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The emerging field of precision medicine is transforming statistical anal-
ysis from the classical paradigm of population-average treatment effects into
that of personal treatment effects. This new scientific mission has called for
adequate statistical methods to assess heterogeneous covariate effects in re-
gression analysis. This paper focuses on a subgroup analysis that consists of
two primary analytic tasks: identification of treatment effect subgroups and
individual group memberships, and statistical inference on treatment effects
by subgroup. We propose an approach to synergizing supervised clustering
analysis via alternating direction method of multipliers (ADMM) algorithm
and statistical inference on subgroup effects via expectation-maximization
(EM) algorithm. Our proposed procedure, termed as hybrid operation for sub-
group analysis (HOSA), enjoys computational speed and numerical stability
with interpretability and reproducibility. We establish key theoretical proper-
ties for both proposed clustering and inference procedures. Numerical illus-
tration includes extensive simulation studies and analyses of motivating data
from two randomized clinical trials to learn subgroup treatment effects.

1. Introduction. Consider a random sample of (yi, xi,z0i ), i = 1, . . . , n, collected from
a clinical study, where yi is the outcome of interest (e.g., fasting glucose level) and xi is the
treatment covariate of interest which may be categorical (e.g., drugs A and B) or continu-
ous (e.g., exposure to toxic agents). In addition, z0i is a q0-dimensional vector of potential
confounders, including the intercept, useful to adjust the assessment of treatment effects.
Suppose that the linear model is adopted to study the treatment-response relationship,

(1.1) yi = xiβi + zT
0iα + εi, i = 1, . . . , n,

where βi’s represent personal treatment effects, each for one subject, and random errors

εi
iid∼ N (0, σ 2

ε ), i = 1, . . . , n which are independent of xi and z0i . In this paper these subject-
specific parameters βi ’s are of the central interest in the analysis. The classical statistical
analysis concerns primarily a population-average treatment effect, say, βx under the homo-
geneity assumption of βi ≡ βx , i = 1, . . . , n. In this case the maximum likelihood inference is
the method of choice which has been well studied and extensively used in practice. In effect,
evaluation of population-average treatment effectiveness is mandatory in a new drug devel-
opment to fullfil the requirements by the FDA drug approval protocol. According to Wong,
Siah and Lo (2019), the success rate of clinical trial, in light of population-average treatment
effectiveness, has been unfortunately very low, reportedly being only about 5% during the
period of 16 years from 2000 to 2015. To address the issue that a considerably large num-
ber of clinical trails failed in their third phase of study, a revolutionary initiative has been
proposed to relax the population-average efficacy paradigm. This gives rise to a fundamental
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question: whether or not there are some patients in the same treatment arm, such as those in
an active drug arm in a randomized placebo-controlled trial, who may experience stronger
treatment efficacy than others; and if so, who they are. Identifying and characterizing those
patients who benefit more from a therapy would shed light on designing a subsequent confir-
matory clinical study that targets at a specific subpopulation of patients, instead of a general
population, as potential drug users.

As far as statistical methodology concerns, answers to the aforementioned questions can-
not be obtained by a widely used standard random effects modeling approach in which
subject-specific random effects βi ’s in model (1.1) are assumed to be independent and iden-
tically distributed (i.i.d.) from a normal distribution, say N (βx, σ

2
b ). This is because this

random-effects specification does not give any subgroup structures to characterize clustered
individual-level treatment benefits, rather treating all patients belonging to one treatment
group with the group-level average effect βx . To allow multiple subgroups of treatment ef-
fects, we may consider an explicit formulation of subgroups via a K-component mixture of

normals, namely, βi
iid∼ ∑K

k=1 πkN (μk, σ
2
k ), i = 1, . . . , n, where K denotes the number of

treatment-effects subgroups. This model-based clustering formulation enables us to perform
a supervised clustering analysis on the subject-specific treatment effects, leading to straight-
forward interpretations. That is, μk represents the average treatment effect of subgroup k or
the centroid of βi’s in the kth subgroup, σ 2

k describes the variability or the size of the kth
subgroup, and πk is the probability of βi belonging to subgroup k. When all σ 2

k = 0, this
mixture model degenerates to a discrete model with K singletons {μ1, . . . ,μK}, which is the
underlying subgroup model assumed by many existing methods of subgroup analyses, such
as Ma and Huang (2017). Clearly, when K = n, each subject forming one’s own group, the
individual treatment parameters βi ’s are not estimable. Thus, in practice, K should be an
integer smaller than n. In this paper we consider a two-level hierarchical model given below:

yi = xiβi + zT
0iα + εi, i = 1, . . . , n,

(1.2)

βi
iid∼

K∑
k=1

πkN
(
μk,σ

2
k

)
, i = 1, . . . , n

which is referred to as subgroup-effects model (SGEM). To emphasize the presence of K

subgroups in the model specification (1.1)–(1.2), we may take an abbreviation as SGEM(K).
To further elucidate the interpretation of parameters βi ’s in SGEM, let us consider a mo-

tivating example of a randomized two-arm placebo-controlled trial conducted by scientists
at the University of Michigan Children’s Environmental Health Center (CEHC) to assess
the effect of maternal calcium supplementation during pregnancy on reducing infant blood
lead concentration (Ettinger, Hu and Hernandez-Avila (2007), Ettinger et al. (2009)). This
trial is part of the nutritional study with participants from Mexico City (Perng et al. (2019)).
A vast literature has unveiled that lead is detrimental on multiple human body systems as
well as harmful on human neurobehavioral and cognitive development, particularly in chil-
dren (Bellinger, Stiles and Needleman (1992), Boivin and Giordani (1995), Hu et al. (2006)).
This is an important trial in the emerging field of precision nutrition to develop tailored rec-
ommendations of nutrients, based on personal internal and external environmental exposures;
see the detail of the data description and data analysis of this trial in Section 6. By coding
xi = 1 for daily intake of calcium supplement and 0 for placebo, the parameter βi is regarded
as a differential treatment effect from the placebo effect on patient i who takes the calcium
supplementation. Note that for subjects who are randomized into the placebo arm, they can
receive a baseline dose of calcium from their food. Here, the objective of clinical interest lies
in potential subgroup structures for the subjects on the calcium supplementation arm relative
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to the reference effect of placebo dose of calcium intake from food. In this study our collab-
orators consider specifically two subgroups (K = 2) in order to deliver a viable nutritional
recommendation to the pregnant women: one being the subgroup of women who experience
no difference of treatment effect from the placebo (i.e., calcium from food) and the other be-
ing the subgroup of women who experience better treatment benefit. In practice, the number
of subgroups, K , may often be specified by practitioners according to their a priori clini-
cal hypothesis or objectives of their clinical study. Thus, in the subgroup analysis a more
important analytic task is to determine memberships of patients with high precision and reli-
ability than to determine the number of subgroups. After the memberships being determined,
the maximum likelihood method can be readily applied to carry out the remaining statistical
analysis.

Subgroup labels or memberships as well as associated probabilities of label assignment
may be determined by invoking individual latent categorical variables δi ∈ D = {1, . . . ,K},
i = 1, . . . , n, whose probability mass function is denoted as P(δi = k) = πik , k = 1, . . . ,K .
Here, πik is the probability of patient i belonging to subgroup k which may be modeled as a
function of some covariates. It is easy to see that SGEM(K) can be, equivalently, rewritten in
the form of a mixture linear model (MLM),

(1.3) yi =
K∑

k=1

I (δi = k)μkxi + zT
0iα + ξi, with independent errors ξi ∼ N (0, σ 2

i ),

where variances σ 2
i = ∑K

k=1 I (δi = k)σ 2
ik and σ 2

ik = x2
i σ 2

k + σ 2
ε . The class of MLMs in (1.3)

has been well studied and applied in many practical areas; see, for example, Deb and Holmes
(2000) and Grün and Leisch (2007); also, see McLachlan, Lee and Rathnayake (2019) for
a comprehensive review of finite mixture models. In addition, an MLM may be regarded as
an instance of the hierarchical mixture of experts (Jacobs et al. (1991)) where the mixture
proportions or gate functions may depend on some covariates (Wei and Kosorok (2013)).

Parameter estimation in an MLM (1.3) is notoriously difficult, due to the nonconvex-
ity of the likelihood function and the existence of local optima. In the literature the max-
imum likelihood estimation (MLE) method is mostly widely adopted which is often im-
plemented via the expectation-maximization (EM) algorithm (Dempster, Laird and Rubin
(1977), Muthén and Shedden (1999), Verbeke and Lesaffre (1996), Viele and Tong (2002),
Xu and Hedeker (2001)). It is known that the EM algorithm depends heavily on the quality
of initial values, and its convergent values are local optima (Wu (1983)). A vast literature
has focused on parameter estimation in the case of two-component mixture models, namely,
βi = δiμ1i + (1 − δi)μ2i with latent label δi ∈ {0,1}; see, for example, Balakrishnan, Wain-
wright and Yu (2017), Yi, Caramanis and Sanghavi (2014). Proust and Jacqmin-Gadda (2005)
adopted a direct maximization of the likelihood via a Marquard optimization algorithm which
has been implemented in the popular R package lcmm (Proust-Lima, Philipps and Liquet
(2017)). We will compare the performance of this R package thoroughly with our proposed
method in this paper. The method of moments has also been studied in the literature to handle
general K-mode mixture models, including tensor decomposition (Anandkumar et al. (2014),
Chaganty and Liang (2013), Sedghi, Janzamin and Anandkumar (2016)), subspace clustering
(Elhamifar and Vidal (2013), Pimentel-Alarcón et al. (2017), Soltanolkotabi, Elhamifar and
Candès (2014)), and convex formulation (Chen, Yi and Caramanis (2018)), among others.

