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Statistica Sinica

A SIMULTANEOUS LIKELIHOOD TEST FOR JOINT

MEDIATION EFFECTS OF MULTIPLE MEDIATORS

Wei Hao! and Peter X.-K. Song?

Department of Biostatistics, University of Michigan, MI, USA?

Abstract: Mediation analysis via structural equation models has become a widely
used tool to study whether the effect of an exposure on an outcome is mediated
by some intermediate factors. When multiple mediators are present, statisti-
cal inference on the joint mediation effect is challenging due to the involvement
of composite null hypotheses with a large number of parameter configurations.
We propose a simultaneous likelihood ratio test in which a block coordinate de-
scent algorithm is invoked to solve the constrained likelihood under the irregular
null parameter space using the Lagrange Multiplier approach. We establish the
asymptotic null distribution, and examine the performance of the proposed joint
test statistic via extensive simulations with a comparison to existing tests. The
simulation results show that our method controls type I error properly and in
general provides better power than existing test methods. We apply our method
to examine whether a group of glucose metabolites and acetylamino acids mediate

the effect of nutrient intakes on insulin resistance.

Key words and phrases: Constrained maximum likelihood, directed acyclic graph,

Lagrange multiplier, multi-dimensional mediators, structural equation model.



1. Introduction

Mediation analysis is undertaken pervasively in practice to understand
whether or not the effect of an exposure on an outcome has been mediated
through some intermediate variables, which are, in short, called media-
tors. The mediation analysis approach, first proposed by Baron and Kenny
(1986), has been extensively applied in many disciplines to perform pathway
analyses. Utilizing the counterfactual outcome framework in the causal in-
ference literature (Rubin, 1974; Robins and Greenland, 1992; Pearl, 2001),
the mediation approach has been recently extended to study causal medi-
ation pathways via directed acyclic graphs (DAG) formed under a certain
scientific hypothesis as shown in Figure 1. With a few extra assumptions of
causation, such extension allows to decompose the total causal effect into
a sum of direct effect and indirect effect in the presence of interactions and
non-linearities (Pearl, 2001; VanderWeele and Vansteelandt, 2009). This

new causal framework has received much attention in the literature.

There are many existing methods in the literature developed to test
the existence of mediation effect (or the indirect effect) in the case of a

single potential mediator, including Sobel’s test (Sobel, 1982), bootstrap
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Figure 1: A DAG involving exposure, mediators and outcome.

method (Bollen and Stine, 1990), joint significant test (MacKinnon et al.,
2002). Recently, with available omics data, testing for mediation effects had
received much attentions, especially handling a group of multiple or even
high-dimensional mediators. Several methods have been developed, such as
multiple testing approaches for genome-wide association analysis proposed
for simultaneous single mediator tests with multiple comparison correction
(Huang, 2019; Huang et al., 2019; Dai et al., 2020).

In such methods, test for a causal mediation effect has been focused on
a single mediator via a univariate screening analysis of mediators one by
one, ignoring the dependence among multiple mediators. Although multiple
testing corrections have been adjusted to identify the potential mediators,
the interpretation of the causal effect is still limited to each of the selected
mediators, instead of a simultaneous inference for the group-level mediation
effect. However, in many applications when there exist multiple correlated

mediators, in particular a cohesive cluster of biologically relevant mediators,



the group-level mediation effect does not simply equal to a summation of
individual mediation effects, as pointed out by VanderWeele (2015). There-
fore, the conclusion drawn from the univariate screening test with multiple
comparison correction does not necessarily produce a valid statistical infer-
ence for the group-level mediation effect. While these univariate screening
procedures are useful to discover individually potential mediators, it is im-
portant to analyze a cluster of correlated multiple mediators jointly. This
analytic objective calls for a test for their group-level mediation effect.
The mediation relationships of a DAG in Figure 1 are extensively ana-
lyzed by the linear normal structural equation model (SEM). When exposure-
mediator interaction terms are absent in the SEM, the group-level medi-
ation effect is expressed as the product, '3, where a is the vector of
coefficients for exposure-mediator association and 3 is the vector of coeffi-
cients for mediator-outcome association. In this paper, we aim to develop
a simultaneous test for the joint group-level mediation effect under the null
hypothesis of no mediation effect Hy : '3 = 0. A key technical challenge
of performing this hypothesis test pertains to the involvement of composite
hypotheses; that is, o' 3 = 0 may arise from a large number of combina-
tions in oy and 5, ¢ = 1,--- ,Q, where @) is a fixed number of mediators.

One example of possible combination is @« = @ = 0, which is of great



interest in practice, and is well known for its overly conservative type I
error control. More subtle cases may arise from cancellations among some
individual products of o,8,,¢ =1,...,Q to satisfy a« = 8 = 0. Two exist-
ing approaches to testing this group-level mediation effect include: Product
Test based on Normal Product distribution (PT-NP)(Huang and Pan, 2016;
Huang et al., 2018), and Product Test based on Normality (PT-N (Huang
and Pan, 2016; Huang et al., 2018). Although these two methods have
shown satisfactory performances numerically via simulation studies, the
rigorous theoretical justification, such as the results of asymptotic distribu-
tions of such test statistics under the null remain little explored, especially
under the case of &« = 8 = 0. Bore with the fundamental Neyman-Pearson
Lemma, the likelihood ratio (LR) test is known as the uniformly most power
test for a simple hypothesis testing problem under mild regularity condi-
tions (Neyman and Pearson, 1933), and the Wilks’ generalized LR test is
one of top finite-sample performers in the literature. To bridge this gap,
in this paper we investigate a simultaneous likelihood ratio (LR) test for
the joint group-level mediation effect under the null hypothesis a'3 = 0
in that we establish asymptotic distributions of the proposed test statistics
as well as confirm the theoretical results by numerical analyses.

This paper makes two methodological contributions. First, we develop



a constrained optimization to compute the likelihood ratio test statistic un-
der an irregular null parameter space using the Lagrange Multiplier. This
computation is implemented by an efficient block coordinate decent algo-
rithm. Second, we derive the asymptotic distributions of the proposed LR
test statistic under the composite null hypothesis Hy : '3 = 0, and show
theoretically that our LR test can properly control the type I error. Through
numerical experiments, including simulation studies and a data application,
we demonstrate that our LR test can not only properly control type I er-
ror but also improve the power in the cases considered in the simulation
studies, in comparison to the two existing tests, PT-NP and PT-N.

