2021 IEEE International Conference on Networking, Architecture and Storage (NAS) | 978-1-7281-7744-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/NAS51552.2021.9605372

GPU-Assisted Memory Expansion

Pisacha Srinuan*, Purushottam Sigdel*, Xu Yuan*, Lu Peng?, Paul Darby*, Christopher Aucoin¥*,
and Nian-Feng Tzeng*

*University of Louisiana at Lafayette
{pisacha.srinuanl, purushottam.sigdell, xu.yuan, paul.darby, christopher.aucoinl, tzeng}@louisiana.edu

$Louisiana State University, Baton Rouge
Ipeng@lsu.edu

Abstract—Recent graphic processing units (GPUs) often come
with large on-board physical memory to accelerate diverse
parallel program executions on big datasets with regular access
patterns, including machine learning (ML) and data mining
(DM). Such a GPU may underutilize its physical memory during
lengthy ML model training or DM, making it possible to lend
otherwise unused GPU memory to applications executed
concurrently on the host machine. This work explores an
effective approach that lets memory-intensive applications run
on the host machine CPU with its memory expanded dynamically
onto available GPU on-board DRAM, called GPU-assisted
memory expansion (GAME). Targeting computer systems
equipped with the recent GPUs, our GAME approach permits
speedy executions on CPU with large memory footprints by
harvesting unused GPU on-board memory on-demand for
swapping, far surpassing competitive GPU executions.
Implemented in user space, our GAME prototype lets GPU
memory house swapped-out memory pages transparently,
without code modifications for high usability and portability.
The evaluation of NAS-NPB benchmark applications
demonstrates that GAME expedites monotasking (or
multitasking) executions considerably by up to 2.1x (or 3.1x),
when memory footprints exceed the CPU DRAM size and an
equipped GPU has unused VDRAM available for swapping use.

Keywords—GPUs (graphic processing units), NVMe (non-
volatile memory express), PCI Express, Virtual Memory Page
Swapping.

I. INTRODUCTION

The graphic processing unit (GPU) widely adopted recently
by computer systems possesses a growing on-board memory
capacity, up to 32 GB for the latest most powerful NVIDIA
GPU V100 and 24 GB for TITAN RTX GPUs [4].
Meanwhile, AMD RDNA 2 (Radeon RX 6800 Family) has 16
GB memory. Parallel software libraries, such as Nvidia CUDA
(compute unified device architecture) [1] and OpenCL [2],
expose GPU programming to users for accelerating application
executions ranging from simple web browsing to machine
learning (ML) and data mining (DM). Although the GPU has
sparked interest in parallelized tasks with regular data access
patterns (e.g., ML and DM), it is not preferred for applications
with large execution memory footprints and irregular data
accesses. The GPU execution time rises markedly under
irregular data accesses (in many scientific applications) and is
observed to surge greatly in our experiments when memory
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footprints approach or exceed the on-board GPU physical
memory size, as observed previously [5], [6].

We have evaluated off-load GPU execution performance
for different parallel applications with a range of execution
memory footprints, confirming significant performance
degradation caused by the virtual memory subsystem when
execution memory footprints approach or exceed the GPU on-
board memory, which is also referred to as video DRAM
(VDRAM) size, as detailed in Section 4 and also pointed out
ecarlier [5]. Specifically, the execution times of NAS Parallel
Benchmarks (NPB) [22] under the OpenMP version for CPU
workloads and under the CUDA version [23] for GPU
workloads, have been obtained by our experiments on the
testbeds whose host computers (Dell servers) are equipped
with TITAN RTX GPUs [4], as shown in Fig. 1. Their
accompanying workload memory footprints are listed in Table
I. From the table, it is evident that GPU workloads take far
more memory than the CPU counterparts, as also found
previously [8]. This is due chiefly to the heavy CUDA
software stack available to ease GPU-accelerated application
development.  Such exceedingly high memory footprint
overhead caused by the CUDA toolkit can make GPU
executions inferior to their CPU counterparts when the
workload memory footprint approaches the GPU physical
memory size. It is observed from Fig. 1(a) that GPU execution
times can dwarf their CPU counterparts as a result of much
larger memory footprints and thus far more page faults, besides
naive GPU memory virtualization support. This makes it
unsuitable to run applications with large data sizes on the GPU,
unless hardware provisions are made (like the addition of
NVLink 2.0 [10] for pooling VDRAM of two GPUs together,
as attempted in [5]). Recent studies on swapping GPU pages
to host machine memory smartly [6] and on tensor
eviction/prefetching and recomputation [7] during deep ML
training aim to let GPUs handle enlarged memory footprints,
but they target solely at workloads with regular computation
structures or predictable data access patterns known prior to
execution, not at general parallel workloads without regular
computation structures or predictable access patterns.

