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A SIMULTANEOUS LIKELIHOOD TEST FOR JOINT

MEDIATION EFFECTS OF MULTIPLE MEDIATORS

Wei Hao1 and Peter X.-K. Song1

Department of Biostatistics, University of Michigan, MI, USA1

Abstract: Mediation analysis via structural equation models has become a widely

used tool to study whether the effect of an exposure on an outcome is mediated

by some intermediate factors. When multiple mediators are present, statisti-

cal inference on the joint mediation effect is challenging due to the involvement

of composite null hypotheses with a large number of parameter configurations.

We propose a simultaneous likelihood ratio test in which a block coordinate de-

scent algorithm is invoked to solve the constrained likelihood under the irregular

null parameter space using the Lagrange Multiplier approach. We establish the

asymptotic null distribution, and examine the performance of the proposed joint

test statistic via extensive simulations with a comparison to existing tests. The

simulation results show that our method controls type I error properly and in

general provides better power than existing test methods. We apply our method

to examine whether a group of glucose metabolites and acetylamino acids mediate

the effect of nutrient intakes on insulin resistance.

Key words and phrases: Constrained maximum likelihood, directed acyclic graph,

Lagrange multiplier, multi-dimensional mediators, structural equation model.
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1. Introduction

Mediation analysis is undertaken pervasively in practice to understand

whether or not the effect of an exposure on an outcome has been mediated

through some intermediate variables, which are, in short, called media-

tors. The mediation analysis approach, first proposed by Baron and Kenny

(1986), has been extensively applied in many disciplines to perform pathway

analyses. Utilizing the counterfactual outcome framework in the causal in-

ference literature (Rubin, 1974; Robins and Greenland, 1992; Pearl, 2001),

the mediation approach has been recently extended to study causal medi-

ation pathways via directed acyclic graphs (DAG) formed under a certain

scientific hypothesis as shown in Figure 1. With a few extra assumptions of

causation, such extension allows to decompose the total causal effect into

a sum of direct effect and indirect effect in the presence of interactions and

non-linearities (Pearl, 2001; VanderWeele and Vansteelandt, 2009). This

new causal framework has received much attention in the literature.

There are many existing methods in the literature developed to test

the existence of mediation effect (or the indirect effect) in the case of a

single potential mediator, including Sobel’s test (Sobel, 1982), bootstrap
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Figure 1: A DAG involving exposure, mediators and outcome.

method (Bollen and Stine, 1990), joint significant test (MacKinnon et al.,

2002). Recently, with available omics data, testing for mediation effects had

received much attentions, especially handling a group of multiple or even

high-dimensional mediators. Several methods have been developed, such as

multiple testing approaches for genome-wide association analysis proposed

for simultaneous single mediator tests with multiple comparison correction

(Huang, 2019; Huang et al., 2019; Dai et al., 2020).

In such methods, test for a causal mediation effect has been focused on

a single mediator via a univariate screening analysis of mediators one by

one, ignoring the dependence among multiple mediators. Although multiple

testing corrections have been adjusted to identify the potential mediators,

the interpretation of the causal effect is still limited to each of the selected

mediators, instead of a simultaneous inference for the group-level mediation

effect. However, in many applications when there exist multiple correlated

mediators, in particular a cohesive cluster of biologically relevant mediators,
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the group-level mediation effect does not simply equal to a summation of

individual mediation effects, as pointed out by VanderWeele (2015). There-

fore, the conclusion drawn from the univariate screening test with multiple

comparison correction does not necessarily produce a valid statistical infer-

ence for the group-level mediation effect. While these univariate screening

procedures are useful to discover individually potential mediators, it is im-

portant to analyze a cluster of correlated multiple mediators jointly. This

analytic objective calls for a test for their group-level mediation effect.

The mediation relationships of a DAG in Figure 1 are extensively ana-

lyzed by the linear normal structural equation model (SEM). When exposure-

mediator interaction terms are absent in the SEM, the group-level medi-

ation effect is expressed as the product, α>β, where α is the vector of

coefficients for exposure-mediator association and β is the vector of coeffi-

cients for mediator-outcome association. In this paper, we aim to develop

a simultaneous test for the joint group-level mediation effect under the null

hypothesis of no mediation effect H0 : α>β = 0. A key technical challenge

of performing this hypothesis test pertains to the involvement of composite

hypotheses; that is, α>β = 0 may arise from a large number of combina-

tions in αq and βq, q = 1, · · · , Q, where Q is a fixed number of mediators.