The remainder of the paper is organized as follows: Section 2 introduces
the linear structural equation model. Section 3 concerns the development of
likelihood ratio test, including the Lagrange Multiplier and the asymptotic
null distributions for the LR test statistic. Section 4 presents an implemen-
tation of the LR test. Section 5 shows the numerical performance of the LR
test in terms of type I error rate and power, and comparisons to existing
methods. Section 6 demonstrates an application of testing for a group-
level mediation effect of a metabolite cluster on the association between
dietary intakes and insulin resistance. Section 7 concludes the paper with

discussions on both advantages and limitations of the proposed LR method.



Detailed technical derivations and proofs are included in the Appendix.

2. Framework

2.1 Structure Equation Model

Consider a data set of n observations, (X;, M; ;,Y:), ¢ = 1,...,n, randomly
sampled from n subjects. For the i-th subject, Y; represents an outcome
variable of interest, X; represents an exposure variable, and M; = {M, ; }?:1
represents a QQ-dimensional vector of mediators. In addition, Z; = {Z;,}~,
represents an L-dimensional vector of confounding variables with the first
element Z;; = 1 for the intercept. In this paper, we consider the case of
both ) and L being fixed and ) + L +1 < n. A linear structural equation

model (SEM) takes the following form:
Vi =Xy + M/ B+ Z/n+ ey, M, =Xia' +Z] ¢+ ey, (21)

where M; = (M;1,...,M;0)", Z; = (Z;1,...,Z;i1)", v is a scalar, B =

i.4.d.
(/817 s 76Q)T7 n = (nlu s 77]L)T7 o = (0617 s 7aQ)T7 C - (Cl,j)LXQa €yi

N(0,0%), € R MV N(0,3,), and ) is a ) x ) positive definite
covariance matrix, ¢ = 1,...,n.

Denote the collection of model parameters by 8 = {a, 3,7, 7, ¢, X, 0%}

and © is a generic notation for the parameter space. In the counterfac-
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tual outcome paradigm (Robins and Greenland, 1992; Pearl, 2001), under
the fundamental assumptions of consistency and the absence of unmea-
sured confounders, VanderWeele (VanderWeele and Vansteelandt, 2014)
shows that exposure variable X changes from a value zy to another value
x1, the Natural Direct Effect (NDE) and Natural Indirect Effect (NIE)
in model (2.1) take the following forms: NDE(zg,z1) = (21 — x0), and

NIE(J](), lL‘1> = aTB(xl — ZE()).

2.2 Unconstrained Parameter Estimation

To establish a likelihood ratio test for the null hypothesis of no group-
level mediation effect, Hy : a3 = 0, we perform both unconstrianed and
constrained maximum likelihood estimations (MLE) under the null and

alternative hypotheses. SEM (2.1) may be rewritten as a matrix form:
Y = W3 +¢, M=Ba+E, (2.2)

where B = (81,.--,80,M,---,M1,7) ", Y is an n x 1 vector of the outcomes,
W is an n x (Q + L + 1) matrix of mediators, confounders and exposure
variable with W; = (M, ,..., Mo, Zi1,.. ., Zip, Xs)', i = 1,...,n, and
€ ~ MVN(0,021,). Similarly, M is an n X Q matrix of mediators, B is an
nx (L+1) matrix of exposure and confounders with B; = (X, Z; 1, ..., Z; 1),

and E=(E],...,E!)T with E; ~ MV N(0,X,). Here & isan (L+1)xQ
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matrix of parameters, with its first row vector being " in the model (2.1),
and its remaining L X () submatrix being the parameter matrix of ¢. It

follows that the two times negative log likelihood function is given by

—20(6) =nlog(0%) + nlog(|Sul) + 072(Y — WB) (Y — W)

+tr{(M - Ba)X,;};(M - Ba)'}. (2.3)

The standard theory of the MLE leads to the following unconstrained max-

imum likelihood estimators of 8, denoted as 8 = {a, B, &j , X}, where

S (B'B)"'B'M, and 8 = (W' W) 'W'Y;

Q
I

(Y - WB)T (Y — WB)/n, and £, = (M — B&)T (M — B&)/n.

2.3 Constrained Parameter Estimation

Let 6 denote the constrained MLE under the null Hy : a8 = 0, which will
be obtained by the method of Lagrange Multiplier. We consider a Lagrange

objective function of the following form, with tuning parameter A,
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Differentiating the function g(-) with respect to the model parameters yields

the following equations of the regression coefficients,

a=B'B)"'B'TM+AB'B)"'8Zy=a+\B'B)"'8'Z), (25)
B=(WW)'WTY + A2 (WTW) La* = 8+ A2 (W W) Lo,
(2.6)

and the equations of variance parameters,

oo =(Y-WgB) (Y -=Wg)/n, and )y = (M — Ba)' (M — Ba)/n,

(2.7)
where 8% is an (L + 1) x @ matrix with the first row being 8" and the
rest of elements are zeros, and a* is a () + L + 1) x 1 vector with the
first @) elements being a and the rest of elements being zero. Given that
a' appears in the first row of &, we denote the first row of & by a|, and
the first row of (B'B)~!3"%,, by b]. It follows that a' = a] + Ab].
Similarly, given B being in the first ) rows of vector 3, denote the first Q
rows of vector ,é by a,, and the first Q rows of (WTW)~la* by by. Under
the constraint a' B3 = 0, we obtain (a] + Ab/ )(ay + Aby) = 0. This leads
to two possible solutions of A given in (2.8), and we shall choose the one

that yields the higher log-likelihood,

—(aj by + bl ay) £ \/(a] by + b] ay)2 — 4b/ bya/ a,

X p—
2b; b,

(2.8)
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Remark 1. After we obtain the constrained MLE solutions (8, \) by the
method of the Lagrange Multiplier above, we then evaluate the Hessian
matrix of the function g(-) in (2.4). It is easy to show that in the setting
of the linear SEM the Hessian matrix is positive definite, guaranteeing
the convexity of the penalized objective function g(-) and thus the unique

minimum given by the solutions (6, \).

3. Likelihood Ratio Test for Joint Mediation Effect

3.1 Test Statistic

To simultaneously assess the joint mediation effect of multi-dimensional me-
diators, the first analytic task is to test the null hypothesis Hy : '3 = 0
versus H; : ' 3 # 0, where the null hypothesis corresponds to the case of
zero NIE under SEM (2.1). As pointed above, since the null hypothesis al-
lows internal cancellation, it does not preclude the possibility of component-
wise nonzero mediation effects in the sense that o3, # 0,¢ =1,...,Q but
a'B = 0. Following the classical Wilks’ theory of likelihood ratio (LR)

test, we construct a LR test statistic of the form:

T,=-2{ @gugﬂzoae) ~sup((6)} = —2{0(6) — £(0)}, (3.1)



3.2 Properties of the LR test12

where 6 and 6 denote, respectively, the unconstrained MLE under H; and

the constrained MLE under H, obtained in Sections 2.2 and 2.3.

