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ABSTRACT
This article develops an incremental learning algorithm based on quadratic inference function (QIF) to
analyze streaming datasets with correlated outcomes such as longitudinal data and clustered data. We
propose a renewable QIF (RenewQIF) method within a paradigm of renewable estimation and incremental
inference, in which parameter estimates are recursively renewed with current data and summary statistics
of historical data, but with no use of any historical subject-level raw data. We compare our renewable
estimation method with both offline QIF and offline generalized estimating equations (GEE) approach that
process the entire cumulative subject-level data all together, and show theoretically and numerically that
our renewable procedure enjoys statistical and computational efficiency. We also propose an approach to
diagnose the homogeneity assumption of regression coefficients via a sequential goodness-of-fit test as a
screening procedure on occurrences of abnormal data batches. We implement the proposedmethodology
by expanding existing Spark’s Lambda architecture for the operation of statistical inference anddata quality
diagnosis. We illustrate the proposed methodology by extensive simulation studies and an analysis of
streaming car crash datasets from theNational Automotive Sampling System-Crashworthiness Data System
(NASS CDS). Supplementary materials for this article are available online.

ARTICLE HISTORY
Received September 2019
Accepted January 2022

KEYWORDS
Abnormal data batch
detection; Generalized
estimating equation;
Incremental statistical
analysis; Online learning;
Quadratic inference function;
Spark computing platform

1. Introduction

When a car accident happens, driver and passengers in the
same car would be all likely to get injured, and their degrees
of injury are correlated within a car. Here a car is a sample
unit which, in general, is referred to as a cluster. The National
Automotive Sampling System-Crashworthiness Data System
(NASS CDS) is a publicly accessible source of streaming
datasets containing car accident information in the USA. Other
examples of such streaming correlated data include cohorts of
patients sequentially assembled at different clinical centers to
periodically update national disease registry databases, where,
for example, a family is the sample unit. In this article, we
consider a problem where a series of independent clusters
becomes available sequentially over data batches, and arrivals
of data batches may be perpetual. Similar to the data of car
accidents, each data batch consists of temporally correlated or
cluster-correlated outcomes. The primary goal of processing
such streaming data is to sequentially update some statistics
of interest upon the arrival of a new data batch, in the hope
to not only free up space for the storage of massive historical
individual-level data, but also to provide real-time inference
and decision making.

With the emergence of streaming data collection techniques,
sequential data analytics have received much attention in the
literature to address computational efficiency while preserving
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essential statistical properties. Arguably, the stochastic gradient
descent (SGD) algorithmhas been thus far themost well-known
algorithm to analyze streaming data along the lines of stochastic
approximations (Robbins and Monro 1951). Unfortunately,
most of currently available online learning methods in the
SGD paradigm and its variants, including online Newton
SGD (Hazan, Agarwal, and Kale 2007) and quasi-Newton
SGD (Schraudolph et al. 2007; Bordes, Bottou, and Gallinari
2009), have focused only on point estimation or prediction,
and unfortunately precluded statistical inference. Toulis and
Airold (2017) obtained some analytic expressions for the
asymptotic variances in the implementation of an SGD
algorithm to produce maximum likelihood estimation (MLE)
with cross-sectional data, in which statistical inference was
absent. Recently, Fang (2019) proposed a perturbation-based
resampling method to construct confidence intervals in the
framework of the averaged implicit SGD (AI-SGD) estimation
proposed by Toulis and Airold (2017). Luo and Song (2020)
demonstrated in simulation studies that Fang’s resampling
method for the AI-SGD may fail to provide desirable coverage
probability, and thus, possibly leads to misleading inference,
especially when the number of regression parameters is large.
In the setting of linear models, since the least square estimation
(LSE) of the regression parameters has a closed form expression
for recursive calculations, it is possible to establish certain
sequential updating schemes for both point estimation and
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related calculation of standard errors; see for example, Luo and
Song (2020). In this case the resulting estimates can be exactly
the same as those obtained by its offline counterpart (Stengel
1994). This property has been used to conduct real-time
regression analysis with the linear model for streaming data
by, for example, Nadungodage et al. (2011). However, according
to Luo and Song (2020), this property of equality between online
and offline estimates no longer holds beyond the linear model,
for example, the logistic model for binary outcomes.

This article considers an important extension of renewable
estimation and incremental inference in the class of generalized
linear models (GLMs) developed by Luo and Song (2020)
for cross-sectional data to the case of streaming data with
repeatedly measured responses. This extension is substantial in
bothmethodology and applications. In terms ofmethodological
extensions, it relaxes not only the availability of likelihood
functions in the renewable MLE to a general framework of
estimating functions, but also the popular assumption of
homogeneous marginal models. Model homogeneity refers
to the situation where data streams are generated under a
common set of parameters over the sequence of data batches.
This homogeneity will be violated in the presence of “abnormal”
data batches – those being generated under different sets of
model parameters from the standard/default ones of primary
interest. In realworld applications, practitioners often encounter
outlying data batches. In this case, continually updating results
without noticing and removing abnormal data batches would
lead to invalid statistical inference and misleading conclusions.
To deal with this issue of practical importance, we develop a
quality control (QC) type of monitoring scheme by the means
of abnormal data batch detection and deletion.

We propose a new online regression methodology along the
lines of the generalized estimating equation (GEE) approach
proposed by Liang and Zeger (1986), one of the most widely
used methods for the analysis of data with correlated outcomes.
This quasi-likelihood approach is based only on the first two
moments of the correlated data distribution with no need
of specifying a parametric joint distribution. Such regression
model is termed as marginal generalized linear model (MGLM)
or population-average model in the literature of correlated
data analysis (Song 2007, chap. 5). In this field, another quasi-
likelihood inference method is quadratic inference function
(QIF) (Qu, Lindsay, and Li 2000). QIF has several advantages
in comparison to GEE: (i) QIF does not require more model
assumptions than GEE; (ii) it provides a goodness-of-fit test
for the first moment assumption, that is, the mean-model
specification; (iii) QIF estimator is more efficient than the GEE
estimator when the working correlation is misspecified; and (iv)
it ismore robust with a bounded influence function against large
outliers (Qu and Song 2004).

Our key methodology contributions include: (i) we pro-
pose an online QIF method that allows to perform real-time
regression analysis of correlated outcomes under fast recursive
estimating equations with little reliance on data storage capac-
ity; (ii) the proposed online estimation and inference, termed
as RenewQIF, is asymptotically equivalent to the offline QIF
estimator obtained from the full cumulative data, and thus, has
no loss of statistical power in inference; (iii) our RenewQIF
method can be implemented in the existing Spark’s Lambda

architecture to carry over incremental estimation and inference
with desirable statistical and computational efficiency; and (iv)
by adding a monitoring layer to the Lambda architecture, our
method allows to detect and delete abnormal data batches in the
real-time analysis of correlated data. A direct use of the offline
QIF with cumulative data encounters fast-growing demands on
hardward capacities over the course of perpetual data streams.

It is worth pointing out that the proposed RenewQIF is
indeed different from the offline QIF that works for a single data
batch. First, the RenewQIF is built upon a sequential updat-
ing paradigm, which is computationally much faster than the
offline QIF. This gain in computational speed stems from to
our new formulation of online search algorithm that is operated
recursively under a different objective function from that of the
original offline QIF. As shown in this article, the RenewQIF
and offline QIF estimators are not the same but only stochas-
tically equivalent. Second, unlike most of existing online meth-
ods, the proposed RenewQIF provides online statistical infer-
ence that, technically, depends on a fast recursive calculation
of Godambe information matrix (or the sandwich covariance
matrix). Such work has not been considered in the current liter-
ature. Third, theoretical justifications for large sample properties
of the RenewQIF are different in the case where individual data
batch sizes are fixed but the number of data batches tends to
infinity. In contrast, the asymptotic results of the offline QIF
do not hold if the sample size is fixed, which corresponds to
the case that the number of data batches is only one rather
than diverging to infinity. Thus, the technical treatments in both
theoretical arguments and algorithm designs in the RenewQIF
are more advanced than those given by Qu, Lindsay, and Li
(2000). Technically, the offline QIF may be regarded as a special
case of the RenewQIF.

We also propose an online screening method for a real-
time diagnosis of abnormal data batches in the framework of
RenewQIF. Most existing online monitoring procedures are
based on certain metrics such as a test statistic (Page 1954;
Shiryayev 1963; Roberts 1966; Goel and Wu 1971; Amin and
Search 1991; Pollak and Siegmund 1991; Amin, Reynolds, and
Bakir 1995). In a similar spirit to (Lai 2004), we establish a
fast screening procedure based on Hansen’s goodness-of-fit test
statistic (Hansen 1982) to identify any abnormal data batch and
exclude it from updating results of estimation and inference. To
implement the RenewQIF in the presence of potential abnormal
data batches, we expand the Rho architecture developed by (Luo
and Song 2020) in the context of GLMs for cross-sectional
data, by adding a new monitoring layer in the Spark’s Lambda
architecture. This monitoring layer houses a QIF-based testing
procedure to check the compatibility of each arriving data batch
with the normal data reference.

Essentially, we aim to develop a new online methodology
with the following tasks: (i) to put forward RenewQIF estima-
tion and incremental inference in MGLMs for correlated out-
comes; and (ii) to study aQIF-based goodness-of-fit test statistic
in the monitoring layer that enables to effectively detect abnor-
mal data batches over data streams with no fixed ending point.
This article is organized as follows to achieve these two aims.
Section 2 provides both algorithms and theoretical guarantees
for our RenewQIF method. Section 3 discusses an extended
Lambda architecture with an addition of quality control layer
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and pseudo code for numerical implementation, together with
an analysis on algorithmic convergence and a monitoring pro-
cedure for abnormal data batches. Section 4 includes simulation
results with comparisons of the proposed RenewQIF to the
offlineGEE,QIF and renewableGEE (RenewGEE)with orwith-
out abnormal data batches. Section 5 illustrates the proposed
method by a real data analysis application. The proofs of the
large-sample properties for the RenewQIF method are included
in the Appendix. Derivation of RenewGEE as well as additional
numerical results are included in the supplementary materials.

