Initial studies on photosensitized formation of oxidatively generated damage to cellular DNA
862 have involved the detection of DNA repair enzyme-sensitive sites that were measured as
863 additional DNA strand breaks using the alkaline elution technique (257,269). Thus, visible
864 light excited polar Ro19-8022 ([R-1-[(10-chloro-4-oxo-3-phenyl-4H-benzo[α]quinolizin-1-
865 yl)-carbonyl]-2-pyrrolidine-methanol induced the predominant formation of
866 formamidopyrimidine DNA N-glycosylase (Fpg)-sensitive sites together with a low
867 generation of direct/alkali-labile DNA strand breaks in AS52 Chinese hamster ovary cells
868 (270). Interestingly, a similar DNA oxidation profile was observed upon exposure of AS52
869 cells to a thermolabile naphthalene endoperoxide of *N,N'*-9-di(2,3-dihydroxypropyl)-1,4-
870 naphthalenedipropanamide (NPPO₂), a clean chemical source of ¹O₂ (271). In addition direct
871 evidence for the formation of 8-oxoG, one of the preferential DNA substrates of Fpg protein,
872 was provided by HPLC-EC measurements. These observations are fully consistent with a

873 predominant type II mechanism for Ro19-8022 since it was further confirmed that treatment
874 of the human cells with NPPO₂ led to the overwhelming formation of 8-oxoGua at the
875 exclusion of DNA strand breaks (272,273).

876 Other type II photosensitizers that can function as solar light sensitive drugs and
877 trigger adverse side-effects have received major attention. Several fluoroquinolone
878 antibiotics have been shown to be highly phototoxic and phototumorigenic (274,275,276) in
879 relation with their UVA-sensitized genotoxic effects (277,278,279,280). UVA irradiation of
880 pre-treated adult rat liver (ARL18) cells with lomefloxacin and ciprofloxacin was found to
881 lead to a six- and three-fold increase respectively in the cellular level of 8-oxodG (281) as
882 mostly the result of type II photosensitization mechanism (Scheme 8a). In a subsequent study
883 norfloxacin and to lesser extent ofloxacin were shown to be more efficient than enoxacin and
884 lomefloxacin to UVA-sensitize the formation of 8-oxodG and Fpg-sensitive sites in the DNA
885 of THP-1 tumoral monocytes (223). It is likely that ¹O₂ is mainly involved in the
886 fluoroquinolone-mediated formation of 8-oxodG (282), even if contribution of type I
887 mechanism could not be totally excluded particularly for lomefloxacin, which is also able to
888 induce reactive carbene upon UVA excitation (283,284). Rufloxacin, another antiviral
889 fluoroquinolone is an efficient generator of 8-oxodG measured by HPLC-ECD in the DNA
890 of human non-immortalized fibroblasts (285) and yeast strains (286) upon UVA-irradiation.
891 Furthermore, evidence was provided that the photomutagenicity of rufloxacin in yeast cells
892 is correlated with the formation of 8-oxodG (287). Preferential implication of type II
893 photosensitization mechanism was proposed for rufloxacin from photophysical and
894 mechanistic studies (288,289,290).

895 Therapeutic immunosuppressant, anti-inflammatory and anti-cancer thiopurines
896 including azathioprine and 6-thioguanine (6-TG) prodrugs (291) are efficiently metabolized
897 in treated patients leading to significant incorporation and accumulation in DNA of cytotoxic

898 6-TG nucleobases (292). The toxicity of 6-TG is greatly enhanced by solar exposure (292)
899 being associated with mutagenic effects (293) and severe skin diseases including carcinomas
900 (294,295) in relation with the high UVA sensitivity of 6-TG (296,297). Early evidence has
901 shown that UVA excited 6-TG gave rise to reactive oxygen species including O_2^{**} and 1O_2
902 (298). The treatment of GM5399 human diploid fibroblasts (HDFs) with azathioprine in
903 conjunction with UVA radiation led to pronounced genotoxic effects that were assessed using
904 the alkaline comet assay associated with an 8-oxoguanine glycosylase (OGG1) incubation
905 step to reveal oxidatively generated guanine damage. Thus, it was shown that internal 6-TG
906 photosensitization, being more efficient in quiescent cells than proliferating HDFs, generated
907 in a dose-dependent manner OGG1-sensitive sites, mostly 8-oxoGua together with similar
908 amounts of DNA strand breaks and/or alkaline labile lesions (299). Indirect confirmation for
909 the photosensitizing ability of 6-TG to trigger oxidatively generated damage to cells was
910 inferred from the increased level of urinary 8-oxodG in renal transplant patients treated with
911 immunosuppressant azathioprine (300). Direct evidence for the formation of 8-oxodG was
912 provided by HPLC-ECD measurements performed on the DNA of mouse fibroblasts exposed
913 to combined azathioprine/UVA treatment (301). Interestingly a higher accumulation of 8-
914 oxodG was observed in cell defective in MUTYH glycosylase which function is to prevent
915 incorporation of 8-oxoG nucleoside tri-phosphates into DNA. The photosensitized formation
916 of 8-oxodG in UVA-irradiated cells pre-treated with azathioprine is rationalized in terms of
917 efficient generation of 1O_2 by excited 6-TG that appears as a predominant type II
918 photosensitizer (302). It was also shown that guanine-6-sulfonate is the main 1O_2 oxidation
919 product of 6-TG both from both experimental and theoretical model studies (302,303).

920 **Photosensitized formation of cyclobutane pyrimidine dimers**

921 UVA-excited fluoroquinolones are able to induce damage to cellular DNA through several
922 photosensitization mechanisms (290). In addition to photodynamic effects leading to 8-

923 oxodG several fluoroquinolones that exhibit a triplet excited energy higher or close to that
924 estimated for thymine ($E_T \sim 270$ kJ/mol) (224,225) are able to trigger dimerization of vicinal
925 pyrimidine bases according to the triplet-triplet energy transfer (TTET) mechanism. This was
926 observed initially for lomefloxacin from the measurement of T4 endonuclease V-sensitive
927 sites in the DNA of UVA-irradiated HaCaT human keratinocytes (304). In a subsequent study
928 it was found that the formation of CPDs revealed by immunodetection was 3-fold more
929 elevated in human keratinocytes than in fibroblasts (305). Evidence was also provided for
930 the lomefloxacin mediated-photosensitization formation of CPDs in the skin of mice together
931 with an increased cancer incidence in XPA-gene deficient animals that lack the ability to
932 repair bulky damage (276). In a comparative study it was shown that enoxacin and to a lesser
933 extent norfloxacin that have elevated E_T values (273 and 269 kJ/mol, respectively) are much
934 more efficient than lomefloxacin and particularly ofloxacin to generate thymine cyclobutane
935 pyrimidine dimers (T \leftrightarrow T) in the DNA of THP-1 human monocytes (223). A different trend
936 is observed for isolated DNA with the lowest induction of thymine CPD for enoxacin (223)
937 that may be partly related to a decreased photoreactivity of the fluoroquinolone when bound
938 to calf thymus DNA (306).

939 Carprofen, a non-steroidal anti-inflammatory drug, has been shown in association
940 with UVA to sensitize the formation of CPDs in human HaCaT keratinocytes as measured
941 by either immunofluorescence or a modified alkaline comet assay (307). Pyrimidine
942 dimerization is likely to involve a TTET mechanism as proposed for a methyl ester of a
943 carprofen photoproduct that shows a triplet energy value ($E_T = 269$ kJ/mol) close to thymine
944 (308).

945 **Chemisensitization formation of dark cyclobutane pyrimidine dimers**

946 Exposure of melanin-containing human and murine melanocytes to either UVB or UVA
947 radiation unexpectedly triggered a delayed formation of CPDs over at least a 4 h period after

948 the direct generation of the dimeric lesions (309). The additional UVA-induced CPDs that
949 were measured by ELISA, the modified alkaline comet assay and HPLC-MS/MS represent
950 between 50 and 75% of those initially photochemically produced. Evidence was also
951 provided for the delayed formation of CPDs in the skin of pigmented *K14-Kitl* transgenic
952 mice. In contrast, no generation of “dark CPDs” was observed upon UVA-irradiation of
953 either fibroblasts or albino melanocytes that lack melanin. Implication of an oxidative
954 mechanism in the formation of “dark CPDs” was suggested from the protective effects of *N*-
955 acetylcysteine and tocopherol against the generation of the bipyrimidine photoproducts
956 (309,310). It is well documented as a cellular response to UV stress that O_2^- and nitric oxide
957 are enzymatically produced over several hours, thus generating upon recombination reactive
958 peroxy nitrite ($ONOO^-$). It was postulated that $ONOO^-$ would react with melanin monomers
959 giving rise to unstable dioxetane intermediates in the proximity of DNA (309,310).
960 Subsequent thermal decomposition of dioxetanes, known from previous studies to generate
961 triplet-excited carbonyls (311,312), is likely to induce CPDs in the dark by a TTET
962 mechanism (309,313). The proposed stoichiometric chemiexcitation mechanism that leads to
963 a different distribution pattern of CPDs with respect to UVA irradiation with a significant
964 increase of $C \leftrightarrow T$ and $T \leftrightarrow C$ at the expense of $T \leftrightarrow T$ is characterized by an ultra-weak
965 chemiluminescence emission. However, the dioxetane precursor of the reactive carbonyls
966 remains to be identified in at least model systems. Delayed formation of CPDs that was
967 reported to be triggered in human keratinocytes upon exposure to UVA1 (340-400 nm)
968 radiation was partly prevented by either pre- or post-treatment with vitamin E (314).
969 Evidence was provided on the basis of HPLC-MS/MS measurements that “dark CPDs” are
970 generated over a 2 h post exposure and persist for 24 h in skin of type I-III human volunteers
971 upon exposure to a 385 nm source (315). The delayed formation of CPDs was of smaller
972 intensity and only observed for two subjects upon visible light irradiation using a 405nm

973 source. The dual protecting and sensitizing role of melanin on the simulated solar radiation
974 sensitized formation of “light” and “dark” CPDs in the epidermis of Fitzpatrick skin type
975 (FST) I/II and type VI volunteers has been demonstrated (316). “Dark” CPDs were formed
976 with a peak appearing at 1-2 h post-exposure as the likely result of melanin photosensitization
977 mediated by oxidative reactions. In contrast, no directly produced “light” CPDs were detected
978 in the basal layer of FST IV subjects that may relate to the UV filtering effect of melanin.

979 **UVA-sensitized formation of psoralen cycloadducts with pyrimidine bases**

980 Despite extensive research activities that have led to the characterization of the main psoralen
981 monoadducts to pyrimidine bases and interstrand DNA cross-links (184,317,318), only a few
982 attempts were made to measure the formation of these photocycloadducts in cells. This may
983 be explained by the lack in the 80's of appropriate sensitive analytical methods for monitoring
984 psoralen-DNA adducts at the exception of fluorescent 4',5'-furan-side monoadducts to
985 thymidine. Thus, a sensitive HPLC-fluorescence method was designed for measuring the two
986 *cis*-*syn* diastereomers of the 4',5'-furan-side adducts to thymidine (Thd \leftrightarrow 3-CPs) in isolated
987 DNA (195) taking advantage of suitable photophysical parameters including a fluorescence
988 spectrum exhibiting a maximum around 425 nm with an absorption spectrum centered around
989 357 nm (194,201). The detection threshold of the two diastereomers that show fluorescence
990 quantum yields (Φ_f) of 0.26 and 0.37, respectively (194), was in the sub-picomol range (195)
991 thus allowing measurement of the photoadducts in cells. Using this method the two
992 diastereomers of Thd \leftrightarrow 3CPs were detected in UVA-irradiated *Saccharomyces cerevisiae*
993 yeast cells and Chinese hamster ovary V79 cells (319). The repair kinetics of the Thd \leftrightarrow 3CPs
994 in haploid wild type strains N123 of *S. cerevisiae* showed similar bi-phasic curves with about
995 50% removal of the photoadducts after a 90 min post-irradiation incubation (320). Similar
996 repair kinetics were observed for the furan-side adducts of 7-methylpyrido[3,4-c]psoralen
997 (MePyPs) to thymidine in the DNA of yeast cells (321). The fast removal of both 3-CPs and

998 MPP furan-side monoadducts is compatible with the implication of the base excision repair
999 pathway that has been shown to be involved in the NEIL 1 glycosylase-mediated removal of
1000 8-MOP monoadducts from DNA in human cells (322). The formation of the two *cis*-*syn*
1001 furan-side monoadducts of bifunctional 5-methoxypsonalen to thymidine has been also
1002 monitored in *S. cerevisiae* cells using the convenient HPLC-fluorescence detection method
1003 (189). A more versatile method involving the association of the efficient HPLC separation
1004 tool with the sensitive and accurate electrospray ionization-tandem mass spectrometry that
1005 subsequently became available has been successfully developed (323,324). This allowed the
1006 detection and quantification of furan- and pyrone-side monoadducts of 8-methoxypsonalen
1007 and amotosalen S59 to thymidine in the DNA of UVA-irradiated human cells. In addition
1008 thymidine-psoralen-thymidine bi-adducts were also measured as enzymatically released
1009 tetranucleotides.

1010 **Photosensitized oxidation of lipids and consequences to biological membranes**

1011 Hydroperoxide derivatives of unsaturated lipids (Scheme 6) alter several biophysical
1012 properties of the membranes. The tendency of the hydroperoxide moieties to migrate to the
1013 more polar environments allows for an increase in the area occupied per lipid (around 15%
1014 of area increase for a single hydroperoxide) with the consecutive decrease in the membrane
1015 thickness, increase in the membrane fluidity and decrease in the stretching module (325). The
1016 formation of hydroperoxide also alter the balance of the interfacial forces, usually increasing
1017 the level of hydrophobic mismatch and facilitating lipid demixing and domain formation
1018 (326).

1019 Membrane leakage depends on type I and type II mechanisms working
1020 synergistically, in order to allow several sequential steps of lipid oxidation that are necessary
1021 for membrane permeabilization. Even though the progress in the chemical analysis of
1022 oxidized lipids is not new (101), only recent studies described the molecular-level

1023 mechanisms of photoinduced membrane permeabilization, showing that lipid-truncated
1024 aldehydes are the key molecules responsible to disorganize membranes, allowing pore
1025 formation (102,327,328). The generation of lipid-truncated aldehydes occur through a β -
1026 scission reactions from lipid-derived alkoxy radicals, which are formed by contact-
1027 dependent type I reactions from either the lipid double bond or the lipid hydroperoxide (327)
1028 (Scheme 15). Type II reaction exclusively yields lipid hydroperoxides that accumulate in the
1029 membranes without affecting permeability that facilitate several oxidation steps
1030 (101,102,327,329). However, membrane leakage correlates with an electron transfer reaction
1031 that usually causes photobleaching of the photosensitizer (70). Damage in cytoplasmic or
1032 organelle membranes is key factor that modulates the mechanism as well as the overall
1033 efficiency of regulated cell death (330).

1034 <Scheme 15>

1035 Cholesterol is highly prevalent in the membranes of mammals, exerting fundamental
1036 roles to keep their biophysical properties, working as a lipid lubricant and favoring or
1037 disfavoring lipid demixing and domain formation, which are key steps towards biological
1038 signaling (331,332). Interestingly, cholesterol is also a target of photo-induced lipid
1039 oxidation. Long ago, Girotti and co-authors realized that cholesterol hydroperoxides provides
1040 important biomarkers of the type of photoinduced lipid oxidation. At the start of the lipid
1041 oxidation both type I and type II processes generate different types of hydroperoxide
1042 derivatives of cholesterol (ChOOHs). Free-radical type I reactions favor the attack on the
1043 carbon 7 of cholesterol, forming mainly 3b-hydroxy-cholest-5-ene-7a-hydroperoxide (7 α -
1044 OOH) and 3b-hydroxycholest-5-ene-7b-hydroperoxide (7 β -OOH) as primary intermediates
1045 , whereas the Type II allows the formation of three ChOOHs, which are 3b hydroxy-5a-
1046 cholest-6-ene-5-hydroperoxide (5 α -OOH), 3b-hydroxycholest-4-ene-6a-hydroperoxide (6 α -
1047 OOH), and 3b-hydroxycholest-4-ene-6b-hydroperoxide (6 β -OOH) (333, 334). These

1048 ChOOHs can be separated and quantified, allowing the identification of the initiation steps of
1049 the photo-oxidation being either by free-radicals or by ${}^1\text{O}_2$ even in complex systems (101).
1050 Although the first steps of the oxidation of PUFA lipids are also different comparing free-
1051 radical or ${}^1\text{O}_2$ initiated, the variety of compounds, its instability and the difficulties in
1052 separation/detection do not allow such an easy method to identify the oxidation mechanism.