One example of possible combination is α = β = 0, which is of great
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interest in practice, and is well known for its overly conservative type I

error control. More subtle cases may arise from cancellations among some

individual products of αqβq, q = 1, . . . , Q to satisfy α = β = 0. Two exist-

ing approaches to testing this group-level mediation effect include: Product

Test based on Normal Product distribution (PT-NP)(Huang and Pan, 2016;

Huang et al., 2018), and Product Test based on Normality (PT-N (Huang

and Pan, 2016; Huang et al., 2018). Although these two methods have

shown satisfactory performances numerically via simulation studies, the

rigorous theoretical justification, such as the results of asymptotic distribu-

tions of such test statistics under the null remain little explored, especially

under the case of α = β = 0. Bore with the fundamental Neyman-Pearson

Lemma, the likelihood ratio (LR) test is known as the uniformly most power

test for a simple hypothesis testing problem under mild regularity condi-

tions (Neyman and Pearson, 1933), and the Wilks’ generalized LR test is

one of top finite-sample performers in the literature. To bridge this gap,

in this paper we investigate a simultaneous likelihood ratio (LR) test for

the joint group-level mediation effect under the null hypothesis α>β = 0

in that we establish asymptotic distributions of the proposed test statistics

as well as confirm the theoretical results by numerical analyses.

This paper makes two methodological contributions. First, we develop
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a constrained optimization to compute the likelihood ratio test statistic un-

der an irregular null parameter space using the Lagrange Multiplier. This

computation is implemented by an efficient block coordinate decent algo-

rithm. Second, we derive the asymptotic distributions of the proposed LR

test statistic under the composite null hypothesis H0 : α>β = 0, and show

theoretically that our LR test can properly control the type I error. Through

numerical experiments, including simulation studies and a data application,

we demonstrate that our LR test can not only properly control type I er-

ror but also improve the power in the cases considered in the simulation

studies, in comparison to the two existing tests, PT-NP and PT-N.

The remainder of the paper is organized as follows: Section 2 introduces

the linear structural equation model. Section 3 concerns the development of

likelihood ratio test, including the Lagrange Multiplier and the asymptotic

null distributions for the LR test statistic. Section 4 presents an implemen-

tation of the LR test. Section 5 shows the numerical performance of the LR

test in terms of type I error rate and power, and comparisons to existing

methods. Section 6 demonstrates an application of testing for a group-

level mediation effect of a metabolite cluster on the association between

dietary intakes and insulin resistance. Section 7 concludes the paper with

discussions on both advantages and limitations of the proposed LR method.
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Detailed technical derivations and proofs are included in the Appendix.

2. Framework

2.1 Structure Equation Model

Consider a data set of n observations, (Xi,Mi,j, Yi), i = 1, . . . , n, randomly

sampled from n subjects. For the i-th subject, Yi represents an outcome

variable of interest, Xi represents an exposure variable, and Mi = {Mi,j}Qj=1

represents a Q-dimensional vector of mediators. In addition, Zi = {Zi,l}Ll=1

represents an L-dimensional vector of confounding variables with the first

element Zi,1 ≡ 1 for the intercept. In this paper, we consider the case of

both Q and L being fixed and Q+L+ 1 < n. A linear structural equation

model (SEM) takes the following form:

Yi = Xiγ + M>
i β + Z>i η + εY,i, M>

i = Xiα
> + Z>i ζ + ε>M,i, (2.1)

where Mi = (Mi,1, . . . ,Mi,Q)>, Zi = (Zi,1, . . . , Zi,L)>, γ is a scalar, β =

(β1, . . . , βQ)>, η = (η1, . . . , ηL)>, α = (α1, . . . , αQ)>, ζ = (ζl,j)L×Q, εY,i
i.i.d.∼

N(0, σ2
Y ), εM,i

i.i.d.∼ MVN(0,ΣM), and ΣM is a Q × Q positive definite

covariance matrix, i = 1, . . . , n.

Denote the collection of model parameters by θ = {α,β, γ,η, ζ,ΣM , σ
2
Y }

and Θ is a generic notation for the parameter space. In the counterfac-
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tual outcome paradigm (Robins and Greenland, 1992; Pearl, 2001), under

the fundamental assumptions of consistency and the absence of unmea-

sured confounders, VanderWeele (VanderWeele and Vansteelandt, 2014)

shows that exposure variable X changes from a value x0 to another value

x1, the Natural Direct Effect (NDE) and Natural Indirect Effect (NIE)

in model (2.1) take the following forms: NDE(x0, x1) = γ(x1 − x0), and

NIE(x0, x1) = α>β(x1 − x0).