In contrast, CPU executions, with efficient virtual memory
support, are seen in Fig. 1(a) to exhibit gradually degraded
performance as the SP footprint grows (caused mainly by more
virtual memory page swapping), free from abrupt, drastic
performance declines.  Other applications in the NPB
benchmark suite [22] follow similar trends when comparing
their GPU executions versus compatible CPU executions.
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Hence, a server-grade computer equipped with the GPU
accelerator(s) can favor CPU executions over their GPU
counterparts for general parallel applications under (1)
monotasking with large memory footprints and irregular data
accesses, and (2) multitasking for resource consolidation [9]
with the aggregate memory footprint of co-running tasks to
exceed the GPU VDRAM size.

CPU executions on such a computer can avoid performance
degradation even when their memory footprints exceed the
host machine memory size by borrowing available GPU-side
memory on demand, called GPU-assisted memory expansion
(GAME). This work addresses GAME in support of memory-
intensive CPU executions for better performance. The GAME
approach can be promising in such a computer system because
(1) an equipped GPU usually has unoccupied on-board
memory, when applied for lengthy ML training because it is
often provisioned to handle extremely deep and wide ML
models, instead of regular ones, (2) communication bandwidth
between CPU and GPU will increase significantly under the
future PCle 5.0 [11], and (3) multiple GPUs may exist in a
system, each leaving a portion of its memory unoccupied when
conducting its ML/DM executions; collectively, available GPU
memory can be aggregated to accelerate CPU executions that
take place concurrently. Our GPU testbeds, for example, are
established for weather parameter prediction based on the
LSTM ML model, whose model training memory footprint is
found to be far smaller than 24 GB (of VDRAM in each
equipped TITAN RTX GPU [4]). Two GPU cards exist for
each of our testbeds in order to train many weather parameter
models  simultaneously [12], knowing that certain
motherboards can support many GPU cards (even up to 20
each via PCle over USB or Thunderbolt). Available GPU
memory so exposed serves as the swap partition to house cold
pages that are claimed by the operating system (OS) to free up
host memory needed upon page faults. Page faults come
naturally with memory virtualization that enables application
executions with arbitrarily large memory footprints on the CPU
[13]. In essence, GAME keeps swapped-out pages in GPU’s
fast VDRAM transparently instead of a slow storage device,
realizing low-latency memory page swapping efficiently to
boost execution performance without any additional hardware
cost, since GPUs are equipped to expedite ML training and
DM tasks (and not to serve dedicatedly as backing store).

GAME is implemented in user space to prototype testbeds
for evaluation, by employing a Linux network block device
framework, called nbdkit, to let GPU memory house fault-
memory pages (as swap-out partitions) transparently, without
any modification to application codes upon executed on CPU
for high usability and portability. The implemented GAME
testbed (under Ubuntu 20.04 Focal Fossa) has demonstrated
that CPU executions with an aid of GAME under multitasking
workloads (when aggregate memory footprints far exceed the
VDRAM size) can be an order of magnitude faster (see Fig. 3)
than their compatible GPU executions, confirming the
potentials of substantial advantages of CPU executions on
server-grade machines equipped with GPU accelerators.
GAME achieves marked speedups up to 2.1x (or 1.6x) in
comparison to its counterpart without GAME support for large
monotasking workloads under ample (or limited) VDRAM
available from the GPU for swapping use.

This work was support in part by the NSF under Grants 1948374 and
2019511.
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Fig. 1. CPU and GPU execution performance comparison.

TABLE 1. TOTAL WORKLOAD MEMORY FOOTPRINTS

Problem size 450 460 470 480 490 500
SP CUDA 29.3GB 31.2GB 32.8GB 34.6 GB 36.7 GB 38.5GB
SP OpenMP 15.4 GB 16.4 GB 17.5 GB 18.6 GB 19.8 GB 21.0GB

Although current GAME design has demonstrated its
advantages in support of general parallel executions on
computer systems equipped with GPU cards, further
improvement is possible. Specifically, instead of estimating
the maximal unused GPU memory before a GPU execution
starts (according to [14]), one can monitor and predict available
GPU memory amounts dynamically during execution (see
Section II.D). In addition, one may schedule the best
swapping use of available VDRAM over multiple GPUs in a
computer system or even two systems connected by the
NVLink 2.0 [10], taking GPU memory availability and PCle
communication load into consideration.

II. RELATED BACKGROUND

GAME harvests available GPU memory for use to
accelerate CPU executions with big memory footprints. Its
related background is outlined below.

