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Abstract. Flexible fine-grained weather forecasting is a problem of na-
tional importance due to its stark impacts on economic development and
human livelihoods. It remains challenging for such forecasting, given the
limitation of currently employed statistical models, that usually involve
the complex simulation governed by atmosphere physical equations. To
address such a challenge, we develop a deep learning-based prediction
model, called Micro-Macro, aiming to precisely forecast weather con-
ditions in the fine temporal resolution (i.e., multiple consecutive short
time horizons) based on both the atmospheric numerical output of WRF-
HRRR (the weather research and forecasting model with high-resolution
rapid refresh) and the ground observation of Mesonet stations. It in-
cludes: 1) an Encoder which leverages a set of LSTM units to process
the past measurements sequentially in the temporal domain, arriving at
a final dense vector that can capture the sequential temporal patterns;
2) a Periodical Mapper which is designed to extract the periodical pat-
terns from past measurements; and 3) a Decoder which employs multiple
LSTM units sequentially to forecast a set of weather parameters in the
next few short time horizons. Our solution permits temporal scaling in
weather parameter predictions flexibly, yielding precise weather forecast-
ing in desirable temporal resolutions. It resorts to a number of Micro-
Macro model instances, called modelets, one for each weather parameter
per Mesonet station site, to collectively predict a target region precisely.
Extensive experiments are conducted to forecast four important weather
parameters at two Mesonet station sites. The results exhibit that our
Micro-Macro model can achieve high prediction accuracy, outperforming
almost all compared counterparts on four parameters of interest.

1 Introduction

Weather forecasting in the temporal domain is a critical problem of national
importance, closely tied to the economic development and human livelihoods.
However, accurate forecasting remains open and quite challenging, especially in
the context of precise and fine-grained prediction over multiple temporal resolu-
tions. Such a short-term and fine temporal resolution prediction relates tightly to
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agriculture, transportation, water resource management, human health, emer-
gency responses, and urban planning, essential for taking such timely actions
as generating society-level emergency alerts on convection initiation, producing
real-time weather guidance for highways and airports, among others.

To date, the most prominent and widely used national forecasting model is
called Weather Research and Forecasting (WRF) with HRRR (High Resolution
Rapid Refresh) [3]. It provides prediction for the weather parameters that cover
the United States continent. However, it is an hourly prediction model, which
can only coarsely forecast the weather parameters in the resolution of one hour,
failing to capture finer time granularity needs (say, the 5- or 10-minute time
horizon) in weather forecasting. This is largely due to the high computation re-
quirement and voluminous data outputs associated with this model, involving
complex simulation of physical governing atmospheric flows [16]. Its prediction
accuracy is far from satisfaction, as a result of the employed statistical models,
whose capability of extracting fine-grained weather patterns is limited. Mean-
while, more than three dozen of regional Mesonet networks exist under the U.S.
National Mesonet Program, with each network involving tens or hundreds of
observational stations for gathering near-surface weather measurements periodi-
cally. Mesonet Stations provide site-specific real datasets in finer temporal gran-
ularity (typically in minutes). For example, our experimental evaluation makes
use of datasets gathered by the SA Mesonet, which covers South Alabama by 26
observational stations to gather data once in every minute [2].

Recent advances in machine learning technologies have promoted weather
forecasting into a new era. Many studies have attempted to leverage the neural
network-centric techniques in weather forecasting, producing promising results.
These techniques include, but are not limited to, the deep neural network (DNN),
convolutional neural network (CNN), long short-term memory network (LSTM),
generative adversarial network (GAN), and autoEncoder, for predicting such
weather parameters as precipitation [14,18,27], wind direction and speed [4,10,
15,19], solar radiation [5,12], air quality [28], weather changes [13,26], and many
others. However, known parameter forecasting models developed so far cannot
yield accurate enough predictions in fine-grained temporal resolution over flexible
time horizons.