2.2 Unconstrained Parameter Estimation

To establish a likelihood ratio test for the null hypothesis of no group-

level mediation effect, H0 : α>β = 0, we perform both unconstrianed and

constrained maximum likelihood estimations (MLE) under the null and

alternative hypotheses. SEM (2.1) may be rewritten as a matrix form:

Y = Wβ̄ + ε, M = Bᾱ + E, (2.2)

where β̄ = (β1, . . . , βQ, η1, . . . , ηL, γ)>, Y is an n×1 vector of the outcomes,

W is an n × (Q + L + 1) matrix of mediators, confounders and exposure

variable with Wi = (Mi,1, . . . ,Mi,Q, Zi,1, . . . , Zi,L, Xi)
>, i = 1, . . . , n, and

ε ∼MVN(0, σ2
Y In). Similarly, M is an n×Q matrix of mediators, B is an

n×(L+1) matrix of exposure and confounders with Bi = (Xi, Zi,1, . . . , Zi,L),

and E = (E>1 , . . . ,E
>
n )> with Ei ∼MVN(0,ΣM). Here ᾱ is an (L+1)×Q
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2.3 Constrained Parameter Estimation9

matrix of parameters, with its first row vector being α> in the model (2.1),

and its remaining L × Q submatrix being the parameter matrix of ζ. It

follows that the two times negative log likelihood function is given by

−2`(θ) =n log(σ2
Y ) + n log(|ΣM |) + σ−2Y (Y −Wβ̄)>(Y −Wβ̄)

+ tr{(M−Bᾱ)Σ−1M (M−Bᾱ)>}. (2.3)

The standard theory of the MLE leads to the following unconstrained max-

imum likelihood estimators of θ, denoted as θ̂ = {ˆ̄α, ˆ̄β, σ̂2
y , Σ̂M}, where

ˆ̄α = (B>B)−1B>M, and ˆ̄β = (W>W)−1W>Y;

σ̂2
y = (Y −W ˆ̄β)>(Y −W ˆ̄β)/n, and Σ̂M = (M−Bˆ̄α)>(M−Bˆ̄α)/n.

2.3 Constrained Parameter Estimation

Let θ̃ denote the constrained MLE under the null H0 : α>β = 0, which will

be obtained by the method of Lagrange Multiplier. We consider a Lagrange

objective function of the following form, with tuning parameter λ,

g(ᾱ, β̄, σ2
Y ,ΣM , λ) =− 2`(θ)− 2λα>β. (2.4)
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2.3 Constrained Parameter Estimation10

Differentiating the function g(·) with respect to the model parameters yields

the following equations of the regression coefficients,

ᾱ = (B>B)−1B>M + λ(B>B)−1β∗ΣM = ˆ̄α + λ(B>B)−1β∗ΣM , (2.5)

β̄ = (W>W)−1W>Y + λσ2
Y (W>W)−1α∗ = ˆ̄β + λσ2

Y (W>W)−1α∗,

(2.6)

and the equations of variance parameters,

σ2
y = (Y −Wβ̄)>(Y −Wβ̄)/n, and ΣM = (M−Bᾱ)>(M−Bᾱ)/n,

(2.7)

where β∗ is an (L + 1) × Q matrix with the first row being β> and the

rest of elements are zeros, and α∗ is a (Q + L + 1) × 1 vector with the

first Q elements being α and the rest of elements being zero. Given that

α> appears in the first row of ᾱ, we denote the first row of ˆ̄α by a>1 , and

the first row of (B>B)−1β∗ΣM by b>1 . It follows that α> = a>1 + λb>1 .

Similarly, given β being in the first Q rows of vector β̄, denote the first Q

rows of vector ˆ̄β by a2, and the first Q rows of (W>W)−1α∗ by b2. Under

the constraint α>β = 0, we obtain (a>1 + λb>1 )(a2 + λb2) = 0. This leads

to two possible solutions of λ given in (2.8), and we shall choose the one

that yields the higher log-likelihood,

λ̃ =
−(a>1 b2 + b>1 a2)±

√
(a>1 b2 + b>1 a2)2 − 4b>1 b2a>1 a2

2b>1 b2

. (2.8)
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Remark 1. After we obtain the constrained MLE solutions (θ̃, λ̃) by the

method of the Lagrange Multiplier above, we then evaluate the Hessian

matrix of the function g(·) in (2.4). It is easy to show that in the setting

of the linear SEM the Hessian matrix is positive definite, guaranteeing

the convexity of the penalized objective function g(·) and thus the unique

minimum given by the solutions (θ̃, λ̃).

3. Likelihood Ratio Test for Joint Mediation Effect

3.1 Test Statistic

To simultaneously assess the joint mediation effect of multi-dimensional me-

diators, the first analytic task is to test the null hypothesis H0 : α>β = 0

versus H1 : α>β 6= 0, where the null hypothesis corresponds to the case of

zero NIE under SEM (2.1). As pointed above, since the null hypothesis al-

lows internal cancellation, it does not preclude the possibility of component-

wise nonzero mediation effects in the sense that αqβq 6= 0, q = 1, . . . , Q but

α>β = 0. Following the classical Wilks’ theory of likelihood ratio (LR)

test, we construct a LR test statistic of the form:

Tn = −2{ sup
θ∈Θ:α>β=0

`(θ)− sup
θ∈Θ

`(θ)} = −2{`(θ̃)− `(θ̂)}, (3.1)
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3.2 Properties of the LR test12

where θ̂ and θ̃ denote, respectively, the unconstrained MLE under H1 and

the constrained MLE under H0 obtained in Sections 2.2 and 2.3.