A. GPU Applications and Memory Consumption

GPU application executions usually have different resource
needs (e.g., streaming multiprocessor counts, VDRAM,
communication bandwidth, etc.) at different execution stages,
just like CPU executions as documented previously [13].
Effort has been made for profiling GPU resource needs [15] or
for estimating GPU memory consumption [14] during GPU
executions. In particular, ML applications have regular
computation structures with orderly, known data access
patterns, making it possible to estimate memory consumption
reasonably precisely. For example, GPU memory
consumption under deep ML of VGG-16 (with the min-batch
size of 128) and TensorFlow is estimated to be 16.9 GB versus
the actual measured 17.4 GB, whereas LSTM under
TensorFlow is estimated to consume 4.3 GB versus the actual
4.1 GB [14]. When ML models are trained on a GPU, the
unused memory amount over the often lengthy training
duration is model-dependent and is known apriori, so that
GAME can easily utilize it to expedite CPU executions which
take place in the duration. We evaluate GAME on one of our
testbeds under varying amounts of GPU memory available to
hold CPU execution swapped-out pages on demand.

B. Network Block Devices
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Fig. 2. GPU-assisted memory expansion high-level design diagram.

The network block device (NBD) is a network protocol that
exposes software-emulated data blocks to the network. There
are many NBD implementations available in various types and
forms. Linux NBD is a basic NBD library included in the
Linux kernel, and it provides simple functionalities employing
the standard TCP/IP socket for communication. Mellanox
nbdX and NVMe over communication fabrics aim to provide
block devices through RDMA and Fiber channels [16]. Being
flexible, nbdkit, developed and maintained by Red Hat [17], is
a high-performance software framework for block devices. It
permits users to write plugins for managing unconventional
sources. We exploit nbdkit to realize our GAME for
intercepting every swapped-out and swap-in page request.
Additionally, NBDs are software emulated solutions, and
hence, they are not bonded to any hardware and available in
user space. Although the user space methods have greater
flexibility, they incur higher software overhead than their
kernel-level implementation counterparts.

III. DESIGN AND IMPLEMENTATION

The virtual memory (VM) subsystem is widely adopted by
OS for efficient memory utilization. It possesses many
benefits for execution processes, such as contiguous private
address space, process isolation, security, page frame sharing,
demand paging, and copy-on-write. VM allows the running
processes to allocate memory with the size far larger than that
of the system physical memory. Nvidia CUDA exploited the
VM technique to expand GPU memory onto host machine
memory, arriving at UVM (unified virtual memory).

Our GAME utilizes unused GPU memory on-demand to
quicken CPU execution under the virtual memory paradigm. It
aims to lower the CPU execution time by dynamically
borrowing available GPU VDRAM. GAME exposes GPU
memory as a block device to the host OS during low GPU
memory utilization upon a light GPU load (or an idle state).

Under Linux OS, GAME is mounted as a swap partition for
memory expansion via a block device. During process
execution, OS claims cold memory pages and evicts them to
the swap device periodically, known as page frame reclaiming.
More page frames are reclaimed under higher memory
pressure. Instead of a slower block storage devices like a hard
disk drive (HDD) or a solid-state drive (SSD), GAME keeps
evicted pages in available GPU memory areas, which is much
faster than resorting to other block storage devices. Nvidia
CUDA library is employed to let GAME transfer data pages
between GPU and CPU on demand transparently. Upon

receiving evicted pages from OS, if GAME observes low GPU
utilization with available memory to lend, it allocates a
VDRAM area to store data. Note that the memory area size is
configurable and must be a multiple of 4KB; thus, an allocated
memory area can contain several pages. Whenever GAME
predicts that the GPU is highly loaded with its memory mostly
occupied, GAME writes the evicted pages to a temporary file
(as one memory area) provisioned for the storage device (say,
/var/tmp), achieving identical performance as the baseline
SSD.

GAME keeps tracks of the GPU memory status using
memory area descriptors, each of which represents one
allocated memory area. The descriptors are managed in an
LRU linked list, with the least recently used entry placed at its
front for performance optimization. Maintained by CPU in
host memory, a memory area descriptor consists of three fields:
(1) sector number (the unit of block device referenced by OS),
(2) GPU memory address (a pointer returned from CUDA
memory allocation) for GAME to convert between two marked
locations interchangeably, and (3) the present bit vector (PBV)
to represent active pages in the memory area. The i bit of the
PBV is raised to convey that the i page of this memory area is
in use, and the bit is cleared when the corresponding page is
freed by OS. A memory area descriptor is created when its
associated memory area is first allocated for holding evicted
pages. After that, the descriptor is populated and placed at the
head of the linked list. On the other hand, whenever the
system frees a backed swapfile, GAME clears its associated bit
(set to zero) to denote that the page is no longer in use. If all
bits in the PBV are cleared, GAME releases the allocated
memory area back to GPU, realizing dynamic memory
expansion.