3.2 Properties of the LR test

This section concerns the asymptotic distributions of the likelihood ra-
tio statistic 7}, in (3.1) under the null hypothesis Hy : '3 = 0. Us-
ing the large-sample properties, we propose a new test that can prop-
erly control the type I error with theoretical guarantees. For all lem-
mas and theorems presented in this section, their technical proofs are
given in the Appendix. We begin with some notations. For the ease
of exposition, we redefine @ = (a',¢,8",m",7)", where ¢ denotes the
row vector of L) elements vectorized from the matrix ¢ .. Define the
constraint function by h(0) = a'B. It is easy to see that its gradient

7(0) = Voh(6) = (B",0/g,a”,0/,,)7. Let

- Oz+nox+ne  Hu+nex@rr+n)
H(0) = Veir(0) = ) ,

H(TL+1)Q><(Q+L+1) 0(Q+L+1)X(Q+L+1)

where

. Io 00x(L+1)
Hiziyox o+ =

Orgxq@ Orgxr+1)
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0)

The information matrix I(0) = —E

/N
S|
|
S|
D I|=
4|

) has a closed-form, presented
in Appendix A.1. Let A(0) = I(0) 2H(0)L(0) 2. To derive the asymp-
totic properties, we first introduce a lemma that establishes the eigenvalue

bounds of matrices H(€) and A(8).
Lemma 1. For any @ € R2Q+LQ+L+L e have the following results.

(i) The matriz H(8) = Vgh(8) has 2Q nonzero eigenvalues equal to 1
or —1. If nonzero eigenvalues are arranged in a descending order
as of the form hy > hy > -+ > hyg, then hy = -+ = hg = 1,

hgsr =+ = hag = —1.

(1) The matriz A(0) has 2Q) nonzero eigenvalues. If nonzero eigenvalues
are arranged in a descending order as of the form vy > vy > --+ >

vg > 0 > vgy1 > -+ > vy, then they satisfy 21231 v; = 0, and
U1 = —UQ, V2 = —U2Q-1,---,UQ = —VUQ+1-
The above properties for the eigenvalues of A(0) are used to establish

asymptotic null distributions of the LR test statistic. The proof of Lemma 1

is presented in Appendix A.2.

Lemma 2. In the case of o = 3 = 0, let Oy be the true parameters that

generate the data, and the asymptotic distributions of the constrained MLE
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0 and \ are gien by, as n — 0o,

Q
- » -
A d Ao, where Ag % B Zqél (& — &10) |
2 Zqzl v2(& + &4+0)

with & "~ 2, q=1,---,2Q.

For any \* € R, conditional on a value A= A*,
V(0 — 00) | A = X" 5 N (0, {I(8o) — A"H(6,)} " 1(85){T(80) — A"FL(6,)} ) ,
where vy, ..., vg are Q) positive eigenvalues of A(6y).

Lemma 2 leads to an asymptotic joint distribution of 0 and ) due to
the fact [0, \] = [@|\][\]. Thus, we obtain the asymptotic distribution of
the LR test statistic in the scenario of @ = 3 = 0. The proof of Lemma 2

is presented in Appendix A.3.

Theorem 1. Under Hy : o' B = 0, the asymptotic distributions of the

likelihood ratio test statistic T, are given by,

(i) when (ozT,,BT)T #0, asn — oo, T, 4 X3,

é {Zqul Uq(ﬁq_fq%?)}g

.. d )
(71) when oo =B =0, asn — 00, T, = Ay with by = H2g ==

where &, g X%,q =1,---,20Q.

In this paper, we write Ay ~ k¢ distribution. The proof of Theorem

1 involves deriving the asymptotic distributions of the constrained MLE.
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Although the classical large-sample work for the LR test, e.g. (Aitchison
et al., 1958; Wolak, 1989), may be directly applied to prove part (i) of
Theorem 1, the proof of part (ii) is non-trivial and needs specific technical
arguments and treatments on manipulating asymptotic distribution of 5\,
similar to those given in the proof of Lemma 2. The proof of Theorem 1 is
presented in Appendix A.4. To implement the x¢ distribution after both
matrix A(0) and its () eigenvalues are estimated, we invoke the Monte Carlo
simulation with a large number of draws (say 10,000) independently from
2Q x3 distributed variables &,,¢ = 1,---,2Q. We conduct a simulation
study to confirm the validity of our theoretical derivations for Theorem
1 (ii). Our numerical assessment focuses on the tail probability of the
distribution of the test statistic of 7,, when a = 3 = 0. See more details
in the supplementary materials S1.

It follows from Theorem 1 that we propose a test for Hy : a'3 = 0,

termed as LR test, given by the decision function:

on = I[T}, > (X%,(l—a) v ’{Q,(lfa))]v (3.2)

where a V b = max(a, b), kg,1—-a) is the (1 — a) quantile of the null distri-
bution given in part (ii) of Theorem 1, and x? (1—a) 18 the (1 — a) quantile
of the x? distribution. When ¢,, = 1, we reject the null Hy; otherwise, ac-

cept the null Hy. Section S5 in the supplementary material illustrates via a
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simulation study that x? (1—a) overwhelmingly dominates kg (1), and such

dominance can reach 100% with large sample sizes.

Theorem 2. The LR test in (3.2) controls the type I error; that is

wp o6, =1) <o,
0cO:a’ B=0

where 0 < o < 1 is a prefized type I error rate.
Proof. Divide the parameter space under the Hy, © = {(a, 3) : '8 = 0}

into two disjoint sub-spaces: ®; = {(0,0)} and @, = © \ ©;. Then,

sup  Pe(op, =1)
0c®:aT B=0

= sup  Po(T, > xi 1 VEQa-a)
0cO1UB-

= max{sup Po(T, > Xi (1-a) V KQ,(1-))s 8UP Po(Ty > X1 1_a) V KQ,1-0)}
0co, 0cO;

< max{sup Py(T,, > kq,(1-a)), sup Po(T;, > X%,(l—a))}
0cO, 0cO

< .

