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ABSTRACT

This article develops an incremental learning algorithm based on quadratic inference function (QIF) to
analyze streaming datasets with correlated outcomes such as longitudinal data and clustered data. We
propose a renewable QIF (RenewQIF) method within a paradigm of renewable estimation and incremental
inference, in which parameter estimates are recursively renewed with current data and summary statistics
of historical data, but with no use of any historical subject-level raw data. We compare our renewable
estimation method with both offline QIF and offline generalized estimating equations (GEE) approach that
process the entire cumulative subject-level data all together, and show theoretically and numerically that
our renewable procedure enjoys statistical and computational efficiency. We also propose an approach to
diagnose the homogeneity assumption of regression coefficients via a sequential goodness-of-fit test as a
screening procedure on occurrences of abnormal data batches. We implement the proposed methodology
by expanding existing Spark’s Lambda architecture for the operation of statistical inference and data quality
diagnosis. We illustrate the proposed methodology by extensive simulation studies and an analysis of
streaming car crash datasets from the National Automotive Sampling System-Crashworthiness Data System
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(NASS CDS). Supplementary materials for this article are available online.

1. Introduction

When a car accident happens, driver and passengers in the
same car would be all likely to get injured, and their degrees
of injury are correlated within a car. Here a car is a sample
unit which, in general, is referred to as a cluster. The National
Automotive Sampling System-Crashworthiness Data System
(NASS CDS) is a publicly accessible source of streaming
datasets containing car accident information in the USA. Other
examples of such streaming correlated data include cohorts of
patients sequentially assembled at different clinical centers to
periodically update national disease registry databases, where,
for example, a family is the sample unit. In this article, we
consider a problem where a series of independent clusters
becomes available sequentially over data batches, and arrivals
of data batches may be perpetual. Similar to the data of car
accidents, each data batch consists of temporally correlated or
cluster-correlated outcomes. The primary goal of processing
such streaming data is to sequentially update some statistics
of interest upon the arrival of a new data batch, in the hope
to not only free up space for the storage of massive historical
individual-level data, but also to provide real-time inference
and decision making.

With the emergence of streaming data collection techniques,
sequential data analytics have received much attention in the
literature to address computational efficiency while preserving

essential statistical properties. Arguably, the stochastic gradient
descent (SGD) algorithm has been thus far the most well-known
algorithm to analyze streaming data along the lines of stochastic
approximations (Robbins and Monro 1951). Unfortunately,
most of currently available online learning methods in the
SGD paradigm and its variants, including online Newton
SGD (Hazan, Agarwal, and Kale 2007) and quasi-Newton
SGD (Schraudolph et al. 2007; Bordes, Bottou, and Gallinari
2009), have focused only on point estimation or prediction,
and unfortunately precluded statistical inference. Toulis and
Airold (2017) obtained some analytic expressions for the
asymptotic variances in the implementation of an SGD
algorithm to produce maximum likelihood estimation (MLE)
with cross-sectional data, in which statistical inference was
absent. Recently, Fang (2019) proposed a perturbation-based
resampling method to construct confidence intervals in the
framework of the averaged implicit SGD (AI-SGD) estimation
proposed by Toulis and Airold (2017). Luo and Song (2020)
demonstrated in simulation studies that Fang’s resampling
method for the AI-SGD may fail to provide desirable coverage
probability, and thus, possibly leads to misleading inference,
especially when the number of regression parameters is large.
In the setting of linear models, since the least square estimation
(LSE) of the regression parameters has a closed form expression
for recursive calculations, it is possible to establish certain
sequential updating schemes for both point estimation and
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related calculation of standard errors; see for example, Luo and
Song (2020). In this case the resulting estimates can be exactly
the same as those obtained by its offline counterpart (Stengel
1994). This property has been used to conduct real-time
regression analysis with the linear model for streaming data
by, for example, Nadungodage et al. (2011). However, according
to Luo and Song (2020), this property of equality between online
and offline estimates no longer holds beyond the linear model,
for example, the logistic model for binary outcomes.

This article considers an important extension of renewable
estimation and incremental inference in the class of generalized
linear models (GLMs) developed by Luo and Song (2020)
for cross-sectional data to the case of streaming data with
repeatedly measured responses. This extension is substantial in
both methodology and applications. In terms of methodological
extensions, it relaxes not only the availability of likelihood
functions in the renewable MLE to a general framework of
estimating functions, but also the popular assumption of
homogeneous marginal models. Model homogeneity refers
to the situation where data streams are generated under a
common set of parameters over the sequence of data batches.
This homogeneity will be violated in the presence of “abnormal”
data batches - those being generated under different sets of
model parameters from the standard/default ones of primary
interest. In real world applications, practitioners often encounter
outlying data batches. In this case, continually updating results
without noticing and removing abnormal data batches would
lead to invalid statistical inference and misleading conclusions.
To deal with this issue of practical importance, we develop a
quality control (QC) type of monitoring scheme by the means
of abnormal data batch detection and deletion.

We propose a new online regression methodology along the
lines of the generalized estimating equation (GEE) approach
proposed by Liang and Zeger (1986), one of the most widely
used methods for the analysis of data with correlated outcomes.
This quasi-likelihood approach is based only on the first two
moments of the correlated data distribution with no need
of specifying a parametric joint distribution. Such regression
model is termed as marginal generalized linear model (MGLM)
or population-average model in the literature of correlated
data analysis (Song 2007, chap. 5). In this field, another quasi-
likelihood inference method is quadratic inference function
(QIF) (Qu, Lindsay, and Li 2000). QIF has several advantages
in comparison to GEE: (i) QIF does not require more model
assumptions than GEE; (ii) it provides a goodness-of-fit test
for the first moment assumption, that is, the mean-model
specification; (iii) QIF estimator is more efficient than the GEE
estimator when the working correlation is misspecified; and (iv)
it is more robust with a bounded influence function against large
outliers (Qu and Song 2004).

Our key methodology contributions include: (i) we pro-
pose an online QIF method that allows to perform real-time
regression analysis of correlated outcomes under fast recursive
estimating equations with little reliance on data storage capac-
ity; (ii) the proposed online estimation and inference, termed
as RenewQIF, is asymptotically equivalent to the offline QIF
estimator obtained from the full cumulative data, and thus, has
no loss of statistical power in inference; (iii) our RenewQIF
method can be implemented in the existing Spark’s Lambda

architecture to carry over incremental estimation and inference
with desirable statistical and computational efficiency; and (iv)
by adding a monitoring layer to the Lambda architecture, our
method allows to detect and delete abnormal data batches in the
real-time analysis of correlated data. A direct use of the offline
QIF with cumulative data encounters fast-growing demands on
hardward capacities over the course of perpetual data streams.

It is worth pointing out that the proposed RenewQIF is
indeed different from the offline QIF that works for a single data
batch. First, the RenewQIF is built upon a sequential updat-
ing paradigm, which is computationally much faster than the
offline QIE. This gain in computational speed stems from to
our new formulation of online search algorithm that is operated
recursively under a different objective function from that of the
original offline QIE As shown in this article, the RenewQIF
and offline QIF estimators are not the same but only stochas-
tically equivalent. Second, unlike most of existing online meth-
ods, the proposed RenewQIF provides online statistical infer-
ence that, technically, depends on a fast recursive calculation
of Godambe information matrix (or the sandwich covariance
matrix). Such work has not been considered in the current liter-
ature. Third, theoretical justifications for large sample properties
of the RenewQIF are different in the case where individual data
batch sizes are fixed but the number of data batches tends to
infinity. In contrast, the asymptotic results of the offline QIF
do not hold if the sample size is fixed, which corresponds to
the case that the number of data batches is only one rather
than diverging to infinity. Thus, the technical treatments in both
theoretical arguments and algorithm designs in the RenewQIF
are more advanced than those given by Qu, Lindsay, and Li
(2000). Technically, the offline QIF may be regarded as a special
case of the RenewQIF.