Fig. 2 depicts the scenarios when the GAME block daemon
receives a write-request (page frame reclamation) and read-
request (page fault) from OS. Under high system memory
pressure, a page (say, Px) is marked as a cold page and sent to
the block device subsystem from where the GAME daemon
intercepts the evicted page Px. As tracked by the dashed line in
Fig. 2, upon receiving Px, GAME checks the linked list for the
corresponding memory area descriptor where Px’s sector
number has resided. Suppose the descriptor exists in the list. In
that case, GAME writes the received Px to the determined
offset position, sets the corresponding present bit to 1 in the
PBYV, and brings the descriptor to the front of the LRU list. If
Px is new and its corresponding descriptor does not exist in the
LRU list, GAME allocates a new memory area in VDRAM
along with its descriptor, given that GPU is lightly loaded.
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Otherwise, instead of VDRAM, Px is redirected to the system
storage.

Similarly, a read request for a page that is previously
swapped-out (say, Py), causes a page fault. Intercepting the
page fault request from a block device interface for Py, GAME
looks up the memory area descriptor for Py, as denoted by the
dotted-dash line in Fig. 2. In this case, GAME always finds the
corresponding record in the LRU list that points to a target
location either in VDRAM or in the temporary file (i.e.,
/var/tmp). After moving the Py to the designated buffer, the
read request is fulfilled. Note that, at this point, Py still cannot
be released, with its present bit still set to 1 since the swapfile
can be requested by OS multiple times throughout the
execution course. All present bits will be cleared only when
the system explicitly releases them.

A. Kernel Mode and User Mode

To allow the system to utilize GPU memory, GAME
targets VDRAM as a block device that can be realized in both
kernel space and user space. The realization under kernel
space versus user space has different advantages and
limitations, as discussed next.

Natively supported by Linux, the block device driver can
be realized as a kernel module. The block device driver serves
as an entry point to a backing hardware device and is
responsible for orchestrating I/O requests produced by
applications [18]. Moreover, a block device driver is a glue
layer that controls hardware and provides random accesses to
the application's fix-sized block data. It is a low-level
implementation that aims at high performance [19]; thus, the
block driver is tied tightly to the system and is confined in
kernel space. Despite having thin overhead and high
performance, a kernel-level approach suffers from limited
accesses to high-level libraries, such as Nvidia CUDA.

Although GAME aims at high-performance support for
CPU execution to lean its implementation in kernel space,
major problems and concerns emerge with kernel space
implementation, since the Linux block driver has no access to
Nvidia CUDA, which is essential to interface with GPU
memory. Our first attempt at GAME implementation is to
involve three parts: (1) Linux block device driver as an entry
point (interface) to GPU memory, (2) user-level daemon as a
background service to orchestrate GPU memory via Nvidia
CUDA, and (3) a kernel module to provide kernel-user space
communication between two prior modules. Netlink Socket is
chosen for its full-duplex inter-process communication (IPC),
which can transfer sizeable data [20]. However, according to
our benchmarking results, the kernel-user solution exhibits
little to no performance gains over the user-level alternatives
due to its complex design with considerable software overhead.

Our ultimate GAME prototype is implemented in user
space alone for flexibility, portability, and full access to the
GPU library (Nvidia CUDA). The block device driver (see
Section 2.2) framework, called nbdkit, is employed to realize
the GAME prototype mainly due to three reasons: (1) for high
performance, old generic NBDs are avoided, (2) among NBD
variants, nbdkit does not require such specific features or
infrastructures as RDMA or InfiniBand, and (3) nbdkit is
available in C language with its proven excellent performance,

and it fits soundly with Nvidia CUDA API. We package
GAME as a nbdkit plugin and make it easy to install on any
Linux system, arriving at a portable user-level block device
service.

B. Nvidia CUDA Memory Management

Nvidia CUDA exposes GPU memory to users in three
memory addressing modes: (1) native cudaMemcpy(), (2)
unified virtual addressing (UVA), and (3) unified virtual
memory (UVM). From the three available methods, native
cudaMemcpy() is adopted since other two modes fail to meet
GAME’s requirements, as explained next.

UVA permits GPU cores to access CPU memory via direct
memory access (DMA) with CPU memory pinned and
registered in GPU’s page table. Hence, UVA serves opposite
purposes and is unsuitable for GAME.

UVM is designed to enable GPU memory virtualization
and reduce programming complexity in sophisticated tasks.
However, UVM abstracts the data location, rendering users to
have little control over data movement. Plus, GPU virtual
memory reveals low performance, management, and
utilization. These restrictions render UVM less attractive for
GAME implementation. On the other hand, all benchmark
codes executed on the GPUs of our testbeds for comparison
with compatible CPU executions, are enhanced with the
CUDA runtime API of cudaMallocManaged().

Being simple, cudaMemcpy() is the most robust and
reliable method as observed [5], [8], and it is also
recommended as a performance-optimized choice by Nvidia’s
guidelines [21]. Our GAME implementation thus adopts
cudaMemcpy() for high-performance data transfer between
CPU memory and GPU memory.