This paper aims to develop a new forecasting model, termed Micro-Macro,
for e↵ective and precise prediction on weather parameters in the fine-gained
temporal resolution, by taking both micro inputs from Mesonet Stations [1]
and macro inputs from Weather Research and Forecasting (WRF) with HRRR
(High Resolution Rapid Refresh) [3] computation outputs, for the first time. We
leverage the prominent deep learning technologies that take the existing massive
atmospheric data sets (resulting from WRF-HRRR numerical prediction) and
surface observation data (gathered via existing Mesonet networks) as the input
to produce fine-grained weather forecasting in the temporal domain for target
regions of interest. Specifically, the developed model includes three components:
1) an Encoder which processes the time sequence data to capture the temporal
domain variation of weather conditions, 2) a Periodical Mapper which extracts
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the periodical pattern of the time sequence data, and 3) a Decoder which predicts
a sequence of values corresponding to di↵erent time points. Specifically, each
LSTM unit in the Encoder can learn the key features from inputs and then
outputs its hidden state to the next LSTM unit, which can continue to learn
the key features from both the previous input and the current input, in terms
of time sequence characteristics. This results in a dense vector, including rich
information for the weather condition’s variation in the temporal domain out of
the atmospheric output and surface observation. Meanwhile, a Periodical Mapper
can capture the periodical pattern of the data and generate a dense vector for
enhancing the learning of temporal data patterns. Both dense vectors are used
by the Decoder to forecast the weather parameters in the next few continued
time horizons. This model incorporates the near surface observation and the
atmospheric numerical output, which are complementary with each other to let
our model better use relevant past measurements for forecasting, significantly
improving prediction accuracy.

We conduct experiments to predict a set of weather parameters. Our exper-
imental results show that the developed Micro-Macro model instances, dubbed
modelets, outperform almost all the compared solutions in forecasting tempera-
ture, humidity, pressure, and wind speed.

2 Related Work

Abundant applications of machine learning techniques to weather forecasting
exist. This section reviews the recent advances in such applications, which mostly
follow two lines of work.

The first line aims to explore whether the neural network is capable of sim-
ulating the physical principles of atmosphere systems. In particular, Dueben et
al. [11] employed two neural networks, i.e., Global NN and Local NN, to simu-
late the dynamics of a simple global atmosphere model at 500 hPa geopotential.
The results concluded that prediction outcomes by the neural network models
can be better than those of the coarse-resolution atmosphere models for a short
duration under the 1-hour time scale. Scher [21] applied the CNN structure with
autoEncoder setup to learn the simplified general circulation models (GCMs),
which can predict the weather parameters up to 14 days. Weyn et al. [25] lever-
aged the CNN with LSTM structure to achieve a 14-day lead time forecasting
as well. Vlachas et al. [22] employed the LSTM model to reduce the order space
of a chaotic system. However, known proposed solutions along this line all just
focused on developing prediction models for simulated or simplified climate envi-
ronments, without taking into account the real-world conditions, which tend to
be rather complex. Their applicability and e↵ectiveness on real environments are
still questionable, given their complex conditions in practice. For example, the
actual measurements from Mesonet stations are highly dependent on local con-
ditions. In addition, their solutions cannot be applied to fine-grained predictions
with flexible time horizons in the desirable temporal resolution.
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The other line of work aims to leverage the neural networks to develop new
models for the real-world weather parameters prediction. For example, [19] lever-
aged the LSTM and fully connected neural networks to predict the wind speed at
an o↵shore site, by capturing its rapidly changing features. Grover et al. [13] com-
bined the discriminatively trained predictive models with a deep neural network
to predict the atmospheric pressure, temperature, dew point, and winds. [27]
proposed a convolutional LSTM model to predict precipitation. Pan et al. [18]
employed the CNN with delicately selected stacked frames for precipitation fore-
casting. [14] proposed a model with the autoEncoder structure to predict rain-
falls. [4] forecasted the hurricane trajectories via an RNN structure. [12] and [5]
employed the LSTM structures to predict the solar radiation and photovoltaic
energy, respectively. [28] proposed a deep fusion network to predict air qual-
ity. [26] developed a deep-CNN model on a cubed sphere for predicting several
basic atmospheric variables on a global grid. However, all aforementioned work
still cannot predict weather parameters accurately in fine granularity over flexi-
ble time horizons, for a desirable temporal resolution. Hence, accurate weather
prediction and fine-grained temporal resolution across flexible time horizons re-
mains an open and challenging problem.

3 Pertinent Background

In this section, we describe Mesonet near surface observation and WRF-HRRR
(Weather Research and Forecasting with High Resolution Rapid Refresh model)
prediction model to illustrate their limitations in precise weather forecasting.