Recently, several two-stage algorithms have shown encouraging improvements on both
fast convergence rate and desirable statistical efficiency. At the first stage this type of algo-
rithm generates high-quality initial estimates, followed at the second stage by a procedure
to yield refined estimation via either the EM algorithm or its variants. One example worth
mentioning is that in a multiclass labeling problem, the first stage uses a spectral method
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by Zhang et al. (2016) or a tenor method by Zhong, Jain and Dhillon (2016), and the re-
sulting estimation enjoys both faster computational speed and better statistical power. Such
success motivates us to develop a new two-stage procedure for SGEM in which the first stage
produces high-quality initial results of subgroups. Specifically, to address the technical need
of supervised clustering in parameters βi ’s, we invoke the alternating direction method of
multipliers (ADMM, Boyd et al. (2011)) algorithm to generate initial values which will be
used as inputs to the EM algorithm at the second-stage to perform the maximum likelihood
estimation and inference. The advantage of ADMM lies in the fact that it provides a fast
and direct hard-division in a clustering analysis, as supposed to a soft-division via a posterior
probability-voting scheme in the EM algorithm, which makes the algorithm slow to converge.
In other words, ADMM can help quickly reach an orbit in the parameter space near the opti-
mal solution. Being an interesting synergy of machine learning and statistical inference, the
proposed procedure is named as hybrid operation for subgroup analysis (HOSA). The first
stage of HOSA is a key to parameter estimation by running a supervised clustering analysis of
parameters via ADMM algorithm (Chi and Lange (2015), Ma and Huang (2017)). Dated back
to 1970s (Gabay and Mercier (1976), Glowinski (2014)), ADMM has been shown in multiple
occasions to enjoy the power of dual decomposition and augmented Lagrangian methods in
constrained optimization. In particular, ADMM algorithm has demonstrated its advantages in
the operation of subgroup fusion and the implementation of parallel calculation; refer to Ma
and Huang (2017), Mihić, Zhu and Ye (2021), Mota et al. (2013), among others.

This paper makes the following new contributions to the study of personal treatment ef-
fects: (i) Incorporating subject-level characterizations into SGEM, we can not only evalu-
ate subgroup-level treatment effects but also predict individual person’s subgroup label. (ii)
The SGEM specification allows to quantify both within-subgroup variability for personal
treatment effects and the amount of uncertainty associated with subgroup assignments. As
becoming evident throughout this paper, the SGEM formulation is more flexible and inter-
pretable than existing hard-threshold methods, like the classical K-means clustering analysis.
More importantly, (iii) with high quality initial values given by the ADMM algorithm, the
EM algorithm-based maximum likelihood method enjoys stable numerical performance and
fast convergence at a geometric rate, as shown by Corollary 1 in Section 4. Thus, the final
numerical results of the parameter estimation and inference from the EM algorithm are little
sensitive to the specification of initial values which is “guarded” by the ADMM algorithm
that yields parameter estimates near the optimal solution. These properties are particularly
important for the method to be applied in clinical studies. The R package HOSA of the pro-
posed method is available in the Supplementary Material (Zhou et al. (2022)) and on the
following GitHub URL: https://github.com/sqsun/HOSA.

The paper is organized as follows. Section 2 presents the SGEM model specification and
interpretation. Section 3 concerns the implementation of HOSA, including the selection of
the number of mixture components. Large sample properties of HOSA are studied in Sec-
tion 4. Numerical simulation studies and a real data analysis are provided in Sections 5 and 6,
respectively. Some concluding remarks are given in Section 7. All technique details and ad-
ditional numerical results are given in the Appendix and the Supplementary Material (Zhou
et al. (2022)).

2. Formulation.

2.1. Subgroup-effects model. The primary objective of precision medicine is twofold:
to investigate whether there exist distinct personal treatment effects and, if so, to determine
the treatment subgroup membership of each subject. For such purposes it is inevitable to in-
clude individual predictors in SGEM useful for personal treatment decision-making. First,

https://github.com/sqsun/HOSA
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we propose a multilevel logistic model on πik in (1.2) for subgroup label prediction via a
q2-dimensional vector of covariates z2i = (z2i,1, . . . , z2i,q2)

T , with z2i,1 = 1 for the intercept
term. That is, the (subgroup) membership model, log(πik/πiK) = zT

2iζ 2k , k = 1, . . . ,K − 1,
where subgroup K is set as the reference. Second, we model personal mean effects by a linear
model μik = zT

1iζ 1k with a q1-element vector of covariates, z1i , including z1i,1 = 1 as the in-
tercept term. The resulting (1.2) may be written as βi ∼ ∑K

k=1 πik(zi2)N (μik(zi1), σ
2
k ). Note

that the q1-dimensional parameter vector ζ 1k quantifies a set of interaction effects between
treatment xi and covariates in z1i for the kth subgroup. Gunter, Zhu and Murphy (2011) refer
to such types of covariates involved in these interactions as prescriptive variables which are
typically different from confounding covariates in z0. For example, in a randomized clinical
trial z0 may be chosen as an empty set, due to randomization, but the vector of prescriptive
variables z1 is not, due to its role in characterizing group-level treatment heterogeneity.

Following the classical decomposition of fixed- and random-effects, we may write βi =
bi + ai , where bi and ai denote fixed-effect and random-effect, respectively. Consequently,
we rewrite the SGEM model above as a mixture linear model (LML) with random effects,

(2.1) yi = xibi + zT
0iα + xiai + εi, and log

(
πik

πiK

)
= zT

2iζ 2k, k = 1, . . . ,K − 1,

with bi = ∑K
k=1 I (δi = k)zT

1iζ 1k and ai = ∑K
k=1 I (δi = k)vik , where errors vik ∼ N (0, σ 2

k )

are independent and identically distributed (i.i.d.) within subgroup k. The issue of param-
eter identifiability in the family of mixture models has been extensively studied in the lit-
erature (e.g., Frühwirth-Schnatter (2006), McLachlan, Lee and Rathnayake (2019)). It per-
tains essentially to three aspects: interchangeability of component labels (Redner and Walker
(1984)), potential overfitting (Crawford (1994)), and generic nonidentificability (Teicher
(1961)). These may be ruled out through certain formal identifiability constraints (Frühwirth-
Schnatter (2006), McLachlan, Lee and Rathnayake (2019)). Specifically, for our model (2.1)
in which all normal components are different and the mixing proportions πik’s are nonzero,
the identifiability condition is given as follows. If two mixture density functions are equal for
almost every y with two equal sets of nonzero model parameters (K,α, σε, ζ 1k, ζ 2k, σk, k =
1, . . . ,K) and (K ′,α′, σ ′

ε, ζ
′
1k, ζ

′
2k, σ

′
k, k = 1, . . . ,K ′), then K = K ′ and corresponding pa-

rameters are equivalent, respectively.

2.2. Maximum likelihood estimation. For the proposed parametric model (2.1), we
use the maximum likelihood estimation (MLE) method to estimate the model parame-
ters, denoted by � = (θT , ζ T

2 )T with θ = (ζ T
11, . . . , ζ

T
1K,αT , σ 2

1 , . . . , σ 2
K,σ 2

ε )T and ζ 2 =
(ζ T

21, . . . , ζ
T
2,K−1)

T . Let wi = (ZT
i ,zT

0i ,z
T
2i )

T be the combined set of covariates, where the
vector of interaction covariates is denoted by Z i = xiz1i = (Zi,1, . . . ,Zi,q1)

T . Let θ∗ and ζ ∗
2

be the true values of θ and ζ 2, respectively. Denote the conditional density function of yi ,
given both random effect ai and label δi = k, as fk(yi | ai, δi; θ) = σ−1

ε φ(σ−1
ε (yi −ZT

i ζ 1k −
zT

0iα − xiai)) and the density of ai , given δi = k, as fk(ai | δi; θ) = φ(ai/σk)/σk , where φ(·)
is the standard normal density function. Then, the argumented likelihood for subject i takes
the following form:

L(�;yi, ai, δi) =
K∏

k=1

{
πikfk(yi | ai, δi; θ)fk(ai | δi; θ)

}I (δi=k)
,

where I (·) is the indicator function. Note that here both ai and δi are not observed which will
be handled using the EM algorithm (Dempster, Laird and Rubin (1977)) in the estimation and
inference for the model parameters �. The EM algorithm requires iteratively executing E-
step and M-step, where, at iteration t + 1, say, E-step is to calculate the so-called Q-function,
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Q(� | �(t)), namely, the expected value of the log-likelihood function with respect to the
conditional distribution of (ai, δi), given yi , under the current updates �(t). That is,

(2.2) Q
(
� | �(t)) = Ey;θ∗,ζ ∗

2

[
Ea,δ|y;�(t)

{
logL(�;yi, ai, δi)

}]
,

where Eu;θ and Eu|v,θ represent the expectations with respect to, respectivley, the distribution
of random variable u and the conditional distribution of u, given v, under the parameter θ .
On the other hand, M-step is to update parameters � by maximizing the conditional expecta-
tion (2.2), namely, �(t+1) = arg max� Q(� | �(t)). The details of the E-step and M-step are
given in Section 3.