2. RenewQIFMethodology

2.1. Offline QIF

Consider independent streaming data batches consisting
of cluster-correlated outcomes, sequentially generated from
a common underlying population-averaged model (Zeger,
Liang, and Albert 1988) or marginal generalized linear model
(MGLM) (Song 2007, chap. 5) with an unknown regression
parameter β0 ∈ � ⊂ Rp where � is the parameter space for
β . For the ease of exposition, we assume an equal cluster size
mi = m. Our goal is to evaluate population-average effects of p
covariates, denoted by β0 = (β01, . . . ,β0p)� in an MGLM with
the marginal mean and covariance given by

μ = E(y|X) =
[
h(x�

1 β0), . . . , h(x�
mβ0)

]�
,

cov(y|X) = φ�(β0,α) = φA1/2R(α)A1/2, (1)

where y = (y1, . . . , ym)�, μ = (μ1, . . . ,μm)� with μk =
h(x�

k β0) where h(·) is a known link function, and X =
(x1, . . . , xm)� with xk = (xk1, . . . , xkp)�, k = 1, . . . ,m. φ

is a dispersion parameter, A = diag {v(μ1), . . . , v(μm)} is a
diagonal matrix with v(·) being a known variance function, and
R(α) is a working correlation matrix that is fully characterized
by a correlation parameter vector α. Both dispersion φ and
correlation α are treated as nuisance parameters outside the
space of parameters of interest, �.

In the context of streaming data, consider a time point b ≥ 2
with a total ofNb clusters arriving sequentially in b data batches,
{D1, . . . ,Db}, each containing nj = |Dj|, j = 1, . . . , b, clusters.
Let D�

b = D1 ∪ · · · ∪ Db denote the cumulative collection of
datasets up to data batch b where each sample unit corresponds
to an m-element vector of cluster-correlated outcomes, and the
cumulative sample size is Nb = |D�

b|. For simplicity, Db (a
single data batch b) or D�

b (an aggregation of b data batches)
is also used as respective sets of indices for clusters involved.
For cluster i, let yi = (yi1, . . . , yim)� and Xi = (xi1, . . . , xim)�
be the correlated response vectors and associated covariates,
i = 1, . . . , nj, j = 1, . . . , b. According to Liang andZeger (1986),
an offline GEE estimator of β0 is a solution to the following
generalized estimating equation for the cumulative data D�

b up
to time point b:

ψ�
b(D�

b;β ,α) =
∑
i∈D�

b

D�
i �−1

i (yi − μi) = 0, (2)

whereμi = (μi1, . . . ,μim)�,Di = ∂μi/∂β� is anm×pmatrix
and �i = A1/2

i R(α)A1/2
i with Ai = diag {v(μi1), . . . , v(μim)}.

According to Qu, Lindsay, and Li (2000), the formulation of an
offline QIF is based on an approximation to the inverse working
correlation matrix by R−1(α) ≈ ∑S

s=1 γsMs, where γ1, . . . , γS
are constants possibly dependent on α, and M1, . . . ,MS are
known basis matrices with elements 0 and 1, which are
determined by a given correlation matrix R(α). In some
cases, the above expansion can be exact. For example, as
discussed in Qu, Lindsay, and Li (2000) and (Song 2007, chap.
5), the basis matrices for the compound symmetry working
correlation matrix are M1 = Im, the identity matrix, and Mcs

2 ,
a matrix with all 0 on the diagonal and all 1 off the diagonal.
Plugging such expansion into (2) leads to ψ�

b(D�
b;β ,α) =∑

i∈D�
b

∑S
s=1 γsD�

i A
−1/2
i MsA−1/2

i (yi − μi) = 0, which may
be regarded as a combination of the following extended score
vector of pS dimension:

g�
b(β) = ∑

i∈D�
b
g(yi;Xi,β)

= ∑
i∈D�

b

⎛⎜⎝D�
i A

−1/2
i M1A−1/2

i (yi − μi)
...

D�
i A

−1/2
i MSA−1/2

i (yi − μi)

⎞⎟⎠ .

This is an over-identified estimating function, namely dim(g�
b

(β)) > dim(β). To obtain an estimator of β0, following Hansen
(1982)’s generalizedmethod of moments (GMM), we take β̂

�

b =
argmin

β∈Rp
Q�
b(β) with

Q�
b(β) = g�

b(β)�
{
C�
b(β)

}−1 g�
b(β), (3)

where C�
b(β) = ∑

i∈D�
b
g(yi;Xi,β)g(yi;Xi,β)� is the sample

variance of g�
b(β). Note that the nuisance correlation parameter

α is not involved in (3) for the estimation of β0. Throughout the
article, for a vector a = (a1, . . . , an) ∈ Rn, we denote the L2-
norm by ||a|| :=

√∑n
i=1 a2i ; for a matrix A ∈ Rm×n, we define

||A|| :=
√

λmax(A�A)whereλmax denote the largest eigenvalue.
Wherever applicable, denote the L1-norm by || · ||1.

2.2. Online QIF

Instead of processing the cumulative data D�
b once to obtain

an offline QIF as shown above, we may conduct the online
estimation and inference via a sequential and recursive updating
scheme. In the proposed online estimation framework, let
β̃b be a renewable estimator, which is initialized by β̃1 =
β̂1 = argmin

β∈Rp
Q1(β), namely the QIF estimate obtained

with the first data batch. When data batch Db arrives, a
previous estimator β̃b−1 is renewed or updated to β̃b using
historical summary statistics of previous data batchesD�

b−1 and
full observations of current data batch Db. This sequentially
renewed estimator is termed as the renewableQIF or RenewQIF.
After the completion of this updating, individual-level data
of Db is no longer accessible for the sake of data storage,
but only the updated estimate β̃b and summary statistics are
carried forward in future calculations. For the empirical version,
we use gb(β) = ∑

i∈Db
g(yi;Xi,β) to denote the extended

score vector of data batch Db, clearly g�
b(β) = ∑b

j=1 g j(β).
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The negative gradient and sample variance matrix of gb(β)

are denoted by Gb(β) = −∑
i∈Db

∂g(yi;Xi,β)/∂β� and
Cb(β) = ∑

i∈Db
g(yi;Xi,β)g(yi;Xi,β)�, respectively. In the

theoretical framework, let the population variability matrix and
sensitivity matrix be C(β) = Eβ

{
g(y;X,β)g�(y;X,β)

}
and

G(β) = Eβ

{−∂g(y;X,β)/∂β�} (Godambe and Kale 1991).
In the process of RenewQIF, the same basis matrices are used in
all data batches.

We begin the derivation of RenewQIF with two batches, the
second one D2 arriving after the first D1. This simple scenario
can be easily generalized to the case of an arbitrary number of
data batches with little effort. According to Qu, Lindsay, and Li
(2000), a QIF estimator, β̂1 = argmin

β∈Rp
Q1(β) with Q1(β) =

g�
1 (β) {C1(β)}−1 g1(β), may be obtained from the estimating

equation: G�
1 (β̂1)

{
C1(β̂1)

}−1
g1(β̂1) = 0 with a higher-order

term of Op(n−1
1 ) being dropped from the gradient. When D2

arrives, we aim to obtain the offline QIF estimator, β̂
�

2, based
on the accumulated data D�

2, satisfying the estimating equation
G�
2(β̂

�

2)
�C�

2(β̂
�

2)
−1g�

2(β̂
�

2) = 0, or equivalently{
G1(β̂

�

2) + G2(β̂
�

2)
}� {

C1(β̂
�

2) + C2(β̂
�

2)
}−1

{
g1(β̂

�

2) + g2(β̂
�

2)
}

= 0. (4)

Clearly, solving (4) for β̂
�

2 involves subject-level data from
both batches D1 and D2 where D1 may no longer be acces-
sible. Our RenewQIF estimation is able to handle this issue.
To proceed, heuristically, we may take the first-order Tay-
lor expansions of the terms g1(β̂

�

2), G1(β̂
�

2) and C1(β̂
�

2)

element-wise in (4) around β̂1. Given that g1 is continu-
ously differentiable and G1 is Lipschitz continuous in �,
it follows that n1

N2
g1(β̂

�

2) = n1
N2
g1(β̂1) + n1

N2
G1(β̂1)(β̂1 −

β̂
�

2) + Op
(
n1
N2

||β̂1 − β̂
�

2||2
)
, n1

N2
G1(β̂

�

2) = n1
N2
G1(β̂1) +

Op
(
n1
N2

||β̂1 − β̂
�

2||
)
, and n1

N2
C1(β̂

�

2) = n1
N2
C1(β̂1)+Op

(
n1
N2

||β̂1

− β̂
�

2||
)
. The error terms Op

(
n1
N2

||β̂1 − β̂
�

2||
)
and Op

(
n1
N2

||β̂1

− β̂
�

2||2
)

may be asymptotically ignorable if N2 is large
enough. Dropping such error terms, we propose a new
QIF estimator β̃2 as a solution to the estimating equation:
G̃2(β̃2)

�C̃2(β̃2)
−1g̃2(β̃2) = 0, or equivalently,{

G1(β̂1) + G2(β̃2)
}� {

C1(β̂1) + C2(β̃2)
}−1

{
g1(β̂1) + G1(β̂1)(β̂1 − β̃2) + g2(β̃2)