We also propose an online screening method for a real-
time diagnosis of abnormal data batches in the framework of
RenewQIF. Most existing online monitoring procedures are
based on certain metrics such as a test statistic (Page 1954;
Shiryayev 1963; Roberts 1966; Goel and Wu 1971; Amin and
Search 1991; Pollak and Siegmund 1991; Amin, Reynolds, and
Bakir 1995). In a similar spirit to (Lai 2004), we establish a
fast screening procedure based on Hansen’s goodness-of-fit test
statistic (Hansen 1982) to identify any abnormal data batch and
exclude it from updating results of estimation and inference. To
implement the RenewQIF in the presence of potential abnormal
data batches, we expand the Rho architecture developed by (Luo
and Song 2020) in the context of GLMs for cross-sectional
data, by adding a new monitoring layer in the Spark’s Lambda
architecture. This monitoring layer houses a QIF-based testing
procedure to check the compatibility of each arriving data batch
with the normal data reference.

Essentially, we aim to develop a new online methodology
with the following tasks: (i) to put forward RenewQIF estima-
tion and incremental inference in MGLMs for correlated out-
comes; and (ii) to study a QIF-based goodness-of-fit test statistic
in the monitoring layer that enables to effectively detect abnor-
mal data batches over data streams with no fixed ending point.
This article is organized as follows to achieve these two aims.
Section 2 provides both algorithms and theoretical guarantees
for our RenewQIF method. Section 3 discusses an extended
Lambda architecture with an addition of quality control layer



and pseudo code for numerical implementation, together with
an analysis on algorithmic convergence and a monitoring pro-
cedure for abnormal data batches. Section 4 includes simulation
results with comparisons of the proposed RenewQIF to the
offline GEE, QIF and renewable GEE (RenewGEE) with or with-
out abnormal data batches. Section 5 illustrates the proposed
method by a real data analysis application. The proofs of the
large-sample properties for the RenewQIF method are included
in the Appendix. Derivation of RenewGEE as well as additional
numerical results are included in the supplementary materials.

2. RenewQIF Methodology
2.1. Offline QIF

Consider independent streaming data batches consisting
of cluster-correlated outcomes, sequentially generated from
a common underlying population-averaged model (Zeger,
Liang, and Albert 1988) or marginal generalized linear model
(MGLM) (Song 2007, chap. 5) with an unknown regression
parameter 8, € © C RP where © is the parameter space for
B. For the ease of exposition, we assume an equal cluster size
m; = m. Our goal is to evaluate population-average effects of p
covariates, denoted by 8, = (Bo1, - - - » ,BOP)T in an MGLM with
the marginal mean and covariance given by

.
w=EG1X) = [hx] Bo).....heeyBo) |
cov(ylX) = ¢Z (B, ) = pA?R(@)AY?, (1)

where y = (yl,...,ym)T, o= (Ui i) | with pug =
h(kaﬂO) where h(-) is a known link function, and X =
(x1,...,%m) " with x;, = (xkl,...,xkp)T, k=1,...,m ¢
is a dispersion parameter, A = diag{v(u1),...,v(um)} is a

diagonal matrix with v(-) being a known variance function, and
R(a) is a working correlation matrix that is fully characterized
by a correlation parameter vector o. Both dispersion ¢ and
correlation o are treated as nuisance parameters outside the
space of parameters of interest, ®.

In the context of streaming data, consider a time point b > 2
with a total of Nj, clusters arriving sequentially in b data batches,
{D1, ..., Dy}, each containing n; = |Dj|, j = 1,...,b, clusters.
Let D = Dy U --- U Dy, denote the cumulative collection of
datasets up to data batch b where each sample unit corresponds
to an m-element vector of cluster-correlated outcomes, and the
cumulative sample size is N, = |Dj|. For simplicity, D; (a
single data batch b) or Dj (an aggregation of b data batches)
is also used as respective sets of indices for clusters involved.
For cluster i, let y; = (yi1,. .. ,y,‘m)—r and X; = (Xi1, ..., Xim) |
be the correlated response vectors and associated covariates,
i=1...,nj=1,..., b. According to Liang and Zeger (1986),
an offline GEE estimator of f is a solution to the following
generalized estimating equation for the cumulative data D} up
to time point b:

ViR =) DIE M yi—m)=0, ()

i€Dy
where pt; = (i, - - - ,/Lim)T,D,' = aui/a/ﬂ isan m x p matrix
and X; = A’ R(@)A}"* with A; = diag {v(ui1), . . ., v(tim))}.
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According to Qu, Lindsay, and Li (2000), the formulation of an
offline QIF is based on an approximation to the inverse working
correlation matrix by R™!(a) ~ Zle ysMs, where y1,...,¥s
are constants possibly dependent on o, and Mj,..., Mg are
known basis matrices with elements 0 and 1, which are
determined by a given correlation matrix R(«). In some
cases, the above expansion can be exact. For example, as
discussed in Qu, Lindsay, and Li (2000) and (Song 2007, chap.
5), the basis matrices for the compound symmetry working
correlation matrix are M; = I, the identity matrix, and M5,
a matrix with all 0 on the diagonal and all 1 off the diagonal.
Plugging such expansion into (2) leads to ¥} (D}; B,a) =
ZieD; > VsDiTAi_l/zMsAz’_l/z
be regarded as a combination of the following extended score
vector of pS dimension:

gB) = ZieD;g()’i;Xi)ﬂ)
DA M AT (y, — )
= ZieD; :

—1/2 .7 2
DA M (y, — )

(y; — n;) = 0, which may

This is an over-identified estimating function, namely dim(g},
(B)) > dim(p). To obtain an estimator of 8, following Hansen

(1982)’s generalized method of moments (GMM), we take ﬁ Z =
argmin Q;(B) with
BeRP

QB =g,B " {C;B) ' 5B 3)

where C}(B8) = Ziepz g Xi, B)g(y;; Xi, B) T is the sample
variance of g5 (B). Note that the nuisance correlation parameter
«a is not involved in (3) for the estimation of B,. Throughout the
article, for a vector a = (ay,...,a,) € R", we denote the L,-

norm by ||a|| := />"", aiz; for a matrix A € R"™*", we define

[JA]] := v/ Amax(A T A) where Amax denote the largest eigenvalue.
Wherever applicable, denote the L;-norm by || - ||;.

2.2. Online QIF

Instead of processing the cumulative data Dj once to obtain
an offline QIF as shown above, we may conduct the online
estimation and inference via a sequential and recursive updating
scheme. In the proposed online estimation framework, let
B, be a renewable estimator, which is initialized by B, =
[§1 = argmin Q;(B), namely the QIF estimate obtained
BeR?
with the first data batch. When data batch D, arrives, a
previous estimator B,_; is renewed or updated to B, using
historical summary statistics of previous data batches D; | and
full observations of current data batch Dj,. This sequentially
renewed estimator is termed as the renewable QIF or RenewQIFE.
After the completion of this updating, individual-level data
of Dy, is no longer accessible for the sake of data storage,
but only the updated estimate B, and summary statistics are
carried forward in future calculations. For the empirical version,
we use g,(B) = } ;cp, 8¥;Xi, B) to denote the extended

score vector of data batch Dy, clearly g7 (B) = Z]l-’zl gj(ﬂ).
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The negative gradient and sample variance matrix of g,(8)
are denoted by G,(B) = ZzeDb Eig(yl,X,,/S)/Bﬁ—r and

Co(B) = Dicp, g Xi, B)g(y;: Xi, B) T, respectively. In the
theoretical framework, let the population variability matrix and
sensitivity matrix be C(8) = Eg {g(y; X,ﬂ)gT(y;X,ﬁ)} and
GB) = Eg {—Bg(y;X,ﬂ)/aﬂT} (Godambe and Kale 1991).
In the process of RenewQIF, the same basis matrices are used in
all data batches.