With certain high-quality initialization, Theorem 2 in Section 4 shows that the EM algo-
rithm converges at a geometric rate to a local maximum close to the maximum likelihood
estimate. In addition, Section 5 illustrates through extensive simulation experiments that es-
timation results from the EM algorithm are sensitive to initial values of interaction effects
ζ 1k’s but less sensitive to the other model parameters. This is in the agreement with findings
from Proust and Jacqmin-Gadda (2005). To address this numerical challenge, we invoke the
ADMM algorithm to generate good initial values of ζ 1k’s which can produce high-quality
initialization for parameter ζ 1k’s with a well-estimated number of subgroups. This will posi-
tively impact numerical performances of the EM algorithm in terms of reliability and stability.
This is because that ADMM offers, with theoretical guarantees, a direct and fast hard-division
of interaction effects into subgroups and produces initial values near the optimal solution. As
proved in Theorem 1, the theoretical guarantees give rise to a well-behaved initialization
procedure that results in desired clustering and membership determination.

Denote by G = G1 ∪ · · · ∪ GK a group partition of n subjects (precisely, of n treatment
effects βi’s). Here, these group memberships are unknown and need to be estimated by
the ADMM algorithm. Once a subgroup structure is fixed, parameters ζ 1k’s are fixed as
the common value of subgroup k, k = 1, . . . ,K . To proceed, we first project the subgroup-
level interaction effects ζ 1k, k = 1, . . . ,K into higher dimensional vectors, denoted by
η1i = (η1i,1, . . . , η1i,q1)

T , where η1i,j is the personal interaction effect of prescriptive co-
variate j for subject i. Clearly, after this project there do not exist any subgroup structures
among the parameters η1i . To learn the underlying group structures and associate subjects’
memberships, we then consider minimizing the following penalized objective function with
respect to parameters η1i ’s to reconstruct the underlying subgroup structures,

(2.3) min
η1,α

{
n∑

i=1

1

2

(
yi −ZT

i η1i − zT
0iα

)2 + ∑
i<j

pγ

(‖η1i − η1j‖2, λ
)}

,

where pγ (·, λ) is a fusion penalty function on the difference between parameters η1i’s, and
both λ > 0 and γ > 0 are tuning parameters. The rationale of optimization, given in (2.3), is to
fuse similar interaction effects η1i ’s into subgroups, one subgroup with a common value ζ 1k

obtained from the fused penalty function pγ (·, λ). When λ = ∞, all ηi1’s will be fused into
one value, while λ = 0 all η1i ’s will form their own clusters (i.e., n subgroups). With a suitable
choice of λ, η1i’s are forced to form some subgroups in the above penalized estimation so
that certain clusters of personal effects can be identified. Moreover, this fused regularization
method produces subgroup memberships for all subjects. Several types of penalty functions
are available in the literature, for example, the LASSO penalty (Tibshirani et al. (2005)),
MCP penalty (Zhang (2010)), SCAD penalty (Fan and Li (2001)), among others. In this
paper we choose MCP penalty function, due to its proven advantages of low bias and stable
numerical performance (Ma and Huang (2017)). The MCP penalty takes the form, pa(x;λ) =
λ

∫ x
0 {1 − s/(aλ)}+ ds for a > 1, where (x)+ = x if x > 0 and (x)+ = 0, otherwise. Note

that the dimension of the entire vector η1 = (ηT
11, . . . ,η

T
1n)

T is nq1 which linearly increases
along the sample size n. Therefore, we invoke a coordinate (blockwise) ADMM algorithm
to overcome the computational burden in the fused MCP regularization with related details
given in Section 3.
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3. Implementation. The maximum likelihood estimation is implemented by the EM
algorithm with initial values from the ADMM algorithm.

3.1. EM algorithm. Given a value of K and updates �(t) from step t , both E-step and
M-step at iteration t + 1 are given as follows. The detailed derivations of the EM algorithm
can be found in Section 3 of the Supplementary Material (Zhou et al. (2022)). For the ease
of exposition, denote fk(y, a | δ; θ) = f (y, a | δ = k; θ) and fk(a | δ; θ) = f (a | δ = k; θ).
At the E-step we evaluate the Q-function by integrating out random effects ai ’s, while initial
δi’s are passed from the ADMM algorithm,

Qn

(
� | �(t))

= Ea,δ|y;�(t)

{
1

n

n∑
i=1

logL(�;yi, ai, δi)

}

= 1

n

n∑
i=1

K∑
k=1

γ
(t)
ik

fik(θ
(t))

∫
R

log
{
fk(yi | ai, δi; θ)fk(ai | δi; θ)

}
fk

(
yi, ai | δi; θ (t))dai

+ 1

n

n∑
i=1

K∑
k=1

logπikγ
(t)
ik ,

(3.1)

where fik(θ) = ∫
R fk(yi, ai | δi; θ) dai and γ

(t)
ik is the updated posterior probability of subject

i belonging to subgroup k, given as follows:

(3.2) γ
(t)
ik = π

(t)
ik fik(θ

(t))∑K
k=1 π

(t)
ik fik(θ

(t))
, with π

(t)
ik = π

(t)
iK exp

(
zT

2iζ
(t)
2k

)
, k = 1, . . . ,K − 1,

where π
(t)
iK = {1 + ∑K−1

k=1 exp(zT
2iζ

(t)
2k )}−1. At the M-step we update the parameters θ of the

outcome model by the following closed-form expressions: for k = 1, . . . ,K ,

ζ
(t+1)
1k =

(
n∑

i=1

γ
(t)
ik Z iZT

i

)−1{
n∑

i=1

γ
(t)
ik

(
yi − zT

0iα
(t) − xiA

−1
ik

(
θ (t))Bik

(
θ (t)))Z i

}
,

α(t+1) =
(

n∑
i=1

z0iz
T
0i

)−1{
n∑

i=1

K∑
k=1

γ
(t)
ik

(
yi −ZT

i ζ
(t)
1k − xiA

−1
ik

(
θ (t))Bik

(
θ (t)))z0i

}
,

σ 2(t+1)
ε = n−1

[
n∑

i=1

K∑
k=1

γ
(t)
ik

{
xiA

−1
ik

(
θ (t))(1 + B2

ik

(
θ (t))A−1

ik

(
θ (t)))xi − 2xiA

−1
ik

(
θ (t))

× Bik

(
θ (t))(yi − zT

0iα
(t) −ZT

i ζ
(t)
1k

) + (
yi − zT

0iα
(t) −ZT

i ζ
(t)
1k

)2}]
,

σ
2(t+1)
k =

(
n∑

i=1

γ
(t)
ik

)−1{
n∑

i=1

γ
(t)
ik A−1

ik

(
θ (t))(1 + B2

ik

(
θ (t))A−1

ik

(
θ (t)))},

where Aik(θ) = (σ 2
ε σ 2

k )−1(x2
i σ 2

k + σ 2
ε ) and Bik(θ) = σ−2

ε (yi − zT
0iα − ZT

i ζ 1k)xi . To up-

date parameters ζ
(t+1)
2k of the membership model, we run the multilevel logistic model by

maximizing the log-likelihood,
∑n

i=1
∑K

k=1 γ
(t)
ik [zT

2iζ 2k − log{1 + ∑K−1
k=1 exp(zT

2iζ 2k)}], with

respect to ζ
(t+1)
2k , k = 1, . . . ,K − 1.
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3.2. ADMM algorithm. The key idea behind the ADMM algorithm is the augmentation
of the parameter space, which enables to divide the original optimization problem into sev-
eral simpler optimization subproblems, and each subproblem has a closed form solution for
a certain target parameter. This strategy can significantly speed up the iterative search for the
optimal solution. Let ϑ ij = (ϑij,1, . . . , ϑij,q1)

T and t ij = (tij,1, . . . , tij,q1)
T , i, j = 1, . . . , n,

be individual-level auxiliary parameters under the parameter augmentation; ϑ ij is the col-
lection of all pairwise differences between η1i and η1j for all i 
= j , while t ij is a vector
of multipliers monitoring parameter fusion. For the interaction effect of Zr = xz1r (z1r be-
ing the r th perspective covariate, r = 1, . . . , q1), [·]r denotes a column vector corresponding
to z1r ; for example, [η1]r = (η11,r , . . . , η1n,r )

T , [ϑ]r = (ϑ12,r , ϑ13,r , . . . , ϑ(n−1)n,r )
T , and

[t]r = (t12,r , . . . , t(n−1)n,r )
T . These are subvectors of the η1, ϑ , and t corresponding to Zr .