1053 CONCLUSION

1054 Photosensitization of biomolecules is a multidisciplinary topic with impact in environmental
1055 chemistry, biology, pharmaceutical sciences and medicine. A large number of scientists with
1056 very different backgrounds are working in this amazing field. However, the heterogeneity of
1057 the disciplines involved presents challenges in reaching a unified language. This review is an
1058 attempt to homogenize definitions, emerge to a consensus on classifications of mechanisms,
1059 and provide key examples of photosensitization reactions of biomolecules and associated
1060 biological effects from UV and visible radiation. The review was written to improve
1061 understanding, where mechanistic facets were probed. We focused on type I and type II
1062 photosensitized oxidations and also offered insight in other photosensitization reactions, such
1063 as those in which oxygen is not involved. We provide information on endogenous and
1064 exogenous photosensitizers, as well as on the most important biological targets, including
1065 nucleic acids, proteins, and unsaturated lipids. Definitions of photosensitized reactions are
1066 identified in biomolecules with key insight in cells and tissues.

1067 Throughout this paper we show the complexity of the mechanisms of photosensitized
1068 reactions, in which all are initiated by one physical event that is the absorption of a photon
1069 by the photosensitizer. Moreover, only a few types of bimolecular reactions are possible for
1070 the excited photosensitizer as depicted in Scheme 16. The photosensitizer can react with
1071 either the biological target or O_2 . This first bimolecular reaction can be a cycloaddition, an

1072 energy transfer process or an electron/hydrogen transfer process. The pathway preferred
1073 depends on the nature of the photosensitizer, the reactivity of the substrate, the experimental
1074 conditions and of the type of interactions between the two molecules. In most cases, it is
1075 difficult to predict the predominant pathway and, in general, thermodynamic and kinetic
1076 aspects have to be considered. The true complexity of the mechanism lies in the fate of the
1077 species generated in the initial bimolecular steps, that is, in the secondary reactions. We have
1078 described some of the most relevant secondary reactions for different common substrates.
1079 Indeed, many reactions can take place after the initial bimolecular processes (Scheme 16)
1080 until reaching stable products. Even under seemingly straight forward controlled
1081 experimental conditions, many competitive pathways can occur given rise to a range of
1082 products whose distribution can easily change with minor alterations in the experimental
1083 conditions.

1084 <Scheme 16>

1085 We foresee a need of future clarity in better details of definitions the: (i) cellular
1086 photosensitization and associated dark pathways following exposure of cells to light.
1087 Secondary 'dark' photosensitized reactions can lead to further oxidation reactions, although
1088 only marginal light emission comes from this route compared to external light sources. (ii)
1089 reactions in anaerobic environments are more prone to occur through photosensitized
1090 reactions that require molecular contact. Further analysis can be sought that depend on
1091 excited-state sensitizer/substrate interactions. Tyrosine dimerization in the absence of oxygen
1092 is one of several examples. In some cases the products are oxidized, but not by participation
1093 of oxygen itself. Consensus will be required with those in the community on this avenue. (iii)
1094 There remain challenges in the extrapolation of model systems to cellular systems that we
1095 expect will advance significantly in the coming few/several years. In cells, the occurrence of
1096 secondary reactions is far less expected than in model systems. There is still a strong need of

1097 sensitive and specific analytical methods for searching in cells the photosensitized formation
1098 of key modified biomolecules such as DNA-protein crosslinks.

1099 **ACKNOWLEDGMENTS.** AG acknowledges support from the National Science
1100 Foundation (CHE-1856765). AHT acknowledges support from ANPCyT (Grants PICT
1101 2017-0925), CONICET (P-UE 2017 22920170100100CO) and UNLP (Grant 11/X840).
1102 MSB acknowledges FAPESP Redoxoma grant #2013/07937-8, NAP-Phototech and F. H.
1103 Quina for helping in the development of the type I thermodynamic framework.

1104 **REFERENCES**

- 1 Foote, C. S. (1991) Definition of type I and type II photosensitized oxidation. *Photochem. Photobiol.* **54**, 659.
- 2 Baptista, M. S., J. Cadet, P. Di Mascio, A. A. Ghogare, A. Greer, M. R. Hamblin, C. Lorente, S. C. Nunez, M. S. Ribeiro, A. H. Thomas, M. Vignoni and T. M. Yoshimura (2017) Type I and II photosensitized oxidation reactions: Guidelines and mechanistic pathway. *Photochem. Photobiol.*, **93**, 912–919.
- 3 Braslavsky, S. E. (2007) Glossary of terms used in photochemistry, 3rd edition (IUPAC recommendations 2006). *Pure Appl. Chem.* **79**, 293–465.
- 4 Wondrak, G. T., M. K. Jacobson and E. L. Jacobson (2006) Endogenous UVA-photosensitizers: Mediators of skin photodamage and novel targets for skin photoprotection. *Photochem. Photobiol. Sci.* **5**, 215–237.
- 5 Sherin, P. S., N. P. Gritsan and Y. P. Tsentalovich (2009) Experimental and quantum chemical study of photochemical properties of 4-hydroxyquinoline. *Photochem. Photobiol. Sci.* **8**, 1550–1557.

6 Sormacheva, E. D., P. S. Sherin and Y. P. Tsentalovich (2017) Dimerization and oxidation of tryptophan in UV-A photolysis sensitized by kynurenic acid. *Free Radic. Biol. Med.* **113**, 372–384.

7 Savina, E. D., Y. P. Tsentalovich and P. S. Sherin (2020) UV-A induced damage to lysozyme via Type I photochemical reactions sensitized by kynurenic acid. *Free Radic. Biol. Med.* **152**, 482–493.

8 Abrahamse, H. and M. R. Hamblin (2016) New photosensitizers for photodynamic therapy. *Biochem. J.* **473**, 347–364.

9 Casas, A. (2020) Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: A review. *Cancer Lett.* **490**, 165–173.

10 Wainwright, M. (2008) Photodynamic therapy: The development of new photosensitisers. *Anti-Cancer Agents Med. Chem.* **8**, 280–291.

11 Pérez-Laguna, V., Y. Gilaberte, M. I. Millán-Lou, M. Agut, S. Nonell, A. Rezusta and M. R. Hamblin (2019) A combination of photodynamic therapy and antimicrobial compounds to treat skin and mucosal infections: A systematic review. *Photochem. Photobiol. Sci.* **18**, 1020–1029.

12 Wainwright, M., T. Maisch, S. Nonell, K. Plaetzer, A. Almeida, G. P. Tegos and M. R. Hamblin (2017) Photoantimicrobials—are we afraid of the light? *Lancet Infect. Dis.* **17**, 49–55.

13 Agazzi, M. L., M. B. Ballatore, A. M. Durantini, E. N. Durantini and A. C. Tomé (2019) BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. *J. Photochem. Photobiol. C* **40**, 21–48.

14 Liang, J. Y., J. P. Yuann, Z. J. Hsie, S. T. Huang and C. C. Chen (2017) Blue light induced free radicals from riboflavin in degradation of crystal violet by microbial viability evaluation. *J. Photochem. Photobiol. B* **174**, 355–363.

15 Lei, J., L. Deng, X. Li, Y. Xu, D. Li and C. Mu (2018) Comparative study of the physicochemical and photocatalytic properties of water-soluble polymer-capped TiO(2) nanoparticles. *Environ. Sci. Pollut. Res. Int.* **25**, 26259–26266.

16 Guan, G., E. Ye, M. You and Z. Li (2020) Hybridized 2D Nanomaterials Toward Highly Efficient Photocatalysis for Degrading Pollutants: Current Status and Future Perspectives. *Small* **16**, e1907087.

17 Miró, P., A. Arques, A. M. Amat, M. L. Marin and M. A. Miranda (2013) A mechanistic study on the oxidative photodegradation of 2,6-dichlorodiphenylamine-derived drugs: Photo-Fenton versus photocatalysis with a triphenylpyrylium salt. *Appl. Catal. B.* **140–141**, 412–418.

18 Di Mascio, P., G. R. Martinez, S. Miyamoto, G. E. Ronsein, M. H. G. Medeiros and J. Cadet (2019) Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. *Chem. Rev.* **119**, 2043–2086.

19 Foote, C. S. (1968) Mechanisms of photosensitized oxidation. *Science* **162**, 963–970.

20 Redmond, R. W. and I. E. Kochevar (2006) Spatially resolved cellular responses to singlet oxygen. *Photochem. Photobiol.* **82**, 1178–1186.

21 Greer, A. (2006) Christopher Foote's discovery of the role of singlet oxygen [${}^1\text{O}_2$ (${}^1\Delta_g$)] in photosensitized oxidation reactions. *Acc. Chem. Res.* **39**, 797–804.

22 Ghogare, A. A., A. Greer (2016) Using singlet oxygen to synthesize natural products and drugs. *Chem. Rev.* **116**, 9994–10034.

23 Ogilby, P. R. (2010) Singlet oxygen: there is indeed something new under the sun. *Chem. Soc. Rev.* **39**, 3181–3209.

24 Bock, C. R., T. J. Meyer and D. G. Whitten (1975) Photochemistry of transition metal complexes. Mechanism and efficiency of energy conversion by electron-transfer quenching. *J. Am. Chem. Soc.* **97**, 2909–2911.

25 Chan M. S. and J. R. Bolton (1980) Structures, reduction potentials and absorption maxima of synthetic dyes of interest in photochemical solar-energy storage studies. *Sol. Energy* **24**, 561–574.

26 Taniguchi, M. and J. S. Lindsey (2018) Database of absorption and fluorescence spectra of > 300 common compounds for use in photochemCAD. *Photochem. Photobiol.* **94**, 290–327.

27 J. Eriksen, J., C. S. Foote and T. L. Parker (1977) Photosensitized oxygenation of alkenes and sulfides via a non-singlet-oxygen mechanism. *J. Am. Chem. Soc.* **99**, 6455–6456.

28 Cadet, J., S. Loft, R. Olinski, M. D. Evans, K. Bialkowski, J. R. Wagner, P. C. Dedon, P. Möller, M. M. Greenberg and M. S. Cooke (2012) Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. *Free Radic. Res.* **46**, 367–381.

29 Serrano, M. P., C. Lorente, C. D. Borsarelli and A. H. Thomas (2015) Unraveling the degradation mechanism of purine nucleotides photosensitized by pterins: The role of charge-transfer steps. *ChemPhysChem* **16**, 2244–2252.

30 Castaño, C., M. L. Dántola, E. Oliveros, A. H. Thomas and C. Lorente (2013) Oxidation of tyrosine photoinduced by pterin in aqueous solution. *Photochem. Photobiol.* **89**, 1448–1455.

31 Fuentes-Lemus, E., M. Mariotti, J. Reyes, F. Leinisch, P. Hägglund, E. Silva, M. J. Davies and C. López-Alarcón (2020) Photo-oxidation of lysozyme triggered by riboflavin is O₂-dependent, occurs via mixed type 1 and type 2 pathways, and results in inactivation, site-specific damage and intra- and inter-molecular crosslinks. *Free Radical Biol. Med.* **152**, 61–73.

32 Eberson, L. (1982) Electron transfer reactions in organic chemistry, *Adv. Phys. Org. Chem.* **18**, 79–185.

33 Bishop, S.M., M. Malone, D. Phillips and A.W. Parker, M.C.R. Symons (1994) Singlet oxygen sensitisation by excited state DNA. *J. Chem. Soc. Chem. Commun.* **7**, 871-872.

34 Steenken, S., J. P. Telo, H. M. Novais and L. P. Candeias (1992) One-electron-reduction potentials of pyrimidine bases, nucleosides, and nucleotides in aqueous solution. Consequences for DNA redox chemistry. *J. Am. Chem. Soc.* **114**, 4101–4709.

35 Santhosh, C. and P. C. Mishra (1992) Electronic spectra of adenine and guanine: Assignments and effects of solution environment. *Proc. Indian Acad. Sci.* **104**, 649–660.

36 Dryhurst, G. and P. J. Elving (1969) Electrochemical oxidation-reduction paths for pyrimidine, cytosine, purine and adenine correlation and application. *Talanta* **14**, 855–874.

37 Chin, K. K., C. C. Trevithick-Sutton, J. McCallum, S. Jockusch, N. J. Turro, J. C. Scaiano, C. S. Foote and M. A. Garcia-Garibay (2008) Quantitative determination of singlet oxygen generated by excited state aromatic amino acids, proteins, and immunoglobulins. *J. Am. Chem. Soc.* **130**, 6912–6913.

38 Dinu, A. and C. Apetrei A (2020) Review on electrochemical sensors and biosensors used in phenylalanine electroanalysis. *Sensors* **20**, 2496

39 Harriman, A. (1987) Further comments on the redox potentials of tryptophan and tyrosine. *J. Phys. Chem.* **91**, 6102–6104.

40 Różanowska, M., J. Wessels, M. Boulton, J. M. Burke, M. A. J. Rodgers, T. G. Truscott and T. Sarna (1998) Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. *Free Radic. Biol. Med.* **24**, 1107–1112.

41 Rivett, E., "Synthesis and Polarographic Analysis of A2E" (2013). Honors Program Projects. 43. https://digitalcommons.olivet.edu/honr_proj/43.

42 Chiarelli-Neto, O., C. Pavani, A. S. Ferreira, A. F. Uchoa and D. Severino (2011) Generation and suppression of singlet oxygen in hair by photosensitization of melanin. *Free Rad. Biol. Med.* **51**, 1195–1202.

43 Serpentini, C.-L., C. Gauchet, D. de Montauzon, M. Comtat, J. Ginestar and N. Paillous (2000) First electrochemical investigation of the redox properties of DOPA–melanins by means of a carbon paste electrode. *Electrochim. Acta* **45**, 1663–1668.

44 Thomas, A. H., C. Lorente, A. L. Capparelli, C. G. Martínez, A. M. Braun and E. Oliveros (2003) Singlet oxygen (${}^1\Delta_g$) production by pterin derivatives in aqueous solutions. *Photochem. Photobiol. Sci.* **2**, 245–250.

45 Song, Q.-H. and K. C. Hwang (2007) Direct observation for photophysical and photochemical processes of folic acid in DMSO solution. *J. Photochem. Photobiol. A*, **185**, 51–56.

46 Silva, A.V., A. López-Sánchez, H. C. Junqueira, L. Rivas, M. S. Baptista and G. Orellana (2015) Riboflavin derivatives for enhanced photodynamic activity against Leishmania parasites. *Tetrahedron* **71**, 457–462.

47 Yamashita, M., S. S. Rosatto and L. T. Kubota (2002) Electrochemical comparative study of riboflavin, FMN and FAD immobilized on the silica gel modified with zirconium oxide. *J. Braz. Chem. Soc.* **13**, 635–641.

48 Uchoa, A. F., A. M. Konopko and M. S. Baptista (2015) Chlorophyllin derivatives as photosensitizers: Synthesis and photodynamic properties. *J. Braz. Chem. Soc.* **26**, 2615–2622.

49 Kobayashi, M., S. Ohashi, K. Iwamoto, Y. Shiraiwa, Y. Kato and T. Watanabe (2007) Redox potential of chlorophyll d *in vitro*. *Biochim. Biophys. Acta* **1767**, 596–602.

50 Egorov, S. Y., A. A. Krasnovsky Jr. (1991) Laser-induced luminescence of singlet molecular oxygen: generation by drugs and pigments of biological importance. *Proc. SPIE* **1403**, *Laser Appl. Life Sci.*

51 Kozyreva, A., M. Ethirajan, P. Chen, K. Ohkubo, B. C. Robinson, K. M. Barkigia, S. Fukuzumi, K. M. Kadish and R. K. Pandey (2012) Synthesis, photophysical and electrochemistry of near-IR absorbing bacteriochlorins related to bacteriochlorophyll a. *J.*

Org. Chem. **77**, 10260–10271.

52 Fernandez, J. M., M. D. Bilgin and L. I. Grossweiner (1997) Singlet oxygen generation by photodynamic agents. *J. Photochem. Photobiol. B* **37**, 131–140.

53 Worthington, P., P. Hambright, R. F. X. Williams, J. Reid, C. Burnham, A. Shamim, J. Turay, D. M. Bell, R. Kirkland, R. G. Little, N. Datta-Gupta and U. Eisner (1980) Reduction potentials of seventy-five free base porphyrin molecules: Reactivity correlations and the prediction of potentials. *J. Inorg. Biochem.* **12**, 281–291.

54 Mayera, I., M. N. Eberlin, D. M. Tomazela, H. E. Toma and K. Araki (2005) Electrochemical and spectroelectrochemical characterization of meso-tetra-alkyl porphyrins. *J. Braz. Chem. Soc.* **16**, 418–425.

55 Kuznetsova, N. A. and O. L. Kaliya (1992) The photochemistry of coumarins. *Russ. Chem. Rev.* **61**, 683–696.

56 Wilkinson, F., W. P. Helman and A. B. Ross (1993) Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. *J. Phys. Chem. Ref. Data* **22**, 113–262.