}
= 0, (5)

where g̃2, G̃2 and C̃2 are, respectively, the resulting adjusted
extended score vector, the online aggregated negative gradient,
and the online sample variance matrix, none of which is cal-
culated with the subject-level raw data D1. Thus, Equation (5)
updates the initial β̂1 to a new estimate with no use of the raw
data in D1. Thus, β̃2 is called a RenewQIF estimator of β0, and
Equation (5) is termed as an incremental QIF estimating equa-
tion. Furthermore, it is straightforward to find the RenewQIF

estimator β̃2 numerically via the Newton–Raphson algorithm.
That is, at the (r + 1)th iteration,

β̃
(r+1)
2 = β̃

(r)
2 +

{
G̃2(β̃

(r)
2 )�C̃2(β̃

(r)
2 )−1G̃2(β̃

(r)
2 )

}−1

G̃2(β̃
(r)
2 )�C̃2(β̃

(r)
2 )−1g̃2(β̃

(r)
2 ),

where G̃2(β̃
(r)
2 ) = G1(β̂1)+G2(β̃

(r)
2 ) and C̃2(β̃

(r)
2 ) = C1(β̂1)+

C2(β̃
(r)
2 ). Here, the gradient is also an approximation that is

traditionally used in the offline QIF with higher-order terms
being dropped (Qu, Lindsay, and Li 2000). Once again, it is
worth pointing out that the above iterations do not require
the subject-level data of D1, but only the historical summary
statistics, including estimate β̂1, its negative gradient G1(β̂1)

and sample variance matrix C1(β̂1). In the QIF estimation
above, the nuisance correlation parameter α is not involved in
the iterations, either.

Extending the above renewable procedure to a general setting
of streaming datasets, we nowdefine a renewableQIF estimation
of β0 as follows. Let β̂

�

b be the offline QIF estimator of β0 with
the cumulative dataD�

b = ∪b
j=1Dj obtained from the offlineQIF

estimating equation G�
b(β̂

�

b)
�C�

b(β̂
�

b)
−1g�

b(β̂
�

b) = 0. A renew-
able estimator β̃b ofβ0 is defined as a solution to the incremental
QIF estimating equation: G̃b(β̃b)

�C̃b(β̃b)
−1g̃b(β̃b) = 0, which

is equivalent to

f b(β̃b) =
⎧⎨⎩
b−1∑
j=1

Gj(β̃ j) + Gb(β̃b)

⎫⎬⎭
� ⎧⎨⎩

b−1∑
j=1

Cj(β̃ j) + Cb(β̃b)

⎫⎬⎭
−1

×
⎧⎨⎩g̃b−1(β̃b−1) +

b−1∑
j=1

Gj(β̃ j)(β̃b−1 − β̃b) + gb(β̃b)

⎫⎬⎭ = 0, (6)

where G̃b = ∑b
j=1 Gj(β̃ j) is the sequentially aggregated negative

gradient matrix, C̃b = ∑b
j=1 Cj(β̃ j) is the sequentially aggre-

gated sample variance matrix, and g̃b(β̃b) = g̃b−1(β̃b−1) +∑b−1
j=1 Gj(β̃ j)(β̃b−1−β̃b)+gb(β̃b) is the adjusted extended score

vector. In effect, Equation (6) may be rewritten as a recursive
formula:

β̃b = β̃b−1 + N−1
b H−1

b Ũb(β̃b), with

Ũb(β̃b) = G̃�
b C̃

−1
b

(
g̃b−1 + gb(β̃b)

)
, (7)

whereHb = N−1
b G̃�

b C̃
−1
b G̃b−1. Even though the first expression

in (7) takes a similar form to that of the traditional SGD (Rob-
bins andMonro 1951; Sakrison 1965; Toulis and Airold 2017), it
is not an SGD as β̃b is involved in both Ũb(·) andHb. It may be
regarded as a second-order method involving Hessian inversion
calculation useful for statistical inference. In comparison to
SGD, (7) not only achieves efficient estimation but also provides
relevant inferential quantities; the latter is of great importance
in statistical analyses of cluster-correlated data streams. This
RenewQIF estimate β̃b given in (7) is clearly different from the
offline QIF that requires to access the entire cumulative data
D�

b to obtain the parameter estimate β̂
�

b, and the latter may not
be computationally feasible when the number of data batches
b → ∞.
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Solving (6) can be easily carried out via the following
Newton–Raphson iterations:

β̃
(r+1)
b = β̃

(r)
b +

{
G̃b(β̃

(r)
b )�C̃b(β̃

(r)
b )−1G̃b(β̃

(r)
b )

}−1

G̃b(β̃
(r)
b )�C̃b(β̃

(r)
b )−1g̃b(β̃

(r)
b ). (8)

In algorithm (8), clearlywe only use the subject-level data of cur-
rent data batch Db and summary statistics {β̃b−1, g̃b−1, G̃b−1,
C̃b−1} from historical data batches up to b − 1 rather than
subject-level raw data ofD�

b−1. Thus, our proposedRenewQIF is
indeed an online estimation procedure. In addition, a consistent
estimator of parameter φ is given by φ̃b = mNb−1−p

mNb−p φ̃b−1 +
mnb−p
mNb−p φ̂b, where φ̂b = 1

mnb−p
∑

i∈Db

∑m
k=1

(yik−μ̂ik)
2

v(μ̂ik)
with

μ̂ik = h(x�
ikβ̃b).

2.3. Large Sample Properties

In our discussion of large sample properties, the cumulative
sample size Nb → ∞ may arise from one of the following three
scenarios: (S1) nj is finite for j = 1, . . . , b but the number of
data batches b → ∞; (S2) the initial data batch size n1 → ∞
(aggregate the first few batches to create a large initial data batch
prior to the renewable updating), and subsequent batch sizes
nj’s may be either finite or infinite for j = 2, . . . , b, but the
number of data batches b is finite; and (S3) the initial data batch
size n1 → ∞ and other nj’s are either finite or infinite for
j = 2, . . . , b, and the number of data batches b → ∞.

Following the regularity conditions given in Hansen (1982)’s
theory of GMM, we postulate the regularity conditions to estab-
lish some key large sample properties for RenewQIF.

(C1) The true parameter β0 lies in the interior of parameter
space � ⊂ Rp, and the space � is compact.

(C2) The incremental estimating function f b(β) is unbiased
such that Eβ

{
f b(y;X,β)

} = 0 if and only if β = β0.
(C3) The extended score vector g(y;X,β) is twice continuous

differentiable with respect to parameter β , and the sensi-
tivity matrixG(β) = EβG(y;X,β) is of full column rank
for β ∈ �.

(C4) Eβ

[||g(y;X,β)||2] < ∞ for all β ∈ �.
(C5) The variability matrix C(β) = Eβg(y;X,β)g(y;X,β)� is

positive-definite for β ∈ �.

Remark 1. (C1)–(C5) are mild conditions required to establish
asymptotic consistency for scenarios S2 and S3. Condition (C4)
indicates that the sample variance matrix N−1

b C̃b is finite for all
β ∈ �. (C5) of positive-definite C(β) on the whole parameter
space� is required specifically in scenario S1, while in scenarios
S2 and S3, (C5) may be relaxed to hold in a neighborhood with
radius o(√n1).

Note that we do not include the convergence condition on a
sequence of weightingmatrices as in Hansen (1982) because the
online QIF uses the sample variance matrix whereN−1

b C̃b
a.s.→ C

holds under Nb iid samples and conditions (C1)–(C4).

We first establish estimation consistency for the RenewQIF
in scenarios (S2)–(S3).

Theorem 1. In scenarios (S2)–(S3), under regularity conditions
(C1)–(C5), the renewable estimator β̃b given in (6) is consistent,
namely β̃b

p→ β0, as Nb = ∑b
j=1 nj → ∞.

Under the same regularity conditions, we can further estab-
lish the asymptotic normality for the RenewQIF in the two
scenarios (S2)–(S3).

Theorem 2. In scenarios (S2)–(S3), under regularity conditions
(C1)–(C5), the renewable estimator β̃b in (6) is asymp-
totically normally distributed, namely

√
Nb(β̃b − β0)

d→
N
(
0, J−1(β0)

)
, as Nb → ∞, where Godambe information

J(β0) = G�(β0)C
−1(β0)G(β0).

The proof of Theorems 1 and 2 for scenarios (S2)–(S3) are
given in Section 3 in the supplementary materials. To establish
consistency and asymptotic normality for scenario (S1), we need
the following additional conditions.

(C6) Define f 1(β) := G1(β)�C1(β)−1g1(β). Both matrices
G1(β)�C1(β)−1G1(β) and −∂f 1(β)/∂β� are positive-
definite for β ∈ �.

(C7) Hb = N−1
b G̃�

b C̃
−1
b G̃b−1 is positive-definite.

Remark 2. The condition (C6) requiring positive-definiteness
ofG1(β)�C1(β)−1G1(β) and−∂f 1(β)/∂β� appears to bemild
as long as the first data batch size n1 is moderately large. Since
matrix Hb approximates the sample covariance matrix of β̃b as
b → ∞, the condition (C7) ofHb being positive-definite is also
modest.

Theorem 3. In scenario (S1), under regularity conditions (C1)–
(C7), the renewable estimator β̃b given in (6) is consistent,
namely β̃b

p→ β0, as Nb = ∑b
j=1 nj → ∞.

Theorem 4. In scenario (S1), under regularity conditions
(C1)–(C7), the renewable estimator β̃b given in (6) is asymp-
totically normally distributed, namely,

√
Nb(β̃b − β0)

d→
N
(
0, J−1(β0)

)
, as Nb → ∞, where Godambe information

J(β0) = G�(β0)C
−1(β0)G(β0).

The proof of Theorems 3 and 4 are given in Appendix A.1
and A.2, respectively.