Mesonet [1] is a national supported program that comprises a set of auto-
mated weather stations located at some specific areas in the USA. Its towers
aim to gather meteorological- and soil- measurements relevant to local weather
phenomena. Each station monitors tens of atmospheric measurements, includ-
ing temperature, rainfall, wind speed, and others, once per minute for every day
since its establishment.

WRF with HRRR prediction: The WRF model takes actual atmospheric
conditions (i.e., from observations and analyses) as its input to produce outputs
that serve a wide range of meteorological applications across national scales.
WRF with HRRR weather forecast modeling system is nested in the Rapid
Refresh model for predicting weather parameters that cover the United States
continent with a resolution of 3 km for a total of 1059 ⇥ 1799 geo-grids. The
prediction outputs are produced hourly, over the next consecutive 18 hours. In
each geo-grid, there are up to 148 parameters, representing the temperature,
pressure, among many others, to signify the predicted weather condition. A
1059 ⇥ 1799 matrix is employed to keep each parameter’s outputs, with each
entry mapping to one geolocation of the United States map.

However, both Mesonet and WRF-HRRR have their respective limitations.
For Mesonet, the involved stations are only for gathering the current near-surface
measurements, unable to predict future values. For WRF-HRRR, its prediction
accuracy is far from satisfaction, besides its hourly scale prediction to limit its
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suitability for meteorological applications that requires high temporal resolutions
(say, 5 min, 15 min, or 30 min).

4 Learning-based Modelets for Weather Forecasting

This paper aims to develop learning-based meteorology (abbreviated as Meteo)
modelets, for correctly and concurrently predicting multiple weather parameters
in a flexible and fine-temporal resolution, based on the inputs of both minute-
level near-surface observations from Mesonet and WRF hourly atmospheric nu-
merical outputs, referring respectively as the Micro and the Macro datasets. We
take the Micro dataset as the main input and screen a set of relevant param-
eters in Macro dataset for incorporation to predict target weather parameters
correctly. Our goal is to extract the temporal variation features from the pre-
vious measurements to precisely predict the weather condition in the next few
time horizons (e.g., next T min, 2T mins, etc.). It is challenging as the two
data sources have di↵erent scales in the temporal domains. To address such a
challenge, the prominent machine learning technology is leveraged to learn the
temporal sequence patterns from both datasets that can capture variation of
weather conditions to predict specific parameters. A new Meteo modelet, named
Micro-Macro, is developed to permit temporal downscaling and upscaling in
weather parameter predictions flexibly, arriving at precise weather forecasting
in desirable temporal resolutions. We will first outline a Micro model by just
relying on the Micro dataset as the input for prediction. Then, we describe our
Micro-Macro model which takes both Micro and Macro datasets as the input
for precisely forecasting weather parameters via separate modelets (i.e., model
instances) in the temporal domain.

4.1 Micro Model

Micro Encoder Factor Decoder
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Fig. 1: Structure of Micro model.
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Most atmospheric data has the noticeable temporal sequence patterns and
periodical patterns, whereas weather conditions (i.e., parameters) change con-
tinuously with time. To capture such patterns for forecasting in continuous T -
minute horizons, we leverage a structure with an Encoder, a Decoder, and a
Periodical Mapper, with the first two both include the (LSTM) networks and
the last one is in the neural network structure, to capture the time sequence pat-
terns and periodical patterns, respectively. The structure is shown in Figure 1.
Notably, although the encoder-decoder LSTM model has been widely applied
to sequence tasks, e.g., language translation [9] and question answering [7], the
physical meaning in each entry for the input vectors is not well explored. This
results in the loss of a✏uent element-wise features, only to encode all features
into a dense vector, which cannot work e↵ectively here. The customized design
is desired under our application context. The details of three components are
illustrated as follows.

Micro Encoder. It comprises one LSTM network, to encode the temporal se-
quence data in a certain period into one single dense vector, representing the
temporal feature variation. To forecast weather condition in next continuous
T -min horizons, we consider the past N ⇥ T minutes surface observation from
Mesonet as a sequence of data frames, with each one including T -min observed
weather condition to serve as the input. Here, N represents the number of se-
lected T -min intervals. The LSTM unit will learn the key features and update
its corresponding hidden state vector (denoted as ht�1). Such a vector together
with the next data frame is input to the next LSTM unit to produce a new
hidden state vector ht, which can be logically modeled as follows:

ht = LSTMh(ht�1,xt) , (1)

where LSTMh represents a series of steps to generate the next hidden states
and xt denotes the data frame in time slot t. In the end, a dense vector hN is
generated, including the aggregated temporal patterns variation from N inputs.