We begin the derivation of RenewQIF with two batches, the
second one D, arriving after the first D;. This simple scenario
can be easily generalized to the case of an arbitrary number of
data batches with little effort. According to Qu, Lindsay, and Li

(2000), a QIF estimator, [3\1 = argmin Q;(B) with Q;(8) =
BeR?

ng(ﬂ) {Cy (/9)}71 £,(B), may be obtained from the estimating
A ~ 1-1 "

equation: G| (8;) HCl (ﬂl)} £:(B1) = 0 with a higher-order

term of Op(nl_l) being dropped from the gradient. When D,

Ak
arrives, we aim to obtain the offline QIF estimator, 8,, based
on the accumulated data Dj, satisfying the estimating equation

GE(&;)TC‘E(ﬁ;)flgE(ﬂA;) = 0, or equivalently

(68 +@dh] [cdh+cdh)
{880 + 88 =o. @

Clearly, solving (4) for ﬁ; involves subject-level data from
both batches D; and D, where D; may no longer be acces-
sible. Our RenewQIF estimation is able to handle this issue.
To proceed, heuristically, we may take the first-order Tay-
lor expansions of the terms gl(ﬁ;), Gl(ﬁ;) and Cl(ﬁ;)
element-wise in (4) around ﬁl. Given that g, is continu-
ously differentiable and G is Lipschitz continuous in ©,

it follows that _gl(ﬂz) = Ir\l;_lzg1(ﬁ1) + %Gl(ﬁﬂ(ﬁl -
B + 0 (Vznﬁl—ﬁznz) BBy = HGih) +
Op (118, = B311),and 1€ (B) = #-C1(BD)+0, (3118,
_ 32||>. The error terms O, (N—2||ﬂ1 — ﬂ2||) and O, (;—12||ﬂ1
— ﬂ:”z) may be asymptotically ignorable if N, is large
enough. Dropping such error terms, we propose a new

QIF estimator B, as a solution to the estimating equation:
G2(B,)TC2(B,) '8, (B,) = 0, or equivalently,

~ ~ T ~ ~ 11
[aiy + 6@y {cidy+caby)
{880 +GBYB - By +gBn| =0 )

where g,, G, and C, are, respectively, the resulting adjusted
extended score vector, the online aggregated negative gradient,
and the online sample variance matrix, none of which is cal-
culated with the subject-level raw data D;. Thus, Equation (5)
updates the initial ﬁl to a new estimate with no use of the raw
data in D;. Thus, B, is called a RenewQIF estimator of B, and
Equation (5) is termed as an incremental QIF estimating equa-
tion. Furthermore, it is straightforward to find the RenewQIF

estimator f8 , numerically via the Newton-Raphson algorithm.
That is, at the (r + 1)th iteration,

~(r+1) ~(r)

B, =8,

G BT

~  ~(r ~  ~(r ~ o~ ]}
+16@E) G661 6E))

&EN 15, B,

where G>(By) = Gi(B)) +Ga(By ) and &) = Ci(By) +
Cz(ﬁ;r)). Here, the gradient is also an approximation that is
traditionally used in the offline QIF with higher-order terms
being dropped (Qu, Lindsay, and Li 2000). Once again, it is
worth pointing out that the above iterations do not require
the subject-level data of Dj, but only the historical summary
statistics, including estimate ﬂl, its negative gradient G; (,Bl)
and sample variance matrix Cl(ﬂ 1)- In the QIF estimation
above, the nuisance correlation parameter « is not involved in

the iterations, either.
Extending the above renewable procedure to a general setting

of streaming datasets, we now define a renewable QIF estimation
of B as follows. Let /32 be the offline QIF estimator of B, with
Ub_ID- obtained from the offline QIF

estimating equatlon G} (ﬂb)TC (ﬁb) ng(ﬁb)
able estimator 8, of B, is defined as a solution to the incremental
QIF estimating equation: Gy (ﬁb)Téb (ﬂb)_lgb (Bp) = 0, which
is equivalent to

the cumulative data Dy =

0. A renew-

. b—1 _ . T (b1 -1
foBy) = ‘ > G+ Gbmb)] { > CiBy+ cbwb)]
j=1

j=1

b—1
x lgb B + > Gi(Bp By l—ﬂb>+gb<ﬂb>’ ©)

j=1

where G, = Z].bzl G; B ;) is the sequentially aggregated negative

gradient matrix, C, = Zjbzl Cj(ﬁ ;) is t~he sequentiallzr aggre-
gated sample variance matrix, and g,(8;) = g,_(Bp_1) +
Zjbz—ll G; (/}j) (ﬁb_l —ﬁb) +g, (ﬁb) is the adjusted extended score
vector. In effect, Equation (6) may be rewritten as a recursive
formula:

Bo=Bp 1+ N;nglﬁb(ﬁb), with
Us(By) = G, €, (éb_l +gb(ﬁb)), (7)

where H, = N~ ! é; éb_l Gy_1. Even though the first expression
in (7) takes a similar form to that of the traditional SGD (Rob-
bins and Monro 1951; Sakrison 1965; Toulis and Airold 2017), it
is not an SGD as B, is involved in both U, () and Hp,. It may be
regarded as a second-order method involving Hessian inversion
calculation useful for statistical inference. In comparison to
SGD, (7) not only achieves efficient estimation but also provides
relevant inferential quantities; the latter is of great importance
in statistical analyses of cluster-correlated data streams. This
RenewQIF estimate 8 p given in (7) is clearly different from the
offline QIF that requires to access the entire cumulative data
Dj, to obtain the parameter estimate ﬁz, and the latter may not
be computationally feasible when the number of data batches
b — oo.



Solving (6) can be easily carried out via the following
Newton-Raphson iterations:

~(r+1) ~(r)

By =8, +{GB)TEB)
Go(By ) Co By

B CN
'GoBy))

(r)

'g,(By)- (8)

In algorithm (8), clearly we only use the subject-level data of cur-

rent data batch D, and summary statistics {8_1,8;_;> Gp_1

Cp_,} from historical data batches up to b — 1 rather than
subject-level raw data of D} _,. Thus, our proposed RenewQIF is
indeed an online estimation procedure. In addition, a consistent

estimator of parameter ¢ is given by oy = mmli’,bl_ PP Pp_1 +
mnp—p = o Ox—Rw)*
mNh—P¢h’ where ¢ = m"h—P ZIEDb Zk 1 v(i) with

Tl = h(x) By).

2.3. Large Sample Properties

In our discussion of large sample properties, the cumulative
sample size N;, — 0o may arise from one of the following three
scenarios: (S1) n; is finite for j = ., b but the number of
data batches b — o0; (S2) the initial data batch size n; — o0
(aggregate the first few batches to create a large initial data batch
prior to the renewable updating), and subsequent batch sizes
nj’s may be either finite or infinite for j = 2,...,b, but the
number of data batches b is finite; and (S3) the initial data batch
size n; — 00 and other n;s are either finite or infinite for
j=2,...,b,and the number of data batches b — oo.

Following the regularity conditions given in Hansen (1982)’s
theory of GMM, we postulate the regularity conditions to estab-
lish some key large sample properties for RenewQIE

(C1) The true parameter B, lies in the interior of parameter
space ® C R?, and the space © is compact.

(C2) The incremental estimating function f,(B) is unbiased
such that Eg {f;, (X, B)} = 0if and only if 8 = B,,.

(C3) The extended score vector g(y; X, B) is twice continuous
differentiable with respect to parameter 8, and the sensi-
tivity matrix G(B) = EgG(y; X, B) is of full column rank
for B € ©.

(C4) Eg [||g(y;X,ﬂ)||2] <ooforall B € ©.

(C5) The variability matrix C(8) = Egg(y; X, B)g(y; X, BT is
positive-definite for g € ©.

Remark 1. (C1)-(C5) are mild conditions required to establish
asymptotic consistency for scenarios S2 and S3 Condition (C4)
indicates that the sample variance matrix N, 1Cy is finite for all
B € ©. (C5) of positive-definite C() on the whole parameter
space © is required specifically in scenario S1, while in scenarios
S2 and S3, (C5) may be relaxed to hold in a neighborhood with
radius o(\/n1).

Note that we do not include the convergence condition on a
sequence of weighting matrices as in Hansen (1982) because the

online QIF uses the sample variance matrix where N~ ¢, 3 ¢
holds under Ny, iid samples and conditions (C1)-(C4).

We first establish estimation consistency for the RenewQIF
in scenarios (S2)-(S3).
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Theorem 1. In scenarios (52)-(S3), under regularity conditions
(C1)-(C5), the renewable estimator f;, given in (6) is consistent,

namely B, EA Bo asNp = Z]l;l nj — 0.

Under the same regularity conditions, we can further estab-
lish the asymptotic normality for the RenewQIF in the two
scenarios (S2)—-(S3).

Theorem 2. In scenarios (S2)-(S3), under regularity conditions

(C1)-(C5), the renewable estimator S, in (6) is asymp-

totically normally distributed, namely VNo(By, — Bo) 4

N(O, J_l(ﬂo)), as N, — 00, where Godambe information
J(Bo) = GT(B)C ' (By)G(By)-

The proof of Theorems 1 and 2 for scenarios (S2)-(S3) are
given in Section 3 in the supplementary materials. To establish
consistency and asymptotic normality for scenario (S1), we need
the following additional conditions.