3.2 Properties of the LR test

This section concerns the asymptotic distributions of the likelihood ra-

tio statistic Tn in (3.1) under the null hypothesis H0 : α>β = 0. Us-

ing the large-sample properties, we propose a new test that can prop-

erly control the type I error with theoretical guarantees. For all lem-

mas and theorems presented in this section, their technical proofs are

given in the Appendix. We begin with some notations. For the ease

of exposition, we redefine θ = (α>, ζ,β>,η>, γ)>, where ζ denotes the

row vector of LQ elements vectorized from the matrix ζL×Q. Define the

constraint function by h(θ) = α>β. It is easy to see that its gradient

ḣ(θ) = ∇θh(θ) = (β>,0>LQ,α
>,0>L+1)

>. Let

H(θ) = ∇θḣ(θ) =

 0(L+1)Q×(L+1)Q H̃(L+1)Q×(Q+L+1)

H̃>(L+1)Q×(Q+L+1) 0(Q+L+1)×(Q+L+1)

 ,

where

H̃(L+1)Q×(Q+L+1) =

 IQ 0Q×(L+1)

0LQ×Q 0LQ×(L+1)

 .
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3.2 Properties of the LR test13

The information matrix I(θ) = −E
(

1
n
∂2`(θ)

∂θθ>

)
has a closed-form, presented

in Appendix A.1. Let A(θ) = I(θ)−
1
2 H(θ)I(θ)−

1
2 . To derive the asymp-

totic properties, we first introduce a lemma that establishes the eigenvalue

bounds of matrices H(θ) and A(θ).

Lemma 1. For any θ ∈ R2Q+LQ+L+1, we have the following results.

(i) The matrix H(θ) = ∇θḣ(θ) has 2Q nonzero eigenvalues equal to 1

or −1. If nonzero eigenvalues are arranged in a descending order

as of the form h1 ≥ h2 ≥ · · · ≥ h2Q, then h1 = · · · = hQ = 1,

hQ+1 = · · · = h2Q = −1.

(ii) The matrix A(θ) has 2Q nonzero eigenvalues. If nonzero eigenvalues

are arranged in a descending order as of the form υ1 ≥ υ2 ≥ · · · ≥

υQ > 0 > υQ+1 ≥ · · · ≥ υ2Q, then they satisfy
∑2Q

i=1 vi = 0, and

υ1 = −υ2Q, υ2 = −υ2Q−1, . . . , υQ = −υQ+1.

The above properties for the eigenvalues of A(θ) are used to establish

asymptotic null distributions of the LR test statistic. The proof of Lemma 1

is presented in Appendix A.2.

Lemma 2. In the case of α = β = 0, let θ0 be the true parameters that

generate the data, and the asymptotic distributions of the constrained MLE
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3.2 Properties of the LR test14

θ̃ and λ̃ are given by, as n→∞,

λ̃
d→ Λ0, where Λ0

d≡ −
∑Q

q=1 υq(ξq − ξq+Q)

2
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,

with ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q.

For any λ∗ ∈ R, conditional on a value λ̃ = λ∗,

√
n(θ̃ − θ0) | λ̃ = λ∗

d→ N
(
0, {I(θ0)− λ∗H(θ0)}−1I(θ0){I(θ0)− λ∗H(θ0)}−1

)
,

where υ1, . . . , υQ are Q positive eigenvalues of A(θ0).

Lemma 2 leads to an asymptotic joint distribution of θ̃ and λ̃ due to

the fact [θ̃, λ̃] = [θ̃|λ̃][λ̃]. Thus, we obtain the asymptotic distribution of

the LR test statistic in the scenario of α = β = 0. The proof of Lemma 2

is presented in Appendix A.3.

Theorem 1. Under H0 : α>β = 0, the asymptotic distributions of the

likelihood ratio test statistic Tn are given by,

(i) when (α>,β>)> 6= 0, as n→∞, Tn
d→ χ2

1,

(ii) when α = β = 0, as n→∞, Tn
d→ Λ1 with Λ1

d≡ {
∑Q

q=1 υq(ξq−ξq+Q)}2
4
∑Q

q=1 υ
2
q (ξq+ξq+Q)

,

where ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q.

In this paper, we write Λ1 ∼ κQ distribution. The proof of Theorem

1 involves deriving the asymptotic distributions of the constrained MLE.
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3.2 Properties of the LR test15

Although the classical large-sample work for the LR test, e.g. (Aitchison

et al., 1958; Wolak, 1989), may be directly applied to prove part (i) of

Theorem 1, the proof of part (ii) is non-trivial and needs specific technical

arguments and treatments on manipulating asymptotic distribution of λ̃,

similar to those given in the proof of Lemma 2. The proof of Theorem 1 is

presented in Appendix A.4. To implement the κQ distribution after both

matrix A(θ) and its Q eigenvalues are estimated, we invoke the Monte Carlo

simulation with a large number of draws (say 10,000) independently from

2Q χ2
1 distributed variables ξq, q = 1, · · · , 2Q. We conduct a simulation

study to confirm the validity of our theoretical derivations for Theorem

1 (ii). Our numerical assessment focuses on the tail probability of the

distribution of the test statistic of Tn when α = β = 0. See more details

in the supplementary materials S1.