C. Asynchronous Data Transferring

Nvidia CUDA defines memory transfer from the host to a
device and from a device to the host as different independent
tasks that can operate concurrently [21]. However, due to PCle
characteristics, only one outstanding transfer in each direction
is achieved at a time [11]. Thus, it limits the concurrent CPU-
GPU data transfer streams to two.

By default, all CUDA execution kernels are assigned to the
default CUDA stream (stream #0); thus, they are synchronized
and executed in the FIFO order. To exploit coarse-grain
parallelism (on top of GPU’s fine-grain nature), programmer
must create multiple CUDA streams and launch CUDA kernels
into different streams manually.

GAME manages two separate CUDA transfer streams over
the PCle interconnect (see Fig. 2) and utilizes
cudaMemcpyAsync() for maximizing the bi-directional data
transfer throughput of the interconnect.

D. Memory Expansion Control

GAME can be provisioned with soft-limit and hard-limit
thresholds, indicating the GPU memory availability level for
GAME to act accordingly. It stops allocating GPU memory if
its usage reaches sofi-limit. GAME calls for releasing its
allocated memory areas back to GPU upon reaching hard-limit,
by gradually transferring the contents staged in GPU VDRAM
to temporary files (in /var/tmp), making immediate room for
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GPU. On the other hand, after GPU memory usage drops
below soft-limit, GAME gradually moves the page contents in
temporary files back to GPU VDRAM for ensuring its high
performance. The current GAME implementation and its
results presented in the next section are without dynamic
memory expansion control.

IV. EVALUATION METHODOLOGY

Experimental evaluation has been performed on our testbed
using benchmark codes to characterize GAME’s performance.
We conduct various experiments under both monotasking to
multitasking scenarios with varying execution memory
footprints. Based on the evaluation results, we have subsequent
findings.

e Applications with massive memory footprints under
irregular access patterns perform better on CPU than
on GPU, due to naive virtual memory management
and far smaller CPU execution memory footprints to
yield fewer page faults, among others.

e Data access patterns and working sets dictate the
execution times of memory-intensive applications.

e For applications that are sensitive to the swap speed
of different devices, a small speed difference can
amplify performance gaps under those devices
significantly.

A. Testbed Specification

Each of our established testbeds consists of a Dell Precision
T7910 workstation equipped with: (1) Intel Xeon E5-2630 v3
8-Core 2.40 GHz CPU, (2) Samsung DDR4-2133 ECC 64 GB
memory, (3) one Nvidia TITAN RTX PCle 3.0 graphic card
with 24GB GDDRG6 on-board memory, and (4) one Kingston
A400 SATA III 480GB solid-state drive.

Note that GAME can use at most 23.2 GB from the
equipped Nvidia TITAN RTX card for swap space, since
Nvidia CUDA reserves up to 860 MB GPU VDRAM for its
management purposes, as stated in [21].

The workstation runs Ubuntu Server 20.04.2.0 LTS (Focal
Fossa) with Linux 5.4.0 kernel and Nvidia CUDA 11.2. For
system environment control, we utilize Linux’s control groups
(cgroups) to govern memory availability for benchmarks. Note
that Linux cgroups is the mechanism employed in modern
container management systems, such as Docker and
Kubernetes, for low-level resource organizing.

B. Benchmark Suite and Execution Workloads

The NAS Parallel Benchmark suite 3.3.1 (NPB) from
NASA Advanced Supercomputing Division [22] is used for
performance evaluation. Among nine available benchmark
applications in the NPB suite, five most memory-intensive
benchmarks are chosen: BT (Block Tridiagonal), FT (Fast
Fourier Transform), LU (Lower-Upper Symmetric Gauss-
Seidel), SP (Scalar Pentadiagonal), and MG (MultiGrid).
Others are CPU-intensive to have a light memory requirement,
and hence, are excluded from the testing benchmarks. Except
for MG, each of the chosen benchmarks' input parameters are
re-configured to produce three different problem sizes: small
(S), medium (M), and large (L), as listed in Table II, Table III,
and Table IV, respectively. Note that MG's input parameters

TABLE III. NPB medium (M) details and footprints

Benchmarks Problem size Footprint (GB)
BT 600*600*600 33.9
FT 768%1024*1024 30.0
LU 650*650%650 352
Sp 600*600%600 35.6
MG Class D 26.5

TABLE IV. NPB large (L) details and footprints

Benchmarks Problem size Footprint (GB)
BT 680*680*680 49.3
FT 1024*1024*1024 40.0
LU 750*%750*750 54.0
Sp 680*680*680 51.7
MG Class D 26.5

TABLE V. Multitasking workload details and footprints,
with the common scout workload existing in each mix