(C6) Define f,(B) = Gi(B)' Ci1(B)'g,(B). Both matrices
G1(B)TC1(B)1G1(B) and —df,(B)/dB " are positive-
definite for B € ©.

(C7) Hy = N;lé;réglab_l is positive-definite.

Remark 2. The condition (C6) requiring positive-definiteness
of Gi(B) T C1(B)"'G1(B) and —afl(ﬂ)/aﬂT appears to be mild
as long as the first data batch size #; is moderately large. Since
matrix Hj, approximates the sample covariance matrix of B b as
b — o0, the condition (C7) of Hy, being positive-definite is also
modest.

Theorem 3. In scenario (S1), under regularity conditions (C1)-
(C7), the renewable estimator B, given in (6) is consistent,

namely B, ES By as N, = Z].bzl

Theorem 4. In scenario (S1), under regularity conditions

(C1)-(C7), the renewable estimator f; given in (6) is asymp-

totically normally distributed, namely, VNo(By — Bo) 4

N (O,J _l(ﬂo)), as N, — 00, where Godambe information
J(By) = GT(ﬂo)C_l(ﬂo)G(ﬂo)-

The proof of Theorems 3 and 4 are given in Appendix A.1
and A.2, respectively.
It is interesting to notice that the asymptotic covariance

nj—>oo.

matrix of the renewable estimator 8 p given in both Theorems 2

and 4 is exactly the same as that of the offline estimator ﬁ;
This implies that the proposed RenewQIF estimator achieves
the same asymptotic distribution as the offline QIF estima-
tor. With no access to any historical subject-level data in the
computation, using only the online aggregated matrices G, =

Z]l-’zl G;(Dj; ﬁj) and C, Z]b:1 Cj(Dj;ﬁj), we can calcu-

late the estimated asymptotic covariance matrix as X,(f,) =
~ -1 eT el 1-1

{Nb_llb} = N, {G;—Cb le} . It follows that the online

estimated asymptotic variance matrix for the RenewQIF }§ p is

- o 1 ~ T a1~ -1
By =By = 5B = |66, Gf O
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Positive-definiteness on C(f) is required by (C5) for all 8 €
©, but the sample version N, 'C;, may be noninvertible. In
the implementation, we invoke a generalized inverse (Moore-
Penrose inverse). Other possible remedy approaches include (i)
a linear shrinkage estimator to replace the sample covariance
matrix (Han and Song 2011); (ii) a selection of moment con-
ditions (Cho and Qu 2015); and (iii) a principle component
dimension reduction (Pearson 1901) to ensure that the compo-
nents in g are not (nearly) linearly dependent.

In addition, it is noteworthy that in (S2) or (S3), our method
can be used as an alternative to parallelized computing methods.
However, with our method, the convergence rate is Op(N b_ Y 2)
which is based on the cumulative sample size Nj. This indicates
a faster convergence rate than parallelized distributed estima-
tion where the convergence rate is based on the sample size of
the smallest single dataset (Zhou and Song 2017) mjin Nt

3. Computing and Monitoring
3.1. Computing Implementation of RenewQIF

We expand the existing Spark’s Lambda architecture to reduce
computing burden in the proposed framework of RenewQIF
methodology. The iterative calculation in (8) can be imple-
mented in the speed and inference layers in an extended Lambda
architecture shown in Figure 1. Here, relevant inferential statis-
tics include the aggregated extended score vector g and two
inferential matrices G (aggregated negative gradient) and C
(aggregated sample variance matrix). If data batch Dj, passes the
scrutiny, we update B p—1 to B p at the speed layer and update
1> Gh B Cb 1 to gy, Gb and Cb at the inference layer. Oth-
erwise, skip all updating steps and proceed to next data batch
Dp41. Algorithm 1 lists the pseudo code for the implementation
of the RenewQIF via the paradigm of the extended Lambda
architecture shown in Figure 1. Some explanations are given
below.

1. Line 1: the population-averaged model or MGLM has been
specified in Section 2.1. It is worth noting that the estimating
functions used in the construction of the QIF objective function
involves neither the correlation parameter & nor the dispersion
parameter ¢. The updating of the dispersion parameter ¢ takes
place outside of the QIF loop.

2. Line 2: the outputs include RenewQIF estimates of the regres-
sion coefficients and the corresponding estimated asymptotic
covarijance matrix at each time point b, and the latter is needed
for statistical inference.

3. Line 3: set certain initial values for the regression coefficients,
for example, get the initial estimate B, by fitting D; to R func-
tionglm().

4. Line 4: run through the sequential updating procedure along
data streams. _

5. Line 6: before updating f,_; with current Dy, first check
its compatibility with the normal reference data batch D;. QIF
estimator § p is obtained by minimizing the quadratic inference
function based only on these two data batches, D; U Dj,. The
goodness-of-fit test statistic Aj, will be discussed in detail in
Section 3.3.

6. Line 7: if the current data batch Dj, does not pass the scrutiny

Algorithm 1: RenewQIF for streaming cluster-correlated
data in the extended Lambda architecture.

1 Inputs: Sequentially arrived datasets Dj,...,Dp,...from an
MGLM with mean E(y|X) = p and covariance
cov(y|X) = ¢Z spec1ﬁed in Equation (1);

2 Outputs: B, V(B,) and ¢, for b = 1,2,
3 Initialize: Initial values ﬁ 0> P05 8o = 0ps, Go = 0psxp and
Co = Opsxps s

4forb=1,2,...do

5 | Read in dataset Dy;

6 | Atthe monitoring layer, if b > 2, calculate

Ap = Qi(By) + Q(By);
7 1fAb>de ,say o = 0.05, setﬁb—ﬂh 1,¢h

8 =8 16 =G, 1,C, =Cyy
and jump to Line 16;

dv—15

8 | otherwise, start iterations with (8 p» @p) initialized by

(By—1> Bo-1)s
9 repeat
10 At the inference layer, calculate
=) ()
8 =8, +Gp1(By_ 1 By ) +8,(Dw; By, )s
11 éé)—éb 1+Gb(Dbs,Bb )and
~(r) (r)
Cy = Cp1 +Co(DiiBy )
12 At the speed layer,
gUHD _ g0 e e e | et e
By =By { b G Gy } G, C &

13 untll convergence;

14 | At the inference layer, calculate
~ o~ AT ~—1~ 11
V(By) = {Gb Gy Gb} 5

15 | At the speed layer, calculate

7 _ mNp_1—p 7 mnp—p
b0 = mNb—P Po-1F un,—p

ob = mnh T p ZzeDb ke (y'ﬁ(,f;'f L

16 | Save ﬂb, Db &) Gy, and Cy at the speed and inference
layers, respectively;

17 | Release dataset D} from the memory.

18 end

19 Return ﬁb, f/(ﬁb) and ¢p, forb = 1,2, . . ..

Py, where

test, we don't use it in the updating and jump to Line 16 directly.
7. Lines 8-11: if the test concludes the current data batch Dy
passes the scrutiny, at the inference layer, use the prior estimate
B,_, and current batch Dj, to calculate £ Gy and Cy through a
communication with the speed layer.

8. Line 12: run the Newton-Raphson algorithm to renew B b1
to ﬁ b

9. Line 13: the convergence criterion and the distance between
theoretical estimator 8 p and experimental estimator B Zr) will be
further discussed in Section 3.2.

10. Line 14: the inference layer performs statistical inference
with éb and éb.

11. Line 15: the speed layer updates the estimate of the disper-
sion parameter ¢ outside the QIF loop. The proposed estimate
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5= 6t | |
+9b(Db 8"

3" = -1+ Goa(Bo-r - B
GO = Gy + Gy(Dy ﬁ, )
A
/C,, = Cy1 + Co(Dy; ﬁ A Inference layer
Monitoring layer
A
ﬁ( ) _ ﬁ(> {G( )7c( - G()} G()’c( )—15,()')
Ob = mNp—1— Pob 1 + mnp— I’Ob

mNy,—p

mNy,—p

B =

Bo-1, 6 = b1

\\Speed layer

=

Figure 1. Diagram of an extended Lambda architecture with the addition of both monitoring and inference layers to the standard speed layer.

is guaranteed to be positive. In the cases of logistic and Poisson
models, since the dispersion parameters are known, this updat-
ing step is omitted.