It follows from Theorem 1 that we propose a test for H0 : α>β = 0,

termed as LR test, given by the decision function:

φn = I[Tn > (χ2
1,(1−α) ∨ κQ,(1−α))], (3.2)

where a ∨ b = max(a, b), κQ,(1−α) is the (1 − α) quantile of the null distri-

bution given in part (ii) of Theorem 1, and χ2
1,(1−α) is the (1− α) quantile

of the χ2
1 distribution. When φn = 1, we reject the null H0; otherwise, ac-

cept the null H0. Section S5 in the supplementary material illustrates via a
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simulation study that χ2
1,(1−α) overwhelmingly dominates κQ,(1−α), and such

dominance can reach 100% with large sample sizes.

Theorem 2. The LR test in (3.2) controls the type I error; that is

sup
θ∈Θ:α>β=0

Pθ(φn = 1) ≤ α,

where 0 < α < 1 is a prefixed type I error rate.

Proof. Divide the parameter space under the H0, Θ = {(α,β) : α>β = 0}

into two disjoint sub-spaces: Θ1 = {(0,0)} and Θ2 = Θ \Θ1. Then,

sup
θ∈Θ:α>β=0

Pθ(φn = 1)

= sup
θ∈Θ1∪Θ2

Pθ(Tn > χ2
1,(1−α) ∨ κQ,(1−α))

= max{ sup
θ∈Θ1

Pθ(Tn > χ2
1,(1−α) ∨ κQ,(1−α)), sup

θ∈Θ2

Pθ(Tn > χ2
1,(1−α) ∨ κQ,(1−α))}

≤ max{ sup
θ∈Θ1

Pθ(Tn > κQ,(1−α)), sup
θ∈Θ2

Pθ(Tn > χ2
1,(1−α))}

≤ α.

4. Implementation

In practice, to perform the LR test φn, we first compute two p-values of

p1 = 1 − Fχ2
1
(Tn) and p2 = 1 − FκQ(Tn), where Fχ2

1
is the CDF of the χ2

1

distribution, and FκQ is the CDF of the κQ distribution. Then we reject

the null hypothesis if the max(p1, p2) is smaller than significance level α.
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To obtain the constrained MLE, we develop a block coordinate descent

algorithm given as follows. We partition θ into two sets: θ1 = {˜̄α, ˜̄β}, and

θ2 = {σ̃2
Y , Σ̃M}, as well as λ. The unconstrained MLE θ̂ = {ˆ̄α, ˆ̄β, σ̂2

Y , Σ̂M}

are used as the initial values to start the algorithm. This updating scheme

consists of three steps: given θ1 and θ2, maximize the likelihood with re-

spect to λ; given θ2 and λ, update θ1 until convergence; given θ1, update

θ2. The algorithm is detailed below in Algorithm 1, where the default

number of Monte Carlo simulations is set at 10,000.

5. Simulation Studies

5.1 Setup

We conduct extensive simulation studies to evaluate the performance of the

proposed LR test. In particular, we compare the type I error control and

power of our method with two existing methods: PT-N and PT-NP tests

proposed by Huang et al (Huang and Pan, 2016; Huang et al., 2018). In

addition, we consider a comparison to a recent method of High-Dimensional

Multiple Testing (HDMT) proposed by Dai et al. (2020). HDMT was de-

veloped for a univariate screening of mediators with controlled false discov-

ery rate in genome studies, representing a typical kind of testing approach

widely adopted in practice to avoid simultaneous inference. We present
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5.1 Setup18

Algorithm 1 Search for constrained MLE

1: Compute the unconstrained MLE θ̂ = {ˆ̄α, ˆ̄β, σ̂2
Y , Σ̂M}, and evaluate

the log-likelihood `(θ̂). At the jth-iteration, let θ
(j)
1 = {˜̄α(j), ˜̄β(j)}, and

let θ
(j)
2 = {σ̃2(j)

Y , Σ̃
(j)

M }. Set θ
(0)
1 = {ˆ̄α, ˆ̄β} and θ

(0)
2 = {σ̂2

Y , Σ̂M} as the

initial values.

2: for j = 0, 1, . . . , J do

3: calculate λ(j) = argmax
λ
{`(θ(j)

1 ,θ
(j)
2 , λ)} from (2.8);

4: calculate θ
(j+1)
1 = argmax

θ1

{`(θ1,θ
(j)
2 , λ(j))} from (2.5) and (2.6);

5: calculate θ
(j+1)
2 from θ

(j+1)
1 based on (2.7);

6: calculate δ =‖ θ(j+1)
1 − θ

(j)
1 ‖;

7: if |δ| < tol then break

8: end if

9: end for

10: Output θ̃ = {˜̄α(j+1), ˜̄β(j+1), σ̃
2(j+1)
Y , Σ̃

(j+1)

M }, and calculate the log-

likelihood.