4. Implementation

In practice, to perform the LR test ¢,, we first compute two p-values of
p = 1—Fg(T,) and p, = 1 — F,,(T,), where F2 is the CDF of the x?
distribution, and F,, is the CDF of the rq distribution. Then we reject

the null hypothesis if the max(py, p2) is smaller than significance level «.
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To obtain the constrained MLE, we develop a block coordinate descent
algorithm given as follows. We partition 6 into two sets: 8; = {a, Z‘i’}, and
0, = {5%, f]M}, as well as \. The unconstrained MLE 6 = {a, ,é, 6%, ﬁ]M}
are used as the initial values to start the algorithm. This updating scheme
consists of three steps: given 6, and 6., maximize the likelihood with re-
spect to A; given 05 and A, update 0; until convergence; given 0, update
6,. The algorithm is detailed below in Algorithm 1, where the default

number of Monte Carlo simulations is set at 10,000.

5. Simulation Studies

5.1 Setup

We conduct extensive simulation studies to evaluate the performance of the
proposed LR test. In particular, we compare the type I error control and
power of our method with two existing methods: PT-N and PT-NP tests
proposed by Huang et al (Huang and Pan, 2016; Huang et al., 2018). In
addition, we consider a comparison to a recent method of High-Dimensional
Multiple Testing (HDMT) proposed by Dai et al. (2020). HDMT was de-
veloped for a univariate screening of mediators with controlled false discov-
ery rate in genome studies, representing a typical kind of testing approach

widely adopted in practice to avoid simultaneous inference. We present
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Algorithm 1 Search for constrained MLE

1:

10:

11:

12:

13:

Compute the unconstrained MLE 6 = {&,é,&%,ﬁ?M}, and evaluate
the log-likelihood £(8). At the jth-iteration, let 6} 0) = = {aW ,BY }, and
let 65 = {5}2/@,535\;)}. Set 81”) = {&,,é} and 65 = = {62,%} as the

initial values.

: for j=0,1,...,J do

calculate \) = arginax{é(Ogj), 6y, A)} from (2.8);
calculate 87 = argemax{ﬁ(el, 6, X))} from (2.5) and (2.6);
calculate Ogjﬂ) from 09“) based on (2.7);
calculate § =|| ngﬂ) — ng) II;
if || < tol then break
end if
: end for

Output 8 = {&t*h 6”1) ~2(]+1) EJH)} and calculate the log-
likelihood.

Calculate the test statistic 7" = —2 {E(é) — é(é)}, and compute the
p-value p; under the null distribution of x?.

Estimate A(6,) based on 6% and 3., and calculate its @ positive
eigenvalues that are then used to simulate the xg distribution, and
compute its p-value ps.

Report max(py, p2) as the final p-value.
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some comparison results involving the HDMT method in the supplemen-
tary materials S3 (Tables S2-S5).

The SEM is set up as follows. The exposure variable X is simulated
from N(0,1), and two confounding variables Z; and Z, are generated from
N(0,1). Conditional on X and (Z,Z,), throughout the entire simula-
tion experiments in this section, () mediators M and outcome Y are gen-
erated according to the SEM (2.1), with @ = 30 or Q = 60, v = —2,
n = (2,-3,2)T, 0% = 1. Here vec(¢) consists of 18 repeated sequences
of (—2,3,-3,1,1) for @ = 30, and 36 repeated sequences for Q = 60. A
compound symmetry correlation with p = 0.5 is set for mediators. The
sample size n varies over 200, 500, and 1000. For each sample size, we run
10,000 replicates. To evaluate the influence of @ and/or p on the perfor-
mance of the LR test, we conduct additional simulations with () = 90 and
p = 0,0.25,0.75, and related results are summarized in Tables S1, S2, S3

and S5 in the supplementary materials.

5.2 Type Il Error

We consider the following four scenarios of the null hypotheses: (i) sparse
pathways with no cancellation; (ii) sparse pathways with cancellation; (iii)

non-sparse pathways with cancellation; and (iv) fully sparse pathways o =
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B = 0. Here sparsity refers to the number of zero parameters in a and/or
B. For ) = 30, the detailed specifications of a and 3 can be found in Table
1; for @ = 60, the same patterns are repeated. We report in Table 2 the
estimated empirical type I error rate as the proportion of rejections from
the 10,000 replicates. For @) = 30 and the four null cases (i)-(iv), our LR
test as well as two existing PT-N test and PT-NP test showed a proper
control of the type I error. In the cases (i)-(iii), these three methods show
their empirical type I error rates close to the nominal level 0.05, as desired.
In the case (iv), they are all conservative, but our LR test appears to be
the least conservative among the three. In the cases of small n (200) and
@ = 60, the type I error of the LR test becomes slightly inflated. This is
not surprising because a larger number of mediators implies a more complex

model with more parameters, and thus a larger sample size is needed.

5.3 Power Comparison

We evaluate and compare power under the same basic model specifications
above, in which a and 3 are specified in four sets of alternative scenarios
different from the null hypothesis; see the detail in Table 1 for @ = 30.
The design for the four alternative hypotheses corresponds the following

scenarios of pathways: (v) both a and 3 are sparse; (vi) a is sparse and
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Table 1: Designed specifications for e and 3 for null and alternative hy-

potheses.
Null Hypothesis (a8 = 0) Alternative Hypothesis (|a' 8| = 0.16)
Mediator i ii iii iv v vi vii viii
a [ « B a B a PBla B o B a B « B
1 02 0 02 0 02-02 00|04 04 0 03 03 0 04 04
2 05 0 02 05 03 01 00|00 -08 0 03 03 0 02 -02
3 0 02 05 -02 0.1 01 0 0O 0 0 03 03 0 03 0.1
4 0 05 02 05 02 -02 0 0|0 0 0 03 03 0 0.1 0.1
5 0 0 -02 05 03 0.1 0 0] O 0 0 03 03 0 02 -02
6 0 0 0 0 01 01 0 0] O 0 0.2 -0.8 -08 0.2 0.3 0.1
7 0 0 0 0 02 -02 0 0|0 0 0 0 0 0 0.1 0.1
8 0 0 0 0 03 01 0 0] O 0 0 0 0 0 02 -0.2
9 0 0 0 0 01 01 0 0| O 0 0 0 0 0 03 0.1
10 0 0 0 0 02 -02 0 0|0 0 0 0 0 0 0.1 0.1
11 0 0 0 0 03 01 0 0] O 0 0 0 0 0 0.2 -0.2
12 0 0 0 0 01 01 0 0| O 0 0 0 0 0 0.3 0.1
13 0 0 0 0 02 -02 0 0|0 0 0 0 0 0 0.1 0.1
14 0 0 0 0 03 01 0 0| O 0 0 0 0 0 0.2 -0.2
15 0 0 0 0O 01 01 0 OO 0 0 0 0 0 03 0.1
16 0 0 0 0 02 -02 0 0O 0 0 0 0 0 0.1 0.1
17 0 0 0 0 03 01 0 0| O 0 0 0 0 0 02 -0.2
18 0 0 0 0 01 01 0 0| O 0 0 0 0 0 03 0.1
19 0 0 0 0 02 -02 0 0|0 0 0 0 0 0 0.1 0.1
20 0 O 0 0 03 01 0 0| O 0 0 0 0 0 02 -0.2
21 0 O 0 0 01 01 0 0| O 0 0 0 0 0 03 0.1
22 0 0 0 0 02 -02 0 0|0 0 0 0 0 0 0.1 0.1
23 0 0 0 0 03 01 0 0| O 0 0 0 0 0 0.2 -0.2
24 0 0 0 0 01 01 0 0| O 0 0 0 0 0 0.3 0.1
25 0 0 0 0 02 -02 0 0O 0 0 0 0 0 0.1 0.1
26 0 0 0 0O 03 01 0 0O 0 0 0 0 0 02 -0.2
27 0 0 0 0 01 01 0 0] O 0 0 0 0 0 03 0.1
28 0 0 0 0 02 -02 0 0|0 0 0 0 0 0 0.1 0.1
29 0 0 0 0 03 01 0 0] O 0 0 0 0 0 02 -0.3
30 0 0 0 0 01 01 0 0| O 0 0 0 0 0 03 0.2
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Table 2: Empirical type I error under four null hypotheses, and power under