Periodical Mapper. This design is used to process the input data sequence
x = {x1,x2, ...,xt, ...,xN} for extracting the periodical patterns, comprising two
core components: Period Encoder and Period Decoder. Each weather parameter
i has a Period Encoder, with its dense vector p(i). In the end, the sequence data
x is encoded into a dense vector pN , by summarizing the dense vector from all
M weather parameters, yielding:

p(i) = Pe,i(x̄(i)), pN =
MiX

i=1

p(i) . (2)

where x̄(i) is a vector with entries from the i-th weather parameter value of
x1,x2, ...,xt, ..., and xN , Pe,j(·) represents a Period Encoder corresponding to
the i-th weather parameter, which is a neural network structure.

The Period Decoder decodes each dense vector p(i) to a periodical index
vector po(i), expressed as

po(i) = Pd,i(p(i)) , (3)
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where Pd,i is also a neural network structure. If the input temporal sequence
x̄(i) matches a periodical pattern, the corresponding entry will be 1 and all
other entries will be 0.

(a) Wind speed example in 96 hours

(b) Wind speed density (c) Binary pattern (d) Periodical pattern

Fig. 2: Example on periodical pattern discovery.

In the training phase, we derive the periodical index vector from the histor-
ical weather records. We run a toy example to explain this step. For example,
Figure 2(a) shows the wind speed within 96 hours, taken from the Mesonet
observation dataset. We first need to find a reference point, which shall help dis-
cover the periodical pattern of the weather records. Since the data distribution
is unknown, we leverage Kernel Density Estimation [8] to find the density of
observation values, with the density likelihood to yield:

f̂h(Xi) =
1

nh

nX

j=1

�(
Xi � Xij

h
) , (4)

where f̂h(Xi) is the density function of measurement Xi. Xij is the j-th observed
value of Xi corresponding to a weather parameter. n is the total number of data
points and h is an empirical parameter which is set to 0.85 in our experimental
evaluation. � denotes the normal distribution. By maximizing Eqn. (4), we get
the density distribution as shown in Figure 2(b) and pick up the largest density
point of f̂h(Xi) as the reference point, i.e., 5.03. We then consider the area that
covers top-15% density values as the reference area Ri. A binary sequence Bi of
measurement Xi is then calculated. That is, if the observed value Xij 2 Ri, 0 <
j  n, we set Bij = 1, otherwise Bij = 0, as shown in Figure 2(c). Afterwards,
we conduct the Discrete Fourier Transform (DFT) [24] on the sequence Bi to
transform them to n complex numbers, denoted as Di : [Di1, Di2, .., .Dij , ..., Din].

Then we calculate the periodogram Fij = kDijk2 for each complex number to
get Fi. By taking Inverse Discrete Fourier Transform (IDFT) [17] on Fi, we
derive the Periodic Correlation Ii [6], as shown in Figure 2(d).

In the curve of Ii, we identify all peak values. Each interval between two
neighboring peak values is denoted as one period. We equally divide each time
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period into P = 24⇤60/T time slots and label the time slots from 1 to 24⇤60/T
sequentially as the periodical indices. We then label the input sequence x with
an index, according to x’s timestamp on Ii. When training, we use Mean Square
Loss as Period Decoder’s loss.

Factor Decoder. The Factor Decoder is to predict a set of particular weather
parameters in the next few time horizons. It includes a set of LSTM units,
to predict the weather parameter at consecutive time intervals, denoted as
TN+1, TN+2, · · · , following the previous N ⇥ T minutes. The first LSTM unit
takes the dense vector hN and pN as its input for predicting the vector of
weather parameter y1 in the next interval TN+1 as follows,

y1 = LSTMo(y0, hhN ,pN i) , (5)

where LSTMo denotes a series of steps to calculate outputs and y0 is an empty
output vector, whereas hhN ,pN i denotes concatenation of hN and pN . For the
prediction in each of the remaining time intervals, we take both the hidden state
vector sk and the previous predicted vector yk as inputs to update the current
LSTM state. The new hidden state sk+1 can be logically expressed as: sk+1 =
LSTMs(sk,yk). Note that, we retake the pervious output as new input to update
the new hidden state. The next output is given by yk+1 = LSTMo(yk, sk+1).