57 Wang, L.-H. and H.-H. Liu (2009) Electrochemical reduction of coumarins at a film-modified electrode and determination of their levels in essential oils and traditional chinese herbal medicines. *Molecules* **14**, 3538–3550.

58 Wu, Q. and H. D. Dewald (2001) Voltammetry of coumarins. *Electroanalysis* **13**, 45–48.

59 Usui, Y. and K. Kamogawa (1974) A standard system to determine the quantum yield of singlet oxygen formation in aqueous solution. *Photochem. Photobiol.* **19**, 245–247.

60 Ju, H., J. Zhou, C. Cai and H. Chen (1995) The electrochemical behavior of methylene blue at a microcylinder carbon fiber electrode. *Electroanalysis* **7**, 1165–1170.

61 Noimark, S., E. Salvadori, R. Gomez-Bombarelli, A. J. MacRobert, I. P. Parkina and C. W. M. Kay (2016) Comparative study of singlet oxygen production by photosensitizer dyes

encapsulated in silicone: Towards rational design of anti-microbial surfaces. *Phys. Chem. Chem. Phys.* **18**, 28101–28109.

62 Vogelmann, E., W. R. Horst and E. A. Krameer (1979) Reactivity of acridine dye triplet states in electron transfer reactions. *Photochem. Photobiol.* **29**, 771–776.

63 Kinoshita, T., Y. Hatsuoka, D. Q. Nguyen, R. Iwata, H. Shiigi and T. Nagaoka (2016) Electrochemical response of acridine orange in bacterial cell. *Electrochemistry* **84**, 334–337.

64 Lamed, C., T. Sarna and T. G. Truscott (1990) Rose Bengal radicals and their reactivity. *J. Chem. Soc. Faraday Trans.* **86**, 3879–3882.

65 Andrieux, F. P. L. and C. Boxall (2007) Electrochemical study of Rose Bengal at the electrochemical quartz Crystal. *ECS Transactions* **6** 67-77.

66 Gerson, F., G. Gescheidt, P. Haering, Y. Mazur, D. Freeman, H. Spreitzer and J. Daub (1995) Electron-acceptor properties of hypericin and its salts: An ESR/ENDOR and electrochemical study. *J. Am. Chem. Soc.* **117**, 11861–11866.

67 Redepenning J. and N. Tao (1993) Measurement of formal potentials for hypericin in dimethylsulfoxide. *Photochem. Photobiol.* **58**, 532–535.

68 Ou, Z., J. Shen and K. M. Kadish (2006) Electrochemistry of aluminum phthalocyanine: Solvent and anion. effects on UV–visible spectra and reduction mechanisms. *Inorg. Chem.* **45**, 9569–9579.

69 Lever, A. B. P. and P. C. Minor (1981) Electrochemistry of Main-Group Phthalocyanines. *Inorg. Chem.* **20**, 4015–4017.

70 Tasso, T.T., J. C. Schlothauer, H. C. Junqueira, T. A. Matias, K. Araki, E. Liandra-Salvador, F. C. T. Antonio, P. Homem-de-Mello and M. S Baptista (2019) Photobleaching efficiency parallels the enhancement of membrane damage for porphyrazine photosensitizers. *J. Am. Chem. Soc.* **141**, 15547–15556.

71 Sakamoto, K. (2018) Cyclic voltammetry of phthalocyanines. *InTechOpen*.

72 Lightbourne, S. K. S., H. B. Gobeze, N. K. Subbaiyan and F. D'Souza (2015) Chlorin e6 sensitized photovoltaic cells: effect of co-adsorbents on cell performance, charge transfer resistance, and charge recombination dynamics. *J. Photonics Energy* **5**, 053089–1

73 Gutiérrez M. I., C. G. Martínez, D. García-Fresnadillo, A. M. Castro, G. Orellana, A. M. Braun and E. Oliveros (2003) Singlet oxygen (${}^1\Delta_g$) production by Ruthenium(II) complexes in microheterogeneous systems. *J. Phys. Chem. A* **107**, 3397–3403.

74 Prier C. K., D. A. Rankic and D. W. C. MacMillan (2013) Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. *Chem Rev.* **113**, 5322–5363.

75 Huang, C.-Y. and Y. O. Su (2010) Spectral and redox properties of zinc porphyrin core dendrimers with triarylaminies as dendron. *Dalton Trans.* **39**, 8306–8312.

76 Wang, Y., Y. Wang, Y. Wang, C. K. Murray, M. R. Hamblin, D. C. Hooper and T. Daia (2017) Antimicrobial blue light inactivation of pathogenic microbes: State of the art. *Drug Resist. Updat.*, **33–35**, 1–22.

77 McGlynn, S. P., T. Azumi and M. Kinoshita (1968) Molecular spectroscopy of the triplet state. Prentice-Hall, Inc. New Jersey, pp. 87–88.

78 Petroselli, G., R. Erra-Balsells, F. M. Cabrerizo, C. Lorente, A. L. Capparelli, A. M. Braun, E. Oliveros and A. H. Thomas (2007) Photosensitization of 2'-deoxyadenosine-5'-monophosphate by pterin. *Org. Biomol. Chem.* **5**, 2792–2799.

79 Silva, E., S. Fürst, A. M. Edwards, M. I. Becker and A. E. De Ioannes (1995) Visible light anaerobic photoconversion of tyrosine sensitized by riboflavin. Cytotoxicity on mouse tumoral cells. *Photochem. Photobiol.* **62**, 1041–1045.

80 Serrano, M. P., C. Lorente, F. E. Morán Vieyra, C. D. Borsarelli and A. H. Thomas (2012) Photosensitizing properties of biopterin and its photoproducts using 2'-deoxyguanosine 5'-

monophosphate as an oxidizable target. *Phys. Chem. Chem. Phys.* **14**, 11657–11665.

81 Petroselli, G., M. L. Dántola, F. M. Cabrerizo, A. L. Capparelli, C. Lorente, E. Oliveros and A. H. Thomas (2008) Oxidation of 2'-deoxyguanosine 5'-monophosphate photoinduced by pterin: type I versus type II mechanism. *J. Am. Chem. Soc.* **130**, 3001–3011.

82 Steenken, S. and S. V. Jovanovic (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. *J. Am. Chem. Soc.* **119**, 617–618.

83 Crespo-Hernández, C. E., D. M. Close, L. Gorb and J. Leszczynski (2007) Determination of redox potentials for the Watson-Crick base pairs, DNA nucleosides, and relevant nucleoside analogues. *J. Phys. Chem. B* **111**, 5386–5395.

84 Pluhařová, E., P. Slavíček and P. Jungwirth (2015) Modeling photoionization of aqueous DNA and its components. *Acc. Chem. Res.* **48**, 1209–1217.

85 Genereux J. C. and J. K. Barton (2010) Mechanisms for DNA charge transport. *Chem. Rev.* **110**, 1642–1662.

86 Davies, M. J. (2016) Protein oxidation and peroxidation. *Biochem J.* **473**, 805–825.

87 Weber, G., T. Charitat, M. S. Baptista, A. F. Uchoa, C. Pavani, H. C. Junqueira, Y. Guo, V. A. Baulin, R. Itri, C. M. Marques and A. P. Schroder (2014) Lipid oxidation induces structural changes in biomimetic membranes. *Soft Matter* **10**, 4241–4247.

88 Yao, W. W., H. M. Peng and R. D. Webster (2009) Electrochemistry of α -tocopherol (Vitamin E) and α -tocopherol quinone films deposited on electrode surfaces in the presence and absence of lipid multilayers. *J. Phys. Chem. C* **113**, 21805–21814.

89 Buettner, G. R. (1993) The pecking order of free radicals and antioxidants: Liperoxidation, α -tocopherol, ascorbate. *Arch. Biochem. Biophys.* **300**, 535–543.

90 Williams, N. H. and J. K. Yandell (1982) Outer-sphere electron-transfer reactions of ascorbate anions. *Aust. J. Chem.* **35**, 1133–1144.

91 Winterbourn, C. C. (2008) Reconciling the chemistry and biology of reactive oxygen species. *Nat. Chem. Biol.* **4**, 278–286.

92 Mahmoudi, L., R. Kissner, T. Nauser and W. H. Koppenol (2016) Electrode potentials of *L*-tryptophan, *L*-tyrosine, 3-nitro-*L*-tyrosine, 2,3-difluoro-*L*-tyrosine, and 2,3,5-trifluoro-*L*-tyrosine. *Biochemistry* **55**, 2849–2856.

93 Seidel, C. A. M., A. Schulz and M. H. M. Sauer (1996) Nucleobase-specific quenching of fluorescent dyes. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. *J. Phys. Chem.* **100**, 5541–5553.

94 Wardman, P. (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. *J. Phys. Chem. Ref. Data* **18**, 1637–1755.

95 Farrington, J. A., E. J. Land and A. J. Swallow (1980) The one-electron reduction potentials of NAD. *Biochim. Biophys. Acta* **590**, 273–276.

96 NDRL/NIST Solution Kinetics Database on the Web. NIST Standard Reference Database 40. A compilation of kinetics data on solution-phase reactions. In: <http://kineticsnistgov/solution/>; 2002.

97 Zinatullina, K. M., N. P. Khrameeva, O. T. Kasaikina, B. I. Shapiro and V. A. Kuzmin (2017) Kinetic characteristics of the reaction of natural thiols with peroxy radicals and hydrogen peroxide. *Russ. Chem. Bull., Int. Ed.* **66**, 1300–1303.

98 Devasagayam, T. P. A., A. R. Sundquist, P. Di Mascio, S. Kaiser and H. Sies (1991) Activity of thiols as singlet molecular oxygen quenchers. *J. Photochem. Photobiol. B* **9**, 105–116.

99 Augusto O. and S. Miyamoto (2011) Oxygen Radicals and Related Species. In: Principles of Free Radical Biomedicine. Volume 1 ISBN: 978-1-61209-773-2. Editors: K. Pantopoulos, H. M. Schipper. Nova Science Publishers, Inc.

100 Warren, J. J., T. A. Tronic and J. M. Mayer (2010) Thermochemistry of proton-coupled

electron transfer reagents and its implications. *Chem. Rev.* **110**, 6961–7001.

101 Girotti, A. W. (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. *J. Photochem. Photobiol. B* **63**, 103–113.

102 Bacellar, I. O. L. and M. S. Baptista (2019) Mechanisms of photosensitized lipid oxidation and membrane permeabilization. *ACS Omega* **4**, 21636–21646.

103 Segarra-Martí, J., R. Ramakrishnan, J. Vinals and A. J. Hughes (2018) Highlights from the Faraday discussion on photoinduced processes in nucleic acids and proteins. *Chem. Commun.* **54**, 4207–4215.

104 Forman, H. J., J. M. Fukuto and M. Torres (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. *Am. J. Physiol. Cell Physiol.* **287**, C246–C256.

105 Baciocchi, E., T. Del Giacco, M. I. Ferrero, C. Rol and G. V. Sebastiani (1997) Oxidation of aromatic sulfides photosensitized by TiO₂ in CH₃CN in the presence of Ag₂SO₄. The role of TiO₂ in the chemistry of sulfide radical cations. *J. Org. Chem.* **62**, 4015–4017.

106 Baciocchi, E., T. D. Giacco, F. Eliesi, M. F. Gerini, M. Guerra, A. Lapi and P. Liberali (2003) Electron transfer and singlet oxygen mechanisms in the photooxygenation of dibutyl sulfide and thioanisole in MeCN sensitized by N-methylquinolinium tetrafluoborate and 9,10-dicyanoanthracene. The probable involvement of a thiadioxirane intermediate in electron transfer photooxygenations. *J. Am. Chem. Soc.* **125**, 16444–16454.

107 Baciocchi, E., T. Del Giacco, M. F. Gerini and O. Lanzalunga (2006) Rates of C–S bond cleavage in tert-alkyl phenyl sulfide radical cations. *Org. Lett.* **8**, 641–644.

108 Baciocchi, E., T. Del Giacco, M. F. Gerini and O. Lanzalunga (2006) C–S bond cleavage in the sensitized photooxygenation of tert-alkyl phenyl sulfides. The role of superoxide anion. *Tetrahedron* **62**, 6566–6573.

109 Cadet, J., J. R. Wagner, V. Shafirovich and N. E. Geacintov (2014) One-electron

oxidation reactions of purine and pyrimidine bases in cellular DNA. *Int. J. Radiat. Biol.* **90**, 423–432.

110 Cadet, J., K. J. A. Davies, M. H. Medeiros, P. Di Mascio and J. R. Wagner (2017) Formation and repair of oxidatively generated damage in cellular DNA. *Free Radic. Biol. Med.* **107**, 13–34.

111 Cadet, J. and J. R. Wagner (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. *Cold Spring Harb. Perspect. Biol.* **5**, a012559.

112 Cadet, J. and J. R. Wagner (2014) Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: Similarities and differences. *Arch. Biochem. Biophys.* **557**, 47–54.

113 Kasai, H., Z. Yamaizumi, M. Berger and J. Cadet (1992) Photosensitized formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine(8-hydroxy-2'-deoxyguanosine) in DNA by riboflavin: A nonsinglet oxygen-mediated reaction. *J. Am. Chem. Soc.* **114**, 9692–9694.

114 Cullis, P. M., M. E. Malone and L. A. Merson-Davies (1996) Guanine radical cations are precursors of 7,8-dihydro-8-oxo-2'-deoxyguanosine but are not precursors of immediate strand breaks in DNA. *J. Am. Chem. Soc.* **118**, 2775–2781.

115 Cadet, J., T. Douki and J. -L. Ravanat (2008) Oxidatively generated damage to the guanine moiety: Mechanistic aspects and formation in cells. *Acc. Chem. Res.* **41**, 1074–1081.

116 Candeias, L. P. and S. Steenken (2000) Reaction of HO• with guanine derivatives in aqueous solutions: Formation of two different redox-active OH-adducts and their unimolecular transformation reactions. Properties of G(-H)•. *Chem. Eur. J.* **6**, 475–484.

117 Misiaszek, R., C. Crean, A. Joffe, N. E. Geacintov and V. Shafirovich (2004) Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping. *J. Biol. Chem.* **279**, 32106–32115.

118 Tretyakova, N. Y., A. V. Groehler and S. Ji (2015) DNA-protein cross-links: Formation,

structural identities, and biological outcomes. *Acc. Chem. Res.* **48**, 1631–1644.

119 Cadet, J., J.-L. Ravanat, M. TavernaPorro, H. Menoni and D. Angelov (2012) Oxidatively generated complex DNA damage: tandem and clustered lesions. *Cancer Lett.* **32**, 5–15.

120 Cadet, J., J. R. Wagner and D. Angelov (2019) Biphotonic ionization of DNA: From model studies to cell. *Photochem. Photobiol.* **95**, 59–72.

121 Schneider, J. E. Jr, T. Tabatabaie, L. Maidt, R. H. Smith, X. Nguyen, Q. Pye and R. A. Floyd (1998) Potential mechanisms of photodynamic inactivation of virus by methylene blue. I. RNA-protein crosslinks and other oxidative lesions in Q beta bacteriophage. *Photochem. Photobiol.* **67**, 350–357.

122 Nguyen, K. L., M. Steryo, K. Kurbanyan, K. M. Nowitzki, S. M. Butterfield, S. R. Ward and E. D. A. Stemp (2000) DNA-Protein cross-linking from oxidation of guanine via the flash-quench technique. *J. Am. Chem. Soc.* **122**, 3585–3594.

123 Kurbanyan, K., K. L. Nguyen, P. To, E. V. Rivas, A. M. Lueras, C. Kosinski, M. Steryo, A. González, D. A. Mah and E. D. Stemp (2003) DNA-protein cross-linking via guanine oxidation: dependence upon protein and photosensitizer. *Biochemistry* **42**, 10269–10281.

124 Madison, A. L., Z. A. Perez, P. To, T. Maisonet, E. V. Rios, Y. Trejo, C. Ochoa-Paniagua, A. Reno and E. D. Stemp (2012) Dependence of DNA-protein cross-linking via guanine oxidation upon local DNA sequence as studied by restriction endonuclease inhibition. *Biochemistry* **51**, 362–369.

125 Perrier, S., J. Hau, D. Gasparutto, J. Cadet, A. Favier and J.-L. Ravanat (2006) Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing ligonucleotide in the presence of a trilysine peptide. *J. Am. Chem. Soc.* **128**, 5703–5710.

126 Chan, C. H., A. Monari, J.-L. Ravanat and E. Dumont (2019) Probing interaction of a

tritylamine peptide with DNA underlying formation of guanine-lysine cross-links: Insights from molecular dynamics. *Phys. Chem. Chem. Phys.* **21**, 23418–23424.

127 Silerme, S., L. Bobyk, M. Taverna-Porro, C. Cuier, C. Saint-Pierre and J.-L. Ravanat (2014) DNA-polyamine cross-links generated upon one electron oxidation of DNA. *Chem. Res. Toxicol.* **27**, 1011–1018.