3.2. Monitoring of Algorithmic Convergence

Note that the large sample properties developed in Section 2.3
centers at the theoretical root, 8, our proposed incremental
estimating equation in (6), thatis, f,(8;) = 0.In the implemen-

~(r
tation, ﬂé ) is the actual estimate harvested numerically at the r-
th iteration of the Newton-Raphson algorithm (8). Following
the conventional practice, we set up a stringent convergence

criterion, so that the two quantities B p and B g) are numeri-
cally close enough that their difference is ignored. According
to Nocedal and Wright (2006, chap. 3), the convergence rate of
the algorithm (8) is at least quadratic if the following conditions

are satisfied: (a) the starting point Béo) is sufficiently close to
the root /}h’ (b) the negative gradient J, := —df,(8)/d8 " =
Gh C, Gb is Lipschitz continuous in a neighborhood of the root
ﬂb, and (c) f,(B) is differentiable and Ib is positive-definite
in a neighborhood of the root 8. These three conditions are
all satisfied by our algorithm (8). This is because condition (a)
holds for large b in renewable updating due to the initialization

~(0
of B
shows the closeness to the root 8 ér) improves over the course
of increased b. Conditions (b) and (c) are also satisfied by the

regularity Conditions (C3) and (C5) in Section 2.3.

Line 13 in Algorithm 1 stems from the convergence cri-
(r)
fo By

=B p—1.- Being an example, the right panel of Figure 2

teria in the Newton’s decrement given by A,
(71,(5 E,r)) 1 (}§ ér)) < 107°, which measures the proximity

of ﬁff) to [} p- Clearly, A, = 0 when ;§ 0 _ /§ p should be
monitored over iterations of algorithm (8). The algorithm will
stop once A, satisfies the stopping rule A, < 1078, To control
the computation time, we also terminate the algorithm when the
number of iterations reaches a prefixed threshold. Based on our
extensive empirical experience, in our current implementation,
we set the maximum number of iterations at 50. If this threshold
is reached with failure of A, < 107°, a warning message

“algorithm reached ‘maxit’ but did not reach the convergence
criteria” will be given as an output. All simulation studies in
Section 4 have shown this criterion is satisfactory with zero
warning message. As shown in the left panel in Figure 2, the
number of iterations required to reach the criteria A, < 107
is all less than 10, and with the sequential addition of data
batches, the number of iterations run by algorithm (8) decreases
monotonically as b increases.

3.3. Monitoring of Abnormal Data Batches

For the case of high throughput data streams in practice, it is
highly likely to encounter abnormal data batches. To address
this issue, we relax the RenewQIF method to a situation where
abnormal data batches may occur over the sequence of data
streams, D5,...,Dy. A data batch D, t € {2,...,b}, is
regarded as being abnormal if D; is generated from a model
whose regression parameters, say f8.’s, are different from those
of the underlying main model of interest, 8 of the true model,
that is, 8, # Bg. In other words, D, is an outlying data batch,
which is incompatible with the data batches generated from the
true model. Let I'; = {71, ..., 74} denote the set of indices for
g abnormal data batches. In reality, we do not know set I'; in
advance but want to find them out during the collection of data
streams. For convenience, we assume that the first data batch
D; is the normal reference, which is generated from a model
with “the normal” parameter 8. At each subsequent time point
b (b > 2), we propose a diagnostic procedure via hypothesis
testing of mean-zero assumption for the pair of extended scores
Hy : Eg(g,) = Eg(g,) = 0, where g, and g, are the extended
score vectors for data batches D; and Dy, respectively, similar
to the one given in (4). This goodness-of-fit test essentially
enables to check the compatibility between data batch Dj, under
investigation and the normal reference D1 If Hy is rejected we
would not use data batch Dy to renew B, ;, and set ﬂ p equal

to B,_; otherwise, execute an update from 8, , to f, using
RenewQIF. Next we proceed to test Hy with next data batch
Dp1-

We construct a test statistic along the line of Hansen’s (1982)
seminal goodness-of-fit test. The quadratic inference function
has useful chi-squared properties for hypothesis testing (Lind-
say and Qu 2003). For checking for data compatibility, we con-
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Figure 2. The left panel shows the number of iterations to reach A, < 10~ with different data batch size ny; the right panel indicates the L1-norm difference ||/§b -
Bu_1l]1 decreases fast as b increases. Both plots are generated under a marginal logistic model specified in Section 4.1 with a fixed Ng = 10% but varying batch size np.

sider a quadratic inference function of the following form:
AYB) = (glos))T <cl(ﬂ> 0 ) 1 <g1<ﬂ)>
8(B) 0 GB) \&®)’
(10)
where C; and C, are the estimated sample covariances of
extended scores g, and g,, respectively. Note that the form of
block-diagonal covariance in Ay is due to the independence

between D; and Dy. Let /}b = argmin Ap(B), under Hy,

BeR?
that is, b ¢ Ty, test statistic A;,(/éb) 4 Xﬁf with df =
rank(C;) + rank(Cp) — p; under Hj, for an index 7 € Ty,
and given local alternatives in the form of 8, = B, + (n1 +

n:)"12d, d € RP, test statistic AT(/}T) 4 Xazlf()‘)’ with
df = rank(C;)+rank(C;) — p and the noncentrality parameter
A =d'J (Bo)d where J is the Godambe information matrix
given in Theorems 4 and 2. Moreover, it is easy to show that
Power = Py, (A,(/}T) > Xjf,a) — 1,as (n + ny) — 00,
which implies that the proposed test A; is consistent. Under
a finite sample size, with fixed d, the power of A; depends on
both statistical significance level & and abnormal data batch size
nr. Larger o leads to higher power and smaller Type II error,
but also a higher chance to produce false alarms. Obviously,
increasing data batch size n;, will help increase power. The above
monitoring procedure is based on the asymptotic properties
under scenarios S2 and S3 with nj — 00 for some j. However,
if the reference data batch size is small as assumed in scenario
S1, one may carry out the proposed diagnostic test against an
augmented reference data that combines several normal data
batches to reach a desirable sample size.

In practice the use of the first data batch D, which is the
normal reference sampled from the true model, may be replaced
by any data batch that is deemed appropriate. This choice is
obviously somewhat subjective and mostly made by practition-
ers base on their prior experience and existing knowledge on
data quality. We do not recommend frequently changing the
reference batch, but combining several normal data batches
to form a larger reference one is useful to reach more stable
performance of the diagnostic test Ap. For example, adaptively
using the adjacent data batch as the reference, we show in the
left panel of Figure 3 that the monitoring diagnostic test suffers
from an inflated Type I error once an abnormal data batch is
mistakenly set as the reference. Therefore, fixing a single or

an augmented reference data batch in the monitoring leads to
reliable diagnoses for abnormal data batches, as shown in the
right panel of Figure 3 with the normal reference fixed at the
first data batch.

4. Simulation Experiments
4.1. Setup

We conduct simulation experiments to assess the performances
of the proposed RenewQIF estimation and inference, as well
as of the diagnostic procedure for abnormal data batches, in
the setting of marginal generalized linear models (MGLMs)
for cluster-correlated data streams. We compare the proposed
RenewQIF method with (i) the offline GEE estimator obtained
by processing the entire cumulative data once, (ii) the offline
QIF estimator obtained by processing the entire data once, and
(iii) renewable GEE estimation method (RenewGEE) that is
similar to RenewQIF (see the relevant derivation in Section 2
in the supplementary materials).

In the first part of comparisons to be presented below, we
consider the following criterion related to both parameter esti-
mation and inference: (a) averaged absolute bias (A.bias), (b)
averaged asymptotic standard error (ASE), (c) empirical stan-
dard error (ESE), and (d) coverage probability (CP). Both offline
GEE and offline QIF estimates are yielded from the R packages
gee and gif. Computational efficiency is assessed by (e) com-
putation time (C.Time) and (f) running time (R.Time). R.Time
accounts only algorithm execution time, while C.Time includes
time spent on both data loading and algorithm execution. In
the second part of comparisons, we will first evaluate the Type
I error and power of the proposed goodness-of-fit test for data
compatibility with different significance level o and data batch
size ny. In addition, the criteria for parameter estimation and
inference will be reported thoroughly on the competing meth-
ods with and without quality control.