11: Calculate the test statistic T = −2
{
`(θ̃)− `(θ̂)

}
, and compute the

p-value p1 under the null distribution of χ2
1.

12: Estimate A(θ0) based on σ̂2
Y and Σ̂M , and calculate its Q positive

eigenvalues that are then used to simulate the κQ distribution, and

compute its p-value p2.

13: Report max(p1, p2) as the final p-value.
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5.2 Type I Error19

some comparison results involving the HDMT method in the supplemen-

tary materials S3 (Tables S2-S5).

The SEM is set up as follows. The exposure variable X is simulated

from N(0, 1), and two confounding variables Z1 and Z2 are generated from

N(0, I2). Conditional on X and (Z1, Z2), throughout the entire simula-

tion experiments in this section, Q mediators M and outcome Y are gen-

erated according to the SEM (2.1), with Q = 30 or Q = 60, γ = −2,

η = (2,−3, 2)>, σ2
Y = 1. Here vec(ζ) consists of 18 repeated sequences

of (−2, 3,−3, 1, 1) for Q = 30, and 36 repeated sequences for Q = 60. A

compound symmetry correlation with ρ = 0.5 is set for mediators. The

sample size n varies over 200, 500, and 1000. For each sample size, we run

10,000 replicates. To evaluate the influence of Q and/or ρ on the perfor-

mance of the LR test, we conduct additional simulations with Q = 90 and

ρ = 0, 0.25, 0.75, and related results are summarized in Tables S1, S2, S3

and S5 in the supplementary materials.

5.2 Type I Error

We consider the following four scenarios of the null hypotheses: (i) sparse

pathways with no cancellation; (ii) sparse pathways with cancellation; (iii)

non-sparse pathways with cancellation; and (iv) fully sparse pathways α =
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β = 0. Here sparsity refers to the number of zero parameters in α and/or

β. For Q = 30, the detailed specifications of α and β can be found in Table

1; for Q = 60, the same patterns are repeated. We report in Table 2 the

estimated empirical type I error rate as the proportion of rejections from

the 10,000 replicates. For Q = 30 and the four null cases (i)-(iv), our LR

test as well as two existing PT-N test and PT-NP test showed a proper

control of the type I error. In the cases (i)-(iii), these three methods show

their empirical type I error rates close to the nominal level 0.05, as desired.

In the case (iv), they are all conservative, but our LR test appears to be

the least conservative among the three. In the cases of small n (200) and

Q = 60, the type I error of the LR test becomes slightly inflated. This is

not surprising because a larger number of mediators implies a more complex

model with more parameters, and thus a larger sample size is needed.

5.3 Power Comparison

We evaluate and compare power under the same basic model specifications

above, in which α and β are specified in four sets of alternative scenarios

different from the null hypothesis; see the detail in Table 1 for Q = 30.

The design for the four alternative hypotheses corresponds the following

scenarios of pathways: (v) both α and β are sparse; (vi) α is sparse and
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Table 1: Designed specifications for α and β for null and alternative hy-

potheses.

Mediator

Null Hypothesis (α>β = 0) Alternative Hypothesis (|α>β| = 0.16)

i ii iii iv v vi vii viii

α β α β α β α β α β α β α β α β

1 0.2 0 0.2 0 0.2 -0.2 0 0 0.4 0.4 0 0.3 0.3 0 0.4 0.4

2 0.5 0 0.2 0.5 0.3 0.1 0 0 0 -0.8 0 0.3 0.3 0 0.2 -0.2

3 0 0.2 0.5 -0.2 0.1 0.1 0 0 0 0 0 0.3 0.3 0 0.3 0.1

4 0 0.5 0.2 0.5 0.2 -0.2 0 0 0 0 0 0.3 0.3 0 0.1 0.1

5 0 0 -0.2 0.5 0.3 0.1 0 0 0 0 0 0.3 0.3 0 0.2 -0.2

6 0 0 0 0 0.1 0.1 0 0 0 0 0.2 -0.8 -0.8 0.2 0.3 0.1

7 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1

8 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2

9 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

10 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1

11 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2

12 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

13 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1

14 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2

15 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

16 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1

17 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2

18 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

19 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1

20 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2

21 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

22 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1

23 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2

24 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

25 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1

26 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.2

27 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.1

28 0 0 0 0 0.2 -0.2 0 0 0 0 0 0 0 0 0.1 0.1

29 0 0 0 0 0.3 0.1 0 0 0 0 0 0 0 0 0.2 -0.3

30 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.3 0.2
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Table 2: Empirical type I error under four null hypotheses, and power under

four alternative hypotheses with 10,000 replicates for Q = 30 and Q = 60.