128 Bignon, E., C. H. Chan, C. Morell, A. Monari, J.-L. Ravanat and E. Dumont (2017) Molecular dynamics insights into polyamine-DNA binding modes: Implications for cross-link selectivity. *Chemistry* **23**, 12845–12852.

129 Fuentealba, D., B. Friguet and E. Silva (2009) Advanced glycation endproducts induced photocrosslinking and oxidation of bovine lens proteins through type-I mechanism. *Photochem. Photobiol.* **85**, 185–194.

130 López-Alarcón, C., A. Arenas, E. Lissi and E. Silva (2014) The role of protein-derived free radicals as intermediaries of oxidative processes. *Biomol. Concepts* **5**, 119–130.

131 Hawkins, C. L. and M. J. Davies (2001) Generation and propagation of radical reactions on proteins. *Biochim. Biophys. Acta, Bioenerg.* **1504**, 196–219.

132 Silva, E., R. Ugarte, A. Andrade and A. M. Edwards (1994) Riboflavin-sensitized photoprocesses of tryptophan. *J. Photochem. Photobiol. B* **23**, 43–48.

133 Candeias, L. P., P. Wardman and R. P. Mason (1997) The reaction of oxygen with radicals from oxidation of tryptophan and indole-3-acetic acid. *Biophys. Chem.* **67**, 229–237.

134 Hunter, E. P. L., M. F. Desrosiers and M. G. Simic (1989) The effect of oxygen, antioxidants, and superoxide radical on tyrosine phenoxy radical dimerization. *Free Radic. Biol. Med.* **6**, 581–585.

135 Houée-Lévin, C., K. Bobrowski, L. Horakova, B. Karademir, C. Schöneich, M. J. Davies and C. M. Spickett (2015) Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. *Free Radic.*

Res. **49**, 347–373.

136 Carroll, L., R. F. Anderson, C. Lopez-Alarcon and M. J. Davies (2017) Formation and detection of oxidant-generated tryptophan dimers in peptides and proteins. *Free Radic. Biol. Med.* **113**, 132–142.

137 Catalfo, A., G. Bracchitta and G. De Guidi (2009) Role of aromatic amino acid tryptophan UVA-photoproducts in the determination of drug photosensitization mechanism: A comparison between methylene blue and naproxen. *Photochem. Photobiol. Sci.* **8**, 1467–1475.

138 Castaño, C., M. Vignoni, P. Vicendo, E. Oliveros and A. H. Thomas (2016) Degradation of tyrosine and tryptophan residues of peptides by type I photosensitized oxidation. *J. Photochem. Photobiol. B* **164**, 226–235.

139 Thomas, A. H., M. P. Serrano, V. Rahal, P. Vicendo, C. Claparols, E. Oliveros and C. Lorente (2013) Tryptophan oxidation photosensitized by pterin. *Free Radic. Biol. Med.* **63**, 467–475.

140 Reid, L. O., E. A. Roman, A. H. Thomas and M. L. Dantola (2016) Photooxidation of tryptophan and tyrosine residues in human serum albumin sensitized by pterin: a model for globular protein photodamage in skin. *Biochemistry* **55**, 4777–4786.

141 Fuentes-Lemus, E., M. Mariotti, P. Häggglund, F. Leinisch, A. Fierro, E. Silva, C. López-Alarcón and M. J. Davies (2019) Binding of rose bengal to lysozyme modulates photooxidation and crosslinking reactions involving tyrosine and tryptophan. *Free Radic. Biol. Med.* **143**, 375–386.

142 Verduin, J., M. J den Uijl, R. J. B. Peters and M. R van Bommel (2020) Photodegradation products and their analysis in food. *J. Food Sci. Nutr.* **6**, 067.

143 Girotti A. W. (1990) Photodynamic lipid peroxidation in biological systems. *Photochem. Photobiol.* **51**, 497-509.

144 Turque, O., A. Greer. and O. R. Wauchope (2020) Synthetic feasibility of oxygen-driven photoisomerizations of alkenes and polyenes. *Org. Biomol. Chem.* **18**, 9181–9190.

145 Stanley, C. P., G. J. Maghzal, A. Ayer, J. Talib, A. M. Giltrap, S. Shengule, K. Wolhuter, Y. T. Wang, P. Chadha, C. Suarna, O. Prysyzhna, J. Scotcher, L. L. Dunn, F. M. Prado, N. Nguyen, J. O. Odiba, J. B. Baell, J. P. Stasch, Y. Yamamoto, P. Di Mascio, P. Eaton, R. J. Payne and R. Stocker (2019) Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation, *Nature* **566**, 548–552.

146 Cadet, J., J.-L. Ravanat, G. R. Martinez, M. G. H. Medeiros and P. Di Mascio (2006) Singlet oxygen oxidation of isolated and cellular DNA: Product formation and mechanistic insights. *Photochem. Photobiol.* **82**, 1219–1225.

147 Ravanat, J.-L., C. Saint-Pierre, P. Di Mascio, G. R. Martinez, M. H. G. Medeiros and J. Cadet (2001) Damage to isolated DNA mediated by singlet oxygen. *Helv. Chim. Acta* **84**, 3702–3709.

148 Dumont, E., R. Grüber, E. Bignon, C. Morell, Y. Moreau, A. Monari and J.-L. Ravanat (2016). Probing the reactivity of singlet oxygen with purines. *Nucleic Acids Res.* **44**, 56–62.

149 Dumont, E., R. Grüber, E. Bignon, C. Morell, J. Aranda, J.-L. Ravanat and I. Tuñón (2016) Singlet oxygen attack on guanine: Reactivity and structural signature within the B-DNA helix. *Chem. Eur. J.* **22**, 12358–12362.

150 Floyd, R. A., M. S. West, K. L. Eneff and J. E. Schneider (1989) Methylene blue plus light mediates 8-hydroxyguanine formation in DNA. *Arch. Biochem. Biophys.* **273**, 106–111.

151 Floyd, R. A., M. S. West, K. L. Eneff and J. E. Schneider (1990) Mediation of 8-hydroxyguanine formation in DNA by thiazin dyes plus light. *Free Radic. Biol. Med.* **8**, 327–330.

152 Schneider, J. E., S. Price, L. Maidt, J. M. Gutteridge and R. A. Floyd (1990) Methylene blue plus light mediates 8-hydroxy 2'-deoxyguanosine formation in DNA preferentially over strand breakage. *Nucleic Acids Res.* **18**, 631–635.

153 Sheu, C. and C. S. Foote (1993) Endoperoxide formation in a guanosine derivative. *J. Am. Chem. Soc.* **115**, 10446–10447.

154 Ravanat, J.-L., G. R. Martinez, M. G. H. Medeiros, P. Di Mascio and J. Cadet (2004) Mechanistic aspects of the oxidation of DNA constituents mediated by singlet molecular oxygen. *Arch. Biochem. Biophys.* **423**, 23–30.

155 Grüber, R., A. Monari and E. Dumont (2014) Stability of the guanine endoperoxide intermediate: A computational challenge for Density Functional Theory. *J. Phys. Chem. A* **118**, 11612–11619.

156 Niles, J. C., J. S. Wishnok and S. R. Tannenbaum (2001) Spiroiminodihydantoin is the major product of the 8-oxo-7,8-dihydroguanosine reaction with peroxy nitrite in the presence of thiols and guanosine photooxidation by methylene blue. *Org. Lett.* **3**, 963–966

157 Martinez, G. R., J.-L. Ravanat, J. Cadet, M. H. G. Medeiros and P. Di Mascio (2007) Spiroiminodihydantoin nucleoside formation from 2'-deoxyguanosine oxidation by [18O-labeled] singlet molecular oxygen in aqueous solution. *J. Mass Spectrom.* **42**, 1326–1332.

158 Xu X., J. G. Muller, Y. Ye and C. J. Burrows (2008) DNA-protein cross-links between guanine and lysine depend on the mechanism of oxidation for formation of C5 vs C8 guanosine adducts. *J. Am. Chem. Soc.* **130**, 703–709.

159 Zou, X., X. Dai, K. Liu, H. Zhao, D. Song and H. Su (2014) Photophysical and photochemical properties of 4-thiouracil: time-resolved IR spectroscopy and DFT studies. *J. Phys. Chem. B* **118**, 5864–5872.

160 Heihoff, K., R. W. Redmond, S. E. Braslavsky, M. Rougée, C. Salet, A. Favre and R. V. Bensasson (1990) Quantum yields of triplet and O₂(1Δg) formation of 4-thiouridine in water and acetonitrile. *Photochem. Photobiol.* **51**, 635–641.

161 Favre, A., C. Saintomé, J.-L. Fourrey, P. Clivio and P. Laugâa (1998) Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein

interactions. *J. Photochem. Photobiol. B* **42**, 109–124.

162 Sysak, P. K., C. S. Foote and T.-Y. Ching (1977) Chemistry of singlet oxygen XXV. Photooxygenation of methionine. *Photochem. Photobiol.* **27**, 19–27.

163 Davies, M. A. (2005) The oxidative environment and protein damage. *Biochim. Biophys. Acta* **1703**, 93–109.

164 Clennan, E. L. (2014) 1,2-Dioxatrisulfane (thiaperoxide) intermediates in type I and II photooxygenation reactions, *In: Patai's The Chemistry of Peroxides*, John Wiley & Sons Ltd: Chichester, UK

165 Clennan, E. L. (2001) Persulfoxide: Key intermediate in reactions of singlet oxygen with sulfides. *Acc. Chem. Res.* **34**, 875–884.

166 Clennan, E. L. and A. Greer (1996) The effect of alcohols on the photooxidative behavior of diethylsulfide. *J. Org. Chem.* **61**, 4793–4797.

167 Jensen, F., A. Greer and E. L. Clennan (1998) Reaction of organic sulfides with singlet oxygen. A revised mechanism. *J. Am. Chem. Soc.* **120**, 4439–4449.

168 Boreen, A. L., B. L. Edlund, J. B. Cotner and K. McNeill (2008) Indirect photodegradation of dissolved free amino acids: The contribution of singlet oxygen and the differential reactivity of DOM from various sources. *Environ. Sci. Technol.* **42**, 5492–5498.

169 Jensen, R. L., J. Arnbjerg and P. R. Ogilby (2012) Reaction of singlet oxygen with tryptophan in proteins: A pronounced effect of the local environment on the reaction rate. *J. Am. Chem. Soc.* **134**, 9820–9826

170 Jensen, R. L., J. Arnbjerg, H. Birkedal and P. R. Ogilby (2011) Singlet oxygen's response to protein dynamics. *J. Am. Chem. Soc.* **133**, 7166–7173.

171 Castaño, C., A. H. Thomas, and C. Lorente. (2021) Type I photosensitized oxidation of methionine. *Photochem. Photobiol.* **97**, 91–98.

172 Avila, F., N. Ravello, A. L. Zanocco, L. F. Gamon, M. J. Davies and E. Silva (2019) 3-

Hydroxykynurenine bound to eye lens proteins induces oxidative modifications in crystalline proteins through a type I photosensitizing mechanism. *Free Radic. Biol. Med.* **141**, 103–114.

173 Cannistraro, S., G. Jori and A. Van de Vorst (1978) Photosensitization of amino acids by di-cyan-hemin: Kinetic and EPR studies. *Photochem. Photobiol.* **27**, 517–521.

174 Tanielian C. and R. Mechlin (1994) Reaction and quenching of singlet molecular oxygen with esters of polyunsaturated fatty acids. *Photochem. Photobiol.* **59**, 263–268.

175 Pathak, M. A. and Krämer D. M. (1969) Photosensitization of skin in vivo by furocoumarins (psoralens). *Biochim. Biophys. Acta* **195**, 197–206.

176 Rodighiero, G. and F. Dall'Acqua (1986) Present aspects concerning the molecular mechanisms of photochemotherapy with psoralens. *Drugs Exp. Clin. Res.* **1**, 507–515.

177 Pathak M. A. and T. B. Fitzpatrick (1992) The evolution of photochemotherapy with psoralens and UVA (PUVA): 2000 BC to 1992 AD. *J. Photochem. Photobiol. B* **14**, 3–22.

178 Yoo, E. K., A. H. Rook, R. Elenitsas, F. P. Gasparro and B. R. Vowels (1996) Apoptosis induction of ultraviolet light A and photochemotherapy in cutaneous T-cell lymphoma: relevance to mechanism of therapeutic action. *J. Invest. Dermatol.* **107**, 235–242.

179 Cho, A., C. Jantschitsch and R. Knobler (2018) Extracorporeal photopheresis-An overview. *Front. Med. (Lausanne)* **5**, 236.

180 Rodighiero, G., L. Musajo, F. Dall'Acqua, S. Marciani, G. Caporale and L. Ciavatta (1970) Mechanism of skin photosensitization by furocoumarins. Photoreactivity of various furocoumarins with native DNA and with ribosomal RNA. *Biochim. Biophys. Acta* **217**, 40–49.

181 Musajo, L. and G. Rodighiero (1970) Studies on the photo-C4-cyclo-addition reactions between skin-photosensitizing furocoumarins and nucleic acids. *Photochem. Photobiol.* **11**, 27–35.

182 Song, P. S. and K. J. Taple, Jr. (1979) Photochemistry and photobiology of psoralens.

183 Hearst, J. E., S. T. Isaacs, D. Kanne, H. Rapoport and K. Straub (1984) The reaction of the psoralens with deoxyribonucleic acid. *Q. Rev. Biophys.* **17**, 1–44.

184 Cimino, G. D., H. B. Gamper, S. T. Isaacs and J. E. Hearst (1985) Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. *Annu. Rev. Biochem.* **54**, 1151–1193.

185 Tessman, J. W., S. T. Isaacs and J. E. Hearst (1985) Photochemistry of the furan-side 8-methoxypsoralen-thymidine monoadduct inside the DNA helix. Conversion to diadduct and to pyrone-side monoadduct. *Biochemistry* **24**, 1669–1676.

186 Sage, E., E. A. Drobetsky and E. Moustacchi (1993) 8-Methoxypsoralen induced mutations are highly targeted at crosslinkable sites of photoaddition on the non-transcribed strand of a mammalian chromosomal gene. *EMBO J.* **12**, 397–402.

187 Straub, K., D. Kanne, J. E. Hearst and H. Rapoport (1981) Isolation and characterization of Pyrimidine-psoralen photoadducts from DNA. *J. Am. Chem. Soc.* **103**, 2347–2355.

188 Kanne, D., K. Straub, H. Rapoport and J. E. Hearst (1982) Psoralen-deoxyribonucleic acid photoreaction. Characterization of the monoaddition products from 8-methoxypsoralen and 4,5,8-trimethylpsoralen. *Biochemistry* **21**, 861–871.

189 Anselmino C., D. Averbeck and J. Cadet (1995) Photoreaction of 5-methoxypsoralen with thymidine and the thymine moiety of isolated and *Saccharomyces cerevisiae* DNA. Characterization and measurement of the two *cis*-syn furan-side monocycloadducts. *Photochem. Photobiol.* **62**, 997–1004.

190 Kanne, D., K. Straub, J. E. Hearst and H. Rapoport (1982) Isolation and characterization of pyrimidine-psoralen-pyrimidine photodiadducts from DNA. *J. Am. Chem. Soc.* **104**, 6754–6764.

191 Shi, Y. B. and J. E. Hearst (1987) Wavelength dependence for the photoreactions of

DNA-psoralen monoadducts. 1. Photoreversal of monoadducts. *Biochemistry* **26**, 3786–3792.

192 Sastry, S. S., H. P. Spielmann, Q. S. Hoang, A. M. Phillips, A. Sancar and J. E. Hearst (1993) Laser-induced protein-DNA cross-links via psoralen furanside monoadducts. *Biochemistry* **32**, 5526–5538.

193 Anselmino, C., L. Voituriez and J. Cadet (1993) Characterization of the *cis*-syn and *cis*-anti diastereoisomers of 5-methoxypsoralen pyrone-side monocycloadducts to thymidine. *Chem. Res. Toxicol.* **6**, 858–865.

194 Cadet, J., L. Voituriez, F. Gaboriau, P. Vigny and S. Della Negra (1983) Characterization of photocycloaddition products from reaction between thymidine and the monofunctional 3-carbethoxypsoralen. *Photochem. Photobiol.* **37**, 363–371.

195 Moysan, A., F. Gaboriau, P. Vigny, L. Voituriez and J. Cadet (1986) Chemical structure of 3-carbethoxypsoralen-DNA photoadducts. *Biochimie* **68**, 787–795.

196 Gaboriau, F., P. Vigny, J. Cadet, L. Voituriez and E. Bisagni (1987) Photoreaction of monofunctional 3-carbethoxypsoralen with DNA: Identification and conformational study of the predominant *cis*-syn furan side monoadduct to thymine. *Photochem. Photobiol.* **45**, 199–207.