In the simulation studies, we set a terminal point B, and
generate a full dataset D with Np independent cluster-
correlated observations of an m-dimensional MGLM, consist-
ing of marginal mean E(y,|X;) = [h(xgﬂo), . ,h(x;nﬁo)]T
with B, = (0.2,—0.2,0.2,—-0.2, 0.2)", and covariance matrix
covyilXy) = $%; = ¢A;"R(e)A;"

;" "R(ey)A;’", i = 1,...,Np, where

id
four covariates Xij[2:5] ~ Ni(0, R(ery)) and intercept xiji) = 1,
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Figure 3. These two plots are generated under the marginal logistic model specified in Section 4.1 with a fixed total sample size N5 = 10* and data batch size np = 100.
Two abnormal data batches are D,5 and Dog. The y-axis is the empirical proportion of rejections over 500 replications, and x-axis is the index of test statistic A, (also the

data batch index).

Table 1. Simulation results under the linear and logistic MGLMs are summarized over 500 replications, with fixed Ng = 10° and p = 5 with increasing B.

Linear MGLM
offline GEE RenewGEE offline QIF RenewQIF
B 100 500 2000 100 500 2000 100 500 2000 100 500 2000
Abiasx 1073 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
ASEx 1073 1.42 1.42 142 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42
ESEx 1073 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40
CcpP 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
C.Time(s) 9.27 12.89 20.56 2.70 4.08 8.45 2.60 5.36 13.91 1.39 2.77 6.63
R.Time(s) 8.53 9.49 8.53 2.31 2.64 3.62 1.86 1.96 1.88 1.06 1.65 2.95
Logistic MGLM
offline GEE RenewGEE offline QIF RenewQIF
B 100 500 2000 100 500 2000 100 500 2000 100 500 2000
Abiasx10~3 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70
ASEx 1073 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31 3.31
ESEx 103 3.37 337 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37
CcpP 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
C.Time(s) 10.73 14.04 27.77 2.05 245 332 3.22 6.51 20.25 1.14 1.47 237
R.Time(s) 9.85 9.86 9.81 1.86 2.07 2.35 2.34 2.33 2.30 0.99 1.23 1.86

NOTE: “A.bias,” “ASE,” “ESE” and “CP” stand for the mean absolute bias, the mean asymptotic standard error, the empirical standard error, and the coverage probability,
respectively. “A.biasx 1 0~3"indicates the scale of number in the cell, for example, 1.10 x 10~3 = 0.0011. “C.Time" and “R.Time" denote computation time and running

time, and the unit of both is second.

j = 1,...,m. Here both correlation matrices R(c,) and R(ay)
are set as compound symmetry with o, = 0.5 and o), = 0.7,
respectively. The dispersion parameter ¢ = 1 and the cluster
size is m = 5. We consider both marginal linear model for
continuous y;; with h(4;;) = w;; and marginal logistic model for
binary y;; with h(u;) = log(uij/(1 — ;). For all four methods
in comparison, the working correlation matrix is specified to
be compound symmetry which is also the true correlation
structure.

4.2. Evaluation of Parameter Estimation

Scenario 1: fixed N but varying batch size ny,
We begin with the comparison of the four methods for the effect
of data batch size np on their point estimation and compu-
tational efficiency. A collection of B data batches specified in
Section 4.1 are generated, each with data batch size nj, and a
total of Np = |Dj| = 10° independent clusters, from an m-
variate Gaussian linear model and an m-dimensional logistic
model (using R package SimCorMultRes). Tables 1 reports
the results of both linear and logistic MGLMs, over 500 rounds
of simulations.

Bias and coverage probability. In linear and logistic MGLMs,
Table 1 shows that both RenewGEE and RenewQIF have similar

bias and coverage probability in comparison to the two oftline
methods. This confirms the theoretical results given in Theo-
rem 2; the RenewQIF as well as RenewGEE are stochastically
equivalent to the offline QIF and offline GEE, respectively. It
is easy to see that both bias and coverage probability in both
the linear and logistic models are not affected by individual
data batch size np. In other words, their performances seem to
depend only on Njp.

Computation time. Two metrics are used to evaluate compu-
tation efficiency: “C.Time” in Table 1 refers to the total amount
of time required by data loading and algorithm execution. With
an increased B, both RenewGEE and RenewQIF show clearly
advantageous for much lower computation time over the offline
GEE or offline QIFE due to the fact that the two offline methods
are much more time consuming to load in full datasets.

Scenario 2: fixed batch size ny, but varying B
Now we turn to a streaming setting where B data batches arrive
sequentially. For convenience, we fix single batch size n, = 100,
but let Ng increase from 103 to 10° (or B from 10 to 10%). Tables 2
and 3 list the simulation results under the linear and logistic
MGLMs.

Bias and coverage probability. As the number of batches B
rises from 10 to 10%, both RenewGEE and RenewQIF confirm
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Table 2. Compare renewable estimators and offline ones in the linear MGLM model with fixed single batch size n, = 100 and p = 5, where Bincreases from 10 to 104,

B=10,Nz = 103 B =100, Nz = 10%
GEE QIF GEE QIF
Criterion offline Renew offline Renew offline Renew offline Renew
Abiasx 1073 11.06 11.06 11.08 11.08 3.64 3.64 3.64 3.64
ASEx 103 14.19 14.16 14.15 14.13 4.49 4.49 4.49 4.49
ESEx 1073 13.82 13.83 13.85 13.85 4.51 4,51 451 4.51
CcpP 0.956 0.955 0.952 0.952 0.949 0.947 0.946 0.946
C.Time(s) 0.033 0.028 0.019 0.023 0.69 0.25 0.28 0.18
R.Time(s) 0.030 0.024 0.015 0.019 0.58 0.25 0.16 0.14
B=103,Ng =10° B =10% Np = 108
GEE QIF GEE QIF
Criterion offline Renew offline Renew offline Renew offline Renew
Abiasx 1073 1.1 1.1 1.1 1.1 0.35 0.35 0.35 0.35
ASEx 1073 1.42 1.42 1.42 1.42 0.45 0.45 0.45 0.45
ESEx 1073 1.40 1.40 1.40 1.40 0.44 0.44 0.44 0.44
CcpP 0.952 0.954 0.952 0.952 0.955 0.955 0.955 0.955
C.Time(s) 15.38 5.70 8.57 4.26 781.46 62.30 704.11 51.38
R.Time(s) 8.72 2.96 1.90 2.18 99.21 32.12 21.85 25.21

Table 3. Compare renewable estimators and offline ones in the logistic MGLM model with fixed single batch size n, = 100 and p = 5, where B increases from 10 to 104,

B=10,Ng =103

B =100, Ng = 10*

GEE QIF GEE QIF
Criterion offline Renew offline Renew offline Renew offline Renew
Abiasx 103 25.92 25.82 26.07 26.01 8.17 8.16 8.17 8.16
ASEx 1073 33.08 33.06 33.03 33.07 10.45 10.45 10.45 1045
ESEx 1073 3248 32.36 32.67 32.60 10.31 10.30 10.32 10.31
CcpP 0.953 0.952 0.950 0.952 0.950 0.952 0.951 0.952
C.Time(s) 0.048 0.029 0.024 0.023 1.09 0.23 0.32 0.17
R.Time(s) 0.045 0.026 0.021 0.020 0.99 0.20 0.22 0.14

B =103, Ng = 10° B =10% Ng = 10°

GEE QIF GEE QIF
Criterion offline Renew offline Renew offline Renew offline Renew
Abiasx 1073 2.71 2.71 271 271 - 0.82 0.82 0.82
ASEx 1073 3.31 3.31 3.31 3.31 - 1.05 1.05 1.05
ESEx 1073 3.39 3.39 3.39 3.39 - 1.04 1.04 1.04
cP 0.948 0.948 0.948 0.948 - 0.946 0.946 0.948
C.Time(s) 22.41 5.84 9.99 4.49 - 57.47 856.70 47.44
R.Time(s) 15.59 3.02 3.18 235 - 31.08 45.83 21.31

NOTE: The dashed line in the column for “offline GEE”when Ng = 108 indicates the standard gee package in R does not produce output due to the excessive computational

burden.

the asymptotic properties in Theorem 4: their average absolute
bias decreases rapidly as the cumulative sample size accumu-
lates, and the coverage probability stays robustly around the
nominal level 95%.