It is interesting to notice that the asymptotic covariance
matrix of the renewable estimator β̃b given in both Theorems 2
and 4 is exactly the same as that of the offline estimator β̂

�

b.
This implies that the proposed RenewQIF estimator achieves
the same asymptotic distribution as the offline QIF estima-
tor. With no access to any historical subject-level data in the
computation, using only the online aggregated matrices G̃b =∑b

j=1 Gj(Dj; β̃ j) and C̃b = ∑b
j=1 Cj(Dj; β̃ j), we can calcu-

late the estimated asymptotic covariance matrix as �̃b(β0) ={
N−1
b J̃b

}−1 = Nb
{
G̃�
b C̃

−1
b G̃b

}−1
. It follows that the online

estimated asymptotic variance matrix for the RenewQIF β̃b is

Ṽ(β̃b) := ṽar(β̃b) = 1
Nb

�̃b(β0) =
{
G̃�
b C̃

−1
b G̃b

}−1
. (9)
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Positive-definiteness on C(β) is required by (C5) for all β ∈
�, but the sample version N−1

b C̃b may be noninvertible. In
the implementation, we invoke a generalized inverse (Moore–
Penrose inverse). Other possible remedy approaches include (i)
a linear shrinkage estimator to replace the sample covariance
matrix (Han and Song 2011); (ii) a selection of moment con-
ditions (Cho and Qu 2015); and (iii) a principle component
dimension reduction (Pearson 1901) to ensure that the compo-
nents in g are not (nearly) linearly dependent.

In addition, it is noteworthy that in (S2) or (S3), our method
can be used as an alternative to parallelized computingmethods.
However, with our method, the convergence rate is Op(N−1/2

b )

which is based on the cumulative sample sizeNb. This indicates
a faster convergence rate than parallelized distributed estima-
tion where the convergence rate is based on the sample size of
the smallest single dataset (Zhou and Song 2017) min

j
√nj.

3. Computing andMonitoring

3.1. Computing Implementation of RenewQIF

We expand the existing Spark’s Lambda architecture to reduce
computing burden in the proposed framework of RenewQIF
methodology. The iterative calculation in (8) can be imple-
mented in the speed and inference layers in an extendedLambda
architecture shown in Figure 1. Here, relevant inferential statis-
tics include the aggregated extended score vector g̃ and two
inferential matrices G̃ (aggregated negative gradient) and C̃
(aggregated sample variancematrix). If data batchDb passes the
scrutiny, we update β̃b−1 to β̃b at the speed layer and update
g̃b−1, G̃b−1, C̃b−1 to g̃b, G̃b and C̃b at the inference layer. Oth-
erwise, skip all updating steps and proceed to next data batch
Db+1. Algorithm 1 lists the pseudo code for the implementation
of the RenewQIF via the paradigm of the extended Lambda
architecture shown in Figure 1. Some explanations are given
below.
1. Line 1: the population-averaged model or MGLM has been
specified in Section 2.1. It is worth noting that the estimating
functions used in the construction of the QIF objective function
involves neither the correlation parameter α nor the dispersion
parameter φ. The updating of the dispersion parameter φ takes
place outside of the QIF loop.
2. Line 2: the outputs include RenewQIF estimates of the regres-
sion coefficients and the corresponding estimated asymptotic
covariance matrix at each time point b, and the latter is needed
for statistical inference.
3. Line 3: set certain initial values for the regression coefficients,
for example, get the initial estimate β̃0 by fitting D1 to R func-
tion glm().
4. Line 4: run through the sequential updating procedure along
data streams.
5. Line 6: before updating β̃b−1 with current Db, first check
its compatibility with the normal reference data batch D1. QIF
estimator β̌b is obtained by minimizing the quadratic inference
function based only on these two data batches, D1 ∪ Db. The
goodness-of-fit test statistic 
b will be discussed in detail in
Section 3.3.
6. Line 7: if the current data batchDb does not pass the scrutiny

Algorithm 1: RenewQIF for streaming cluster-correlated
data in the extended Lambda architecture.
1 Inputs: Sequentially arrived datasetsD1,…,Db,…from an
MGLM with mean E(y|X) = μ and covariance
cov(y|X) = φ� specified in Equation (1);

2 Outputs: β̃b, Ṽ(β̃b) and φ̃b, for b = 1, 2, . . . ;
3 Initialize: Initial values β̃0, φ̃0, g̃0 = 0pS, G̃0 = 0pS×p and
C̃0 = 0pS×pS ;

4 for b = 1, 2, . . . do
5 Read in datasetDb;
6 At the monitoring layer, if b ≥ 2, calculate


b = Q1(β̌b) + Qb(β̌b);
7 if 
b ≥ χ2

df ,α , say α = 0.05, set β̃b = β̃b−1, φ̃b = φ̃b−1,
g̃b = g̃b−1, G̃b = G̃b−1, C̃b = C̃b−1
and jump to Line 16;

8 otherwise, start iterations with (β̃b, φ̃b) initialized by
(β̃b−1, φ̃b−1);

9 repeat
10 At the inference layer, calculate

g̃(r)
b = g̃b−1 + G̃b−1(β̃b−1 − β̃

(r)
b ) + gb(Db; β̃

(r)
b ),

11 G̃(r)
b = G̃b−1 + Gb(Db; β̃

(r)
b ) and

C̃(r)
b = C̃b−1 + Cb(Db; β̃

(r)
b ) ;

12 At the speed layer,

β̃
(r+1)
b = β̃

(r)
b +

{
G̃(r)�
b C̃(r)−1

b G̃(r)
b

}−1
G̃(r)�
b C̃(r)−1

b g̃(r)
b

;
13 until convergence;
14 At the inference layer, calculate

Ṽ(β̃b) =
{
G̃�
b C̃

−1
b G̃b

}−1
;

15 At the speed layer, calculate
φ̃b = mNb−1−p

mNb−p φ̃b−1 + mnb−p
mNb−p φ̂b, where

φ̂b = 1
mnb−p

∑
i∈Db

∑m
k=1

(yik−μ̂ik)
2

v(μ̂ik)
;

16 Save β̃b, φ̃b, g̃b, G̃b and C̃b at the speed and inference
layers, respectively;

17 Release datasetDb from the memory.
18 end
19 Return β̃b, Ṽ(β̃b) and φ̃b, for b = 1, 2, . . ..

test, we don’t use it in the updating and jump to Line 16 directly.
7. Lines 8–11: if the test concludes the current data batch Db
passes the scrutiny, at the inference layer, use the prior estimate
β̃b−1 and current batchDb to calculate g̃b, G̃b and C̃b through a
communication with the speed layer.
8. Line 12: run the Newton–Raphson algorithm to renew β̃b−1
to β̃b.
9. Line 13: the convergence criterion and the distance between
theoretical estimator β̃b and experimental estimator β̃

(r)
b will be

further discussed in Section 3.2.
10. Line 14: the inference layer performs statistical inference
with G̃b and C̃b.
11. Line 15: the speed layer updates the estimate of the disper-
sion parameter φ outside the QIF loop. The proposed estimate
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Figure 1. Diagram of an extended Lambda architecture with the addition of both monitoring and inference layers to the standard speed layer.

is guaranteed to be positive. In the cases of logistic and Poisson
models, since the dispersion parameters are known, this updat-
ing step is omitted.

3.2. Monitoring of Algorithmic Convergence

Note that the large sample properties developed in Section 2.3
centers at the theoretical root, β̃b, our proposed incremental
estimating equation in (6), that is, f b(β̃b) = 0. In the implemen-
tation, β̃

(r)
b is the actual estimate harvested numerically at the r-

th iteration of the Newton–Raphson algorithm (8). Following
the conventional practice, we set up a stringent convergence
criterion, so that the two quantities β̃b and β̃

(r)
b are numeri-

cally close enough that their difference is ignored. According
to Nocedal and Wright (2006, chap. 3), the convergence rate of
the algorithm (8) is at least quadratic if the following conditions
are satisfied: (a) the starting point β̃

(0)
b is sufficiently close to

the root β̃b; (b) the negative gradient J̃b := −∂f b(β)/∂β� =
G̃�
b C̃

−1
b G̃b is Lipschitz continuous in a neighborhood of the root

β̃b; and (c) f b(β) is differentiable and J̃b is positive-definite
in a neighborhood of the root β̃b. These three conditions are
all satisfied by our algorithm (8). This is because condition (a)
holds for large b in renewable updating due to the initialization
of β̃

(0)
b = β̃b−1. Being an example, the right panel of Figure 2

shows the closeness to the root β̃
(r)
b improves over the course

of increased b. Conditions (b) and (c) are also satisfied by the
regularity Conditions (C3) and (C5) in Section 2.3.

Line 13 in Algorithm 1 stems from the convergence cri-
teria in the Newton’s decrement given by �r = f�

b (β̃
(r)
b )(

J̃b(β̃
(r)
b )

)−1
f b(β̃

(r)
b ) < 10−6, which measures the proximity

of β̃
(r)
b to β̃b. Clearly, �r = 0 when β̃

(r) = β̃b should be
monitored over iterations of algorithm (8). The algorithm will
stop once �r satisfies the stopping rule �r < 10−6. To control
the computation time, we also terminate the algorithmwhen the
number of iterations reaches a prefixed threshold. Based on our
extensive empirical experience, in our current implementation,
we set themaximumnumber of iterations at 50. If this threshold
is reached with failure of �r < 10−6, a warning message

“algorithm reached ‘maxit’ but did not reach the convergence
criteria” will be given as an output. All simulation studies in
Section 4 have shown this criterion is satisfactory with zero
warning message. As shown in the left panel in Figure 2, the
number of iterations required to reach the criteria �r < 10−6

is all less than 10, and with the sequential addition of data
batches, the number of iterations run by algorithm (8) decreases
monotonically as b increases.