197 Moysan, A., L. Voituriez, J. Cadet and P. Vigny (1993) Furan-side pyridopsoralens monoadducts to the thymine moiety of DNA. *J. Photochem. Photobiol. B* **17**, 263–271.

198 Bensasson, R. V., E. J. Land and C. Salet (1978) Triplet excited state of furocoumarins: Reaction with nucleic acid bases and amino acids. *Photochem. Photobiol.* **27**, 273–280.

199 Beaumont, P.C., B. J. Parsons, G. O. Phillips and J. C. Allen (1979) A laser flash photolysis study of the reactivities of the triplet states of 8-methoxypsoralen and 4,5',8-trimethylpsoralen with nucleic acid bases in solution. *Biochim. Biophys. Acta* **562**, 214–221.

200 Craw M., R. V. Bensasson, J. C. Ronfard-Haret, M. T. Sa e Melo and T. G. Truscott

(1983) Some photophysical properties of 3-carbethoxypsoralen, 8-methoxypsoralen and 5-methoxypsoralen triplet states. *Photochem. Photobiol.* **37**, 611–615.

201 Blais, J., J. C. Ronfard-Haret, P. Vigny, J. Cadet and L. Voituriez (1985) Triplet excited states of 4',5'-photomonoadducts of 3-carbethoxypsoralen and 8-methoxypsoralen with DNA nucleosides. *Photochem. Photobiol.* **42**, 599–602.

202 Beaumont P. C., B. J. Parsons, S. Navaratnam, G. O. Phillips and J. C. Allen (1980) The reactivities of furocoumarin excited states with DNA in solution. A laser flash photolysis and fluorescence study. *Biochim. Biophys. Acta* **608**, 259–265.

203 Fröbel, S., A. Reiffers, C., T. Ziegenbein and P. Gilch (2015) DNA intercalated psoralen undergoes efficient photoinduced electron transfer. *J. Phys. Chem. Lett.* **6**, 1260–1264.

204 Fröbel S., L. Levi, S. M. Ulamec and P. Gilch (2016) Photoinduced electron transfer between psoralens and DNA: Influence of DNA sequence and substitution. *ChemPhysChem* **17**, 1377–1386.

205 Paul, S. and A. Samanta (2018) Ground- and excited-state interactions of a psoralen derivative with human telomeric G-quadruplex DNA. *J. Phys. Chem. B* **122**, 2277–2286.

206 Serrano-Pérez, J. J., M. Manuela Merchán and L. Serrano-Andrés (2008) Photoreactivity of furocoumarins and DNA in PUVA therapy: Formation of psoralen-thymine adducts. *J. Phys. Chem. B* **112**, 14002–14110.

207 Nakata, A., T. Baba, H. Takahashi and H. Nakai (2004) Theoretical study on the excited states of psoralen compounds bonded to a thymine residue. *J. Comput. Chem.* **25**, 179–188.

208 Omar, S and L. A. Eriksson (2009) Interaction and photobinding between 8-methoxypsoralen and thymine. *Chem. Phys. Lett.* **471**, 128–132.

209 Huang, X. and R. Zhang (2013) A theoretical rationale why furan-side monoadduct is more favorable toward diadduct formation in 8-methoxypsoralen and thymine complexes. *Photochem. Photobiol.* **89**, 891–899.

210 Diekmann, J., J. Gontcharov, S. Fröbel, C. Torres Ziegenbein, W. Zinth and P. Gilch (2019) The photoaddition of a psoralen to DNA proceeds via the triplet state. *J. Am. Chem. Soc.* **141**, 13643–13653.

211 Diekmann, J., I. Theves, K. A. Thom and P. Gilch (2020) Tracing the photoaddition of pharmaceutical psoralens to DNA. *Molecules* **25**, 5242.

212 Mantel, C., A. Chandor, D. Gasparutto, T. Douki, M. Atta, M. Fontecave, P. A. Bayle, J. M. Mouesca and M. Bardet (2008) Combined NMR and DFT studies for the absolute configuration elucidation of the spore photoproduct, a UV-induced DNA lesion. *J. Am. Chem. Soc.* **130**, 16978–16984.

213 Setlow, P. and L. Li (2015) Photochemistry and photobiology of the spore photoproduct: A 50-year journey. *Photochem. Photobiol.* **91**, 1263–1290.

214 Alzueta, O. R., M. C. Cuquerella and M. A. Miranda (2019) Triplet energy transfer versus excited state cyclization as the controlling step in photosensitized bipyrimidine dimerization. *J. Org. Chem.* **84**, 13329–13335.

215 Lamola, A. A. and T. Yamane (1967) Sensitized photodimerization of thymine in DNA. *Proc. Natl Acad. Sci. U. S. A.* **58**, 443–446.

216 von Wilucki, I., H. Matthäus and C. H. Krauch (1967) Photosensibilisierte cyclodimerisation von thymin in lösung. *Photochem. Photobiol.* **6**, 497–500.

217 Elad, D., C. Krüger and G. M. J. Schmidt (1967) The photosensitized solution dimerization of dimethyluracil and dimethylthymine. Four photodimers of dimethyluracil. *Photochem. Photobiol.* **6**, 495–496.

218 Charlier, M. and C. Hélène (1967) Photosensitized dimerization of orotic acid in aqueous solution. *Photochem. Photobiol.* **6**, 501–504.

219 Cadet, J. and P. Vigny (1990) The Photochemistry of Nucleic Acids. In: *Bioorganic Photochemistry*. Morrison, H. Ed., John Wiley & Sons, New York, pp. 1–272.

220 Costalat, R., J. Blais, J. P. Ballini, A. Moysan, J. Cadet, O. Chalvet and P. Vigny (1990) Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: a triplet-triplet energy transfer mechanism. *Photochem. Photobiol.* **51**, 255–262.

221 Moysan A., A. Viari, P. Vigny, L. Voituriez, J. Cadet, E. Moustacchi and E. Sage (1991) Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: quantitative and qualitative distribution within DNA. *Biochemistry* **30**, 7080–7088.

222 Guillo, L. A., J. Blais, P. Vigny and A. Spassky (1995) Selective DNA thymine dimerization during UVA irradiation in the presence of a saturated pyridopsoralen. *Photochem. Photobiol.* **61**, 331–335.

223 Sauvaigo, S., T. Douki, F. Odin, S. Caillat, J. L. Ravanat and J. Cadet (2001) Analysis of fluoroquinolone-mediated photosensitization of 2'-deoxyguanosine, calf thymus and cellular DNA: determination of type-I, type-II and triplet-triplet energy transfer mechanism contribution. *Photochem. Photobiol.* **73**, 230–237.

224 Bosca, F., V. Lhiaubet-Vallet, M. C. Cuquerella, J. V. Castell and M. A. Miranda (2006) The triplet energy of thymine in DNA. *J. Am. Chem. Soc.* **128**, 6318–6319.

225 Lhiaubet-Vallet, V., M. C. Cuquerella, J. V. Castell, F. Bosca and M. A. Miranda (2007) Triplet excited fluoroquinolones as mediators for thymine cyclobutane dimer formation in DNA. *J. Phys. Chem B* **111**, 7409–7414.

226 Cuquerella, M. C., V. Lhiaubet-Vallet, F. Bosca and M. A. Miranda (2011) Photosensitized pyrimidine dimerisation in DNA. *Chem. Sci.* **2**, 1219–1232.

227 Douki, T., I. Bérard, A. Wack and S. Andrä (2014) Contribution of cytosine-containing cyclobutane dimers to DNA damage produced by photosensitized triplet-triplet energy transfer. *Chemistry* **20**, 5787–5794.

228 Cuquerella, M. C., V. Lhiaubet-Vallet, J. Cadet and M. A. Miranda (2012) Benzophenone photosensitized DNA damage. *Acc. Chem. Res.* **45**, 1558–1570.

229 Guillo, L. A., B. Beylot, P. Vigny and A. Spassky (1996) Formation of cyclobutane thymine dimers from UVA photosensitization of pyridopsoralen monoadducted DNA. *Photochem. Photobiol.* **64**, 349–355.

230 Vendrell-Criado, V., G. M. Rodríguez-Muñiz, M. C. Cuquerella, V. Lhiaubet-Vallet and M. A. Miranda (2013) Photosensitization of DNA by 5-methyl-2-pyrimidone deoxyribonucleoside: (6-4) photoproduct as a possible Trojan horse. *Angew. Chem. Int. Ed. Engl.* **52**, 6476–6479.

231 Bignon, E., H. Gattuso, C. Morell, E. Dumont and A. Monari (2015) DNA photosensitization by an "insider": Photophysics and triplet energy transfer of 5-methyl-2-pyrimidone deoxyribonucleoside. *Chemistry* **21**, 11509–11516.

232 Vendrell-Criado, V., G. M. Rodríguez-Muñiz, V. Lhiaubet-Vallet, M. C. Cuquerella and M. A. Miranda (2016) The (6-4) dimeric lesion as a DNA photosensitizer. *ChemPhysChem* **17**, 1979–1982.

233 Douki, T. (2020) Pyrimidine (6-4) pyrimidone photoproducts in UVA-irradiated DNA: photosensitization or photoisomerization? *ChemPhotoChem* **4**, 294–299.

234 Courdavault, S., C. Baudouin, M. Charveron, B. Canguilhem, A. Favier, J. Cadet and T. Douki (2005) Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations. *DNA Repair* **4**, 836–844.

235 Cadet, J. and T. Douki (2018) Formation of UV-induced DNA damage contributing to skin cancer development. *Photochem. Photobiol. Sci.* **17**, 1816–1841.

236 Aparici-Espert, I., G. Garcia-Lainéz, I. Andreu, M. A. Miranda and V. Lhiaubet-Vallet (2018) Oxidatively generated lesions as internal photosensitizers for pyrimidine dimerization in DNA. *ACS Chem. Biol.* **13**, 542–547.

237 Francés-Monerris, A., C. Hognon, M. A. Miranda, V. Lhiaubet-Vallet and A. Monari (2018) Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a

dimeric model to DNA environment. *Phys. Chem. Chem. Phys.* **20**, 25666–25675.

238 Wagner, J. R. and J. Cadet (2010) Oxidation reactions of cytosine DNA components by hydroxyl radical and one-electron oxidants in aerated aqueous solutions. *Acc. Chem. Res.* **43**, 564–571.

239 Francés-Monerris, A., M. Lineros-Rosa, M. A. Miranda, V. Lhiaubet-Vallet and A. Monari (2020) Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates. *Chem. Commun.* **56**, 4404–4407.

240 Lineros-Rosa, M., A. Francés-Monerris, A. Monari, M. A. Miranda and V. Lhiaubet-Vallet (2020) Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates. *Phys. Chem. Chem. Phys.* **22**, 25661–25668.

241 Varghese A. J. (1970) Photochemistry of thymidine in ice. *Biochemistry* **24**, 4781–4787.

242 Douki, T. and J. Cadet (2003) Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. *Photochem. Photobiol. Sci.* **2**, 433–436.

243 Douki, T., G. Laporte and J. Cadet (2003) Inter-strand photoproducts are produced in high yield within A-DNA exposed to UVC radiation. *Nucleic Acids Res.* **31**, 3134–3142.

244 Douki, T., M. Court and J. Cadet (2000) Electrospray-mass spectrometry characterization and measurement of far-UV-induced thymine photoproducts. *J. Photochem. Photobiol. B* **54**, 145–154.

245 Moeller, R., T. Douki, J. Cadet, E. Stackebrandt, W. L. Nicholson, P. Rettberg, G. Reitz and G. Horneck (2007) UV-radiation-induced formation of DNA bipyrimidine photoproducts in *Bacillus subtilis* endospores and their repair during germination. *Int. Microbiol.* **10**, 39–46.

246 Desnous, C., D. Guillaume and P. Clivio (2010) Spore photoproduct: a key to bacterial

eternal life. *Chem. Rev.* **110**, 1213–1232.

247 Rahn, R. O. and H. L. Hosszu (1969) Influence of relative humidity on the photochemistry of DNA films. *Biochim. Biophys. Acta* **190**, 126–131.

248 Nicholson, W. L., B. Setlow and P. Setlow (1991) Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of *Bacillus* or *Clostridium* species makes spore photoproduct but not thymine dimers. *Proc. Natl. Acad. Sci. U. S. A.* **88**, 8288–8292.

249 Douki, T., B. Setlow and P. Setlow (2005) Effects of the binding of alpha/beta-type small, acid-soluble spore proteins on the photochemistry of DNA in spores of *Bacillus subtilis* and *in vitro*. *Photochem. Photobiol.* **81**, 163–169.

250 Douki, T., B. Setlow and P. Setlow (2005) Photosensitization of DNA by dipicolinic acid, a major component of spores of *Bacillus* species. *Photochem. Photobiol. Sci.* **4**, 591–597.

251 Nardi, G., M. Lineros-Rosa, F. Palumbo, M. A. Miranda and V. Lhiaubet-Vallet (2021) Spectroscopic characterization of dipicolinic acid and its photoproducts as thymine photosensitizers. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* **245**, 118898.

252 Francés-Monerris, A., C. Hognon, T. Douki and A. Monari (2020) Photoinduced DNA lesions in dormant bacteria: The peculiar route leading to spore photoproducts characterized by multiscale molecular dynamics. *Chemistry* **26**, 14236–14241.

253 Ikehata, H., T. Mori, T. Douki, J. Cadet and M. Yamamoto (2018) Quantitative analysis of UV photolesions suggests that cyclobutane pyrimidine dimers produced in mouse skin by UVB are more mutagenic than those produced by UVC. *Photochem. Photobiol. Sci.* **17**, 404–413.

254 Cadet, J., T. Douki and J.-L. Ravanat (2011) Measurement of oxidatively generated base damage in cellular DNA. *Mutat. Res.* **711**, 3–12.

255 Ravanat, J.-L., J. Cadet and T. Douki (2012) Oxidatively generated DNA lesions as potential biomarkers of in vivo oxidative stress. *Curr. Mol. Med.* **12**, 655–671.

256 Collins, A. R. (2017) The use of bacterial repair endonucleases in the comet assay. *Methods Mol. Biol.* **1641**, 173–184.

257 Epe, B. (2012) DNA damage spectra induced by photosensitization. *Photochem. Photobiol. Sci.* **11**, 98–106.

258 Hiraku Y, Ito K, Hirakawa K, Kawanishi S (2007) Photosensitized DNA damage and its protection via a novel mechanism. *Photochem Photobiol.* **83**, 205–212.

259 Margolin Y., V. Shafirovich, N. E. Geacintov, M. S. DeMott and P. C. Dedon (2008) DNA sequence context as a determinant of the quantity and chemistry of guanine oxidation produced by hydroxyl radicals and one-electron oxidants. *J. Biol. Chem.* **283**, 35569–35578.

260 Insińska-Rak, M. and M. Sikorski (2014) Riboflavin interactions with oxygen - a survey from the photochemical perspective. *Chemistry* **20**, 15280–15291.

261 Yamamoto F., S. Nishimura and H. Kasai (1992) Photosensitized formation of 8-hydroxydeoxyguanosine in cellular DNA by riboflavin. *Biochem. Biophys. Res. Commun.* **187**, 809–813.

262 Bessho, T., K. Tano, S. Nishimura and H. Kasai (1993) Induction of mutations in mouse FM3A cells by treatment with riboflavin plus visible light and its possible relation with formation of 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in DNA. *Carcinogenesis* **14**, 1069–1071.

263 Kasai H., Z. Yamaizumi, M. Berger, J. Cadet (1992) Photosensitized formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine) in DNA by riboflavin: a nonsinglet oxygen mediated reaction. *J. Am. Chem. Soc.* **114**, 9692–9694.

264 Matter B., C. L. Seiler, K. Murph, X. Ming, J. Zhao, B. Lindgren, R. Jones and N. Tretyakova (2018) Mapping three guanine oxidation products along DNA following

exposure to three types of reactive oxygen species. *Free Radic. Biol. Med.* **121**, 180–189.

265 Saito I., M. Takayama, H. Sugiyama, K. Nakatani, A. Tsuchida and M. Yamamoto (1995) Photoinduced DNA cleavage via electron transfer: demonstration that guanine residues located 5' to guanine are the most electron-donating sites. *J. Am. Chem. Soc.* **117**, 6406–6407.

266 Margolin Y., V. Shafirovich, N. E. Geacintov, M. S. DeMott and P. C. Dedon (2008) DNA sequence context as a determinant of the quantity and chemistry of guanine oxidation produced by hydroxyl radicals and one-electron oxidants. *J. Biol. Chem.* **283**, 35569–35578.

267 Douki T., J.-L. Ravanat, J.-P. Pouget, I. Testard and J. Cadet (2006) Minor contribution of direct ionization to DNA base damage induced by heavy ions. *Int. J. Radiat. Biol.* **82**, 119–127.