The sample size n varies from 200, 500, and 1,000. The compound symme-

try correlation of mediators is set with correlation 0.5. Power increase (%)

=
power of LR test

power of competing test
− 1.

Q n Method
Null Hypothesis Alternative Hypothesis Percent of power increase

i ii iii iv v vi vii viii v vi vii viii

LR 0.048 0.052 0.051 0.010 0.603 0.561 0.306 0.512 - - - -

200 PT-N 0.036 0.043 0.037 0.006 0.557 0.536 0.252 0.463 8.33% 4.67% 21.53% 10.56%

PT-NP 0.029 0.039 0.029 0.001 0.517 0.496 0.239 0.430 16.76% 13.08% 28.14% 19.13%

LR 0.045 0.046 0.045 0.007 0.970 0.959 0.654 0.931 - - - -

30 500 PT-N 0.038 0.043 0.040 0.005 0.967 0.957 0.631 0.925 0.31% 0.17% 3.73% 0.64%

PT-NP 0.036 0.043 0.036 0.001 0.963 0.951 0.627 0.918 0.74% 0.81% 4.32% 1.41%

LR 0.049 0.047 0.048 0.008 1.000 1.000 0.923 0.999 - - - -

1000 PT-N 0.046 0.045 0.046 0.005 1.000 1.000 0.917 0.998 0.00% 0.00% 0.57% 0.04%

PT-NP 0.045 0.046 0.044 0.001 1.000 1.000 0.916 0.999 0.01% 0.01% 0.76% 0.03%

LR 0.062 0.056 0.066 0.022 0.469 0.408 0.303 0.433 - - - -

200 PT-N 0.039 0.041 0.041 0.010 0.389 0.360 0.203 0.344 20.52% 13.27% 49.48% 25.87%

PT-NP 0.035 0.038 0.033 0.004 0.327 0.305 0.187 0.293 43.29% 33.58% 61.95% 47.73%

LR 0.051 0.055 0.054 0.010 0.932 0.880 0.630 0.897 - - - -

60 500 PT-N 0.043 0.049 0.043 0.007 0.923 0.875 0.583 0.884 0.88% 0.62% 8.17% 1.51%

PT-NP 0.040 0.048 0.038 0.001 0.910 0.856 0.571 0.867 2.41% 2.78% 10.39% 3.44%

LR 0.053 0.052 0.050 0.008 0.999 0.995 0.912 0.998 - - - -

1000 PT-N 0.050 0.050 0.045 0.006 0.999 0.995 0.902 0.998 0.02% 0.01% 1.09% 0.03%

PT-NP 0.050 0.051 0.044 0.001 0.999 0.995 0.897 0.997 0.03% -0.01% 1.60% 0.10%
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β is not sparse; (vii) α is not sparse and β is sparse; and (viii) both α

and β are not sparse. Regardless of specific settings, the overall absolute

group-level effect is fixed at 0.16, i.e. |α>β| = 0.16. For Q = 60, we repeat

the same patterns for α and β with a fixed size 0.16 in that scaling by
√

2 is

applied on the parameters. Table 2 reports the estimated empirical power

by the proportion of rejections to the null from 10,000 replicates.

We calculate the percent of power increase of LR over a competing

method by
power of LR

power of competitor
− 1. For all cases, our LR method demon-

strates clearly higher power than existing PT-N and PT-NP tests, especially

when the sample sizes are small or moderate, say 500 or less. It is also note-

worthy that even though the mediation effect size is fixed constantly at 0.16

across four cases, the power varies according to the underlying parameter

configurations and sparsity. The power also decreases as Q increases in each

setting of alternative hypothesis as individual signal strengths decrease by

a factor of 1/
√

2. Among these four cases, case (vii) appears to be the

most challenging scenario, where β is most sparse with a small magnitude

of nonzero element. To further examine the performance of these tests, in

case (vii) with the sample size 200 and Q = 30, we set the single nonzero β

coefficient at 0.2 + δ with δ varying from 0 to 0.5 by an increment of 0.02

to illustrate the power increase pattern. Figure 2 shows all three power
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Figure 2: Power curves of three tests under the simulation case (vii).

curves increase to 1 when the size δ in the alternative hypothesis becomes

further distant from the null hypothesis. Our LR test is more powerful than

the other competing tests. Empirically, these three tests are all shown to

be consistent as their power rises to 1 when the deviation from the null

tends to infinity. In sum, these simulation results indicate that our LR test

exhibits higher power than two existing PT-N and PT-NP tests, especially

in the cases of small and moderate sample sizes.
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6. Data Application

We apply the proposed LR test to analyze a real world data example from

a pediatric cohort study consisting of 203 children, with 96 boys and 107

girls, age 8.1 to 14.4 years old. We consider two exposure variables X of

macronutrient intakes calculated as the energy adjusted carbohydrate and

fat. They are termed as carbohydrate intake and fat intake, respectively,

obtained from the food frequency questionnaires (Willett et al., 1997). The

outcome variable Y is a HOMA-CP score defined by LaBarre et al. (2020),

which measures insulin resistance using the C-peptide biomarker produced

by pancreas. A higher HOMA-CP score means more insulin resistant, lead-

ing potentially to a higher risk of developing diabetes in adulthood years.