3.3. Monitoring of Abnormal Data Batches

For the case of high throughput data streams in practice, it is
highly likely to encounter abnormal data batches. To address
this issue, we relax the RenewQIF method to a situation where
abnormal data batches may occur over the sequence of data
streams, D2, . . . ,Db. A data batch Dτ , τ ∈ {2, . . . , b}, is
regarded as being abnormal if Dτ is generated from a model
whose regression parameters, say βτ ’s, are different from those
of the underlying main model of interest, β0 of the true model,
that is, βτ �= β0. In other words, Dτ is an outlying data batch,
which is incompatible with the data batches generated from the
true model. Let �q = {τ1, . . . , τq} denote the set of indices for
q abnormal data batches. In reality, we do not know set �q in
advance but want to find them out during the collection of data
streams. For convenience, we assume that the first data batch
D1 is the normal reference, which is generated from a model
with “the normal” parameter β0. At each subsequent time point
b (b ≥ 2), we propose a diagnostic procedure via hypothesis
testing of mean-zero assumption for the pair of extended scores
H0 : Eβ(g1) = Eβ(gb) = 0, where g1 and gb are the extended
score vectors for data batches D1 and Db, respectively, similar
to the one given in (4). This goodness-of-fit test essentially
enables to check the compatibility between data batchDb under
investigation and the normal reference D1. If H0 is rejected, we
would not use data batch Db to renew β̃b−1, and set β̃b equal
to β̃b−1; otherwise, execute an update from β̃b−1 to β̃b using
RenewQIF. Next we proceed to test H0 with next data batch
Db+1.

We construct a test statistic along the line of Hansen’s (1982)
seminal goodness-of-fit test. The quadratic inference function
has useful chi-squared properties for hypothesis testing (Lind-
say and Qu 2003). For checking for data compatibility, we con-
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Figure 2. The left panel shows the number of iterations to reach �r < 10−6 with different data batch size nb ; the right panel indicates the L1-norm difference ||β̃b −
β̃b−1||1 decreases fast as b increases. Both plots are generated under a marginal logistic model specified in Section 4.1 with a fixed NB = 104 but varying batch size nb .

sider a quadratic inference function of the following form:


b(β) =
(
g1(β)

gb(β)

)� (C1(β) 0
0 Cb(β)

)−1 (g1(β)

gb(β)

)
,

(10)
where C1 and Cb are the estimated sample covariances of
extended scores g1 and gb, respectively. Note that the form of
block-diagonal covariance in 
b is due to the independence
between D1 and Db. Let β̌b = argmin

β∈Rp

b(β), under H0,

that is, b �∈ �q, test statistic 
b(β̌b)
d−→ χ2

df with df =
rank(C1) + rank(Cb) − p; under H1, for an index τ ∈ �q,
and given local alternatives in the form of βτ = β0 + (n1 +
nτ )

−1/2d, d ∈ Rp, test statistic 
τ (β̌τ )
d−→ χ2

df (λ), with
df = rank(C1)+rank(Cτ )−p and the noncentrality parameter
λ = d�

J(β0)d where J is the Godambe information matrix
given in Theorems 4 and 2. Moreover, it is easy to show that
Power = PH1

(

τ (β̌τ ) > χ2

df ,α

)
→ 1, as (n1 + nτ ) → ∞,

which implies that the proposed test 
τ is consistent. Under
a finite sample size, with fixed d, the power of 
τ depends on
both statistical significance level α and abnormal data batch size
nτ . Larger α leads to higher power and smaller Type II error,
but also a higher chance to produce false alarms. Obviously,
increasing data batch size nb will help increase power. The above
monitoring procedure is based on the asymptotic properties
under scenarios S2 and S3 with nj → ∞ for some j. However,
if the reference data batch size is small as assumed in scenario
S1, one may carry out the proposed diagnostic test against an
augmented reference data that combines several normal data
batches to reach a desirable sample size.

In practice the use of the first data batch D1, which is the
normal reference sampled from the truemodel, may be replaced
by any data batch that is deemed appropriate. This choice is
obviously somewhat subjective and mostly made by practition-
ers base on their prior experience and existing knowledge on
data quality. We do not recommend frequently changing the
reference batch, but combining several normal data batches
to form a larger reference one is useful to reach more stable
performance of the diagnostic test 
b. For example, adaptively
using the adjacent data batch as the reference, we show in the
left panel of Figure 3 that the monitoring diagnostic test suffers
from an inflated Type I error once an abnormal data batch is
mistakenly set as the reference. Therefore, fixing a single or

an augmented reference data batch in the monitoring leads to
reliable diagnoses for abnormal data batches, as shown in the
right panel of Figure 3 with the normal reference fixed at the
first data batch.

4. Simulation Experiments

4.1. Setup

We conduct simulation experiments to assess the performances
of the proposed RenewQIF estimation and inference, as well
as of the diagnostic procedure for abnormal data batches, in
the setting of marginal generalized linear models (MGLMs)
for cluster-correlated data streams. We compare the proposed
RenewQIF method with (i) the offline GEE estimator obtained
by processing the entire cumulative data once, (ii) the offline
QIF estimator obtained by processing the entire data once, and
(iii) renewable GEE estimation method (RenewGEE) that is
similar to RenewQIF (see the relevant derivation in Section 2
in the supplementary materials).

In the first part of comparisons to be presented below, we
consider the following criterion related to both parameter esti-
mation and inference: (a) averaged absolute bias (A.bias), (b)
averaged asymptotic standard error (ASE), (c) empirical stan-
dard error (ESE), and (d) coverage probability (CP). Both offline
GEE and offline QIF estimates are yielded from the R packages
gee and qif. Computational efficiency is assessed by (e) com-
putation time (C.Time) and (f) running time (R.Time). R.Time
accounts only algorithm execution time, while C.Time includes
time spent on both data loading and algorithm execution. In
the second part of comparisons, we will first evaluate the Type
I error and power of the proposed goodness-of-fit test for data
compatibility with different significance level α and data batch
size nb. In addition, the criteria for parameter estimation and
inference will be reported thoroughly on the competing meth-
ods with and without quality control.

In the simulation studies, we set a terminal point B, and
generate a full dataset D�

B with NB independent cluster-
correlated observations of an m-dimensional MGLM, consist-
ing of marginal mean E(yi|Xi) = [

h(x�
i1β0), . . . , h(x�

imβ0)
]�

with β0 = (0.2,−0.2, 0.2,−0.2, 0.2)�, and covariance matrix
cov(yi|Xi) = φ�i = φA1/2

i R(αy)A1/2
i , i = 1, . . . ,NB, where

four covariates xij[2:5]
iid∼ N4(0,R(αx)) and intercept xij[1] = 1,
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Figure 3. These two plots are generated under the marginal logistic model specified in Section 4.1 with a fixed total sample size NB = 104 and data batch size nb = 100.
Two abnormal data batches areD25 andD26. The y-axis is the empirical proportion of rejections over 500 replications, and x-axis is the index of test statistic
b (also the
data batch index).

Table 1. Simulation results under the linear and logistic MGLMs are summarized over 500 replications, with fixed NB = 105 and p = 5 with increasing B.

Linear MGLM

offline GEE RenewGEE offline QIF RenewQIF

B 100 500 2000 100 500 2000 100 500 2000 100 500 2000

A.bias×10−3 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
ASE×10−3 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42
ESE×10−3 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40
CP 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
C.Time(s) 9.27 12.89 20.56 2.70 4.08 8.45 2.60 5.36 13.91 1.39 2.77 6.63
R.Time(s) 8.53 9.49 8.53 2.31 2.64 3.62 1.86 1.96 1.88 1.06 1.65 2.95

Logistic MGLM

offline GEE RenewGEE offline QIF RenewQIF

B 100 500 2000 100 500 2000 100 500 2000 100 500 2000
A.bias×10−3 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70
ASE×10−3 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31
ESE×10−3 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37
CP 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
C.Time(s) 10.73 14.04 27.77 2.05 2.45 3.32 3.22 6.51 20.25 1.14 1.47 2.37
R.Time(s) 9.85 9.86 9.81 1.86 2.07 2.35 2.34 2.33 2.30 0.99 1.23 1.86

NOTE: “A.bias,” “ASE,” “ESE” and “CP” stand for the mean absolute bias, the mean asymptotic standard error, the empirical standard error, and the coverage probability,
respectively. “A.bias×10−3” indicates the scale of number in the cell, for example, 1.10 × 10−3 = 0.0011. “C.Time”and “R.Time”denote computation time and running
time, and the unit of both is second.

j = 1, . . . ,m. Here both correlation matrices R(αx) and R(αy)
are set as compound symmetry with αx = 0.5 and αy = 0.7,
respectively. The dispersion parameter φ = 1 and the cluster
size is m = 5. We consider both marginal linear model for
continuous yij with h(μij) = μij andmarginal logistic model for
binary yij with h(μij) = log(μij/(1−μij)). For all four methods
in comparison, the working correlation matrix is specified to
be compound symmetry which is also the true correlation
structure.

4.2. Evaluation of Parameter Estimation

Scenario 1: fixed NB but varying batch size nb
We begin with the comparison of the fourmethods for the effect
of data batch size nb on their point estimation and compu-
tational efficiency. A collection of B data batches specified in
Section 4.1 are generated, each with data batch size nb and a
total of NB = |D�

B| = 105 independent clusters, from an m-
variate Gaussian linear model and an m-dimensional logistic
model (using R package SimCorMultRes). Tables 1 reports
the results of both linear and logistic MGLMs, over 500 rounds
of simulations.

Bias and coverage probability. In linear and logistic MGLMs,
Table 1 shows that both RenewGEE and RenewQIF have similar

bias and coverage probability in comparison to the two offline
methods. This confirms the theoretical results given in Theo-
rem 2; the RenewQIF as well as RenewGEE are stochastically
equivalent to the offline QIF and offline GEE, respectively. It
is easy to see that both bias and coverage probability in both
the linear and logistic models are not affected by individual
data batch size nb. In other words, their performances seem to
depend only on NB.