four alternative hypotheses with 10,000 replicates for ¢ = 30 and ) = 60.

The sample size n varies from 200, 500, and 1,000. The compound symme-

try correlation of mediators is set with correlation 0.5. Power increase (%)

power of LR test

:power of competing test

Null Hypothesis

Alternative Hypothesis

Percent of power increase

@  n Method T, : PR . -

i ii iii iv v vi vii viii v vi vii viii
LR 0.048 0.052 0.051 0.010|0.603 0.561 0.306 0.512 - - - -
200 PT-N [0.036 0.043 0.037 0.006 |0.557 0.536 0.252 0.463| 8.33% 4.67% 21.53% 10.56%
PT-NP |0.029 0.039 0.029 0.001|0.517 0.496 0.239 0.430|16.76% 13.08% 28.14% 19.13%
LR 0.045 0.046 0.045 0.007|0.970 0.959 0.654 0.931 - - - -
30 500 PT-N [0.038 0.043 0.040 0.005|0.967 0.957 0.631 0.925| 0.31% 0.17% 3.73% 0.64%
PT-NP |0.036 0.043 0.036 0.001|0.963 0.951 0.627 0.918| 0.74% 0.81% 4.32% 1.41%
LR 0.049 0.047 0.048 0.008|1.000 1.000 0.923 0.999 - - - -
1000 PT-N | 0.046 0.045 0.046 0.005|1.000 1.000 0.917 0.998| 0.00% 0.00% 0.57% 0.04%
PT-NP |0.045 0.046 0.044 0.001 |1.000 1.000 0.916 0.999| 0.01% 0.01% 0.76% 0.03%
LR 0.062 0.056 0.066 0.022|0.469 0.408 0.303 0.433 - - - -
200 PT-N |0.039 0.041 0.041 0.010|0.389 0.360 0.203 0.344 | 20.52% 13.27% 49.48% 25.87%
PT-NP |0.035 0.038 0.033 0.004 |0.327 0.305 0.187 0.293 |43.29% 33.58% 61.95% 47.73%
LR 0.051 0.055 0.054 0.010|0.932 0.880 0.630 0.897 - - - -
60 500 PT-N [0.043 0.049 0.043 0.007 |0.923 0.875 0.583 0.884| 0.88% 0.62% 8.17% 1.51%
PT-NP |0.040 0.048 0.038 0.001|0.910 0.856 0.571 0.867 | 2.41% 2.78% 10.39% 3.44%
LR 0.053 0.052 0.050 0.008|0.999 0.995 0.912 0.998 - - - -
1000 PT-N | 0.050 0.050 0.045 0.006 |0.999 0.995 0.902 0.998 | 0.02% 0.01% 1.09% 0.03%
PT-NP |0.050 0.051 0.044 0.001|0.999 0.995 0.897 0.997| 0.03% -0.01% 1.60% 0.10%
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B is not sparse; (vil) a is not sparse and (3 is sparse; and (viii) both «
and 3 are not sparse. Regardless of specific settings, the overall absolute
group-level effect is fixed at 0.16, i.e. |a'B| = 0.16. For Q = 60, we repeat
the same patterns for o and B with a fixed size 0.16 in that scaling by v/2 is
applied on the parameters. Table 2 reports the estimated empirical power
by the proportion of rejections to the null from 10,000 replicates.

We calculate the percent of power increase of LR over a competing

power of LR
power of competitor

method by — 1. For all cases, our LR method demon-
strates clearly higher power than existing PT-N and PT-NP tests, especially
when the sample sizes are small or moderate, say 500 or less. It is also note-
worthy that even though the mediation effect size is fixed constantly at 0.16
across four cases, the power varies according to the underlying parameter
configurations and sparsity. The power also decreases as () increases in each
setting of alternative hypothesis as individual signal strengths decrease by
a factor of 1/4/2. Among these four cases, case (vii) appears to be the
most challenging scenario, where 3 is most sparse with a small magnitude
of nonzero element. To further examine the performance of these tests, in
case (vii) with the sample size 200 and ) = 30, we set the single nonzero 3

coefficient at 0.2 4+ ¢ with § varying from 0 to 0.5 by an increment of 0.02

to illustrate the power increase pattern. Figure 2 shows all three power
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Figure 2: Power curves of three tests under the simulation case (vii).

curves increase to 1 when the size § in the alternative hypothesis becomes
further distant from the null hypothesis. Our LR test is more powerful than
the other competing tests. Empirically, these three tests are all shown to
be consistent as their power rises to 1 when the deviation from the null
tends to infinity. In sum, these simulation results indicate that our LR test
exhibits higher power than two existing PT-N and PT-NP tests, especially

in the cases of small and moderate sample sizes.
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6. Data Application