268 Douki T. and J. Cadet (1999) Modification of DNA bases by photosensitized one-electron oxidation. *Int. J. Radiat. Biol.* **75**, 571–581.

269 Pflaum, M., O. Will, H. C. Mahler and B. Epe (1998) DNA oxidation products determined with repair endonucleases in mammalian cells: Types, basal levels and influence of cell proliferation. *Free Radic. Res.* **29**, 585–594.

270 Will, O., E. Gocke, I. Eckert, I. Schulz, M. Pflaum, H. C. Mahler and B. Epe (1999) Oxidative DNA damage and mutations induced by a polar photosensitizer, Ro19-8022. *Mutat. Res.* **435**, 89–101.

271 Martinez, G. R., J.-L. Ravanat, M. H. G. Medeiros, J. Cadet and P. Di Mascio (2000) Synthesis of a naphthalene endoperoxide as a source of ¹⁸O-labeled singlet oxygen for mechanistic studies. *J. Am. Chem. Soc.* **122**, 10212–10213.

272 Ravanat, J.-L., P. Di Mascio, G. R. Martinez, M. H. Medeiros and J. Cadet (2000) Singlet oxygen induces oxidation of cellular DNA. *J. Biol. Chem.* **275**, 40601–40604.

273 Ravanat, J.-L., S. Sauvaigo, S. Caillat, G. R. Martinez, M. H. Medeiros, P. Di Mascio,

A. Favier and J. Cadet (2004) Singlet oxygen-mediated damage to cellular DNA determined by the comet assay associated with DNA repair enzymes. *Biol Chem.* **385**, 17–20.

274 Mäkinen, M., P. D. Forbes and F. Stenbäck (1997) Quinolone antibacterials: a new class of photochemical carcinogens. *J. Photochem. Photobiol. B* **37**, 182–187.

275 G. Klecak, G., F. Urbach and H. Urwyler (1997) Fluoroquinolone antibacterials enhance UVA induced skin tumors. *J. Photochem. Photobiol. B* **37**, 174–181.

276 Itoh, T., H. Miyauchi-Hashimoto, A. Sugihara, K. Tanaka and T. Horio T (2005) The photocarcinogenesis of antibiotic lomefloxacin and UVA radiation is enhanced in xeroderma pigmentosum group A gene-deficient mice. *J. Invest. Dermatol.* **125**, 554–559.

277 Reavy, H. J., N. J. Traynor and N. K. Gibbs (1997) Photogenotoxicity of skin phototumorigenic fluoroquinolone antibiotics detected using the comet assay. *Photochem. Photobiol.* **66**, 368–373.

278 Marrot, L. and C. Agapakis-Causse (2000) Differences in the photogenotoxic potential of two fluoroquinolones as shown in diploid yeast strain (*Saccharomyces cerevisiae*) and supercoiled plasmid DNA. *Mutat. Res.* **468** (2000) 1–9.

279 Itoh, T., K. Mitsumori, S. Kawaguchi and Y. F. Sasaki (2006) Genotoxic potential of quinolone antimicrobials in the in vitro comet assay and micronucleus test. *Mutat. Res.* **603**, 135–144.

280 Sánchez, G., M. E. Hidalgo, J. M. Vivanco and J. Escobar (2005) Induced and photoinduced DNA damage by quinolones: ciprofloxacin, ofloxacin and nalidixic acid determined by comet assay. *Photochem. Photobiol.* **81**, 819–822.

281 Rosen J. E., A. K. Prahalad, G. Schlüter, D. Chen and G. M. Williams (1997) Quinolone antibiotic photodynamic production of 8-oxo-7, 8-dihydro-2'-deoxyguanosine in cultured liver epithelial cells. *Photochem Photobiol.* **65**, 990–996.

282 Hiraku Y, Ito K, Hirakawa K, Kawanishi S (2007) Photosensitized DNA damage and its

protection via a novel mechanism. *Photochem. Photobiol.* **83**, 205–212.

283 Martinez L. J., G. Li, and C. F. Chignell (1997) Photogeneration of fluoride by fluoroquinolone antimicrobial agents lomefloxacin and fleroxacin. *Photochem. Photobiol.* **65**, 599–602.

284 Martinez L. J. and C. F. Chignell (1998) Photocleavage of DNA by the fluoroquinolone antibacterials. *J. Photochem. Photobiol B* **45**, 51–59.

285 Catalfo A., C. Scifo, S. Stella, A. Belvedere, M. Renis, G. de Guidi (2005) Rufloxacin induced photosensitization in bio-models of increasing complexity. *Photochem. Photobiol. Sci.* **4**, 304–314.

286 Catalfo A., M. L. Calandra, M. Renis, M. E. Serrentino, G. de Guidi (2007) Rufloxacin induced photosensitization in yeast, *Photochem. Photobiol. Sci.* **6**, 181–189.

287 Serrentino M. E., A. Catalfo, A. R. Angelin, G. de Guidi and E. Sage (2010) Photosensitization induced by the antibacterial fluoroquinolone Rufloxacin leads to mutagenesis in yeast. *Mutat. Res.* **692**, 34–41.

288 Sortino, S., G. Marconi, G. de Guidi, S. Giuffrida and S. Monti (1999) Photophysical properties of rufloxacin neutral aqueous solution. *Photochem. Photobiol.* **70**, 731–736.

289 Belvedere, A., F. Boscá, A. Catalfo, M. C. Cuquerella, G. de Guidi and M. A. Miranda (2002) Type II guanine oxidation photoinduced by the antibacterial fluoroquinolone Rufloxacin in isolated DNA and in 2'-deoxyguanosine. *Chem. Res. Toxicol.* **15**, 1142–1149.

290 Lhiaubet-Vallet, V., F. Bosca and M. A. Miranda (2009) Photosensitized DNA damage: the case of fluoroquinolones, *Photochem. Photobiol.* **85**, 861–868.

291 Karran, P. and N. Attard (2008) Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. *Nat. Rev. Cancer* **8**, 24–36.

292 Perrett, C. M., S. L. Walker, P. O'Donovan, J. Warwick, C. A. Harwood, P. Karran and J. M. McGregor (2008) Azathioprine treatment photosensitizes human skin to ultraviolet A

radiation. *Br. J. Dermatol.* **159**, 198–204.

293 O'Donovan, P., C. M. Perrett, X. Zhang, B. Montaner, Y. Z. Xu, C. A. Harwood, J. M. McGregor, S. L. Walker, F. Hanaoka and P. Karran (2005) Azathioprine and UVA light generate mutagenic oxidative DNA damage. *Science* **309**, 1871–1874.

294 Kelly, G. E., W. D. Meikle and D. E. Moore (1989) Enhancement of UV-induced skin carcinogenesis by azathioprine: role of photochemical sensitization. *Photochem. Photobiol.* **49**, 59–65.

295 Euvrard, S., J. Kanitakis and A. Claudy (2003) Skin cancers after organ transplantation. *N. Engl. J. Med.* **348**, 1681–1691.

296 Attard, N. R. and P. Karran (2012) UVA photosensitization of thiopurines and skin cancer in organ transplant recipients. *Photochem. Photobiol. Sci.* **11**, 62–68.

297 Brem R., M. Guven and P. Karran (2017) Oxidatively-generated damage to DNA and proteins mediated by photosensitized UVA. *Free Radic. Biol. Med.* **107**, 101–109.

298 Hemmens, V. J. and D. E. Moore (1986) Photochemical sensitization by azathioprine and its metabolites -II. Azathioprine and nitroimidazole metabolites. *Photochem. Photobiol.* **43**, 257–262.

299 Cooke, M. S., T. L. Duarte, D. Cooper, J. Chen, S. Nandagopal and M. D. Evans (2008) Combination of azathioprine and UVA irradiation is a major source of cellular 8-oxo-7,8-dihydro-2'-deoxyguanosine. *DNA Repair (Amst)* **7**, 1982–1989.

300 Cooke, M.S., J. E. Osborne, R. Singh, V. Mistry, P. B. Farmer, M. D. Evans and P. E. Hutchinson (2007) Evidence that oxidative stress is a risk factor for the development of squamous cell carcinoma in renal transplant patients. *Free Radic. Biol. Med.* **43**, 1328–1334.

301 Grasso F., V. Ruggieri, G. De Luca, P. Leopardi, M. T. Mancuso, I. Casorelli, P. Pichieri, P. Karran and M. Bignami (2015) MUTYH mediates the toxicity of combined DNA 6-thioguanine and UVA radiation. *Oncotarget* **6**, 7481–7492.

302 Zou, X., H. Zhao, Y. Yu and H. Su (2013) Formation of guanine-6-sulfonate from 6-thioguanine and singlet oxygen: a combined theoretical and experimental study. *J. Am. Chem. Soc.* **135**, 4509–4515.

303 Zhang, X., G. Jeffs, X. Ren, P. O'Donovan, B. Montaner, C. M. Perrett, P. Karran and Y. Z. Xu (2007) Novel DNA lesions generated by the interaction between therapeutic thiopurines and UVA light. *DNA Repair (Amst)* **6**, 344–3454.

304 Traynor, N.J. and N. K. Gibbs (1999) The phototumorigenic fluoroquinolone lomefloxacin photosensitizes pyrimidine dimer formation in human keratinocytes in vitro. *Photochem. Photobiol.* **70**, 957–959.

305 Marrot, L., J. P. Belaïdi, C. Jones, P. Perez, L. Riou, A. Sarasin and J. R. Meunier (2003) Molecular responses to photogenotoxic stress induced by the antibiotic lomefloxacin in human skin cells: from DNA damage to apoptosis. *J. Invest. Dermatol.* **121**, 596–606.

306 Sortino, S., G. Condorelli (2002) Complexes between fluoroquinolones and calf thymus DNA: Binding mode and photochemical reactivity. *New J. Chem.* **26**, 250–258.

307 Robinson, K. S., N. J. Traynor, H. Moseley, J. Ferguson and J. A. Woods (2010) Cyclobutane pyrimidine dimers are photosensitised by carprofen plus UVA in human HaCaT cells. *Toxicol. In Vitro* **24**, 1126–1132.

308 Trzcionka J., V. Lhiaubet-Vallet, C. Paris, N. Belmadoui, M. J. Climent and M. A. Miranda (2007) Model studies on a carprofen derivative as dual photosensitizer for thymine dimerization and (6-4) photoproduct repair. *ChemBioChem* **8**, 402–407.

309 Premi, S., S. Wallisch, C. M. Mano, A. B. Weiner, A. Bacchicocchi, K. Wakamatsu, E. J. Bechara, R. Halaban, T. Douki and D. E. Brash (2015) Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. *Science* **347**, 842–847.

310 Premi, S. and D. E. Brash (2016) Unanticipated role of melanin in causing carcinogenic

cyclobutane pyrimidine dimers. *Mol. Cell. Oncol.* **3**, e1033588.

311 Lamola, A. A. (1971) Production of pyrimidine dimers in DNA in the dark. *Biochem. Biophys. Res. Commun.* **43**, 893–898.

312 Cilento, G. and W. Adam (1995) From free radicals to electronically excited species. *Free Radic. Biol. Med.* **19**, 103–114.

313 Premi, S. and D. E. Brash (2016) Chemical excitation of electrons: A dark path to melanoma. *DNA Repair (Amst)* **44**, 169–177.

314 Delinasios, G. J., M. Karbaschi, M. S. Cooke and A. R. Young (2018) Vitamin E inhibits the UVAI induction of "light" and "dark" cyclobutane pyrimidine dimers, and oxidatively generated DNA damage, in keratinocytes. *Sci Rep.* **8**, 423.

315 Lawrence, K. P., T. Douki, R. P. E. Sarkany, S. Acker, B. Herzog and A. R. Young (2018) The UV/Visible Radiation Boundary Region (385-405 nm) Damages Skin Cells and Induces "dark" Cyclobutane Pyrimidine Dimers in Human Skin in vivo. *Sci Rep.* **8**, 12722.

316 Fajuyigbe, D., T. Douki, A. van Dijk, R. P. E. Sarkany and A. R. Young (2021) Dark cyclobutane pyrimidine dimers are formed in the epidermis of Fitzpatrick skin types I/II and VI in vivo after exposure to solar-simulated radiation. *Pigment Cell Melanoma Res.* in press, doi: 10.1111/pcmr.12956.

317 Hearst, J. E. (1989) Photochemistry of psoralens. *Chem. Res. Toxicol.* **2**, 69–75.

318 Cadet J (1994) DNA damage caused by oxidation, deamination, ultraviolet radiation and photoexcited psoralens. *IARC Sci. Publ.* **125**, 245–276.

319 Moysan, A., P. Vigny, M. Dardalhon, D. Averbeck, L. Voituriez and J. Cadet (1988) 3-Carbethoxypsoralen-DNA photolesions: identification and quantitative detection in yeast and mammalian cells of the two *cis-syn* diastereoisomers formed with thymidine. *Photochem. Photobiol.* **47**, 803–808.

320 Dardalhon, M., A. Moysan, D. Averbeck, P. Vigny, J. Cadet and L. Voituriez (1988)

Repair of the two cis-syn diastereoisomers formed between 3-carbethoxy-psoralen and thymidine in yeast cells, followed by a chemical method. *J. Photochem. Photobiol. B* **2**, 389–394.

321 Averbeck, D, M. Dardalhon and N. Magana-Schwencke (1990) Repair of furocoumarin-plus-UVA-induced damage and mutagenic consequences in eukaryotic cells. *J. Photochem. Photobiol. B* **6**, 221–236.

322 Couvé-Privat, S., G. Macé, F. Rosselli and M. K. Saparbaev (2007) Psoralen-induced DNA adducts are substrates for the base excision repair pathway in human cells. *Nucleic Acids Res.* **35**, 5672–5682.

323 Lai, C., H. Cao, J. E. Hearst, L. Corash, H. Luo and Y. Wang (2008) Quantitative analysis of DNA interstrand cross-links and monoadducts formed in human cells induced by psoralens and UVA irradiation. *Anal. Chem.* **80**, 8790–8798.

324 Cao, H., J. E. Hearst, L. Corash and Y. Wang (2008) LC-MS/MS for the detection of DNA interstrand cross-links formed by 8-methoxysoralen and UVA irradiation in human cells. *Anal. Chem.* **80**, 2932–2938.

325 Weber, G., T. Charitat, M. S. Baptista, A. F. Uchoa, C. Pavani, H. C. Junqueira, Y. Guo, V. A. Baulin, R. Itri, C. M. Marques and A. P. Schroder (2014) Lipid oxidation induces structural changes in biomimetic membranes. *Soft Matter* **10**, 4241-4247.

326 Tsubonea, T. M., M. S. Baptista and R. Itri (2019) Understanding membrane remodelling initiated by photosensitized lipid oxidation. *Biophys. Chem.* **254**, 106263.

327 Bacellar, I. O. L., M. C. Oliveira, L. S. Dantas, E. B. Costa, H. C. Junqueira, W. K. Martins, A. M. Durantini, G. Cosa, P. Di Mascio, M. Wainwright, R. Miotto, R. M. Corderiro, S. Miyamoto and M. S. Baptista (2018) Photosensitized membrane permeabilization requires contact-dependent reactions between photosensitizer and lipids. *J. Am. Chem. Soc.* **140**, 9606–9615.

328 Vignoni, M., M. N. Urrutia, H. C. Junqueria, A. Greer, A. Reis, M. S. Baptista, R. Itri and A. H. Thomas (2018) Photo-oxidation of unilamellar vesicles by a lipophilic pterin: Deciphering biomembrane photodamage. *Langmuir* **34**, 15578–15586.

329 Tsubone T. M., W. K. Martins, M. S. F. Franco, M. N. Silva, R. Itri and M. S. Baptista. (2021) Cellular compartments challenged by membrane photo-oxidation. *Arch. Biochem. Biophys.* **697**, 108665.

330 Martins, W. K., N. F. Santos, C. de Sousa Rocha, I. O. L. Bacellar, T. M. Tsubone, A. C. Viotto, A. Y. Matsukuma, A. B. de P. Abrantes, P. Siani, L. G. Dias and M. S. Baptista (2019) Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. *Autophagy* **15**, 259–279.

331 Sorkin, R., N. Kampf and J. Klein (2017) Effect of cholesterol on the stability and lubrication efficiency of phosphatidylcholine surface layers. *Langmuir* **33**, 7459–7467.

332 Munro S. (2003) Lipid rafts: elusive or illusive? *Cell* **115**, 377–388.

333 Girotti, A. W. (1992) New trends in photobiology. Photosensitized oxidation of cholesterol in biological systems: Reaction pathways, cytotoxic effects and defense mechanisms. *J. Photochem. Photobiol. B* **13**, 105–118.

334 Doleiden, F. H., S. R. Fahrenholtz, A. A. Lamola and A. M. Trozzolo (1974) Reactivity of cholesterol and some fatty acids toward singlet oxygen. *Photochem. Photobiol.* **20**, 519–521.