Computation time. Two metrics are used to evaluate compu-
tation efficiency: “C.Time” in Table 1 refers to the total amount
of time required by data loading and algorithm execution. With
an increased B, both RenewGEE and RenewQIF show clearly
advantageous for much lower computation time over the offline
GEE or offline QIF, due to the fact that the two offline methods
are much more time consuming to load in full datasets.

Scenario 2: fixed batch size nb but varying B
Now we turn to a streaming setting where B data batches arrive
sequentially. For convenience, we fix single batch size nb = 100,
but letNB increase from103 to 106 (orB from10 to 104). Tables 2
and 3 list the simulation results under the linear and logistic
MGLMs.

Bias and coverage probability. As the number of batches B
rises from 10 to 104, both RenewGEE and RenewQIF confirm
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Table 2. Compare renewable estimators and offline ones in the linear MGLMmodel with fixed single batch size nb = 100 and p = 5, where B increases from 10 to 104.

B = 10, NB = 103 B = 100, NB = 104

GEE QIF GEE QIF

Criterion offline Renew offline Renew offline Renew offline Renew

A.bias×10−3 11.06 11.06 11.08 11.08 3.64 3.64 3.64 3.64
ASE×10−3 14.19 14.16 14.15 14.13 4.49 4.49 4.49 4.49
ESE×10−3 13.82 13.83 13.85 13.85 4.51 4.51 4.51 4.51
CP 0.956 0.955 0.952 0.952 0.949 0.947 0.946 0.946
C.Time(s) 0.033 0.028 0.019 0.023 0.69 0.25 0.28 0.18
R.Time(s) 0.030 0.024 0.015 0.019 0.58 0.25 0.16 0.14

B = 103, NB = 105 B = 104, NB = 106

GEE QIF GEE QIF

Criterion offline Renew offline Renew offline Renew offline Renew

A.bias×10−3 1.11 1.11 1.11 1.11 0.35 0.35 0.35 0.35
ASE×10−3 1.42 1.42 1.42 1.42 0.45 0.45 0.45 0.45
ESE×10−3 1.40 1.40 1.40 1.40 0.44 0.44 0.44 0.44
CP 0.952 0.954 0.952 0.952 0.955 0.955 0.955 0.955
C.Time(s) 15.38 5.70 8.57 4.26 781.46 62.30 704.11 51.38
R.Time(s) 8.72 2.96 1.90 2.18 99.21 32.12 21.85 25.21

Table 3. Compare renewable estimators and offline ones in the logistic MGLMmodel with fixed single batch size nb = 100 and p = 5, where B increases from 10 to 104.

B = 10, NB = 103 B = 100, NB = 104

GEE QIF GEE QIF

Criterion offline Renew offline Renew offline Renew offline Renew

A.bias×10−3 25.92 25.82 26.07 26.01 8.17 8.16 8.17 8.16
ASE×10−3 33.08 33.06 33.03 33.07 10.45 10.45 10.45 10.45
ESE×10−3 32.48 32.36 32.67 32.60 10.31 10.30 10.32 10.31
CP 0.953 0.952 0.950 0.952 0.950 0.952 0.951 0.952
C.Time(s) 0.048 0.029 0.024 0.023 1.09 0.23 0.32 0.17
R.Time(s) 0.045 0.026 0.021 0.020 0.99 0.20 0.22 0.14

B = 103, NB = 105 B = 104, NB = 106

GEE QIF GEE QIF

Criterion offline Renew offline Renew offline Renew offline Renew

A.bias×10−3 2.71 2.71 2.71 2.71 – 0.82 0.82 0.82
ASE×10−3 3.31 3.31 3.31 3.31 – 1.05 1.05 1.05
ESE×10−3 3.39 3.39 3.39 3.39 – 1.04 1.04 1.04
CP 0.948 0.948 0.948 0.948 – 0.946 0.946 0.948
C.Time(s) 22.41 5.84 9.99 4.49 – 57.47 856.70 47.44
R.Time(s) 15.59 3.02 3.18 2.35 – 31.08 45.83 21.31

NOTE: The dashed line in the column for “offlineGEE”whenNB = 106 indicates the standardgeepackage in R does not produce output due to the excessive computational
burden.

the asymptotic properties in Theorem 4: their average absolute
bias decreases rapidly as the cumulative sample size accumu-
lates, and the coverage probability stays robustly around the
nominal level 95%.

Computation time. Both online RenewGEE and RenewQIF
methods show more and more advantageous as NB increases:
the combined amount of time for data loading and algorithm
execution only takes less than 5 sec, whereas the offline GEE
and offline QIF, when processing a dataset of 105 clusters once,
requiresmore than 20 sec. This gain of 5-fold faster computation
by the proposed RenewGEE and RenewQIF methods sacrifice
little price of estimation precision or inferential power. One
thing worth mentioning for Table 3 is that when NB = 106, to
run the logistic MGLM, the offline GEE is computationally too
intensive to produce convergent results within 12 hr using the
existing R package gee.

4.3. Evaluation ofMonitoring Procedure

We also evaluate the performance of the proposed diagnostic
procedure using the goodness-of-fit test 
b in Equation (10) to
detect abnormal data batches. First, we check the properties of
this test statistic with respect to both Type I error and power
of detection abnormal data batches. Then, we compare the esti-
mation and inference performance of the RenewQIF methods
with and without the use of monitoring procedure in terms of
the following four criterion: (a) A.bias, (b) ASE, (c) ESE, and (d)
CP, as define above. The abnormal data batches are created by
altering the true parameters via a local departure on β02, that
is βτ = (0.2,−(0.2 + d), 0.2,−0.2, 0.2)�, τ ∈ �q. We set �2,
containing two positions (q = 2) at which two abnormal data
batches occurs, respectively, at τ1 = 0.25B and τ2 = 0.75B.
Simulation studies have showed that Type I errors are very close
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Table 4. Performances with and without the monitoring procedure.

Without monitoring procedure

nb 50 100 200 400

A.bias×10−3 12.36 16.74 28.68 56.58
ASE×10−3 14.61 14.62 14.69 14.79
ESE×10−3 14.25 14.02 15.26 15.03
CP 0.932 0.838 0.534 0.030

With monitoring procedure

nb = 50 nb = 100

α × 10−3 100 50 10 1 0.005 100 50 10 1 0.005

A.bias×10−3 11.29 8.923 7.970 8.312 8.802 9.773 8.433 7.962 8.147 9.564
ASE×10−3 10.18 9.558 9.259 9.220 9.219 10.21 9.604 9.311 9.263 9.256
ESE×10−3 20.90 12.08 9.860 9.782 9.568 16.67 11.37 9.834 9.340 9.736
CP 0.852 0.896 0.920 0.906 0.890 0.926 0.942 0.942 0.940 0.882
N0/NB 0.876 0.939 0.988 0.997 0.999 0.883 0.933 0.976 0.987 0.992

nb = 200 nb = 400

α × 10−3 100 50 10 1 0.005 100 50 10 1 0.005

A.bias×10−3 8.836 8.122 7.485 7.757 9.641 9.317 8.371 7.723 7.656 7.771
ASE×10−3 10.16 9.709 9.426 9.369 9.347 10.39 9.958 9.638 9.584 9.573
ESE×10−3 11.73 10.41 9.305 9.551 10.40 12.41 10.79 9.690 9.612 9.795
CP 0.938 0.948 0.956 0.946 0.886 0.934 0.948 0.958 0.956 0.952
N0/NB 0.863 0.913 0.952 0.962 0.972 0.823 0.872 0.911 0.918 0.920

NOTE: Fixed total number of samples NB = 104 with varying data batch size nb . τ1 = 0.25B and τ2 = 0.75B. In the table “With monitoring procedure,”N0/NB denotes the
proportion of used samples in the renewable estimation and inference.

to the nominal levelα, and that the power of detecting abnormal
data batches drops as α becomes smaller, but increases as nb
increases. See Table 1 in the supplementary materials.

Without monitoring procedure. With fixed NB = 104 and �2 =
{0.25B, 0.75B}, the upper panel in Table 4 shows that larger data
batch size nb leads to a larger bias due to the increased number
of contaminated clusters generated from the incompatible data
model. A.bias increases almost linearly with nb. At similar levels
of ASE and ESE, the coverage probability deviates more from
the nominal level 95% as nb increases; it drops from 93.2%
to 3.0% as nb rises from 50 to 200 due to more severe data
contamination.

With monitoring procedure. For the purpose of quality con-
trol, larger α increases the sensitivity of rejection, so many
small departuresmay be detected, whichwould be consequently
ignored in the online updating. These are clearly shown in the
lower panel of Table 4 due to the reduced proportion of used
samples, defined by N0/NB. See also the last subplot in Figure 1
in the supplementary materials whereN0 is the number of clus-
ters that passed the diagnostic test. The price to pay in this case
is that the resulting bias and standard error would be larger than
they would be if the false positives may be avoided. In contrast,
choosing a small α may elevate Type II error (false negative)
and thus, can lose power in detecting abnormal data batches.
In this case, the price to pay is not only increased bias but
also decreased coverage probability. The latter is indeed a more
serious problem as far as inference concerns. This phenomenon
is evident when nb is small as shown in Table 4. As an extreme
case of α = 5 × 10−6, the detection power is greatly lost with
nb = 200, 100, or 50, and the coverage probability reduces to
lower than 90%. In practice, with high throughput data streams,
where cumulative sample sizes increase rapidly, using a larger α,

Figure 4. Trace plots of − log10(p) over quarterly data batches from January,
2009 to December, 2015, each for one regression coefficient. Dashed vertical line
indicates the location of detected abnormal data batch.

sayα = 0.05, ismuch safer and recommended in practice for the
purpose of monitoring, resulting in a more protective scenario
by effectively and cautiously avoiding abnormal data batches.