Also, denote [Zd ]r = diag(Z1,r , . . . ,Zn,r ) where superscript d means diagonal matrix. Us-
ing the ADMM algorithm to minimize the objective function (2.3), after some simple calcu-
lations, we have the following closed-form expressions:

η̂1 = arg min
η1

{
0.5

(
y −

q1∑
r=1

[
Zd]

r [η1]r
)T

(I − Q)

(
y −

q1∑
r=1

[
Zd]

r [η1]r
)
;

+0.5ρ

q1∑
r=1

([ϑ]r − v[η1]r + [t]r/ρ)T ([ϑ]r − v[η1]r + [t]r/ρ)}
.(3.3)

ϑ̂ = arg min
ϑ

[∑
i<j

pγ

(|ϑ ij |, λ) + 0.5ρ(ϑ − vη + t/ρ)T (ϑ − vη + t/ρ)

]
,

where y = (y1, . . . , yn)
T , Z0 = (z01, . . . ,z0n)

T , and Q = Z0(Z
T
0 Z0)

−1ZT
0 . In addition, v =

{ei − ej , i < j} is defined by the operation {aij , i < j} = (a12, . . . , a1n, . . . , a(n−1)n)
T , and

ei is an n-dimensional vector of all zeros, except the ith element equal to 1. Here, τ > 0 is
a tuning parameter that determines the convergence rate of the ADMM algorithm which is
usually set at a fixed value; for example, τ = 1 for simplicity. Then, the (s + 1)th iteration in
the ADMM algorithm proceeds with following updates:

[η(s+1)
1 ]r = {([

Zd]
r

)T
(I − Q)

[
Zd]

r + ρvT v
}−1{([

Zd]
r

)T
(I − Q)y∗

r
(s) + vT [

t (s)]
r

+ ρvT [
ϑ (s)]

r

}
, with y∗

r
(s) = y −

q1∑
k 
=r

[
Zd]

k

[
η

(s)
1

]
k, for r = 1, . . . , q1;

ϑ
(s+1)
ij =

⎧⎪⎪⎨⎪⎪⎩
S(η

(s+1)
1i − η

(s+1)
1j − t

(s)
ij /ρ;λ/ρ)

1 − 1/(γρ)
, if

∥∥η(s+1)
1i − η

(s+1)
1j − t

(s)
ij /ρ

∥∥
2 ≤ γ λ;

η
(s+1)
1i − η

(s+1)
1j − t

(s)
ij /ρ, else;

t
(s+1)
ij = t

(s)
ij + ρ

(
ϑ

(s+1)
ij − η

(s+1)
1i + η

(s+1)
1j

)
, 1 ≤ i < j ≤ n,

where the soft-thresholding operator is S(α;κ) = (1 − κ
‖α‖2

)+α. With a prefixed K , the

ADMM estimates of the subgroup-level effects ζ̃ 1k, k = 1, . . . ,K may be obtained via a
classical clustering method, such as the K-means, from the convergent values of η

(s)
1 when

the ADMM algorithm stops under a convergence criterion. The detailed derivations of these
updates above are given in Section 4 of the Supplementary Material (Zhou et al. (2022)). The
algorithmic convergence of the ADMM algorithm can be proved using similar arguments as
those given in Sun, Luo and Ye (2015) and Mihić, Zhu and Ye (2021). According to Theo-
rem 1 in Section 4, with a proper selection of the tuning parameter λ the ADMM algorithm
provides good initial values with desired theoretical guarantees.
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3.3. Selection of the number of mixture components. In the context of personal treatment
evaluation, the number of mixture components, K , is often chosen by clinicians according
to specific scientific hypotheses or objectives. From a fully data-driven perspective, a vast
literature provides various methods for the selection of K . According to McLachlan and Peel
(2000), empirical criteria may not be able to exhibit differences between a mixture density
with K components and one with either fewer than K components or more than K compo-
nents. In McLachlan and Rathnayake (2014), the “true” order K∗ is defined to be the smallest
value of K such that the mixture model is compatible with the data. In Theorem 1 we show
that, with a proper selection of λ, the number of clusters obtained by the parameter fusion
is close to the true value K∗ in high probability. Such high-quality initial estimate of K∗
can greatly reduce the complexity of final decision on K∗ in the subsequent EM algorithm
that uses another selection criterion to improve the initially estimated K∗. This double-tuning
scheme allows a certain margin of error in the initial estimate of K∗ in the ADMM algorithm.

In the EM algorithm we consider two popular ways to determine K , including: (i)
Bayesian information criteria (BIC, Schwarz (1978)) or integrated classification criterion
(ICL, Biernacki, Celeux and Govaert (2000)) and (ii) hypothesis test, such as likelihood ratio
test (LRT). The latter requires the resampling method to obtain the null distribution of LRT
statistic which can be computationally burdensome. Li and Chen (2012) proposed an EM
based-test for the null hypothesis H0 : K = K0 vs. HA : K > K0, for some given positive in-
teger K0, under a finite normal mixture model. In this paper we choose and implement BIC.
The likelihood is given by

(3.4) �n(�;y) =
n∑

i=1

log�(�;yi), with �(�;yi) =
K∑

k=1

πikφ
(
yi;ZT

i ζ 1k + zT
0iα, σ 2

ik

)
with φ(·;μ,σ 2) representing a normal density function of mean μ and variance σ 2. Then, the
BIC takes the following form: −2�n(�̂;y) + p logn, where �̂ is the convergent value from
the EM algorithm and p = q1K + q2(K − 1) + q0 + K + 1 is the total number of parameters
in the model. Theoretical guarantees for the use of BIC are well documented in the literature;
Roeder and Wasserman (1997) and Keribin (2000) showed the selection consistency for BIC
in determining the true number of components in a mixture model; see also Dasgupta and
Raftery (1998) on confirmatory results of selection consistency for BIC in mixture models.

For the sake of comparison, we also consider the ICL criterion, proposed by Biernacki,
Celeux and Govaert (2000), for the mixture model, −2�n(�̂;Y ) + p logn + EN(γ̂ ), where
EN(γ̂ ) = −∑K

k=1
∑n

i=1 γ̂ik log γ̂ik , with γ̂ik being the convergent posterior probability
in (3.2) from the EM algorithm. The performances of BIC and ICL criteria are reported
through some additional simulation studies in Table 9 in the Supplementary Material (Zhou
et al. (2022)).

4. Theoretical guarantees. In this section we establish the algorithmic convergence of
the proposed hybrid algorithm HOSA, estimation consistency of the ADMM estimator, and

asymptotic normality of the HOSA estimator �̂
HOSA

, given by the convergent values from
the HOSA algorithm. We begin with regularity conditions in which true values are denoted
by superscript ∗; for example, K∗ denotes the true number of subgroups, and so on. Let
Si(�;y) be the score function of subject i given by

(4.1) Si(�;yi) = ∂ log�(�;yi)/∂�,

where �(�, y) is the marginal likelihood for subject i given in (3.4). The dimension of the
score function is p∗ = K∗q1 + q0 + (K∗ − 1)q2 + K∗ + 1:
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(C1) All errors, within-set or cross-set, {εi, i = 1, . . . , n} and {vik, i = 1, . . . , n}, k =
1, . . . ,K∗ are independent.

(C2) Confounding and prescriptive covariates (i.e., z0 and z1) satisfy ‖E(zT
0 z1|x =

1)‖∞ ≤ 1/(π1
√

K∗), where π1 = P(x = 1), and ‖a‖∞ := maxj |aj | for a = (a1, a2, . . . ,

ap)T .
(C3) There exist two constants c1 and c1 such that 0 < c1 ≤ mink E(γ ∗

ik) < maxk E(γ ∗
ik) ≤

c1 < 1, where γ ∗
ik = π∗

ikfik(θ
∗)/(∑K∗

k=1 π∗
ikfik(θ

∗)) and π∗
ik = π∗

iK exp(zT
2iζ

∗
2k), k = 1, . . . ,

K∗ − 1.
(C4) �∗ is the true value that maximizes the Q-funcion Q(� | �∗), given in (3.1).
(C5) The information matrix i(�) = E{Si(�;y)ST

i (�;y)} is positive definite for � ∈
B(�∗, c2) := {� : ‖� − �∗‖2 ≤ c2}, a compact neighborhood of �∗ with some radius c2,
where Si(�;y) is the score function of subject i.

Conditions (C1) and (C3)–(C5) are routinely assumed in the literature of MLMs. It is easy
to see that the score function is unbiased, namely, E[Si(�

∗;y)] = 0, and bounded over the
compact set centered at the true value �∗; that is, there exists a positive constant c3 such that
‖ESi(�;y)‖2 < c3 for � ∈ B(�∗, c2).

Condition (C2) is a very mild technical condition required for the convergence rate of the
EM algorithm. Essentially, it requires a limited overlap between the two covariate vectors
z0 and z1 among subjects receiving treatment x = 1. In a randomized trial with π1 = 0.5,
when both z0 and z1 are normalized with mean 0 and variance 1, condition (C2) becomes
maxs 
=t corr(z0s, z1t |x = 1) ≤ 2/

√
K∗. If there is at least one covariate appearing in both z0

and z1, the maximum correlation equals to 1. In this case, condition (C2) allows to divide the
subjects in the treatment “x = 1 arm” into four subgroups or less (K∗ ≤ 4). In most of clinical
trials, two to three subgroups are of interest, where condition (C2) automatically holds.

Theorem 1 below shows that ADMM algorithm can help consistently estimate interaction
effects ζ 1 = (ζ 11, . . . , ζ 1K). Let |Gk| be the cardinality of Gk and |Gmin| = mink |Gk|. Let τ =
mink 
=k′ ‖ζ ∗

1k − ζ ∗
1k′‖2, for k, k′ = 1, . . . ,K∗, which represents the minimum difference of

distinct true values ζ ∗
1k between subgroups. Denote ‖α‖∞ ≡ maxj |αj |, and a 
 b represents

a−1b = o(1). Throughout this paper we denote two positive constants c0 and a0 > 1 such that∫ x
0 (1 − s/(a0λ))+ ds is a constant for all x ≥ c0λ.