Mix # Benchmark 1 Benchmark 2 Total footprint (GB)
1 BT (S) FT (M) 53.4(+23.4)
2 BT (S) LU (S) 44.8 (+23.4)
3 BT (S) SP (S) 47.9 (+23.4)
4 BT (S) MG 49.9 (+23.4)
5 FT (M) LU (S) 51.4 (+23.4)
6 FT (M) SP (S) 54.5 (+23.4)
7 FT (S) MG 46.5 (+23.4)
8 LU (S) SP (S) 45.9 (+23.4)
9 LU (S) MG 47.9 (+23.4)
10 SP (S) MG 51.0 (+23.4)
cannot be customized without heavy source code

modifications, so we use the default MG class D parameters
throughout all experiments.

For multitasking evaluation, one scout workload is always
included under every workload mix to determine its execution
time of interest, provided that the scout workload is the
smallest among all. Ten groups of benchmark mixes are
constructed to run, each with the same scout workload (which
is the small BT, whose footprint equals 23.4 GB; see Table II),
as shown in Table V. All component benchmarks in a group
run concurrently, with the completion time of its included scout
workload considered as the execution time of interest of the
group, since all component benchmarks are then co-running.
The total execution memory footprint of each benchmark mix
ranges from 68.2 GB to 77.9 GB.

C. CPU and GPU Execution Qutcomes

Benchmark executions on CPU and on GPU of our
established testbeds are compared first, utilizing NPB’s
OpenMP version [22] for CPU workloads and the enhanced
NPB CUDA version for GPU workloads [23]. Since the
original NPB CUDA codes do not support virtual memory,
they are enhanced with the CUDA runtime API of
cudaMallocManaged() to enable data allocation and accesses
on both GPU and CPU physical memory transparently when
executed on the GPU.

Fig. 1(a) shows the monotasking execution time
comparison between CPU and GPU for Benchmark SP over a
range of problem sizes. For small problem sizes when GPU
memory can accommodate the execution working set entirely,
GPU enjoys vastly better performance than CPU. As the
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problem size rises to near the GPU VDRAM size (of 24GB),
however, GPU performance drops quickly to become much
inferior to CPU performance. Meanwhile, CPU exhibits
gradually performance degradation when the input size
increases, as depicted in Fig. 1(a). The comparative
performance outcomes measured in the averaged execution
operation rate (operations per second or OPS) for Benchmark
SP are illustrated in Fig. 1(b). Naturally, a higher rate is better.
From the figure, the CPU execution of SP is seen to be superior
to its GPU counterpart for the problem size exceeding 485.

Various other execution scenarios on CPU are also
compared with those on GPU, with their comparative
outcomes shown in Fig. 3, where the Y-axis denotes
normalized outcome values (with respect to the CPU execution
times) and the X-axis gives multi-tasking workloads. The
detailed mixes of those six workloads shown in the figure are
listed in Table VI. The workload mixes involve benchmarks
with myriad problem sizes and thus various aggregate
execution memory footprint sizes. For example, Workload W2
involves 9 concurrent instances of BT with the small problem
size of Class C. When executed on CPU, W2 exhibits a very
small memory footprint, whereas its execution on GPU has an
excessively large memory footprint. Similarly, Workload W5
involves 5 concurrent instances of BT with the small problem
size of Class C, plus 2 concurrent instances of LU with the
Class D problem size, to yield the aggregate memory footprint
size of 21.2 GB when executed on CPU versus the much larger
aggregate footprint size of 69.3 GB for GPU execution. In all,
those six multi-tasking workload mixes exemplify three
execution scenarios: (1) one single monolithic benchmark (i.e.,
W1), (2) multiple concurrent instances of one benchmark (i.e.,
W2, W3, and W4), and (3) multiple concurrent instances of
different benchmarks co-existing (i.e., W5 and W6). All
evaluation experiments are conducted on our testbeds with the
host memory set to 64 GB.

From Fig. 3, we observe that the execution of an
application with a large problem size (W1) can be inferior on
GPU when comparing with on CPU, as also revealed in Fig. 1.
For multi-tasking scenarios (W2 - W6), CPU executions are
always much faster (by a factor of 3 or more) than its GPU
counterparts, mainly because GPU executions (1) exhibit
considerably bigger aggregate memory footprints, (2) are
subject to far more page faults, each of which may take some
50 us, because of relatively smaller GPU on-board memory,
and (3) suffer from inadequate virtual memory support, as was
stated earlier [9]. Note that Workload W3 crashes on GPU
even its aggregate memory footprint is not the biggest among
all, due to the fact that more than two concurrent LU instances
always fail, whereas GAME can soundly handle them on CPU.
Hence, its normalized GPU execution result is absent in the
figure. In addition, Workload W4 fails to complete after five
days on GPU whereas it takes less than 7 hours to finish on
CPU, chiefly because each SP instance has the large problem
size of Class D (23.2 GB), each of which barely fits in GPU’s
VDRAM, making its GPU execution extremely slow.