In the training phase, each (N ⇥ T )-minute data will be used as inputs and
the data from subsequent M time intervals will be used for labeling. Here, M
represents the number of time horizons that we aim to predict. For example, to
predict a weather parameter, say temperature, we consider a set of relevant pa-
rameters in N⇥T minutes as the features and label the temperature values in the
following time intervals of TN+1, TN+2, · · · , TN+M . As the surface observation
data are generated once in every minute, we average the values of each parame-
ter over T minutes as the features. Similarly, for labeling, we take the averaged
temperature value within each T minutes. The N data frames (corresponding
to the (N ⇥ T )-minute past measurements) and the labeled temperature values
(in M subsequent intervals) are inputted to Micro Encoder. At the Decoder, we
start from the first LSTM unit and predict a set of weather parameters at the
time interval of TN+1. Both the hidden state from this LSTM network and the
predicted value of TN+1 are then input to the second LSTM for predicting TN+2.
This step continues until all values for the next M time horizons are predicted.

4.2 Micro-Macro Model

As the number of observed parameters at Mesonet is limited, it is insu�cient
for forecasting just based on the Micro datset. Hence, we incorporate the Macro
dataset as a complementary input to the model for better forecasting. Given the
Macro dataset is hourly generated and surface observation is updated in each
minute, how to integrate such two data sources is still a challenging problem, as
it requires downscaling the atmospheric output.

The structure of Micro-Macro model is shown in Figure 3, which is similar
to that of the Micro model, with a di↵erence in the input that includes an
additional Macro Encoder. In Macro Encoder, we divide each hour into 60/T
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Fig. 3: The structure of Micro-Macro model.

time frames and use this hourly output from Macro dataset to represent the
first time frame’s value. The values of all remaining time frames are indicated
as “Empty”. All hourly datasets are processed in the same way. When inputting
to the Encoder, if a frame has an empty value, the corresponding LSTM unit
in the Macro Encoder takes only the hidden state vector from the previous unit
as the input to self-update its hidden state vector; otherwise, it executes in the
same way as in Micro Encoder. The Macro Encoder outputs a dense vector,
denoted by gN , as depicted in Figure 3. To extract the time sequence features
from both Micro and Macro datasets, we concatenate the dense vectors (hN ,
gN , and pN ) from the Micro Encoder, Macro Encoder and Periodic Selector,
i.e., h = hhN ,gN ,pN i . The decoder in the Micro-Macro model is similar to
that in the Micro model. It takes the concatenated dense vector h as its input to
perform forecasting for subsequent time horizons sequentially. Notably, in both
training and prediction phases, the Micro-Macro model takes the data of the
same geo-grid from Micro and Macro datasets at an identical time interval.

5 Experiment

We conduct experiments to evaluate the performance of Macro-Micro model
for precise weather parameters (i.e., temperature, humidity, pressure, and wind
speed) prediction regionally.

5.1 Setting

Datasets. We take the near surface observation from SA Mesonet [2] and the
WRF-HRRR [3] atmospheric numerical output as our experimental datasets,
which are called as Micro and Macro datasets, respectively. The Micro dataset
includes 26 automated weather stations for monitoring the real-time meteorologi-
cal phenomena. The monitored weather conditions include temperature, rainfall,
wind speed and direction, soil temperature and humidity, once in every minute.
SA Mesonet stations Elberta and Atmore are selected for our experiments, with
the former located closer to the Gulf Shore and the latter one away from the
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Table 1: Parameter information