FIGURE CAPTIONS

Scheme 1. First bimolecular events for each type of mechanism. Sens*: sensitizer excited state; S: substrate.

Scheme 2. Type I reactions. Subsequent reactions underwent by the initial radicals formed in reaction 1.

Scheme 3. Hydration and deprotonation of thymidine radical cations giving rise to hydroperoxides via transient peroxy radicals.

Scheme 4. Type I photosensitized reaction of guanine. Nucleophilic reactions of the guanine radical cation. (a) Formation of 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) via hydration and lysine-guanine addition product.

Scheme 5. Type I photosensitized reaction of guanine in a multistep formation of 2,2,4-triamino-5(2H)-oxazolone via $O_2^{\cdot-}$ addition to the deprotonated guanine radical cation.

Scheme 6. Type I and type II photosensitized lipid peroxidation. PLPC, 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine, is an example of a phospholipid containing a saturated fatty acid and a polyunsaturated (PUFA) fatty acid, where the photo-induced peroxidation takes place.

Scheme 7. Common reactions of $^1\text{O}_2$ with organic compounds.

Scheme 8. Singlet oxygen oxidation of guanine in isolated nucleosides (a + b) and DNA (a).

Scheme 9. Reaction of methionine with singlet oxygen in aqueous solution.

Scheme 10. Psoralen structures. Mono (3-carbethoxysoralen) and bifunctional (5-methoxysoralen, 8-methoxysoralen) psoralens.

Scheme 11. Psoralen photocycloaddition reactions. Formation of *cis*-*syn* pyrone-side monoadduct to thymine.

Scheme 12. Pyridopsoralen sensitized thymine-thymine dimerization.

Scheme 13. Triplet-triplet energy transfer photosensitizers of cyclobutane pyrimidine dimers: photo-induced and oxidatively generated pyrimidine base modifications.

Scheme 14. Sensitized formation of the ‘spore photoproduct’.

Scheme 15. Simplified mechanism of type I photoinduced lipid oxidation leading to products different from hydroperoxides (LOOH). As an example some representative products of linoleic acid are shown. LH, phospholipids; L^\bullet , alkyl lipid radical; LOO^\bullet , peroxy lipid radical; LO^\bullet , alkoxyl lipid radical; LOH, hydroxy derivatives; LO, carbonyl derivative.

Scheme 16. Simplified map of the main pathways of photosensitized reactions involving biological targets.

TABLE CAPTIONS

Table 1. Relevant photophysical properties of endogenous and exogenous photosensitizers and their respective pseudo-reduction potentials when acting as electron acceptors or electron donors.

Table 1. Relevant photophysical properties of endogenous and exogenous photosensitizers and their respective pseudo-reduction potentials when acting as electron acceptors or electron donors.

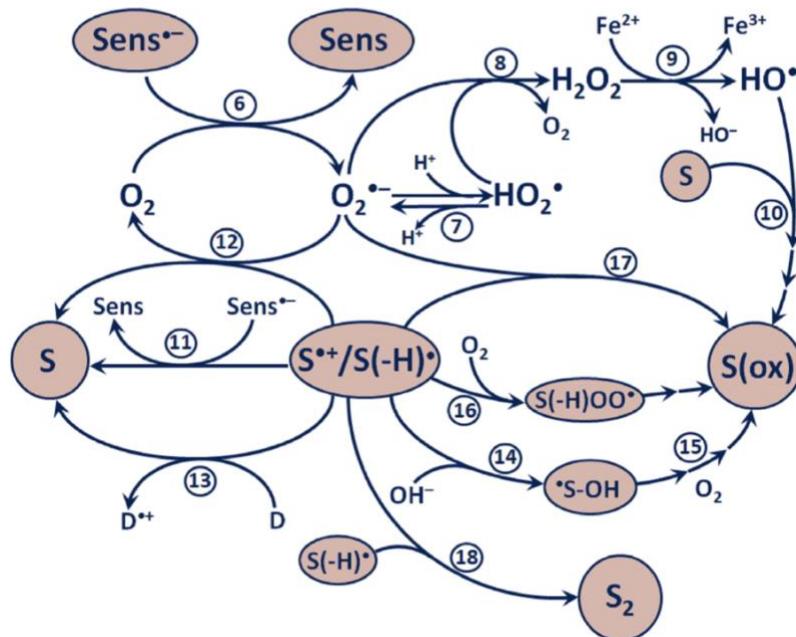
Photosensitizer	λ (nm) [eV] ^a	S_A ^b	Photochemical Electron Acceptor		Photochemical Electron Donor	
			$E_{1/2}$ (V), SHE	$E'_{ox}(PS^*/PS^*)$ ^c	$E_{1/2}$ (V), SHE	$-E'_{red}(PS^{*+}/PS^*)$ ^d
Endogenous						
Thymine	300 [4.1]	0.07 (334)	-1.1 (334)	3.0	2.1	2.0
Adenine	289 [4.3] (334)	0.1 (33)	-1.2 (334)	3.1	1.9	2.4
Cytosine	300 [4.1]	0.03 (33)	-1.1 (34)	3.0	2.1	2.0
Guanine	336[3.7](35)	<0.005(33)	-1.2 (36)	2.5	1.5	2.2
Phe	267 [4.6]	0.065 (334)			0.3 (334)	4.3
Tyr	288 [4.3]	0.138 (37)			0.9 (334)	3.6
Trp	307 [4.0]	0.062 (37)			1.0 (39)	3.0
Lipofuscin	425 [2.9]	0.1 (334)	0 (334)	2.9	0	2.9
Melanin	425 [2.9]	0.02 (334)	\pm 0.02 (334)	2.9	0.2	2.7
Pterin	400 [3.1]	0.2 (334)	-0.5 (334)	2.6	0.3	2.8
Riboflavin	490 [2.5]	0.5 (334)	-0.25 (334)	2.3	-0.2	2.7
Chlorophyll ^e	650 [1.9]	0.6 (334)	-0.7 (334)	1.2	0.7	1.2
Bac-chlorophyll ^f	665 [1.9]	0.5 (334)	-0.7 (334)	1.3	0.7	1.2
Porphyrins ^{g,h}	~610 [2.0]	0.7 (334)	-1.5 (334)	0.5	1.1 (334) ⁱ	0.9
Exogenous						
Coumarin	365 [3.4] (334)	0.03(334)	-0.9 (334)	2.5	0.2 (334)	3.2
Methylene Blue	675 [1.8]	0.5 (334)	0.01 (334)	1.8	-	-
Acridine Orange	477 [2.6]	0.5 (334)	-0.9 (334)	1.7	0.4 (334)	2.2
Rose Bengal	567 [2.2]	0.8 (56)	-0.5 (334)	1.7	0.3 (334)	1.9
Hypericin	595 [2.1]	0.7 (52)	-0.6 (334,334)	1.5	0.9 (66,67)	1.1
AlPc(SO ₃ H) ₄	688 [1.8]	0.4 (52)	-0.3 (334)	1.5	0.9 (334)	0.9

Porphyrazins	650 [1.9]	0.3-0.6 (334)	-0.4 (70)	1.5	0.4 (334)	1.5
Chlorin e ₆ ^j	665 [1.9]	0.6 (52)	- 0.6 (334)	1.3	0.5 (72)	1.4
Ru(bipy) ₃ ²⁺	453 [2.7]	0.7 (334)	-1.6 (334)	1.1	1.0 (24)	1.1
Zinc porphyrin	595 [2.1]	0.9 (52)	-1.8 (53)	0.3	1.1 (334)	1.0

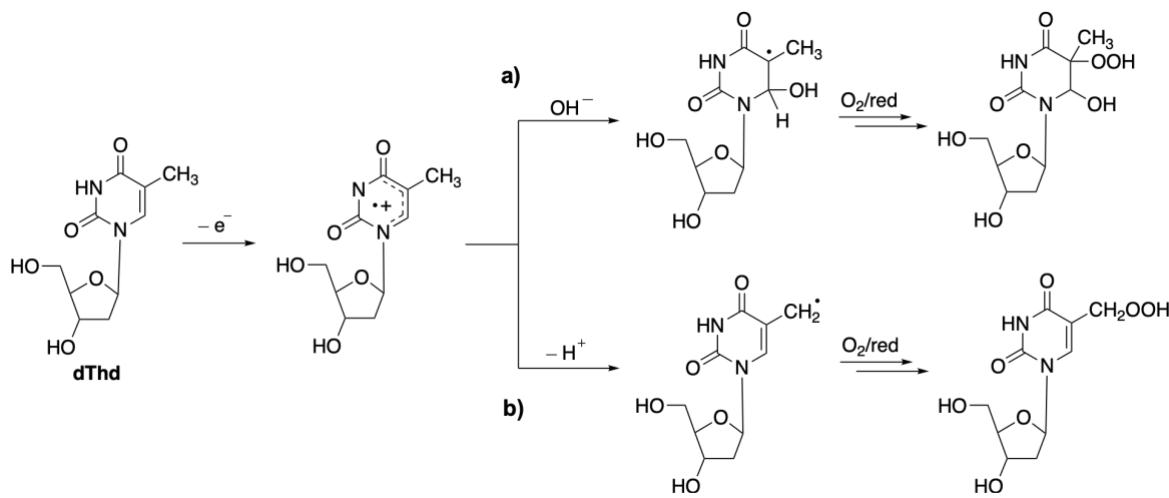
Table 2. Reduction potential of biological targets.

One electron reduction	E^{o'} (V)
α -TO,H ⁺ / α -TOH	0.5 (334)
PUFA [•] ,H ⁺ / PUFA-H	0.6 (334)
H-Asc [•] ,H ⁺ / H-Asc ⁻	0.7 (334)
RS [•] /RS ⁻ (Cys)	0.9 (334)
Allyl [•] ,H ⁺ /allyl-H	1.0 (89)
Trp [•] ,H ⁺ /TrpH	1.0 (334)
TyrO [•] ,H ⁺ /TyrOH	1.0 (92)
ROO [•] ,H ⁺ / ROOH	1.0 (89)
RO [•] ,H ⁺ / ROH	1.6 (89)
dG ^{•+} /dG	1.5 (334)
dA ^{•+} /dA	1.9 (93)
dT ^{•+} /dT	2.1 (93)
dC ^{•+} /dC	2.1(93)

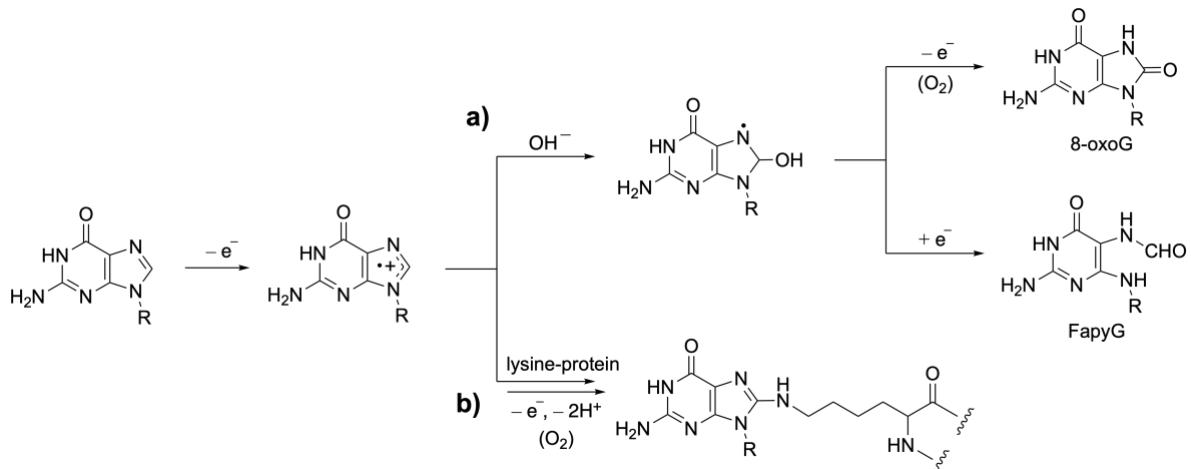
Table 3. Reduction potential and reactivity of oxidant species.^a

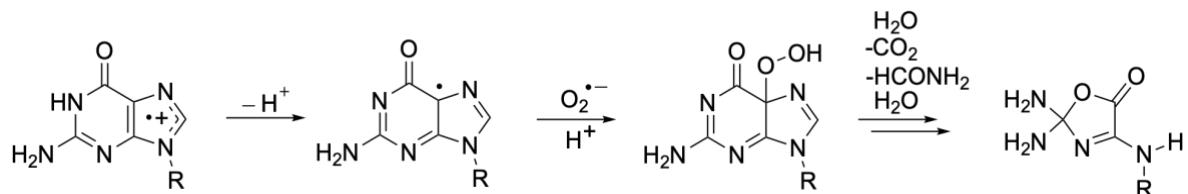

	Reduction potential (E ^{o'} , V) (89,90,334,334)	k_{GSH}^b (M ⁻¹ s ⁻¹) (334,334,334)
One electron		
HO [•] , H ⁺ / H ₂ O	2.3	1×10^{10}
CO ₃ ^{•-} , H ⁺ / HCO ₃ ⁻	1.8	5×10^7
O ₃ ^{•-} ,2H ⁺ / H ₂ O, O ₂	1.8	7×10^7
NO ₂ [•] / NO ₂ ⁻	1.0	3×10^7
HO ₂ ^{•-} , H ⁺ /H ₂ O ₂	1.1	4×10^5
O ₂ ^{•-} , 2H ⁺ /H ₂ O ₂	0.9	~10 to 10 ³
O ₂ (¹ Δ _g)/ O ₂ ^{•-}	0.7	2.4×10^6
O ₂ /O ₂ ^{•-}	-0.3	-
NAD ⁺ /NAD [•]	-0.9	-
Two electron		
H ₂ O ₂ , 2H ⁺ / 2H ₂ O	1.7	0.9

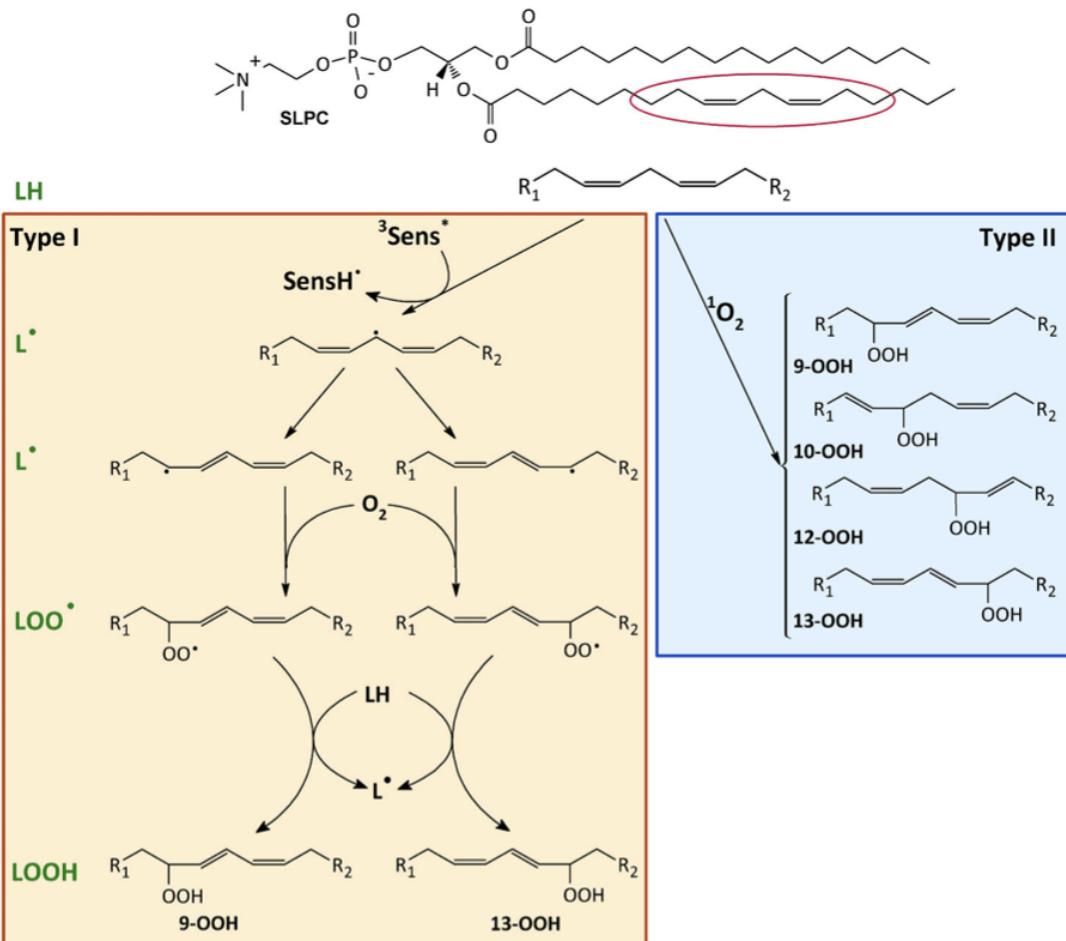
ONOOH, H^+/NO_2^- , H_2O	1.4	7×10^2
HOCl, H^+/Cl^- , H_2O	1.3	3×10^7
O_2 , $2\text{H}^+/\text{H}_2\text{O}_2$	0.3	-

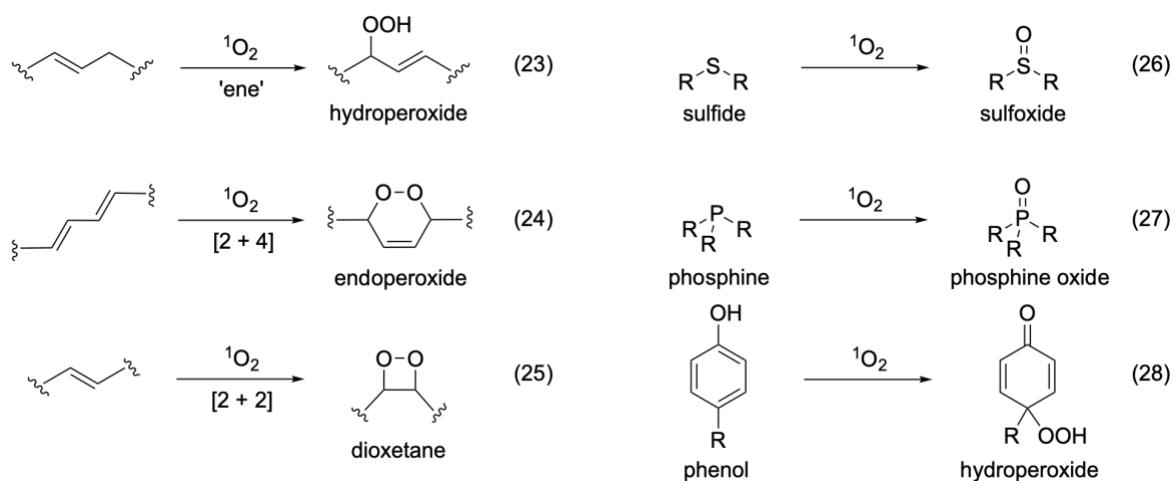

^a Table modified from (99). ^b Reactivity against GSH.