For each multi-tasking workload comprising different
benchmarks (W5 and W6), we recorded its execution time
when the instance(s) of its first component benchmark finished,
given that different benchmarks would have different execution
times. The comparative results of W5 and W6 in Fig. 3 again

TABLE VI. NPB WORKLOAD MIXES FOR COMPARING CPU AND

GPU EXECUTIONS
Work . # of Footprint (GB)
loag# | Benchmarks | Problemsize | 4. ces [OMP | CUDA
Wi SP 490%490x490 1 19.8 36.7
W2 BT Class C 9 6.1 75.6
W3 LU Class D 5 445 67.0
W4 SP Class D 2 24.1 46.4
BT Class C 5
W5 LU Class D 2 212 693
BT Class C 2
W6 LU Class D 2 38.9 67.0
SP Class D 1
100 ¢
8.0 F @0penMP OCUDA
6.0 |
4.0
0.0
Wi w2 W4 w5 W6

Fig. 3. Comparative results of CPU and GPU executions,
with the CPU execution times normalized to 1.

signify that multi-tasking executions with large memory
footprints tend to be far inferior on GPU and should be
avoided, in favor of CPU executions. The result demonstrates
that CPU executions under W5 and W6 are respectively 3 and
10 times faster than their GPU counterparts, since the GPU
design originally intends for single task executions at a time [9]
and the mix of different benchmarks with multiple concurrent
instances amplifies the shortcomings of GPU executions.

It should be noted that a clear benefit with CPU executions
on the testbeds is due to larger host machine memory (64 GB)
than GPU VDRAM (24 GB) so that they incur negligible swap
activities (see the aggregate memory footprint sizes listed
under the column of OMP in Table VI), whereas compatible
GPU executions are subject to heavy swap activities (due to far
larger aggregate footprint sizes listed under the column of
CUDA in Table VI). Swap activities tend to extend the total
executive time vastly, since each of them may take some 50 us.

The next two subsections present GAME performance
results when unused GPU VDRAM available for swapping
support equals 18 GB and 6 GB (out of 24 GB for the TITAN
RTX GPU [4] in a testbed), respectively under monotasking
and under multitasking CPU executions. If the GPU is training
an LSTM ML model (adopted for our weather parameter
prediction [12]), plentiful GPU VDRAM (~ 18 GB) is
available for GAME use in the lengthy model training
duration. On the other hand, training VGG-16 (with the mini-
batch size of 128) consumes at most ~ 17.4 GB GPU VDRAM
(see Section II.A), leaving about 6 GB for GAME use.

D. Monotasking CPU Executions

We have experimented the monotasking executions of five
chosen NPB benchmarks on the testbed with its host memory
sized at 32 GB (via the cgroup controller). The workload
sizes of the five benchmarks are listed in Table IV, and they
are to experience considerable page swapping activities in the
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course of their CPU executions. Performance measures of
interest include: (1) swapping activity and (2) execution time.
Swapping activities are reflected by the swap-out and swap-in
counts of the virtual memory subsystem (obtained by vmstat),
with a larger count indicating more frequent data transfers
between host memory and swap space. An application takes
longer to run when its execution involves more swapping
activities. While GPU is executing its ML workload, GAME
borrows its unused VDRAM to expand host memory on
demand. Depending on concurrent running GPU workloads,
GAME can obtain different amounts of GPU VDRAM to
support its swapping for accelerated CPU executions. When
GPU VDRAM available for GAME support during job
executions is short of what is required to accommodate swap-
out pages, the swap partition of SSD will be involved.

The performance results of memory-intensive benchmarks
are depicted in Fig. 4. The swap activity counts generally
depend on (1) the workload memory footprint size and (2) the
data use profile during execution. For example, an application
may allocate large memory (footprint) initially but does not
require all data in its execution onset [13]. This scenario is
evident for FT, which exhibits low swapping (see Fig. 4(a))
even with a sizeable memory footprint, as listed in Table I'V.

The large memory footprint and execution profile of LU
hike swap activities to exceed 250 million, whereas SP and
BT have modest swap activities. On the other hand, FT and
MG experience low swapping, especially MG with its 26.5
GB memory footprint, which is smaller than the host memory
size of 32 GB. Hence, MG exhibits virtually no swapping
during its execution, to yield no execution time reduction
versus that of the baseline without GAME support, as shown
in Fig. 4(b), where the execution time results are normalized
with respect to those under the baseline. GAME is seen to
achieve the execution speedup by 2.1x (or 1.6x) versus the
baseline execution time when 18 GB (or 6 GB) of unused
GPU VDRAM is available to expedite LU execution, where
swap activities are highest among all five benchmarks.
GAME enjoys the average execution speedup of 1.9% across
all benchmarks examined when plentiful GPU VDRAM (18
GB) is available for swapping use. Although the execution
speedup drops if available GPU VDRAM becomes limited (at
only 6 GB), GAME still has the impressive mean speedup of
1.4x.