We apply the proposed LR test to analyze a real world data example from
a pediatric cohort study consisting of 203 children, with 96 boys and 107
girls, age 8.1 to 14.4 years old. We consider two exposure variables X of
macronutrient intakes calculated as the energy adjusted carbohydrate and
fat. They are termed as carbohydrate intake and fat intake, respectively,
obtained from the food frequency questionnaires (Willett et al., 1997). The
outcome variable Y is a HOMA-CP score defined by LaBarre et al. (2020),
which measures insulin resistance using the C-peptide biomarker produced
by pancreas. A higher HOMA-CP score means more insulin resistant, lead-
ing potentially to a higher risk of developing diabetes in adulthood years.
In this analysis, we focus on studying a cluster of seven metabolites of
glucose metabolites and acetylamino acids that all passed related data QC
screening and annotated by our collaborator Dr. Labarre (LaBarre et al.,
2020) at the University of Michigan Research Core of Metabolomics. One
metabolite in this cluster is N-acetylglycine, which have been found in the
literature to be positively associated with dietary fiber intake (Lustgarten
et al., 2014) and negatively associated with metabolic risk score (Perng
et al., 2017). The goal of central interest is to test if a cohesive cluster

containing N-acetylglycine is involved as a group in a mediation pathway
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from dietary intakes to HOMA-CP score. This scientific question pertains
to a hypothesis that food intakes may change metabolites and then further
alter function of pancreas, so to elevate the risk of developing diabetes
during later life time.

With the consultation with our collaborator, we choose a set of con-
founding variables, including age, gender, and puberty onset. The p-values
for the null hypothesis Hy : ¥ = 0 with Q = 7 using three methods of
LR, PT-N and PT-NP. First, we perform the testing for the group-level me-
diation effect with exposure of fat intake, and obtain p-values equal to 0.01
(LR), 0.02 (PT-N), and 0.02 (PT-NP). Likewise, with exposure of carbohy-
drate intake, we obtain p-values 0.03 (LR), 0.04 (PT-N) and 0.04 (PT-N).
All three methods reach an agreement that with 95% confidence this cluster
of seven metabolites exhibits a significant group-level mediation effect on
the associations between dietary intakes and HOMA-CP score. With no
surprise, the LR test appears to have smaller p values in both cases, being
consistent with the findings in the simulation studies.

Taking a closer look at individually each of the seven metabolites in
the cluster, we report in Table 3 estimates of the individual model pa-
rameters in «, B and a o (3, where o is the element-wise product. The

group-level mediation effects of fat and carbohydrate intakes through the
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seven metabolites are -0.012 and 0.003, respectively. For fat intakes, the
negative mediation effect indicates that more fat intakes help reduce the
insulin resistance through metabolites, where N-acetyglicine contributes
most to the reduction of the insulin resistance score. In contrast, carbo-
hydrate intakes increase the insulin resistance through metabolites, where
again N-acetyglicine contributes most. In closing, we inspect some data
quality issues such as truncation pattern due to limit of detection (LOD)
and normality assumption using QQ plots of the residuals from the respec-
tive regressions of mediator-exposure (i.e. fat and carbohydrate). There
are no truncation patterns on the lower part of the distributions, and all
distributions look approximately normal. Refer to all details in the supple-

mentary materials S4.

Table 3: Estimated coefficients for a cluster of seven metabolites.

Fat Carbohydrate
Metabolite
@ B ao3 « B aof3
L-histidine -0.0019 0.334 -0.0006 | 0.0008 0.334 0.0003
N-acetyl-D-glucosamine -0.0046 0.197 -0.0009 | 0.0009 0.200 0.0002
N-acetyl-DL-serine 0.0055 0.206 0.0011 [-0.0017 0.204 -0.0004

3,4-hydroxyphenyl-lactate | 0.0014 0.114 0.0002 |-0.0006 0.114 -0.0001
2-deoxy-D-glucose 0.0041 -0.356 -0.0015 |-0.0013 -0.356 0.0005
N-acetylglycine 0.0101 -0.840 -0.0085|-0.0030 -0.842 0.0025
D-lyxose -0.0050 0.291 -0.0015| 0.0016 0.294 0.0005
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7. Concluding Remarks

This paper studied a likelihood ratio approach to testing a group-level me-
diation effect with multiple mediators. We were able to overcome a key
technical challenge arising from the constrained maximum likelihood es-
timation under irregular parameter spaces. In particular, the Lagrange
Multiplier method was developed to carry out the constrained optimiza-
tion via an efficient block coordinate decent algorithm, which was required
to implement our LR test statistic. The associated computational cost
is negligible, on average 0.15 seconds for a dataset of sample size 1000.
The R package “MedLRT” implementing the LR test method is available
at https://github.com/haowei72/MedLRT. We established the asymptotic
distributions of the proposed LR test statistic, in which a theoretical guar-
antee was given for a proper control of the type I error. Through both
simulation studies and a data application, our LR method has showed less
conservative and higher power than two existing methods, PT-N test and
PT-NP test, especially when the sample size is moderate or small.

This paper did not attempt to develop a solution to differentiate differ-
ent null parameter configurations arising from the composite null hypoth-
esis. The LR test approach attempted to take a step in the direction of

solving this conservatism problem through the kappa distribution, which
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was found as the limiting distribution of the Wilks’ generalized likelihood
ratio statistic for the null case of « = B = 0, being different from the
chi-square distribution under the other null cases. This technical contribu-
tion serves an important technical preparation; because once a new method
enables us to differentiate null parameter configurations, the respective lim-
iting distributions of the LR test statistic are ready to be applied to achieve
the optimal solution (i.e. a desirable size alpha LR test).

To apply our LR approach to testing for a cluster of high-dimensional
potential mediators, one needs to first divide them into subgroups according
to prior scientific knowledge or certain clustering techniques, and then carry
out the test for a group-level mediation effect, each for one subgroup of me-
diator. A future work of interest would be to extend the current framework
to the case of high-dimensional mediators with no need of dividing them
into subgroups. In addition, to deal with the issue of dimensionality as
well as complex patterns arising from the simultaneous testing setup (e.g.
243 possible null parameter configurations for ) = 5), alternative solutions
such as an extension of Dai et al. (2020)’s approach is worth an exploration.

All test methods, including our LR test, have appeared to be conserva-
tive for the null case of @ = 3 = 0. This is an open problem in the theory

of statistical inference for mediation effect, even in the setting of one single



30

mediator. The technical difficulty pertains to the presence of multiple null
parameter configurations, each giving rise to a specific distribution for the
test statistic, but the lack of knowledge which null configuration is the truth
hinders us from obtaining a desirable size « in the type I error control. The
kg distribution is proposed to improve the overly conservative type I error
control in that the kg distribution has some chance to be selected in the
decision making. However, as shown in the simulation study, under the case
of @ = B = 0 this improvement is moderate and the type I error rate is
still below 0.05. Some better solutions to overcome such conservatism are

worth future exploration.