Computation time. Both online RenewGEE and RenewQIF
methods show more and more advantageous as Np increases:
the combined amount of time for data loading and algorithm
execution only takes less than 5 sec, whereas the offline GEE
and offline QIF, when processing a dataset of 10° clusters once,
requires more than 20 sec. This gain of 5-fold faster computation
by the proposed RenewGEE and RenewQIF methods sacrifice
little price of estimation precision or inferential power. One
thing worth mentioning for Table 3 is that when Ny = 105, to
run the logistic MGLM, the offline GEE is computationally too
intensive to produce convergent results within 12 hr using the
existing R package gee.

4.3. Evaluation of Monitoring Procedure

We also evaluate the performance of the proposed diagnostic
procedure using the goodness-of-fit test Aj, in Equation (10) to
detect abnormal data batches. First, we check the properties of
this test statistic with respect to both Type I error and power
of detection abnormal data batches. Then, we compare the esti-
mation and inference performance of the RenewQIF methods
with and without the use of monitoring procedure in terms of
the following four criterion: (a) A.bias, (b) ASE, (c) ESE, and (d)
CP, as define above. The abnormal data batches are created by
altering the true parameters via a local departure on fy;, that
is B, = (0.2,—(0.2 + d),0.2,—0.2,02) ", T € T'y. We set T'5,
containing two positions (g = 2) at which two abnormal data
batches occurs, respectively, at 77 = 0.25B and 7 = 0.75B.
Simulation studies have showed that Type I errors are very close



Table 4. Performances with and without the monitoring procedure.
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Without monitoring procedure

ny 50 100 200 400
Abiasx10~3 12.36 16.74 28.68 56.58
ASEx 1073 14.61 14.62 14.69 14.79
ESEx10~3 14.25 14.02 15.26 15.03
CcpP 0.932 0.838 0.534 0.030
With monitoring procedure
np =50 ny = 100
o x 1073 100 50 10 1 0.005 100 50 10 1 0.005
Abiasx10~3 11.29 8.923 7.970 8312 8.802 9.773 8.433 7.962 8.147 9.564
ASEx 1073 10.18 9.558 9.259 9.220 9.219 10.21 9.604 9.311 9.263 9.256
ESEx10~3 20.90 12.08 9.860 9.782 9.568 16.67 11.37 9.834 9.340 9.736
CcpP 0.852 0.896 0.920 0.906 0.890 0.926 0.942 0.942 0.940 0.882
No/Ng 0.876 0.939 0.988 0.997 0.999 0.883 0.933 0.976 0.987 0.992
np = 200 np = 400
o x 1073 100 50 10 1 0.005 100 50 10 1 0.005
Abiasx 1073 8.836 8.122 7.485 7.757 9.641 9.317 8.371 7.723 7.656 7.771
ASEx 1073 10.16 9.709 9.426 9.369 9.347 10.39 9.958 9.638 9.584 9.573
ESEx10~3 11.73 10.41 9.305 9.551 10.40 12.41 10.79 9.690 9.612 9.795
CcP 0.938 0.948 0.956 0.946 0.886 0.934 0.948 0.958 0.956 0.952
No/Ng 0.863 0.913 0.952 0.962 0.972 0.823 0.872 0.911 0.918 0.920

NOTE: Fixed total number of samples Ng = 10% with varying data batch size ny. 79 = 0.25Band 7, = 0.75B. In the table “With monitoring procedure,” No /Ng denotes the

proportion of used samples in the renewable estimation and inference.

to the nominal level ¢, and that the power of detecting abnormal
data batches drops as @ becomes smaller, but increases as n,
increases. See Table 1 in the supplementary materials.

Without monitoring procedure. With fixed N = 10* and T, =
{0.25B, 0.75B}, the upper panel in Table 4 shows that larger data
batch size 1y, leads to a larger bias due to the increased number
of contaminated clusters generated from the incompatible data
model. A.bias increases almost linearly with n;. At similar levels
of ASE and ESE, the coverage probability deviates more from
the nominal level 95% as n; increases; it drops from 93.2%
to 3.0% as ny rises from 50 to 200 due to more severe data
contamination.

With monitoring procedure. For the purpose of quality con-
trol, larger o increases the sensitivity of rejection, so many
small departures may be detected, which would be consequently
ignored in the online updating. These are clearly shown in the
lower panel of Table 4 due to the reduced proportion of used
samples, defined by Ny/Np. See also the last subplot in Figure 1
in the supplementary materials where Ny is the number of clus-
ters that passed the diagnostic test. The price to pay in this case
is that the resulting bias and standard error would be larger than
they would be if the false positives may be avoided. In contrast,
choosing a small & may elevate Type II error (false negative)
and thus, can lose power in detecting abnormal data batches.
In this case, the price to pay is not only increased bias but
also decreased coverage probability. The latter is indeed a more
serious problem as far as inference concerns. This phenomenon
is evident when ny, is small as shown in Table 4. As an extreme
case of @ = 5 x 107, the detection power is greatly lost with
np = 200, 100, or 50, and the coverage probability reduces to
lower than 90%. In practice, with high throughput data streams,
where cumulative sample sizes increase rapidly, using a larger «,
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Figure 4. Trace plots of —logq(p) over quarterly data batches from January,

2009 to December, 2015, each for one regression coefficient. Dashed vertical line
indicates the location of detected abnormal data batch.

say o = 0.05, is much safer and recommended in practice for the
purpose of monitoring, resulting in a more protective scenario
by effectively and cautiously avoiding abnormal data batches.

5. Analysis of NASS CDS Data

In regard to injuries involved in car accidents, we are interested
in not only the extent of injuries in drivers but also in passengers.
Apparently, injury levels of driver and passengers within the
same vehicle are correlated, and such within-cluster correlation
needs to be taken into account in the analysis. In this real
data application, we focus on the analysis of a series of car
crash datasets from the National Automotive Sampling System-
Crashworthiness Data System (NASS CDS) from January, 2009
to December, 2015. Our primary interest was to evaluate the
effectiveness of graduated driver licensing (GDL) on overall
driving safety with respect to injury levels in both driver and
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Figure 5. Trace plots for the estimates of coefficients and 95% point-wise confidence bands of “Young” and “Old.” Numerical numbers on two sides denote the estimated
regression coefficients after the arrivals of first and last batches, while the ones above the traces denote the estimates at the eighth data batch.

passengers. GDL is a nationwide legislature on novice drivers
of age 21 or younger with various conditions of vehicle oper-
ation. In contrast, under the current law, there are no restric-
tions on vehicle operation for older drivers with age, say, older
than 65. Thus, we want to compare drivers’ age groups with
respect to the extent of injury when a car accident happens.
We first categorized the “Age” variable into three age groups:
“Age<21” represents the young group under a restricted GDL,
and “Age>65” indicates the old group with a regular full driver’s
license, while those of age in between is treated as the reference
group. Extent of injury in a crash is a binary variable with 1 for a
moderate or severe injury, and 0 for minor or no injury. This
outcome variable was created from the variable of Maximum
Known Occupant Ais (MAIS), which indicates the single most
severe injury level reported for each occupant. Other potential
risk factors are also considered in the model, including seat belt
use (Seat Belt, 1 for used and 0 for no), drinking (Drinking, 1
for yes and 0 for no), speed limit (Speed Limit), vehicle weight
(Vehicle Weight, 0 for < 3000, 1 for 3000~4000, 2 for >4000
), air bag system deployed (Air Bag, 1 for yes and 0 for no),
number of lanes (Number of Lanes, 0 for < 2 and 1 for else),
drug involvement in this accident (Drug Use, 1 for yes and 0
for no), driver’s distraction/inattention to driving (Distraction, 1
for attentive and 0 for else), roadway surface condition (Surface
Condition, 1 for dry and 0 for else), and vehicle has been in
previous accidents (Previous Accidents, 0 for no and 1 for else).

Streaming data are formed by quarterly accident data from
the period of 7 years from January, 2009 to December, 2015,
with B = 28 data batches and a total of Ng = 18,832 crashed
vehicles that contain 26,330 occupants with complete records.
Each vehicle is treated as a cluster, and the cluster size varies
from 1 to 10 with an average of two occupants. We invoke
RenewQIF to fit a marginal logistic regression model with the

compound symmetry correlation to account for the within vehi-
cle correlation. In the analysis, we are interested in a 7-year
average risk assessment and thus, assuming constant associa-
tions between extent of injuries and risk factors over time. Since
this sequence of data streams arrive at low speed and large data
batch size, we would expect to have high power to detect the
abnormal data batch even if we choose a small «, say « = 0.01.
Additionally, since samples from NASS CDS have gone through
extensive data cleaning and preprocessing steps, a stringent « is
a reasonable choice to make a full use of samples. At = 0.01,
our proposed monitoring procedure identifies data batch Dg
to be incompatible, corresponding to the data collected during
the fourth quarter in year 2010. Estimated coefficients, standard
errors and p-values are reported in Table 2 in the supplementary
materials.