5. Analysis of NASS CDS Data

In regard to injuries involved in car accidents, we are interested
in not only the extent of injuries in drivers but also in passengers.
Apparently, injury levels of driver and passengers within the
same vehicle are correlated, and such within-cluster correlation
needs to be taken into account in the analysis. In this real
data application, we focus on the analysis of a series of car
crash datasets from the National Automotive Sampling System-
Crashworthiness Data System (NASS CDS) from January, 2009
to December, 2015. Our primary interest was to evaluate the
effectiveness of graduated driver licensing (GDL) on overall
driving safety with respect to injury levels in both driver and
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Figure 5. Trace plots for the estimates of coefficients and 95% point-wise confidence bands of “Young”and “Old.”Numerical numbers on two sides denote the estimated
regression coefficients after the arrivals of first and last batches, while the ones above the traces denote the estimates at the eighth data batch.

passengers. GDL is a nationwide legislature on novice drivers
of age 21 or younger with various conditions of vehicle oper-
ation. In contrast, under the current law, there are no restric-
tions on vehicle operation for older drivers with age, say, older
than 65. Thus, we want to compare drivers’ age groups with
respect to the extent of injury when a car accident happens.
We first categorized the “Age” variable into three age groups:
“Age<21” represents the young group under a restricted GDL,
and “Age≥65” indicates the old group with a regular full driver’s
license, while those of age in between is treated as the reference
group. Extent of injury in a crash is a binary variable with 1 for a
moderate or severe injury, and 0 for minor or no injury. This
outcome variable was created from the variable of Maximum
Known Occupant Ais (MAIS), which indicates the single most
severe injury level reported for each occupant. Other potential
risk factors are also considered in the model, including seat belt
use (Seat Belt, 1 for used and 0 for no), drinking (Drinking, 1
for yes and 0 for no), speed limit (Speed Limit), vehicle weight
(Vehicle Weight, 0 for ≤ 3000, 1 for 3000∼4000, 2 for ≥4000
), air bag system deployed (Air Bag, 1 for yes and 0 for no),
number of lanes (Number of Lanes, 0 for ≤ 2 and 1 for else),
drug involvement in this accident (Drug Use, 1 for yes and 0
for no), driver’s distraction/inattention to driving (Distraction, 1
for attentive and 0 for else), roadway surface condition (Surface
Condition, 1 for dry and 0 for else), and vehicle has been in
previous accidents (Previous Accidents, 0 for no and 1 for else).

Streaming data are formed by quarterly accident data from
the period of 7 years from January, 2009 to December, 2015,
with B = 28 data batches and a total of NB = 18,832 crashed
vehicles that contain 26,330 occupants with complete records.
Each vehicle is treated as a cluster, and the cluster size varies
from 1 to 10 with an average of two occupants. We invoke
RenewQIF to fit a marginal logistic regression model with the

compound symmetry correlation to account for thewithin vehi-
cle correlation. In the analysis, we are interested in a 7-year
average risk assessment and thus, assuming constant associa-
tions between extent of injuries and risk factors over time. Since
this sequence of data streams arrive at low speed and large data
batch size, we would expect to have high power to detect the
abnormal data batch even if we choose a small α, say α = 0.01.
Additionally, since samples fromNASS CDS have gone through
extensive data cleaning and preprocessing steps, a stringent α is
a reasonable choice to make a full use of samples. At α = 0.01,
our proposed monitoring procedure identifies data batch D8
to be incompatible, corresponding to the data collected during
the fourth quarter in year 2010. Estimated coefficients, standard
errors and p-values are reported in Table 2 in the supplementary
materials.

Figure 4 shows the trajectories of − log10(p) values of the
online Wald test developed for RenewQIF, each for one regres-
sion coefficient over 28 quarters. Even though the total sample
size NB increases over time, not all of them show steep mono-
tonic increasing trends in evidence against the nullH0 : βj = 0.
“Seat Belt” turns out to have the strongest association to the odds
of injury in a crash among all covariates included in the model.
This is an overwhelming confirmation to the enforcement of
policy “buckle up” when sitting in a moving vehicle. For the
convenience of comparison, we report a summary statistic as of
the area under the p-value curve for each covariate. “Seat Belt”
(2297.45), “Drug Use” (1779.85), “Air Bag” (1249.49) and “Pre-
vious Accidents” (1342.46) appear well separated from the other
risk factors. Their ranking is well aligned with the ranking of p-
values obtained at the end time of streaming data availability,
namely December, 2015.

The trajectories of both young and old age groups are eval-
uated in Figure 5 with or without data batch D8. The trace of
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the estimators for the young age group (Age<21) stays below 0
over the 28-quarter period, indicating that it has lower adjusted
odds of moderate/severe injury than the reference age group.
This finding confirms the effectiveness of GDL in protecting
young novice drivers. Unfortunately, in contrast, the old age
group (Age≥65) turns out to suffer from significantly higher
adjusted odds of moderate/severe injury outcomes comparing
to the middle age group. This suggests a need of policy-making
to protect older drivers from injuries when an accident hap-
pens. Furthermore, the abnormal data batch seems to affect
marginally the estimates for age groups if we compare the plots
with (right) and without (left) monitoring procedure (see the
red vertical dashed line).

Applying the proposed RenewQIF to the above CDS data
analysis enables us to visualize time-course patterns of data evi-
dence accrual aswell as stability and reproducibility of inference.
As shown in Figure 5, at the early stage of data streams, due to
limited sample sizes and possibly sampling bias, both parameter
estimates and test powermay be unstable and even possiblymis-
leading. These potential shortcomings can be overcome when
estimates and inferential quantities are continuously updated
along with data streams, which eventually reach stability and
reliable conclusions.

6. Concluding Remarks

Due to the advantage of technologies in data storage and data
collection, streaming data arise from many practical areas such
as healthcare (Peek, Holmes, and Sun 2014). Healthcare data are
typically measurements in forms of clusters or time series, such
as patients from the same clinic, or data from personal wear-
able devices (Sahoo et al. 2016). The traditional methods for
clustered/longitudinal data analysis such as generalized estimat-
ing equations (GEE) and quadratic inference functions (QIF)
that process the entire dataset once may be greatly challenged
due to the following reasons: (i) they become computationally
prohibitive as the total sample size accumulates too fast and
too large, so to exceed the available computational power; see
Table 3 where GEE fails to produce numerical outputs; and (ii)
historical subject-level data may no longer be accessible due
to storage, time, or privacy issues. This type of problem has
been extensively tackled in the framework of online updating
where stochastic gradient descent algorithms are the primary
methods of choice to provide fast updating with no use of his-
torical data. However, most online learning algorithms have not
considered statistical inference or the diagnosis of contaminated
data batches.

Such gaps have been filled in this article by the RenewQIF
methodology. The proposed RenewQIFmethod provides a new
paradigmof renewable estimation and incremental inference, in
which parameter estimates are recursively updated with current
data and inferential statistics of historical data, but does not
require the accessibility to any historical subject-level data. To
achieve efficient communications between current data and
historical summary statistics, we design an extended Spark’s
Lambda architecture to execute both data storage and analysis
updates. Both proposed statistical methodology and computa-
tional algorithms have been investigated for their theoretical
guarantees and examined numerically via extensive simulation

studies. The proposed RenewQIF has been shown to be much
more computationally efficient with no loss of inferential power
in comparison to the offlineGEE or offlineQIF. Additionally, we
propose a diagnostic procedure to detect abnormal data batches
in data streams for the proposed RenewQIF. The utilization of a
goodness-of-fit test in the QIF framework enabled us to check
the compatibility of current data batch with a normal reference
effectively and efficiently. The proposed monitoring procedure
has been integrated into an extended Lambda architecture with
an additional monitoring layer.

The formulation of RenewQIF is under the assumption that
clusters arrive independently over data streams, and when clus-
ter sizem = 1, it reduces to generalized linearmodel as a special
case. A direction of interest is to consider the case of inter-
correlated batches, such as serially dependent data streams gen-
erated by individualwearable devices. Such types of data streams
are pervasive in healthcare where thousands of physiological
measurements are recorded per second, such as body temper-
ature, heart rate, respiratory rate and blood pressure (Priyanka
and Kulennavar 2014). Therefore, developing the analytic tools
for the analysis of serially dependent data streams is an impor-
tant future research as part of new analytics for handlingmassive
data volumes and making behavioral interventions.

Appendix

A.1. Consistency

From Equation (7), we have

||β̃b − β0||2 = ||β̃b−1 − β0||2 + 2N−1
b (β̃b−1 − β0)

�H−1
b Ũb(β̃b)

+ N−2
b ||H−1

b Ũb(β̃b)||2 := I1 + I2 + I3.

For I2, we have

E[I2] = 2E
{
N−1
b (β̃b−1 − β0)

�H−1
b f b(β̃b−1)

}
+ 2E

{
N−1
b (β̃b−1 − β0)

�H−1
b

×
[
G̃�
b C̃

−1
b −

(
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(
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)−1
] (

g̃b−1(β̃b−1) + gb(β̃b−1)
)}

+ 2E
{
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b (β̃b−1 − β0)
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b G̃�
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−1
b(

gb(β̃b) − gb(β̃b−1)
)}

:= I21 + I22 + I23.