Parameter Measurement Mounting Height Measuring Range

TEMP Air Temperature 2 m -40 to 60�C
HUMI Relative Humidity 2 m 0 to 100%
PRES Atmospheric Pressure 1.5m 600 to 1060mb
WSPD Wind Speed 2 m 0 to 100 m/s

shore. In total, eight Micro-Macro model instances (called modelets) are in-
volved, one for a weather parameter at each station site. We take the ground
observation from years 2017 and 2018 as the training dataset, while taking the
observation from 2019 as the test dataset. Macro dataset is the predicted output
from WRF-HRRR model. The numerical output in the years 2017, 2018, and
2019, corresponding to the stations of Atmore and Elberta, are taken to conduct
our experiments. To forecast temperature, humidity, pressure, and wind speed
(see details in Table 1), we select their respective most relevant parameters from
Micro dataset and ten most important parameters from the Macro dataset. Ta-
ble 2 lists the most relevant parameters selected from Micro dataset for training
the weather measurements of temperature, humidity, pressure, and wind speed,
respectively. Table 3 lists 10 most important parameters that are selected from
Macro dataset.

Table 2: Relevant parameters from Micro dataset

Predictions Measurement parameters

TEMP
Vitel 100cm d, IRTS Body, SoilCond, SoilWaCond tc,

Vitel 100cm b, eR, wfv, Vitel 100cm a, SoilCond tc, RH 10m

HUMI
Temp C, Vitel 100cm d, Vitel 100cm a, Vitel 100cm b, AirT 2m, AirT 10m

WndSpd Vert Min, SoilT 5cm,Pressure 1, PTemp, IRTS

PRES
RH 10m, SoilCond, Temp C, Vitel 100cm d,

AirT 1pt5m, IRTS Trgt, PTemp, Vitel 100cm b, SoilSfcT, AirT 10m

WSPD
WndSpd 2m WVc 1, WndSpd 10m, WndSpd 2m Max,

WndSpd Vert Tot, WndSpd 2m Std, QuantRadn,
WndSpd 2m WVc 2, WndSpd Vert, WndSpd 10m Max, WndDir 2m

Table 3: Relevant parameters from Macro dataset

Feature ID Description

9 250hpa U-component of wind (m/s)
10 250hpa V-component of wind (m/s)
55 80 meters U-component of wind (m/s)
56 80 meters V-component of wind (m/s)
61 Ground moisture (%)
71 10 meters U-component of wind (m/s)
72 10 meters V-component of wind (m/s)
102 Cloud base pressure (Pa)
105 Cloud top pressure (Pa)
116 1000m storm relative helicity (%)
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Compared solutions. We compare our results with the following ones: 1) Ob-
servation: We take the ground observation monitored in 2019 from Mesonet
at stations Atmore and Elberta, respectively, to inspect our results; 2) WRF-
HRRR: The predicted atmospheric numerical output in 2019 from WRF-HRRR
model; 3) SVR [20]: A regression model based on support vector machine; 4)
SNN-Micro [11]: A neural network model which takes the Micro dataset for
training; 5) SNN-both [11]: A neural network model that takes the aligned data
from both Micro and Macro datasets for training; 6) DUQ512 [23]: A deep un-
certainty quantification model which has one GRU layer with 512 hidden nodes;
and 7) DUQ512�512 [23]: A deep uncertainty quantification model which has two
GRU layers with 512 hidden nodes in each layer.

Experiment setup. We take data from the first season in 2017 and 2018 for
training, and predict the weather conditions (i.e., temperature, humidity, pres-
sure, and wind speed) in the same season in 2019. The time is divided with a
sequence of T = 5-min intervals. We take each set of 60 minutes’ (i.e., N = 12)
data as the features, and label the weather parameter values in the following
30 minutes, with each 5 minutes as one time interval and the averaged value
as the label. For prediction, we also take past 60 minutes’ measurements as the
input to forecast the next 6 continuous time intervals’ values. As SNN-Micro and
SNN-both cannot conduct the sequence of prediction, we only let it predict the
next time interval immediately after every 60 minutes’ measurement. Both of
them employ the 3-layer neural network, with three hidden layers including 200,
100, and 20 neurons, respectively. The input sizes are 10 and 20 respectively.

Each LSTM in the Micro model includes 256 hidden states, whereas every
Encoder and Decoder of the Micro-Macro model has 256 and 512 hidden states,
respectively. Root Mean Squared Error (RMSE) is employed to gauge the pre-

diction error: RMSE =
q

1
n

Pn
i=1(Yi � Ŷi)2, where Ŷ and Y denote the vectors

of predicted and observed values, respectively. n is the number of data values.