Figure 4 shows the trajectories of —log,,(p) values of the
online Wald test developed for RenewQIF, each for one regres-
sion coefficient over 28 quarters. Even though the total sample
size Np increases over time, not all of them show steep mono-
tonic increasing trends in evidence against the null Hy : g; = 0.
“Seat Belt” turns out to have the strongest association to the odds
of injury in a crash among all covariates included in the model.
This is an overwhelming confirmation to the enforcement of
policy “buckle up” when sitting in a moving vehicle. For the
convenience of comparison, we report a summary statistic as of
the area under the p-value curve for each covariate. “Seat Belt”
(2297.45), “Drug Use” (1779.85), “Air Bag” (1249.49) and “Pre-
vious Accidents” (1342.46) appear well separated from the other
risk factors. Their ranking is well aligned with the ranking of p-
values obtained at the end time of streaming data availability,
namely December, 2015.

The trajectories of both young and old age groups are eval-
uated in Figure 5 with or without data batch Dg. The trace of



the estimators for the young age group (Age<21) stays below 0
over the 28-quarter period, indicating that it has lower adjusted
odds of moderate/severe injury than the reference age group.
This finding confirms the effectiveness of GDL in protecting
young novice drivers. Unfortunately, in contrast, the old age
group (Age>65) turns out to suffer from significantly higher
adjusted odds of moderate/severe injury outcomes comparing
to the middle age group. This suggests a need of policy-making
to protect older drivers from injuries when an accident hap-
pens. Furthermore, the abnormal data batch seems to affect
marginally the estimates for age groups if we compare the plots
with (right) and without (left) monitoring procedure (see the
red vertical dashed line).

Applying the proposed RenewQIF to the above CDS data
analysis enables us to visualize time-course patterns of data evi-
dence accrual as well as stability and reproducibility of inference.
As shown in Figure 5, at the early stage of data streams, due to
limited sample sizes and possibly sampling bias, both parameter
estimates and test power may be unstable and even possibly mis-
leading. These potential shortcomings can be overcome when
estimates and inferential quantities are continuously updated
along with data streams, which eventually reach stability and
reliable conclusions.

6. Concluding Remarks

Due to the advantage of technologies in data storage and data
collection, streaming data arise from many practical areas such
as healthcare (Peek, Holmes, and Sun 2014). Healthcare data are
typically measurements in forms of clusters or time series, such
as patients from the same clinic, or data from personal wear-
able devices (Sahoo et al. 2016). The traditional methods for
clustered/longitudinal data analysis such as generalized estimat-
ing equations (GEE) and quadratic inference functions (QIF)
that process the entire dataset once may be greatly challenged
due to the following reasons: (i) they become computationally
prohibitive as the total sample size accumulates too fast and
too large, so to exceed the available computational power; see
Table 3 where GEE fails to produce numerical outputs; and (ii)
historical subject-level data may no longer be accessible due
to storage, time, or privacy issues. This type of problem has
been extensively tackled in the framework of online updating
where stochastic gradient descent algorithms are the primary
methods of choice to provide fast updating with no use of his-
torical data. However, most online learning algorithms have not
considered statistical inference or the diagnosis of contaminated
data batches.

Such gaps have been filled in this article by the RenewQIF
methodology. The proposed RenewQIF method provides a new
paradigm of renewable estimation and incremental inference, in
which parameter estimates are recursively updated with current
data and inferential statistics of historical data, but does not
require the accessibility to any historical subject-level data. To
achieve efficient communications between current data and
historical summary statistics, we design an extended Spark’s
Lambda architecture to execute both data storage and analysis
updates. Both proposed statistical methodology and computa-
tional algorithms have been investigated for their theoretical
guarantees and examined numerically via extensive simulation

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 13

studies. The proposed RenewQIF has been shown to be much
more computationally efficient with no loss of inferential power
in comparison to the offline GEE or offline QIE. Additionally, we
propose a diagnostic procedure to detect abnormal data batches
in data streams for the proposed RenewQIF. The utilization of a
goodness-of-fit test in the QIF framework enabled us to check
the compatibility of current data batch with a normal reference
effectively and efficiently. The proposed monitoring procedure
has been integrated into an extended Lambda architecture with
an additional monitoring layer.

The formulation of RenewQIF is under the assumption that
clusters arrive independently over data streams, and when clus-
ter size m = 1, it reduces to generalized linear model as a special
case. A direction of interest is to consider the case of inter-
correlated batches, such as serially dependent data streams gen-
erated by individual wearable devices. Such types of data streams
are pervasive in healthcare where thousands of physiological
measurements are recorded per second, such as body temper-
ature, heart rate, respiratory rate and blood pressure (Priyanka
and Kulennavar 2014). Therefore, developing the analytic tools
for the analysis of serially dependent data streams is an impor-
tant future research as part of new analytics for handling massive
data volumes and making behavioral interventions.

Appendix
A.1. Consistency

From Equation (7), we have

1By — Boll> = 11Bp_1 — Boll> + 2N, (By_y — Bo) " H, ' U}, (By)
+ N IH Uy (B =1 + L + .
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By the continuity of f},(-), f,(B},) = 0and ||f— B = Op(N,, 1/2)
in Lemma 4, we have |[f;,(B},_1)|| = 0p(1). It implies that V2 (z;_1)

is positive-definite and £}, (z_;) is a strong convex function. By Con-
dition 2.3, we have
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where Amin and Agx deonte the smallest and largest eigenvalues.
Furthermore, since g}, is twice continuous differentiable w.r.t. 8 € ©,

we have Gy (B) = Gy (B ) +O0p(np) and Cy(Bp) = Cp(B ) +O0p(mp).
It follows that
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For Iy and I3, we apply |18}, — Bp_11| = Op(Nb_j{Z) in Lemma 4

which leads to
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where ¢y, c’l, ¢3 and 5’3 are constants that do not depend on b.

Combining inequalities (A.2) and (A.3), we have
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Therefore, by 0 < Amin (Hh) < Amax(Hp), we have E (||l§h — ﬁollz)

— 0.

A.2. Asymptotic Normality

For the sake of simplicity, we only show a sketch of the proof here.
For more technical details on finding the recursion, please refer to
Sections 1 and 2 in the supplementary materials. From Equation (5) in
the supplementary materials, we first obtain the recursive relationship

between (85 — Bo) and (B_1 — Bo):
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Then the order of the terms in Equation (A.5) becomes

1/2

ZJ“ g

1By — Boll = Op (A.6)

where the second term in Equation (A.6) is an upper bound on
Il Zf:z aigj(Bo)|| by Cauchy-Schwarz inequality.

Since we have shown the consistency of 8, as b — o, we further
assume ||[§b — Boll = OP(N;T) for some T > 0. By Lemma

3, the product Hk i [1 + np_ kN I+ )] converges if and only if
szi np—kNy, 7( ) converges. For t > 0, and uniformly bounded
np_gsin Scenarlo (S1), the over-harmonic series Zk 1 Mh— N_(H'r)

converges, and it follows that ]_[ {1 + np_g Nb_(llfr)} converges.
Note that for any x > 0, log(1 + x) < x. Thus, we have
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Furthermore, since ay = Op(N;jz), and according to (A.6) we

have ||[§b — Boll = Op(Nb_l/z). Finally, using the expression (5) in
supplementary materials and inequality (1) in Lemma 2, we have
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By the weak law of large numbers, the asymptotic covariance is
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Supplementary Materials

This file includes the proof of some useful lemmas in Section 1, additional
details in the proof under scenario (S1) in Section 2, proof of large sample
properties in scenarios (S2) and (S3) in Section 3, and the analysis of
cumulative error bound in Section 4. In Section 5, we include one table
and one figure from simulation studies and an additional table from real
data analysis. Additionally in Section 6, we includes “Renewable GEE” with
derivation of renewable estimation and incremental inference method in
the generalized estimating equations. (PDF)
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