Denote zb−1 := H−1/2
b β̃b−1. Assume there exists a function �̃b(zb−1)

such that ∇�̃(zb−1) = ∂�̃b(zb−1)/∂z�b−1 := −N−1
b H−1/2

b f b(β̃b−1).
Then the second order derivative of �̃b(zb−1) is

∇2�̃b(zb−1) :=
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∂zb−1∂z�b−1
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(
C̃b−1 + Cb(β̃b−1)

)−1 (
G̃b−1 + Gb(β̃b−1)

)]
H1/2
b

+ Op
(
N−1
b ||f b(β̃b−1)||

)
.

By the continuity of f b(·), f b(β̃b) = 0 and ||β̃b−β̃b−1|| = Op(N
−1/2
b−1 )

in Lemma 4, we have ||f b(β̃b−1)|| = op(1). It implies that∇2�̃b(zb−1)
is positive-definite and �̃b(zb−1) is a strong convex function. By Con-
dition 2.3, we have

E[�̃b(z0)] = E

[
�̃b(zb−1) + (z0 − zb−1)

�∇�̃b(zb−1)

+ 1
2
(zb−1 − z0)�∇2�̃b(zm)(zb−1 − z0)

]
≤ E[�̃b(zb−1)],

where zm := H−1/2
b βm with βm = tβ̃b−1 + (1 − t)β0 for some t ∈

(0, 1), and z0 := H−1/2
b β0. It follows that

I21 = −2E
{
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}
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≤ −λmin(∇2�b(zm))

2λmax(Hb)
E(||β̃b−1 − β0||2), (A.1)

where λmin and λmax deonte the smallest and largest eigenvalues.
Furthermore, since gb is twice continuous differentiable w.r.t. β ∈ �,
we haveGb(β̃b) = Gb(βm)+Op(nb) andCb(β̃b) = Cb(βm)+Op(nb).
It follows that

∇2�̃b(zm) = N−1
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Therefore, Equation (A.1) becomes

I21 ≤ − λmin(Hb)
2λmax(Hb)

E(||β̃b−1 − β0||2) + Op(N−1
b ), (A.2)

For I22 and I23, we apply ||β̃b − β̃b−1|| = Op(N
−1/2
b−1 ) in Lemma 4

which leads to

I22 ≤ c′1E
{
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≤ c3N
−3/2
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where c1, c′1, c3 and c′3 are constants that do not depend on b.

Combining inequalities (A.2) and (A.3), we have

E[I2] ≤ − λmin
(
Hb

)
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E(||β̃b−1−β0||2)+c1N
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Similarly, for I3 wehaveE[I3] = N−2
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b , where c2 is a constant. Putting together, the error
bound is

E
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Therefore, by 0 < λmin
(
Hb

) ≤ λmax(Hb), we have E
(
||β̃b − β0||2

)
→ 0.

A.2. Asymptotic Normality

For the sake of simplicity, we only show a sketch of the proof here.
For more technical details on finding the recursion, please refer to
Sections 1 and 2 in the supplementary materials. From Equation (5) in
the supplementary materials, we first obtain the recursive relationship
between (β̃b − β0) and (β̃b−1 − β0):

β̃b − β0 = A−1
b,bAb,b−1(β̃b−1 − β0) +

b−2∑
j=1

A−1
b,bAb,j(β̃ j − β0)

+ A−1
b,bN

−1
b H−1

b Mb

⎧⎨⎩
b∑

j=1
gj(β0)

⎫⎬⎭.

Let Ã(1)
b,j := Ab,b−1A−1

b−1,b−1Ab−1,j +Ab,j for 1 ≤ j ≤ b− 2, and

a one-step back to (β̃b−2 − β0) is

β̃b − β0 = A−1
b,bÃ

(1)
b,b−2(β̃b−2 − β0) +

b−3∑
j=1

A−1
b,bÃ

(1)
b,j (β̃ j − β0)

+ A−1
b,bN

−1
b H−1

b Mbgb(β0)

+ A−1
b,b

(
Ab,b−1A−1

b−1,b−1N
−1
b−1H

−1
b−1Mb−1

+ N−1
b H−1

b Mb
)⎧⎨⎩

b−1∑
j=1

gj(β0)

⎫⎬⎭ .

Similarly, by recursively defining Ã(b−j−1)
b,j′ := Ã(b−j−2)

b,j+1 A−1
j+1,j+1

Aj+1,j′ + Ã(b−j−2)
b,j′ for 1 ≤ j′ ≤ j ≤ b − 2, Ã(0)

b,b−1 := Ab,b−1 and

Ã(−1)
b,b := Ab,b, we finally obtain that

β̃b − β0 =A−1
b,bÃ

(b−2)
b,1 (β̃1 − β0) + A−1

b,b⎧⎨⎩
⎛⎝ b∑
j′=2

Ã(b−j′−1)
b,j′ A−1

j′,j′N
−1
j′ H−1

j′ Mj′

⎞⎠ g1(β0)

⎫⎬⎭
+ A−1

b,b

b∑
j=2

⎧⎨⎩
⎛⎝ b∑
j′=j

Ã(b−j′−1)
b,j′ A−1

j′,j′N
−1
j′ H−1

j′ Mj′

⎞⎠ gj(β0)

⎫⎬⎭.

(A.4)
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Let aj = ∑b
j′=j Ã

(b−j′−1)
b,j′ A−1

j′,j′N
−1
j′ H−1

j′ Mj′ , then we have

β̃b − β0 = A−1
b,bÃ

(b−2)
b,1 (β̃1 − β0) + A−1

b,ba2g1(β0)

+ A−1
b,b

b∑
j=2

ajgj(β0)

= A−1
b,b

[
Ã(b−2)
b,1

{∫ 1

0
−∇β f 1(βm,1)dδ1

}−1

G1(β0)
�C1(β0)

−1 + a2
]
g1(β0)

+ A−1
b,b

b∑
j=2

ajgj(β0). (A.5)

Since Hb = Op
(Nb−1

Nb

)
, Ab,b = Op

(
Nb
Nb−1

)
, and Ab,j =

Op
( nj
Nb−1

||β̃ j − β0||
)
for j ≤ b − 1. After some calculations, we have

aj = Op

{
1

Nb−1

∏b−j
k=1

(
1 + nb−k||β̃b−k−β0||

Nb−k

)}
, 2 ≤ j ≤ b.

Then the order of the terms in Equation (A.5) becomes

||β̃b − β0|| = Op

⎧⎪⎨⎪⎩√
n1a2 + Nb−1

Nb

⎛⎝ b∑
j=2

nja2j

⎞⎠1/2
⎫⎪⎬⎪⎭ , (A.6)

where the second term in Equation (A.6) is an upper bound on
||∑b

j=2 ajgj(β0)|| by Cauchy–Schwarz inequality.
Since we have shown the consistency of β̃b as b → ∞, we further

assume ||β̃b − β0|| = Op(N−τ
b ) for some τ > 0. By Lemma

3, the product
∏b−1

k=1

{
1 + nb−kN

−(1+τ)
b−k

}
converges if and only if∑b−1

k=1 nb−kN
−(1+τ)
b−k converges. For τ > 0, and uniformly bounded

nb−k’s in Scenario (S1), the over-harmonic series
∑b−1

k=1 nb−kN
−(1+τ)
b−k

converges, and it follows that
∏b−1

k=1

{
1 + nb−kN

−(1+τ)
b−k

}
converges.

Note that for any x ≥ 0, log(1 + x) ≤ x. Thus, we have

b−1∑
k=1

log
(
1 + nb−kN

−(1+τ)
b−k

)
≤

b−1∑
k=1

nb−kN
−(1+τ)
b−k .

Then, it follows that

∑b
j=2 nja

2
j ≤ Op

[
1

N2
b−1

∑b
j=2 nj exp

{(∑b−j
k=1 nb−kN

−(1+τ)
b−k

)2}]
≤ Op

[
1

N2
b−1

∑b
j=2 nj exp

{(∑b−2
k=1 nb−kN

−(1+τ)
b−k

)2}]
= Op

(
Nb−n1
N2
b−1

)
= Op(N−1

b ).

Furthermore, since a2 = Op(N−1
b−2), and according to (A.6) we

have ||β̃b − β0|| = Op(N
−1/2
b ). Finally, using the expression (5) in

supplementary materials and inequality (1) in Lemma 2, we have

β̃b − β0 = A−1
b,bN

−1
b H−1

b Mb
{∑b

j=1 gj(β0)
}

+Op
(∥∥∥∑b−2

j=2 A−1
b,bAb,j(β̃ j − β0)

∥∥∥)
= A−1

b,bN
−1
b H−1

b Mb
{∑b

j=1 gj(β0)
}

+Op
(

1
Nb

log Nb−2
n1

)
.

By the weak law of large numbers, the asymptotic covariance is

N−1
b H−1

b Mb
{∑b

j=1 Cj(β0)
}
M�

b (H−1
b )�

= (G�C−1G)−1G�C−1CC−1G(G�C−1G)−1 + op(1)
= (G�C−1G)−1 + op(1).

It then follows from the Slutsky’s Theorem and the Central Limit
Theorem,

√
Nb(β̃b − β0) =

⎧⎨⎩ 1
Nb

b∑
j=1

Gj(β0)

⎫⎬⎭
−1⎧⎨⎩ 1√

Nb

b∑
j=1

gj(β0)

⎫⎬⎭
+ Op

(
log b√
Nb

)
d→ Np(0, J−1(β0)),

where J(β0) = G�(β0)C
−1(β0)G(β0) is the Godambe information

matrix.

SupplementaryMaterials

This file includes the proof of some useful lemmas in Section 1, additional
details in the proof under scenario (S1) in Section 2, proof of large sample
properties in scenarios (S2) and (S3) in Section 3, and the analysis of
cumulative error bound in Section 4. In Section 5, we include one table
and one figure from simulation studies and an additional table from real
data analysis. Additionally in Section 6, we includes “Renewable GEE” with
derivation of renewable estimation and incremental inference method in
the generalized estimating equations. (PDF)
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