THEOREM 1. If the minimal difference τ , the tuning parameter λ, and the minimal
subgroup size |Gmin| are bounded below, respectively, by τ > c0λ, λ 
 n1/2/|Gmin| and√

n logn � |Gmin|, then there exists a local minimizer η̃1 of the objective function in (2.3)
satisfying

P
(∥∥η̃1 − η∗

1
∥∥∞ ≤ ψn

) → 1, as n → ∞,

where ψn = c4
√

n logn/|Gmin| and c4 is a certain positive constant.

According to Theorem 1, if the minimal subgroup size diverges at a polynomial rate of the
form, |Gmin| = O(nν) with 0.5 < ν ≤ 1, then ‖η̃1 − η∗

1‖∞ = Op(n−ν+0.5) = op(1). Techni-
cally speaking, to ensure η̃1 to be a consistent estimator, the size of every subgroup needs
to increase as the total sample size n increases. In this way, estimates from the ADMM al-
gorithm would get closer to their true subgroup-level values when the sample size increases.
It is worth pointing out that these initial values from the ADMM algorithm are not the final
solutions, and thus in practice some marginal errors are allowed and further overcome by the
subsequent operation of the EM algorithm.

Next, Theorem 2 shows the convergence rate of the EM algorithm which depends on
the rate of the initial values. It is worth noting that the ADMM algorithm provides fusion-
regularized estimates of η1, from which subgroups Gk as well as estimated subgroup labels



90 ZHOU, SUN, FU AND SONG

δi may be directly extracted from the ADMM estimates η̃1. Other model parameters σ 2
k , σ 2

ε ,
α can be consequently estimated once the estimated group structures are given.

THEOREM 2. If conditions (C1)–(C4) hold, then there exists a constant 0 < κ1 < 1 such
that, for any initial �(0) with ‖�(0) − �∗‖2 = op(1), updates �(t) from the t-th iteration of
the EM algorithm satisfies the following inequality:∥∥�(t) − �∗∥∥

2 ≤ (κ1)
t
∥∥�(0) − �∗∥∥

2 + c5n
−1/2, for t = 1,2, . . . ,

where c5 > 0 is a constant.

It is clear that the ADMM initial estimates have a lower rate (i.e., Op(n−ν+0.5)) than
the parametric rate n−1/2 which is, however, boosted by the EM algorithm via the factor
(κ1)

t . As t → ∞, the EM estimates eventually reach the rate of the second term, that is,
n−1/2, leading to an efficient parametric inference. For ease of illustration, let us consider
an example with n = 200. If κ1 = 0.8 and |Gmin| = n3/4, then the first term in the upper
bound of Theorem 2 satisfies (κ1)

t‖�(0) − �∗‖2 ≤ 10−5 after 52 iterations or so, reaching
the desired parametric rate ‖�(52) − �∗‖2 = Op(n−1/2). If a smaller κ1 = 0.6 appears, on
average, only 23 iterations are needed to find the desirable solution. In the case of a larger
minimal size of subgroup |Gmin| = n/2, about 50 iterations are needed. Clearly, the smaller κ1
the smaller number of iterations is needed to reach the n−1/2 rate. Overall, the computational
time depends more on the boosting factor κ1 than the minimal size of subgroup |Gmin|. This is
the theoretical basis for the use of the EM algorithm to improve the ADMM estimates as far as
statistical inference concerns. This boosting phenomenon is also illustrated numerically in the
simulation studies in Section 5. Thus, combining Theorems 1 and 2, we have the convergence
rate of the proposed HOSA algorithm in Corollary 1.

COROLLARY 1. Under the conditions of Theorem 1, if the minimal subgroup size is of

order |Gmin| = O(nν) with 0.5 < ν ≤ 1, the proposed �̂
HOSA

satisfies the upper bound in
Theorem 2 with initial �(0) from the ADMM algorithm.

To perform statistical inference, we establish the asymptotic normality for the HOSA esti-
mator in Theorem 3.

THEOREM 3. Under the conditions (C1–C5) the proposed HOSA estimator is asymptot-
ically normally distributed, namely,

(4.2) n1/2(
�̂

HOSA − �∗) d→ N
(
0, i−1(

�∗))
, as n → ∞,

where the Fisher information i(�∗) = E{Si(�
∗;yi)S

T
i (�∗;yi)} with the score Si(�;yi)

given in (4.1).

All proofs of Theorems 1–3 are given in Section 5 of the Supplementary Material (Zhou
et al. (2022)).

5. Simulation results. We conduct extensive simulation experiments to assess the per-
formance of the proposed HOSA method in the following categories: (i) effectiveness of
initial values from the ADMM algorithm, (ii) convergence rate of the EM algorithm with the
initial values from the ADMM algorithm, (iii) robustness of HOSA estimation against mis-
specified membership model or absence of membership model, and (iv) sensitivity of BIC
and ICL on the selection of the number of subgroups. We compare our HOSA method to
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three existing methods, including (a) ADMM method alone from which we assess any fur-
ther improvement from the use of the EM algorithm, (b) the EM algorithm with all initial
values being set at their true values (EM.T), a gold standard with the better initialization than
that by the ADMM algorithm, and (c) the LCMM estimation obtained from the R package
lcmm. In Section 1 of the Supplementary Material (Zhou et al. (2022)), we further compare
our HOSA method to the EM algorithm initialized by three additional types of initial values
of interaction effects ζ 1k in the hope to evaluate the stability of the HOSA method.

The performance evaluation concerns estimation bias (BIAS), empirical standard error
(ESE), and square root of mean square error (RMSE) of ζ̂ 1k , ζ̂ 2k and α̂. In addition, to
compare the clustering accuracy we report random index (RI) that measures the performance
of pairwise fusion, regularized in the ADMM, as well as the probability of correct clustering
(PCC), defined in a similar spirit to the probability of correct classification (Dobbin and
Simon (2007), Sanchez et al. (2016)). That is,

(5.1) PCC(k) = P(δ̂ = k | δ = k)P (δ = k) + P(δ̂ 
= k | δ 
= k)P (δ 
= k),

where δ̂ is an estimated cluster membership and the first and second terms correspond, re-
spectively, to the sensitivity and specificity. An empirical PCC is calculated as follows. First,
when the EM algorithm stops, we obtain the estimated posterior probability of subject i be-
longing to subgroup k, γ̂ik , from equation (3.2). Second, we estimate a subgroup membership
for subject i as the one with the largest probability, namely, δ̂i = arg maxk γ̂ik . Third, we es-
timate the probabilities in (5.1) by the corresponding sample proportions; for example, the
estimated sensitivity is

P̂ (δ̂ = k | δ = k)

=
∑n

i=1 I [subject i assigned to cluster k by δ̂i] × I [subject i is in cluster k]∑n
i=1 I [subject i is in cluster k] ,

where I [·] is the indicator function. All simulation experiments are based on sample size
n = 200 and B = 200 replicates.

Simulation experiment 1. The first simulation experiments is designed to examine the first
two performance categories (i) and (ii). Data are simulated from the following SGEM model
with three subgroups (K∗ = 3):

yi = z0iα +
3∑

k=1

I (δi = k)xi(ζ1k,1 + z1iζ1k,2 + υik)

+
3∑

k=1

I (δi = k)xiυik + εi,

logP(δi = k)/P (δi = 3) = ζ2k,1 + z2iζ2k,2, k = 1,2,

where covariates (z0i , z1i , z2i )
iid∼ N3(0, I ), variance components υik

iid∼ N (0, σ 2
k ), k = 1,2,3

with σk ≡ σ ∈ {0.01,0.1,1,2,4}, and errors εi
iid∼ N (0, σ 2

ε ) with σε ∈ {0.001,0.01,0.1,0.5,

1}. Here, we consider a continuous exposure xi
iid∼ N (0,1) and a binary treatment xi

iid∼
B(0.5), respectively. Clearly, condition (C2) is satisfied at K∗ = 3. The true parameter values
are set at α = 0.4, ζ 11 = (−1,−1)T (strongly negative), ζ 12 = (1,1)T (somewhat positive),
ζ 13 = (3,3)T (strongly positive), ζ 21 = (−1,1)T , and ζ 22 = (−1,−1)T , with the respective
parameter dimensions equal to q0 = 1, q1 = q2 = 2. As the subgroup variances σ 2

k increase,
these three subgroups of parameters become less separable, and, consequently, it is harder
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to estimate the subgroup labels. To avoid redundancy, we select to report part of numerical
results to illustrate the aforementioned comparisons in the simulation experiment.

Tables 1–3 list the simulation results for continuous and binary xi , respectively. It is evi-
dent that our HOSA method has very comparable performances in all performance categories
to the gold standard EM.T in all cases considered in both simulation experiments; both meth-
ods are much better than the existing ADMM and LCMM methods. In particular, LCMM has
showed poor performances on the estimation of the parameters in the subgroup membership
models. Clearly, the degree of separability σ 2

k is a key driving factor to the performances of
the four competing methods, and the higher separability (or smaller σ 2

k ) the better quality
of fit. Overall, HOSA and EM.T outperform ADMM and LCMM in the subgroup member-
ship prediction, judged by the values of RI, sensitivity, specificity, and PCC, especially in the
cases of low separability. It is interesting to note that, although LCMM has unstable estima-
tion of the parameters ζ2k,1 and ζ2k,2 in the membership models, its estimation of the cluster
memberships appears reasonable, leading to fair PCC, especially in the cases of high sepa-
rability; see additional results of the clustering accuracy for the other two separability cases,
σk = 0.01, σε = 1 and σk = 1, σε = 0.1 in Tables 10 and 11 in Section 1 of the Supplementary
Material (Zhou et al. (2022)).