Monotasking evaluation results confirm that CPU
memory expansion into GPU memory on demand through
GAME is effective under scientific workloads with big
memory footprints and without regular data access patterns.

E. Multitasking CPU Executions

Execution results under multitasking workloads are
depicted in Fig. 5, where workload details are provided in
Table V. Ten workload mixes, each obtained by pairing two
benchmarks plus one small benchmark as the scout (i.e., the
small BT with its memory footprint equal to 23.4 GB, as listed
in Table II) for a total of three workloads to run
simultaneously, represent various execution profiles with
complex memory access patterns for evaluating GAME
effectiveness. The three component benchmarks of each

BSwap-out BGAME-18GB  BGAME - 6 GB

OSwap-in

1.0

BT FT LU MG SP BT FT LU MG SP AVG
(a) swap activity (in millions) (b) normalized execution speedups

Fig. 4. GAME monotasking execution results under two GPU
VDRAM sizes for swapping use.

1.0
0.8

MI M2 M3 M4 M5 M6 M7 M8 M9 MI0

(a) swap activity (in millions)

MI M2 M3 M4 M5 M6 M7 M8 M9 MIOAVG

(b) normalized execution speedups

Fig. 5. GAME multitasking execution results under 18 GB
GPU VDRAM for swapping use.

workload mix execute concurrently on the host machine with
32 GB memory. The aggregate footprint of every mix (sized
from 68.2 GB to 77.9 GB) surpasses the sum of system
memory (sized 32 GB) and GAME support memory from the
attached GPU (sized 18 GB), thereby involving the swap
partition of SSD in its execution as well.

As expected, swap activities as seen in Figure 5(a) are
mostly far higher than those under monotasking workloads,
resulting from larger aggregate footprints. This is possibly
due to two reasons: (1) each workload is individually smaller,
with its memory footprint listed in Table II (for a small one) or
Table IIT (for a medium one), and (2) the execution profile of
each component benchmark tends to have a different memory
access pattern and thus to peak its memory requirement at
different points of time during the course of execution, likely
to let multitasking benchmarks better share host memory.

Fig. 5(b) reveals that workload mixes which enjoy bigger
execution speedups, tend to have bigger aggregate memory
footprints and higher swap activities (see Fig. 5(a)). This is
because an execution is accelerated more when it incurs more
swap activities, which are staged at faster GPU VDRAM
under GAME support versus at SSD without such support (as
the baseline for speedup measurement). GAME results in
large execution speedups under the high swap activities of
Mix3, Mix4, and Mix7 (ranging from 320 million to 450
million), with Mix4 to have its largest speedup exceeding
3.1x. Overall, a mean speedup of 2.1x (to cut down the
execution time by more than one half) is achieved across all
ten workload mixes examined, signifying that multitasking
executions can benefit profoundly from GAME even for huge
aggregate memory footprints (up to some 78 GB; see Table
V).
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V. CONCLUSION

Off-loaded GPU executions are known to be advantageous
for parallelized tasks without large memory footprints and with
regular data access patterns, like ML and DM applications.
This work has observed that applications with large memory
footprints or irregular data accesses can favor CPU executions
instead. An effective approach has been pursued to let
memory-intensive applications run on the host machine CPU
with its memory expanded on demand onto available GPU on-
board DRAM, dubbed GAME (GPU-assisted memory
expansion). Our GAME approach permits both monotasking
and multitasking memory-intensive executions on CPU to
harvest unused GPU VDRAM as swapping space for speedier
execution. The GAME prototype, implemented in user space,
employs a network block device driver, called nbdkit, to make
GPU memory house fault-memory pages transparently,
without any modification to application codes upon executed
on CPU for high usability and portability. Our evaluation
results of memory-intensive applications from the NAS-NPB
benchmark reveal that CPU executions with an aid of GAME
under big workloads can be more than one magnitude faster
versus their compatible GPU executions, confirming the
potentials of substantial advantages of CPU executions on
server-grade machines equipped with GPU accelerators. In
addition, GAME can achieve considerable execution speedups
(by up to 3.1x) in comparison to its baseline counterpart
without GPU VDRAM for swapping, if multitasking execution
memory footprints exceed the host machine memory size.
With larger CPU memory, which is less expensive and easily
expandable, than GPU VDRAM, the host machine is preferred
for application executions over off-loading them to GPUs, if
the execution memory footprints approach or exceed the GPU
VDRAM size.
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