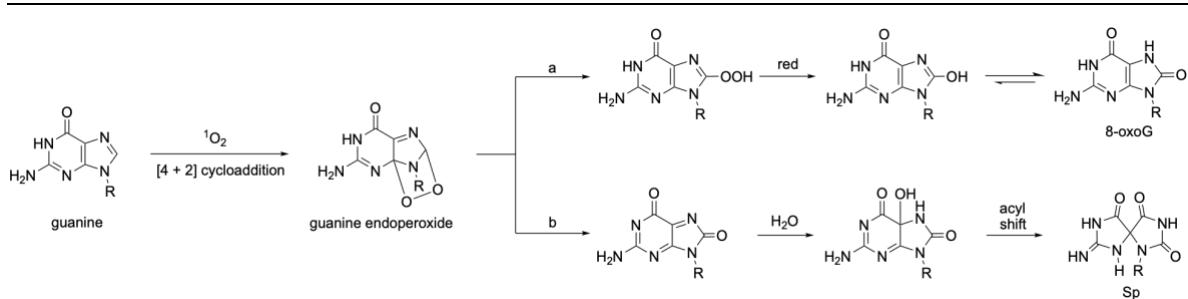
Photosensitized Oxidations	Type I	$\text{Sens}^* + \text{S} \longrightarrow \text{Sens}^{\cdot\cdot}/\text{SensH}^{\cdot} + \text{S}^{\cdot+}/\text{S}(-\text{H})^{\cdot}$ (1)
		$\text{Sens}^* + \text{O}_2 \longrightarrow \text{Sens}^{\cdot+}/\text{Sens}(-\text{H})^{\cdot} + \text{O}_2^{\cdot\cdot}/\text{HO}_2^{\cdot}$ (2)
Type II		$\text{Sens}^* + \text{O}_2 \longrightarrow \text{Sens} + {}^1\text{O}_2$ (3)
Oxygen independent photosensitization	TTET photoadduct	$\text{Sens}^* + \text{S} \longrightarrow \text{Sens} + {}^3\text{S}^*$ (4)
		$\text{Sens}^* + \text{S} \longrightarrow \text{Sens-S}$ (5)

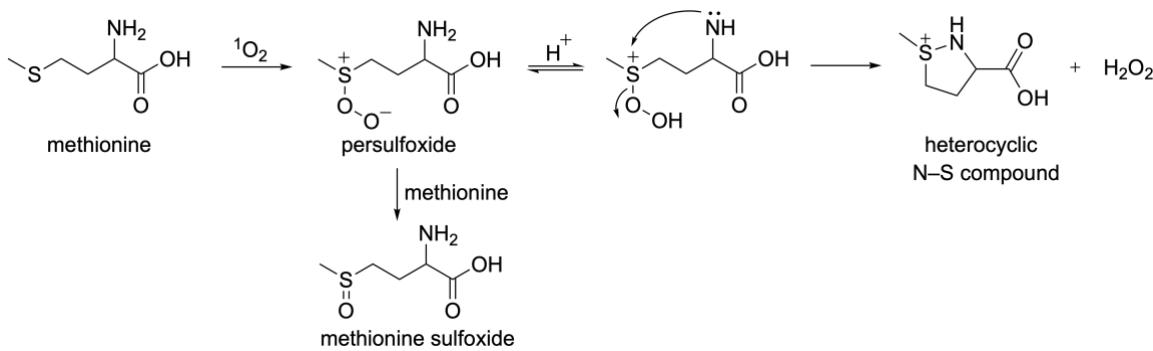

Scheme 1. First bimolecular events for each type of mechanism. Sens*: sensitizer excited state; S: substrate.

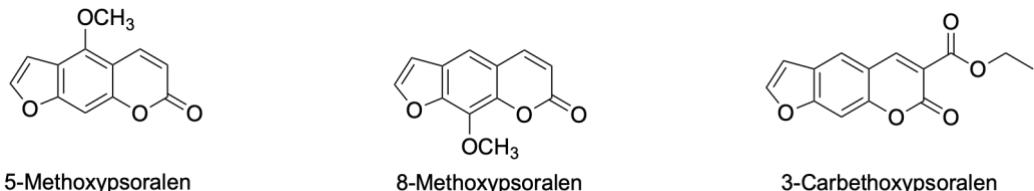

Scheme 2. Type I reactions. Subsequent reactions underwent by the initial radicals formed in reaction 1.

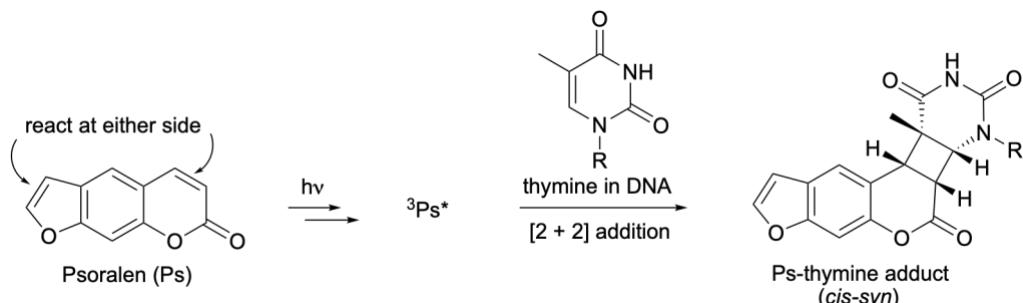

Scheme 3. Hydration and deprotonation of thymidine radical cations giving rise to hydroperoxides via transient peroxy radicals.

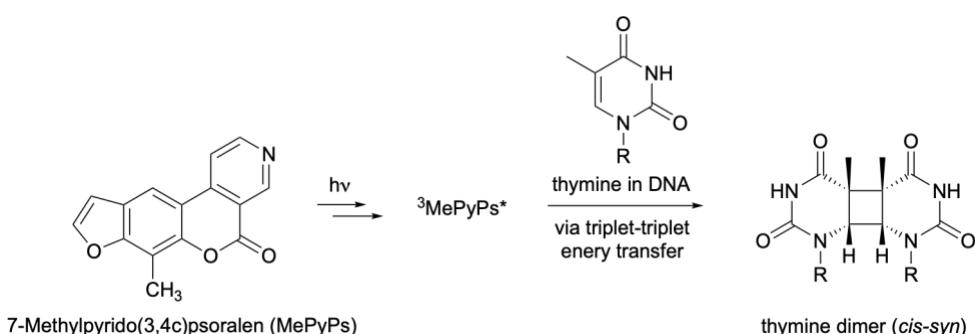

Scheme 4. Type I photosensitized reaction of guanine. Nucleophilic reactions of the guanine radical cation. Formation of (a) 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) via hydration and (b) lysine-guanine addition product.

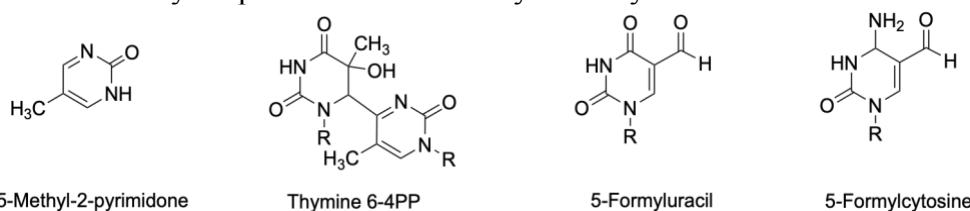

Scheme 5. Type I photosensitized reaction of guanine in a multistep formation of 2,2,4-triamino-5(2H)-oxazolone via O_2^- addition to the deprotonated guanine radical cation.

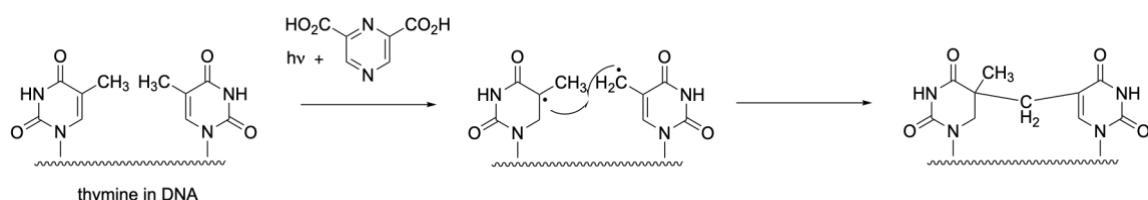

Scheme 6. Type I and type II photosensitized lipid peroxidation. PLPC, 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine, is an example of a phospholipid containing a saturated fatty acid and a polyunsaturated (PUFA) fatty acid, where the photoinduced peroxidation takes place.

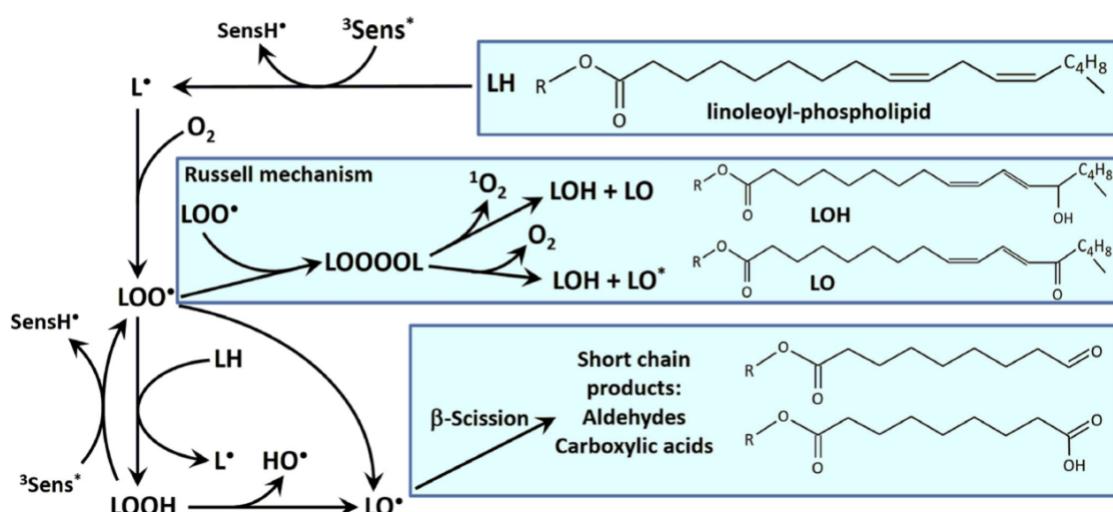

Scheme 7. Common reactions of ${}^1\text{O}_2$ with organic compounds.

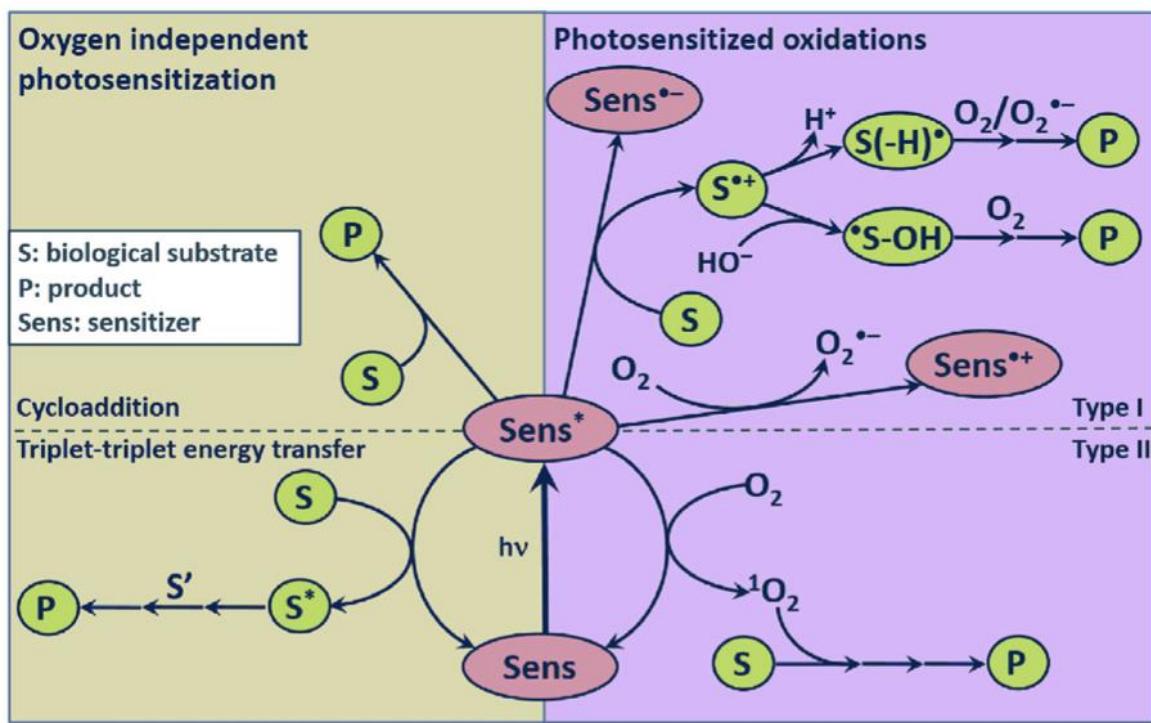

Scheme 8. Singlet oxygen oxidation of guanine in isolated nucleosides (a + b) and DNA (a).


Scheme 9. Reaction of methionine with singlet oxygen in aqueous solution.


Scheme 10. Psoralen structures. Mono (3-carbethoxysoralen) and bifunctional (5-methoxysoralen, 8-methoxysoralen) psoralens.


Scheme 11. Psoralen photocycloaddition reactions. Formation of *cis*-*syn* pyrone-side monoadduct to thymine.


Scheme 12. Pyridopsoralen sensitized thymine-thymine dimerization.


Scheme 13. Triplet-triplet energy transfer photosensitizers of cyclobutane pyrimidine dimers: photoinduced and oxidatively generated pyrimidine base modifications.

Scheme 14. Sensitized formation of the “spore photoproduct”.

Scheme 15. Simplified mechanism of type I photoinduced lipid oxidation leading to products different from hydroperoxides (LOOH). As an example, some representative products of linoleic acid are shown. LH, phospholipids; L·, alkyl lipid radical; LOO·, peroxy lipid radical; LO·, alkoxy lipid radical; LOH, hydroxy derivatives; LO, carbonyl derivative.

Scheme 16. Simplified map of the main pathways of photosensitized reactions involving biological targets.