To further demonstrate the performances of HOSA method over more challenging scenar-
ios with large σ 2

k (or low separability) and with large σ 2
ε (or high noise), Figures 1 and 2

display various boxplots of HOSA estimates over 200 rounds of simulation with binary xi . In
the case of increasing noise σe in errors, the point estimates of the regression parameters are
reasonably close to their true values (e.g., the middle row of Figure 1), indicating ignorable
estimation biases, while the quality of cluster fusion measured by RI worsens. In the case of
decreasing separability, all regression parameters are estimated well, except the parameters of
interaction, ζ11,2, one randomly selected from ζ11,k , k = 1,2,3 for display. HOSA estimate
ζ̂11,2 gets more estimation bias as the degree of subgroup separability drops substantially,
and, in the meanwhile, the pairwise fusion accuracy (or RI) decreases noticeably. These pat-
terns in Figures 1 and 2 are representative to all parameter estimates, including those that are
not shown in the two figures.

Simulation experiment 2. The second simulation study concerns the sensitivity of HOSA to
misspecified membership models or the absence of the membership models. We consider the
following models for the mixture proportions:

πik =
{

exp(zT
2iζ 2k)

1 + ∑K−1
k=1 exp(zT

2iζ 2k)

}2
, k = 1,2,

and the membership probabilities are then P(δi = k|z2i ) = πik/
∑K

k=1 πik , k = 1,2,3 which
are used in the data simulation. In the actual analysis we treat the square function as a linear
function, namely, logit(πik) = zT

2iζ 2k , leading to a situation of misspecified models (MS).
Another situation of misspecified models is the case of z2i = ∅; that is, no covariates enter
in the membership models, resulting in a situation referred to as the absence of membership
models (WP). In the analyses we fix the variance of errors at σε = 1, while we vary the sep-
arability with high separability σ 2

k = 0.1 (S1) and low separability σ 2
k = 4 (S2). This design

results in six types of scenarios, as shown in Figure 3, with a binary treatment variable xi .
For example, scenario WP.S2 refers to the HOSA-based analysis with the absence of mem-
bership model under the low separability, and the HOSA estimates under CS.S1 and CS.S2
are deemed the best in the comparisons because the correct membership model is used. It is
interesting to note from the (2,1)th panel that HOSA estimates of the interaction effects, that
is. ζ11,2, the key parameters of interest in the analyses, are not sensitive to the specifications
of the membership models, while with no surprise the parameter in the (2,2)th panel, ζ21,2,
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TABLE 1
Summary results of BIAS, ESE, RMSE, and RI under a continuous exposure xi over 200 replicates obtained from

the four competing methods

σk = 0.01, σε = 0.1 σk = 0.01, σε = 1

Para. HOSA ADMM EM.T LCMM HOSA ADMM EM.T LCMM

α BIAS 0.000 0.002 0.000 0.001 0.003 −0.003 0.004 0.004
ESE 0.008 0.048 0.007 0.009 0.080 0.117 0.079 0.081
RMSE 0.008 0.048 0.007 0.009 0.080 0.117 0.079 0.081

ζ11,2 BIAS 0.003 0.941 0.000 0.032 −0.008 1.037 0.002 0.138
ESE 0.019 0.347 0.016 0.256 0.186 0.524 0.177 0.456
RMSE 0.019 1.003 0.016 0.258 0.186 1.162 0.177 0.477

ζ12,2 BIAS 0.000 0.384 −0.002 −0.000 0.005 0.417 0.016 0.127
ESE 0.019 0.188 0.018 0.030 0.231 0.261 0.228 0.403
RMSE 0.019 0.428 0.018 0.030 0.231 0.492 0.229 0.423

ζ13,2 BIAS −0.001 −0.661 0.000 −0.018 0.005 −0.770 0.001 −0.055
ESE 0.012 0.195 0.010 0.146 0.115 0.339 0.113 0.249
RMSE 0.012 0.689 0.010 0.147 0.115 0.841 0.113 0.255

ζ21,2 BIAS 0.004 – 0.009 2.016 0.074 – 0.056 5.459
ESE 0.269 – 0.271 26.817 0.432 – 0.426 48.824
RMSE 0.269 – 0.271 26.893 0.439 – 0.430 49.128

ζ22,2 BIAS −0.007 – −0.008 2.031 −0.169 – −0.119 −15.384
ESE 0.273 – 0.272 26.960 0.649 – 0.578 108.912
RMSE 0.273 – 0.272 27.037 0.671 – 0.590 109.993

ζ23,2 BIAS 0.000 – 0.000 −1.043 0.000 – 0.000 −5.388
ESE 0.000 – 0.000 16.120 0.000 – 0.000 38.555
RMSE 0.000 – 0.000 16.154 0.000 – 0.000 38.930

RI 0.923 0.586 0.922 0.919 0.702 0.572 0.702 0.668

σk = 1, σε = 0.1 σk = 1, σε = 1

Para. HOSA ADMM EM.T LCMM HOSA ADMM EM.T LCMM

α BIAS −0.003 −0.000 −0.016 −0.003 −0.001 −0.005 −0.000 −0.001
ESE 0.023 0.054 0.031 0.026 0.093 0.117 0.092 0.095
RMSE 0.024 0.054 0.035 0.026 0.093 0.117 0.092 0.095

ζ11,2 BIAS 0.251 1.073 0.001 0.132 0.040 1.116 −0.010 0.334
ESE 0.310 0.417 0.086 0.464 0.425 0.559 0.365 0.710
RMSE 0.399 1.151 0.086 0.482 0.427 1.248 0.365 0.785

ζ12,2 BIAS 0.170 0.413 0.009 0.118 0.080 0.434 0.015 0.279
ESE 0.269 0.219 0.082 0.450 0.564 0.284 0.458 0.607
RMSE 0.318 0.467 0.083 0.466 0.570 0.519 0.458 0.668

ζ13,2 BIAS −0.072 −0.649 −0.003 −0.106 −0.007 −0.797 −0.016 −0.152
ESE 0.141 0.252 0.053 0.323 0.267 0.379 0.244 0.468
RMSE 0.158 0.696 0.053 0.340 0.267 0.882 0.245 0.492

ζ21,2 BIAS −0.043 – 0.037 4.854 0.079 – 0.120 10.304
ESE 0.377 – 0.360 46.683 0.609 – 0.562 51.785
RMSE 0.379 – 0.362 46.935 0.614 – 0.575 52.800

ζ22,2 BIAS −0.161 – −0.069 0.479 −2.889 – −2.283 −33.984
ESE 0.720 – 0.471 34.802 21.118 – 18.716 145.145
RMSE 0.738 – 0.476 34.805 21.315 – 18.855 149.070

ζ23,2 BIAS 0.000 – 0.000 0.032 0.011 – 0.000 −2.677
ESE 0.000 – 0.000 0.591 0.166 – 0.000 48.611
RMSE 0.000 – 0.000 0.592 0.167 – 0.000 48.684

RI 0.759 0.567 0.766 0.738 0.658 0.562 0.658 0.595
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TABLE 2
Empirical sensitivity, specificity, and PCC of the four competing methods for continuous and binary exposure xi

in the most σk = 0.01, σε = 0.1) and least (σk = 1, σε = 1) separability scenarios over 200 replicates

σk = 0.01, σε = 0.1 σk = 1, σε = 1

True δ Method δ̂ = 1 δ̂ = 2 δ̂ = 3 PCC δ̂ = 1 δ̂ = 2 δ̂ = 3 PCC

Continuous xi

1 HOSA 0.945 0.017 0.038 0.973 0.655 0.111 0.234 0.852
ADMM 0.468 0.532 0.000 0.862 0.437 0.524 0.039 0.814
EM.T 0.944 0.017 0.039 0.973 0.655 0.094 0.250 0.854
LCMM 0.939 0.022 0.039 0.971 0.645 0.179 0.176 0.770

2 HOSA 0.022 0.904 0.074 0.960 0.087 0.554 0.358 0.783
ADMM 0.000 1.000 0.000 0.617 0.121 0.779 0.100 0.540
EM.T 0.021 0.904 0.075 0.960 0.081 0.528 0.391 0.791
LCMM 0.021 0.904 0.075 0.956 0.189 0.531 0.280 0.722

3 HOSA 0.015 0.023 0.961 0.953 0.081 0.157 0.762 0.733
ADMM 0.000 0.509 0.491 0.755 0.018 0.553 0.429 0.688
EM.T 0.015 0.024 0.961 0.952 0.078 0.132 0.790 0.735
LCMM 0.015 0.029 0.957 0.951 0.191 0.243 0.566 0.677

Binary xi

1 HOSA 0.978 0.010 0.011 0.991 0.744 0.107 0.148 0.881
ADMM 0.567 0.433 0.000 0.891 0.526 0.465 0.009 0.849
EM.T 0.981 0.008 0.011 0.992 0.737 0.103 0.159 0.881
LCMM 0.976 0.013 0.011 0.990 0.693 0.201 0.106 0.766

2 HOSA 0.007 0.963 0.030 0.984 0.096 0.602 0.302 0.798
ADMM 0.000 1.000 0.000 0.685 0.111 0.830 0.060 0.582
EM.T 0.007 0.965 0.028 0.984 0.092 0.596 0.312 0.806
LCMM 0.008 0.965 0.028 0.981 0.233 0.545 0.222 0.716

3 HOSA 0.004 0.010 0.986 0.983 0.065 0.156 0.779 0.782
ADMM 0.000 0.421 0.579 0.794 0.005 0.522 0.473 0.725
EM.T 0.004 0.010 0.986 0.984 0.064 0.137 0.799 0.785
LCMM 0.004 0.015 0.981 0.981 0.204 0.254 0.542 0.700

can only be estimated accurately under the properly specified membership models. In this
panel, estimation biases are evident from MS.S1 and MS.S2 because of misspecified mem-
bership models in the analyses. In addition, with the low degree of separability all standard
errors appear larger than those obtained under the high degree of separability.