5.2 Overall Performance

Table 4: RMSE values of our modelets at Atmore and Elberta stations

0 to 5 min 5 to 10 min 10 to 15 min 15 to 20 min 20 to 25 min 25 to 30 min

Atmore

TEMP 0.502 0.531 0.564 0.601 0.632 0.670
HUMI 4.431 4.507 4.552 4.707 5.122 5.802
PRES 1.087 1.133 1.139 1.156 1.184 1.235
WSPD 0.396 0.552 0.572 0.658 0.709 0.833

Elberta

TEMP 0.424 0.468 0.471 0.475 0.479 0.485
HUMI 1.852 1.873 1.893 1.905 1.933 2.015
PRES 1.075 1.213 1.245 1.309 1.452 1.607
WSPD 0.492 0.528 0.556 0.584 0.614 0.656

We conduct multiple experiments to forecast the values of various weather
parameters of interest at di↵erent time points in the first season of 2019. Table 4
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shows the averaged RMSE of our Micro-Macro model for forecasting the next 30-
minute weather conditions on temperature (TEMP), humidity (HUMI), pressure
(PRES), and wind speed (WSPD) at the two representative SA Mesonet stations
of Atmore and Elberta, when comparing to ground observations. Clearly, our
modelets achieve very small RMSE values for predicting temperature, pressure,
and wind speed. Although the RMSE values appear relatively larger for humility
prediction at both stations, but when comparing to its wide measurement range
(of 1 to 100%), these errors are negligible.

5.3 Comparing to Other Methods

Table 5: RMSE values of di↵erent methods for 5-minute prediction

Atmore Elberta

TEMP HUMI PRES WSPD TEMP HUMI PRES WSPD

WRF-HRRR 2.412 20.471 1.648 1.112 1.633 14.296 1.554 1.412
SVR 3.581 20.507 5.209 1.306 1.734 22.953 6.752 1.887
SNN-Micro 0.668 9.137 5.373 0.354 1.381 4.387 4.927 0.265
SNN-both 0.619 7.611 4.959 0.330 0.804 4.250 4.337 0.264
DUQ512 0.812 5.668 2.714 0.592 0.645 3.524 3.513 0.541
DUQ512�512 0.657 5.354 2.667 0.585 0.632 3.326 3.225 0.489

Micro-Macro 0.502 4.431 1.087 0.396 0.424 1.852 1.075 0.492

We next compare the results from our Micro-Macro model to those from
other methods on forecasting temperature, humidity, pressure, and wind speed.
Table 5 shows the prediction results of RMSE (in comparsion to ground obser-
vation) obtained from di↵erent methods for 5-minute prediction. We can see our
model outperforms all other models, with RMSE values of only 0.502, 4.431,
1.087 at Atmore, and with RMSE values of only 0.424, 1.852, 1.075 at Elberta,
on the forecasting of temperature, humidity and pressure, respectively. On pre-
dicting wind speed Micro-Macro model beats WRF-HRRR, SVR, DUQ512, and
DUQ512�512. SNN-Micro and SNN-both have similar prediction performance as
our Micro-Macro model on predicting the wind speed parameter, but notably,
they cannot conduct a sequence prediction for subsequent multiple time inter-
vals. SVR performs the worst on predicting all parameters at both stations.
WRF-HRRR also performs poorly on all parameters but pressure, which has
better accuracy than all other models except for our Micro-Macro model. This
demonstrates the necessity and importance of developing new meteorological
modelets for nationwide use in lieu of WRF-HRRR.

For prediction result illustration, we randomly select one day in the first
season of 2019 for forecasting its weather conditions, starting from 00:00am to
11:59pm. Figures 4(a), (b), and (c) exhibit the comparative results from our
modelets versus those from the ground observation, WRF-HRRR output, Mi-
cro, SNN-both, DUQ512 and SVR, respectively for forecasting temperature, hu-
midity, and pressure at Elberta station. We observe the curves of our modelets
are most close to those from ground observation. This demonstrates that our
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Fig. 4: Prediction of temperature, humidity, and pressure at Elberta station.

modelets can continuously provide the best prediction results for the examined
duration (of 24 hours), in comparison to other methods. Figure 5 shows the re-
sults of forecasting wind speed by Micro-Macro model, SNN-both, DUQ512, and
WRF-HRRR output for the same day. Micro-Macro, SNN-both, and DUQ512

models exhibit similar forecasting performance, being far better than the WRF-
HRRR output.
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Fig. 5: Prediction of wind speed at Elberta station.