A. Appendix

A.1 Information Matrix

10%(0
10) = —E (ﬁ agéT))
_ 230 @ BTB(rinox(ine O(L+1)Qx(Q+L+1)
0(Q+L+1)x(L+1)Q %.;;E(WTW)(QHHMQHH) 7
where
E(WTW) = a'B'Ba+n¥y a'B'V

V'Ba Vv
and Vn><(L+1) = (Zl, ey ZL, X)
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A.2 Proof of Lemma 1

First, we prove the part (i) of Lemma 1. Recall that

H(0) = Voh(0) = Ocz+voxi+o  Huinox@+r+1) |

H(TQ+L+1)><(L+1)Q O(Q+L+1)X(Q+L+1)
where

- I 0gx(L+1)
H1)ox(@+r+1) =
Oroxo Orox(r+1)

Then, we have H?(0) = Block-diag (I:II:IT, ﬁTﬂ>

Since H?(0) is a diagonal matrix, and it has 2Q 1’s and (LQ+L+1) 0’s
on diagonal, implying that H?(8) has 2@Q nonzero eigenvalues equal to 1,
and (LQ + L + 1) zero eigenvalues. This shows that H(8) has 2Q) nonzero
eigenvalues with their absolute values being 1. Note that ¢tr(H(0)) = 0,
implying hy = -+ =hg =1, hgy1 = -+ = hog = —1.

Now we prove part (ii) of Lemma 1. From Theorem 1.4 in (Lu and
Pearce, 2000), matrix A(8) = I(8) 2H(0)I(0) 2 has Q positive eigen-
values, () negative eigenvalues and the rest eigenvalues are zero since the
eigenvalues of I(G)_% are all positive. Thus, the 2) nonzero eigenvalues of
AB), vy > vy > >vg>0>vg41 >+ > Uyg. Let Iy = %E]T/}@BTB

and Iy = - E(WTW). Writing I(0) = Block-diag (I;;, Is) , we have
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Consequently, tr(A(0)) = 0, and (Il_léfllz_j)T = I;Q%ﬁTIi%. Let Il_lé}NIIZ_Q% =
C. We have A?(8) = Block-diag (CCT,CTC). The eigenvalues of A?(8)
are A\(A%(0)) = (AM(CCT),\(C"C)), where the non-zero eigenvalues of
CCT and CT C are the same. This indicates v} = v3,, V3 = V35_y, ..., 05 =
Vg,1- In summary, A(6) has 2Q nonzero eigenvalues in a descending or-
der v1 > vg > - > vg > 0 > v > -+ > Uy, satisfying 21231 v; =

tr(A(0)) = 0. This implies that vy = —vag, Vs = —U29—1, ...,V = —Ug+1.

A.3 Proof of Lemma 2

Let D = {Y,W,M, B} = {d;}!"; denote all observations where d; repre-
sents the data from subject i. Let u(0) = >, Vo/(0;d;) denote the score
function of length 2Q + p, where p = LQ + L + 1. Let U(0) = Vyu(0) be
the Hessian matrix. Under the regularity conditions, by the Central Limit
Theorem, %u(eo) < N{0,1(8¢)}. Moreover, by the Law of Large Number,
—1U(6y) % 1(6y). Let {6, )} be the solution of the Lagrange multiplier

equation (2.4). Then, they satisfy the following two equations:
u(8) + nA\h(0) = 0504,, and h(8) = 0. (A1)

It is easy to show that the k-th order (k > 3) partial derivatives of h(6) are

all zero for any 6. Taking the Taylor expansion on h(€) in the 2nd equation

of (A.1) around 8y, h(8) = h(0)+1(00) T (0—8,)+1(0—0,) TH(0,)(6—6y).
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Since a = 3 = 0, h(8) = h(8) = 0 and h(0y) = 0ag,, then
(6 — 60) "H(6o)(0 — 6)) = 0. (A.2)

Similarly, taking the Taylor expansion of the first equation of (A.1) around

0, gives, subject to a high order error term,

u(8;) + U(8)(0 — 8y) + n {h(eo) + H(0,)(0 — 00)} ~ 0204,
u(8y) + U(00)(0 — 0,) + nF(8y) [x(é - eoﬂ ~ 030+,
{U(8,) + nAH(6,)}(0 — 6,) =~ —u(8y).

Given that the matrix U(0) + nAH(8) is invertible for {8, A} in the small

neighborhood of {6y,0}, we have

(6 — 6,) =~ —{U(8,) +n\H(8,)} 'u(6y), (A.3)
VA0 = 00) ~ <= =U(0,)/n — TH(0,)} " u(6y)

~ (1(0,) — AH(6,)} )

i

This implies that for any A* € R, the conditional distribution of @ given

A= A\is
V(= 80) | A = x| = N (0, {1(85) — A"H(60)} " I(60){1(8) — X'H(8p)} ")
By plugging (A.3) into (A.2), we define

F) =u(8y) " {U(6) + nAH(0,)} 'H(0:){U(0y) + nA\H(0,)} *u(6y).
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Taking derivative of f(A) in X yields,
oI _ FN) = —2nu(8y) "{U(8) + nAH(8,)} 'H(6,){U(6,) + nAH(8y)} !
H(0,){U(0y) + n\H(0,)} 1u(8y).

Note the fact that f(A) & f(0) + f(0)A = 0. Then, we have

[ [ e ]
U

u(6op)
i
[-uo) ™ w4 N, 1), Alko { -

It follows that, as n — oo,

(VI

o) 4 N{0,1(6,)}, by Slutsky’s Therorem,
0p)

H(6,) {—%}_5 7 A(0).

nf(0) % Fy, where Fy = qufq qu —&410),

with & "% y2, ¢=1,---,20.

nf(0) = 2u(0\/%)T {_Ufw } H(8,) {_Uwo) } H(6y) {_Uwo) } u(8,)

similarly, we have as n — oo,

2Q Q
‘ d
nf(0) L Gy, where Gy = 22@2@ = QZUZ(fq +&040),

q=1 g=1
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with &, i X3, q=1,---,2Q. In summary the asymptotic distribution
of ) is given as follows,

Q
- ) (6 —
\ = _nf(0) % Ay, where Ag 4 _ 2 g-1Ya(éq — &ata)

nf(O) 2 ZqQ:1 U?(ﬁq + &4+Q) ’

with &, - X3, q=1,---,2Q. The proof is completed.