Simulation experiment 3. As pointed out above, in the context of personal medicine the
number of mixture components is typically chosen a priori by practitioners, based on a sci-
entific hypothesis or analysis objective. However, in other settings with the absence of such
prior knowledge, certain data-driven methods may be invoked, such as BIC and ICL, as sug-
gested in Section 3.3. Table 9 in Section 1 of the Supplementary Material (Zhou et al. (2022))
reports the proportion of correctly selected number of mixture components, that is, K∗ = 3,
via criteria BIC and ICL. The simulation results show that BIC and ICL perform reasonably
well when separability is not too low, and that overall BIC outperforms ICL.

6. Application. We illustrate our SGEM modeling methodology via two real-world data
examples. In this section we present the analysis of the motivating data collected from a
randomized calcium supplementation trial; the second analysis, concerning a randomized
trial on treatments for type 2 diabetics, is included in Section 2 of the Supplementary Material
(Zhou et al. (2022)). The aim of the calcium supplementation trial is to study if calcium
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TABLE 3
Summary results of BIAS, ESE, RMSE, and RI under a binary treatment xi over 200 replicates obtained from the

four competing methods

σk = 0.01, σε = 0.1 σk = 0.01, σε = 1

Para. HOSA ADMM EM.T LCMM HOSA ADMM EM.T LCMM

α BIAS 0.001 0.001 0.001 0.001 0.005 0.006 0.007 0.006
ESE 0.007 0.010 0.007 0.007 0.075 0.096 0.074 0.075
RMSE 0.007 0.010 0.007 0.007 0.075 0.096 0.074 0.075

ζ11,2 BIAS 0.001 0.990 0.000 0.007 0.050 1.089 0.025 0.213
ESE 0.021 0.523 0.020 0.101 0.302 0.577 0.269 0.552
RMSE 0.021 1.120 0.020 0.101 0.306 1.233 0.270 0.592

ζ12,2 BIAS 0.000 0.451 −0.000 0.001 0.002 0.462 0.009 0.163
ESE 0.024 0.270 0.023 0.031 0.363 0.300 0.323 0.477
RMSE 0.024 0.526 0.023 0.031 0.363 0.551 0.323 0.504

ζ13,2 BIAS −0.002 −0.609 −0.002 −0.007 −0.025 −0.621 −0.025 −0.092
ESE 0.016 0.273 0.016 0.079 0.182 0.346 0.185 0.332
RMSE 0.016 0.667 0.016 0.080 0.184 0.711 0.186 0.344

ζ21,2 BIAS 0.049 – 0.049 0.184 0.157 – 0.108 7.250
ESE 0.356 – 0.350 0.531 0.544 – 0.479 44.072
RMSE 0.359 – 0.354 0.562 0.566 – 0.491 44.664

ζ22,2 BIAS −0.052 – −0.052 1.491 −0.310 – −0.203 −18.671
ESE 0.375 – 0.362 19.973 1.009 – 0.810 113.304
RMSE 0.379 – 0.366 20.028 1.055 – 0.835 114.833

ζ23,2 BIAS 0.000 – 0.000 −0.173 0.000 – 0.000 −4.980
ESE 0.000 – 0.000 4.385 0.000 – 0.000 46.675
RMSE 0.000 – 0.000 4.389 0.000 – 0.000 46.940

RI 0.971 0.645 0.972 0.969 0.767 0.613 0.770 0.713

σk = 1, σε = 0.1 σk = 1, σε = 1

Para. HOSA ADMM EM.T LCMM HOSA ADMM EM.T LCMM

α BIAS 0.001 0.001 0.001 0.001 0.005 0.006 0.005 0.006
ESE 0.010 0.016 0.010 0.010 0.088 0.097 0.088 0.088
RMSE 0.010 0.016 0.010 0.010 0.088 0.097 0.088 0.088

ζ11,2 BIAS 0.467 1.115 −0.006 0.404 0.066 1.136 −0.000 0.433
ESE 0.481 0.597 0.108 0.718 0.512 0.672 0.427 0.780
RMSE 0.670 1.265 0.109 0.824 0.516 1.320 0.427 0.892

ζ12,2 BIAS 0.307 0.480 0.005 0.199 0.161 0.481 0.070 0.291
ESE 0.338 0.315 0.100 0.629 0.593 0.338 0.497 0.672
RMSE 0.457 0.574 0.100 0.660 0.614 0.588 0.502 0.732

ζ13,2 BIAS −0.141 −0.605 −0.003 −0.135 −0.024 −0.629 −0.010 −0.122
ESE 0.193 0.328 0.069 0.424 0.301 0.409 0.276 0.497
RMSE 0.239 0.688 0.070 0.445 0.302 0.750 0.277 0.512

ζ21,2 BIAS 0.010 – 0.204 3.974 0.112 – 0.319 12.868
ESE 0.515 – 0.806 52.250 0.835 – 2.346 72.479
RMSE 0.515 – 0.831 52.401 0.843 – 2.368 73.613

ζ22,2 BIAS −3.234 – −0.256 −1.695 −6.397 – −4.297 −39.868
ESE 20.778 – 1.008 78.565 31.710 – 25.062 157.761
RMSE 21.029 – 1.041 78.583 32.349 – 25.427 162.721

ζ23,2 BIAS 0.000 – 0.000 −2.369 −0.012 – 0.000 −2.110
ESE 0.000 – 0.000 35.252 0.095 – 0.000 25.759
RMSE 0.000 – 0.000 35.332 0.096 – 0.000 25.845

RI 0.757 0.613 0.776 0.702 0.703 0.592 0.705 0.609



96 ZHOU, SUN, FU AND SONG

FIG. 1. Boxplots of HOSA estimates of randomly selected regression parameters α, ζ11,2, ζ21,2, and variance
parameters σ 2

1 and σ 2
ε as well as RI with increasing noise in errors at σε = 0.001,0.01,0.1,0.5,1 and fixed

separability at σk = 0.1, respectively, and with a binary treatment xi .

supplement in daily diet is effective to alleviate maternal blood lead (PB) concentration so to
benefit children’s neurobehavioral and cognitive development (Ettinger, Hu and Hernandez-
Avila (2007), Ettinger et al. (2009)). Here, we focus on the outcome of PB concentration at the
third trimester (i.e., y), as this late period of pregnancy is brimming with fast development
of neurons and wiring in the brain (Ackerman (1992)). In particular, the weight of baby’s
brain roughly triples, and its formerly once smooth surface becomes increasingly grooved
and indented.

We use the data from a total of 351 (n) Mexican women in the analysis, after removing a
handful of subjects with missing data. The treatment variable x (CA) is coded as 1 for cal-
cium supplementation and 0 for placebo (i.e., calcium intake from food only). Consulting our
collaborators, we choose a set of mother’s baseline characterizations in the analysis, includ-
ing age (in year), weight (in kg), education (the number of years in school), marriage (1 yes,
0 no), parity (number of pregnancies), baseline dietary calcium intake (bDCA), and baseline
PB concentration at the first semester (bPB). These covariates are normalized to be mean zero
and variance 1. Choosing z0 = (1, age, weight, education, marriage, parity, bDCA)T , we be-
gin with a linear model with no subgroups of the following form:

(6.1) yi = zT
0iα + β1xi + β2(xi × bDCAi) + εi,

where errors εi
iid∼ N (0, σ 2). Table 4 reports the results of this analysis, where the estimated

population-average effect of calcium supplementation, β̂1, appears marginally insignificant
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FIG. 2. Boxplots of HOSA estimates of randomly selected regression parameters α, ζ11,2, ζ21,2, and variance

parameters σ 2
1 and σ 2

ε as well as RI with decreasing subgroup separability at σk = 0.01,0.1,1,2,4 and fixed
σε = 0.1, respectively, and with a binary treatment xi .

with p = 0.075 in reducing the PB concentration during the third trimester of pregnancy.
The baseline dietary calcium intake (bDCA) is not significant in both main effect (α6) and
interaction effect with the treatment (β2). Mother’s age (α1) is the only baseline covariate that
is significantly positively correlated with the PH concentration.