5.4 Ablation Study

The ablation study is next conducted to signify the necessity and importance of
the Periodical Mapper component in our design. We denote Micro� and Micro-
Macro� as the models precluding the Periodical Mapper from the Micro model
and Micro-Macro model, respectively, for comparison. The RMSEs of di↵erent
variants for 5-minute prediction are listed in Table 6.

From this table, we observe that both Micro and Micro-Macro models sig-
nificantly outperform their respective variants (i.e., Micro� and Micro-Macro�

respectively) on predicting all four weather parameters at both stations, except
that the Micro-Macro model is slightly inferior to the Micro-Macro� model on
predicting wind speed at Elberta station. These results demonstrate that the
inclusion of Periodical Mapper is important to help elevate the overall prediction
performance. In addition, we also observe that our Micro-Macro model greatly
outperforms the Micro model, demonstrating the necessity of incorporating both
ground observation and the atmospheric numerical output for precise prediction.
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Table 6: Results of ablation study

Atmore Elberta

TEMP HUMI PRES WSPD TEMP HUMI PRES WSPD

Micro� 0.620 7.892 2.845 5.220 1.289 6.034 3.022 0.682
Micro 0.583 7.279 2.653 5.122 1.064 5.756 2.985 0.467

Micro-Macro� 0.526 4.494 1.114 4.970 0.467 1.860 1.088 0.447
Micro-Macro 0.502 4.431 1.087 4.426 0.424 1.852 1.075 0.492

5.5 Abnormal Weather Forecasting

We next validate the ability of our proposed Micro-Macro model for forecasting
abnormal weather conditions. Four abnormal weather conditions are considered,
i.e., chill, torridity, storm and rainstorm, which are assumed to associate with
the lowest temperature, highest temperature, highest wind speed, and highest
precipitation, respectively. We take the set of 5-minute intervals in the first
season of 2019 that have the lowest 5% temperature, highest 5% temperature,
highest 5% wind speed and highest 5% precipitation from the Mesonet ground
measurements. Our experiment is conducted to predict each respective weather
parameter in 5-minute intervals, with the one hour input.

Table 7: RMSE for abnormal weather prediction

chill torridity storm rainstorm

WRF-HRRR 3.098 1.534 5.269 1.694
SVR 3.711 1.715 6.311 4.219
DUQ512�512 1.322 0.864 2.695 2.907
Micro 0.452 0.779 2.231 2.301
Micro-Macro 0.311 0.642 2.045 1.637

Table 7 lists the averaged RMSE values for di↵erent methods for forecast-
ing chill, torridity, storm, and rainstorm, corresponding to lowest temperature,
highest temperature, highest wind speed, and highest precipitation, respectively.
Our Micro-Macro model clearly outperforms all other methods, with its RMSE
values of 0.311, 0.642, 2.045, and 1.637, respectively, in forecasting chill, torrid-
ity, storm, and rainstorm. SVR is the poorest performer. WRF-HRRR performs
worse than Micro, DUQ512�512, and Micro-Macro, in forecasting chill, torridity,
and storm. For rainstorm forecasting, it performs better than all other models
except our Micro-Macro model. DUQ512�512 performs worse than both Micro
and Micro-Macro models. These results demonstrate the e↵ectiveness of our
Micro-Macro model for forecasting abnormal weather conditions.

6 Conclusion

This paper has dealt with a novel deep learning model which takes both the
atmospheric numerical output and the ground measurements taken as inputs
for the very first time, dubbed as the Micro-Macro model for precise regional
weather forecasting in multiple short-term time horizons. Our model employs
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the LSTM structure to capture the temporal variation of weather conditions
and incorporates two data sources that include most relevant parameters for
individual weather parameter forecasting per Mesonet station site via one model
instance, called a modelet. A Periodical Mapper is also designed based on the
neural network and Fourier Transform to capture the periodical patterns of
temporal data. Experimental results demonstrated that our modelets can achieve
much better meteorological forecasting with finer time granularity than almost
all examined counterparts, to address an urgent need of national importance.
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