A.4 Proof of Theorem 1

When a = 8 = 0, taking the Taylor expansion on {I(8y) — NH(8,)} !
around a small neighborhood of A = 0, we have, subject to a high order
error term, {1(6g) — AH(6)} " ~ {I(60)} " + AL(6,) 'H(60)1(6,) . Tt
follows that

u(6y)
Vn
_1u(6o)
NG

V(0 — 85) ~ | {1(60)} " + M(8) " "H(8)1(8,) |

_ {1(00)}1%11(00) + XI(8,)"H(8,)1(6,)

—1u(6o)
N

Noting that \/n(0 — ) = XI(BO)_lH(HO)I(BO)_“’\(/Gg), we have

Q

V(8 — 8,) + X(6,) " "H(6,)1(6,)

T, = —2{0(6) — ((8)} (A.4)

SO e - 6)

u(@y) " u(6o)
N

=
5

0) 1 u(6)

1(60) 2A(6,)%1(8,) 2 T
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y d d ZqQ:U@*gq ) u(y) " _1 4
Note A = Ag, where Ay = _QZQQ; jg(§q+£:+QQ), and %I(OO) 2 — N(0, Lygyp)-

Hence, )
o [ZEivule — 60)]
AT 026+ &)

with &, A X3 for g =1,...,2Q. The proof is completed.

T, N A1, where A4

?

Acknowledgements

This research work was supported by grants NSF DMS1811734, DMS2113564
and NIH R24ES028502. The authors thank AE and three anonymous re-

viewers for constructive comments that led to a significant improvement of

the paper. They also thank Drs. Jennifer LaBarre and Karen Peterson for

constructive discussions on the metabolomics data application.

References

Aitchison, J., S. Silvey, et al. (1958). Maximum-likelihood estimation of
parameters subject to restraints. The Annals of Mathematical Statis-

tics 29(3), 813-828.

Baron, R. M. and D. A. Kenny (1986). The moderator-mediator vari-
able distinction in social psychological research: Conceptual, strategic,
and statistical considerations. Journal of personality and social psychol-

ogy 51(6), 1173.



REFERENCES37

Bollen, K. A. and R. Stine (1990). Direct and indirect effects: Classical and

bootstrap estimates of variability. Sociological methodology, 115-140.

Dai, J. Y., J. L. Stanford, and M. LeBlanc (2020). A multiple-testing
procedure for high-dimensional mediation hypotheses. Journal of the

American Statistical Association (just-accepted), 1-39.

Huang, Y.-T. (2019). Variance component tests of multivariate mediation

effects under composite null hypotheses. Biometrics 75(4), 1191-1204.

Huang, Y.-T. et al. (2018). Joint significance tests for mediation effects
of socioeconomic adversity on adiposity via epigenetics. The Annals of

Applied Statistics 12(3), 1535-1557.

Huang, Y.-T. et al. (2019). Genome-wide analyses of sparse mediation
effects under composite null hypotheses. The Annals of Applied Statis-

tics 13(1), 60-84.

Huang, Y.-T. and W.-C. Pan (2016). Hypothesis test of mediation effect
in causal mediation model with high-dimensional continuous mediators.

Biometrics 72(2), 402-413.

LaBarre, J. L., K. E. Peterson, M. T. Kachman, W. Perng, L. Tang,

W. Hao, L. Zhou, A. Karnovsky, A. Cantoral, M. M. Téllez-Rojo, et al.



REFERENCES38

(2020). Mitochondrial nutrient utilization underlying the association be-
tween metabolites and insulin resistance in adolescents. The Journal of

Clinical Endocrinology € Metabolism 105(7), dgaa260.

Lu, L.-Z. and C. E. M. Pearce (2000). Some new bounds for singular values
and eigenvalues of matrix products. Annals of Operations Research 98(1-

4), 141-148.

Lustgarten, M. S., L. L. Price, A. Chalé, and R. A. Fielding (2014).
Metabolites related to gut bacterial metabolism, peroxisome proliferator-
activated receptor-alpha activation, and insulin sensitivity are associ-
ated with physical function in functionally-limited older adults. Aging

cell 13(5), 918-925.

MacKinnon, D. P., C. M. Lockwood, J. M. Hoffman, S. G. West, and
V. Sheets (2002). A comparison of methods to test mediation and other

intervening variable effects. Psychological methods 7(1), 83.

Neyman, J. and E. S. Pearson (1933). On the problem of the most efficient
tests of statistical hypotheses. Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or

Physical Character 231(694-706), 289-337.



REFERENCES39

Pearl, J. (2001). Direct and indirect effects. In Proceedings of the Seven-

teenth conference on Uncertainty in artificial intelligence, pp. 411-420.

Perng, W., E. C. Hector, P. X. Song, M. M. Tellez Rojo, S. Raskind,
M. Kachman, A. Cantoral, C. F. Burant, and K. E. Peterson (2017).
Metabolomic determinants of metabolic risk in mexican adolescents. Obe-

sity 25(9), 1594-1602.

Robins, J. M. and S. Greenland (1992). Identifiability and exchangeability

for direct and indirect effects. Epidemiology 3(2), 143-155.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized
and nonrandomized studies. Journal of educational Psychology 66(5),

688.

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in

structural equation models. Sociological methodology 13, 290-312.

VanderWeele, T. (2015). FEzplanation in Causal Inference: Methods for

Mediation and Interaction. Oxford University Press.

VanderWeele, T. and S. Vansteelandt (2014). Mediation analysis with mul-

tiple mediators. Epidemiologic methods 2(1), 95-115.



Multi-dimensional mediation effect test

VanderWeele, T. J. and S. Vansteelandt (2009). Conceptual issues concern-
ing mediation, interventions and composition. Statistics and its Inter-

face 2(4), 457-468.

Willett, W. C., G. R. Howe, and L. H. Kushi (1997). Adjustment for total
energy intake in epidemiologic studies. The American journal of clinical

nutrition 65(4), 1220S-1228S.

Wolak, F. A. (1989). Local and global testing of linear and nonlinear in-
equality constraints in nonlinear econometric models. Econometric The-

ory 5(1), 1-35.

Department of Biostatistics, School of Public Health, University of Michi-
gan, MI, USA

E-mail: (weihao@umich.edu)

Department of Biostatistics, School of Public Health, University of Michi-
gan, MI, USA

E-mail: (pxsong@umich.edu)



	Introduction
	Framework
	Structure Equation Model
	 Unconstrained Parameter Estimation
	Constrained Parameter Estimation

	Likelihood Ratio Test for Joint Mediation Effect
	Test Statistic
	Properties of the LR test

	 Implementation
	Simulation Studies
	Setup
	Type I Error
	Power Comparison


	Data Application
	Concluding Remarks
	Appendix
	Information Matrix
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1