From a perspective of precision nutrition, we would like to ask a question of clinical im-
portance: although the population-average effect of calcium supplementation is marginally
insignificant, whether or not, is there a subgroup of mothers who may experience significant
benefit from calcium supplementation to reduce their third trimester PB concentration? This

TABLE 4
Estimated population average effects of calcium supplementation and baseline covariates with no subgroups

Estimate p-value Estimate p-value

int α0 5.049 0.000
age α1 0.507 0.010 marriage α4 0.218 0.215
weight α2 −0.152 0.384 parity α5 −0.371 0.064
education α3 −0.285 0.132 bDCA α6 −0.188 0.404

CA β1 −0.609 0.075 CA × bDCA β2 0.315 0.365
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FIG. 3. Boxplots of the HOSA estimates of randomly selected regression parameters α, ζ11,2, ζ21,2, and the

variance parameters σ 2
ε and σ 2

k as well as RI, respectively, with the membership models being correctly specified

(CS), misspecified (MS), or absent (WP), and with variance of errors σε = 1 and degree of separability σ 2
k = 0.1

(S1) or 4 (S2), and with a binary treatment xi .

question may be answered using our proposed SGEM toolbox. Among several subgroup-
effects models used in the analysis, below we present two representative ones to illustrate the
usefulness of the SGEM methodology. We also used model selection via hypothesis testing
to reach parsimonious models for the subgroup means.

First, we present a SGEM with only intercept term in z1, namely, the subgroup-level effect
μk does not dependent on any covariates, μk = ζ1k,1, k = 1, . . . ,K . In this case, because
Cov(z0,z1) = 0, condition (C2) is satisfied. Let z2 = (1, age, bPB)T . The outcome model is

yi = zT
0iα + βixi + εi , with εi

iid∼ N (0, σ 2
ε ), where

(6.2) βi
ind∼

K∑
k=1

πikN
(
μk,σ

2
k

)
, and log(πik/πiK) = zT

2iζ 2k, k = 1, . . . ,K − 1.

Using the BIC in the EM algorithm, K = 2 is chosen, implying that there exist two subgroups
of women taking the calcium supplementation. Consequently, the membership model in (6.2)
becomes a classical logistic model. The left block of Table 5 lists the parameter estimates,
standard errors (SE) and p-values calculated via 1000 bootstrap samples, using our HOSA
method, as well as the estimates obtained by the R package lcmm.

According to Table 5, the estimated group-level effects of subgroup 1, μ̂1 = ζ̂11,1 =
−1.782 (p-value < 0.001) and of subgroup 2, μ̂2 = ζ̂12,1 = 2.424 (p-value < 0.001), calcium
supplementation shows a significant benefit to the first subgroup but no benefit to the second
subgroup. It is known in the literature that overdosed calcium during pregnancy is associ-
ated with some adverse health outcomes, such as pregnancy loss (Norman, Politz and Politz
(2009)). Thus, it is of clinical interest to determine subgroup memberships of the study par-
ticipants for benefit or for harm. Through variable selection, two covariates, age and bPB, are
found to be predictive to the group membership, as shown by a scatterplot of these subjects
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TABLE 5
Results from two subgroup-effects models obtained by HOSA and lcmm methods, where p-values are obtained by

1000 bootstrap samples

No modeling of μk Modeling of μk with bDCA

Estimate SE p-value lcmm.est Estimate SE p-value lcmm.est

int α0 5.065 0.213 0.000 2.417 5.055 0.205 0.000 5.064
age α1 0.648 0.178 0.000 0.507 0.538 0.168 0.001 0.649
weight α2 −0.096 0.150 0.522 −0.147 −0.084 0.147 0.569 −0.107
education α3 −0.221 0.161 0.169 −0.276 −0.217 0.156 0.164 −0.213
marriage α4 0.137 0.147 0.352 0.220 0.121 0.142 0.394 0.145
parity α5 −0.299 0.173 0.084 −0.354 −0.329 0.165 0.047 −0.302
bDCA α6 −0.135 0.152 0.376 −0.051 −0.172 0.197 0.383 −0.168

CA ζ11,1 −1.782 0.295 0.000 −139.799 −1.453 0.262 0.000 −1.816
CA×bDCA ζ11,2 – – – −− 0.217 0.307 0.480 0.048

ζ12,1 2.424 0.583 0.000 145.049 4.468 0.752 0.000 2.123
ζ12,2 – – – −− −0.778 0.742 0.294 0.179

int ζ21,1 1.673 0.833 0.045 – 2.431 0.449 0.000 1.504
age ζ21,2 1.562 0.778 0.045 – 0.230 0.284 0.418 1.701
bPB ζ21,3 −4.950 2.139 0.021 – −2.248 0.439 0.000 −5.391

in Figure 4 with estimated subgroup labels colored in blue (benefit subgroup) and red (harm
subgroup), respectively. It is interesting to see that subjects with lower PB concentration at
the first trimester would benefit the calcium supplementation to reduce the PB concentra-
tion in the third trimester. Also, calcium supplementation is slightly more beneficial for older
women. The results, obtained from the R package lcmm, are included in Table 5. The esti-
mates α̂ in the outcome model are comparable to those obtained from our HOSA method;
the estimates of μk have the same directions but are too large to be trustful in comparison to
the HOSA estimates. It is worth pointing out that age is found to be significant by HOSA, in
agreement with the result in Table 4.

FIG. 4. Scatterplot of PB concentration at the first trimester (bPB) vs. age of subjects whose memberships are
determined by the higher posterior probability γ̂ik from the EM algorithm. Blue stars denote the members of the
benefit subgroup, and red squares denote the members of harm subgroup.
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Second, we present a SGEM with the subgroup-level treatment effects being modeled by
covariates. We choose the scenario of μk being a function of the baseline calcium intake
from food (bDCA) because an interaction term of CA and bDCA is considered in the pre-
vious model (6.1). This SGEM provides more details than the results seen in Table 4, due
to the inclusion of z1 = (1,bDCA)T in the group mean models μik = zT

1 ζ 1k . Once again,
condition (C2) is satisfied because z0 and z1 share only one common covariate, bDCA. The
results by both HOSA and lcmm methods are reported in the right block of Table 5. The
HOSA results from the left block and the right block appear similar, so are the lcmm results.
Clearly, the two interaction parameters, ζ11,2 (p-value = 0.48) and ζ12,2 (p-value = 0.294),
are not significant, so the results from the left block are used to draw conclusions. Finally,
the R package lcmm gives comparable estimates to the HOSA estimates; include those in the
logistic model for the subgroup memberships.

7. Discussion. Although the population-average treatment effect is of primary interest
in clinical trials, patients treated by a drug can experience different treatment efficacy. Pro-
filing those patients who have strong treatment benefit from those having weak, or even no
benefit, would provide a tailored therapeutic protocol in clinical practice. Relevant statistical
methods for such an analytic task are of great importance. In this paper we have achieved
two goals for the subgroup analysis: First, we introduced a class of subgroup-effects models
with clear and direct clinical interpretations; second, we developed a new hybrid statistical
algorithm, termed HOSA, that generates more stable and reliable numerical results in both
estimation and inference. These technical advances, given in the paper, are of great impor-
tance to deliver a better statistical toolbox for the evaluation of personal treatment effects. As
demonstrated by both extensive simulation studies and real-world data analyses, our proposed
HOSA method has shown satisfactory performances in various easy and hard situations, and
has outperformed some popular existing methods, including exiting ADMM and R package
lcmm. In the case of low subgroup separability, neither method seems to work well in the pre-
diction of subgroup labels. A natural solution to address this issue in practice is that we may
simply merge those subgroups with significant overlap and then conduct subgroup analyses
with a reduced number of subgroups. We will develop an effective procedure for subgroup
merging in the future work to overcome this challenge, including a certain hypothesis testing
based approach.

The key methodological contribution in this paper is to utilize the power of supervised
clustering analysis via the ADMM algorithm to yield high-quality initial values that are de-
sired inputs to begin the EM algorithm. The step of refinement through the EM algorithm
is necessary because the resulting parameter estimation achieves the parametric rate, lead-
ing to the same efficiency of the maximum likelihood estimation. In contrast, the ADMM
estimation has not yet reached the parametric rate and suffers from potential estimation bias,
so the ADMM method alone is not ready to make statistical inference. Note that conducting
inference, say obtaining p-value for treatment effect, is of highly clinical interest. Thus, the
proposed HOSA method, which upgrades the ADMM solution by the EM algorithm, enjoys
both numerical stability and validity of statistical inference with clear theoretical guarantees
shown in this paper. In comparison to the existing LCMM method that has shown unsta-
ble estimation for the parameters in the membership model, the HOSA is our recommended
method to be used in clinical studies.

This proposed HOSA method may be extended in several directions. Developing a sys-
tematic procedure to determine which covariates enter the set of confounding covariates or
the set of prescriptive covariates is of importance in the model specification. Two models
of clinical importance are the logistic outcome model for categorical outcomes and the Cox
proportional hazards model for time-to-event outcomes, and developing HOSA on these non-
linear regression models is certainly practically useful. These are worth further exploration
in the future work.
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SUPPLEMENTARY MATERIAL

Supplement to “Subgroup-effects models for the analysis of personal treatment ef-
fects” (DOI: 10.1214/21-AOAS1503SUPPA; .pdf). We provide additional simulation results,
the analysis of a diabetes clinical trial data, derivations of the ADMM and EM algorithms,
and details of technical proofs.

Supplement to “Subgroup-effects models for the analysis of personal treatment ef-
fects” (DOI: 10.1214/21-AOAS1503SUPPB; .zip). The R package is also available on
GitHub https://github.com/sqsun/HOSA.
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