In this analysis, we focus on studying a cluster of seven metabolites of

glucose metabolites and acetylamino acids that all passed related data QC

screening and annotated by our collaborator Dr. Labarre (LaBarre et al.,

2020) at the University of Michigan Research Core of Metabolomics. One

metabolite in this cluster is N-acetylglycine, which have been found in the

literature to be positively associated with dietary fiber intake (Lustgarten

et al., 2014) and negatively associated with metabolic risk score (Perng

et al., 2017). The goal of central interest is to test if a cohesive cluster

containing N-acetylglycine is involved as a group in a mediation pathway
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from dietary intakes to HOMA-CP score. This scientific question pertains

to a hypothesis that food intakes may change metabolites and then further

alter function of pancreas, so to elevate the risk of developing diabetes

during later life time.

With the consultation with our collaborator, we choose a set of con-

founding variables, including age, gender, and puberty onset. The p-values

for the null hypothesis H0 : αTβ = 0 with Q = 7 using three methods of

LR, PT-N and PT-NP. First, we perform the testing for the group-level me-

diation effect with exposure of fat intake, and obtain p-values equal to 0.01

(LR), 0.02 (PT-N), and 0.02 (PT-NP). Likewise, with exposure of carbohy-

drate intake, we obtain p-values 0.03 (LR), 0.04 (PT-N) and 0.04 (PT-N).

All three methods reach an agreement that with 95% confidence this cluster

of seven metabolites exhibits a significant group-level mediation effect on

the associations between dietary intakes and HOMA-CP score. With no

surprise, the LR test appears to have smaller p values in both cases, being

consistent with the findings in the simulation studies.

Taking a closer look at individually each of the seven metabolites in

the cluster, we report in Table 3 estimates of the individual model pa-

rameters in α, β and α ◦ β, where ◦ is the element-wise product. The

group-level mediation effects of fat and carbohydrate intakes through the
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seven metabolites are -0.012 and 0.003, respectively. For fat intakes, the

negative mediation effect indicates that more fat intakes help reduce the

insulin resistance through metabolites, where N-acetyglicine contributes

most to the reduction of the insulin resistance score. In contrast, carbo-

hydrate intakes increase the insulin resistance through metabolites, where

again N-acetyglicine contributes most. In closing, we inspect some data

quality issues such as truncation pattern due to limit of detection (LOD)

and normality assumption using QQ plots of the residuals from the respec-

tive regressions of mediator-exposure (i.e. fat and carbohydrate). There

are no truncation patterns on the lower part of the distributions, and all

distributions look approximately normal. Refer to all details in the supple-

mentary materials S4.

Table 3: Estimated coefficients for a cluster of seven metabolites.

Metabolite
Fat Carbohydrate

α β α ◦ β α β α ◦ β

L-histidine -0.0019 0.334 -0.0006 0.0008 0.334 0.0003

N-acetyl-D-glucosamine -0.0046 0.197 -0.0009 0.0009 0.200 0.0002

N-acetyl-DL-serine 0.0055 0.206 0.0011 -0.0017 0.204 -0.0004

3,4-hydroxyphenyl-lactate 0.0014 0.114 0.0002 -0.0006 0.114 -0.0001

2-deoxy-D-glucose 0.0041 -0.356 -0.0015 -0.0013 -0.356 0.0005

N-acetylglycine 0.0101 -0.840 -0.0085 -0.0030 -0.842 0.0025

D-lyxose -0.0050 0.291 -0.0015 0.0016 0.294 0.0005
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7. Concluding Remarks

This paper studied a likelihood ratio approach to testing a group-level me-

diation effect with multiple mediators. We were able to overcome a key

technical challenge arising from the constrained maximum likelihood es-

timation under irregular parameter spaces. In particular, the Lagrange

Multiplier method was developed to carry out the constrained optimiza-

tion via an efficient block coordinate decent algorithm, which was required

to implement our LR test statistic. The associated computational cost

is negligible, on average 0.15 seconds for a dataset of sample size 1000.

The R package “MedLRT” implementing the LR test method is available

at https://github.com/haowei72/MedLRT. We established the asymptotic

distributions of the proposed LR test statistic, in which a theoretical guar-

antee was given for a proper control of the type I error. Through both

simulation studies and a data application, our LR method has showed less

conservative and higher power than two existing methods, PT-N test and

PT-NP test, especially when the sample size is moderate or small.

This paper did not attempt to develop a solution to differentiate differ-

ent null parameter configurations arising from the composite null hypoth-

esis. The LR test approach attempted to take a step in the direction of

solving this conservatism problem through the kappa distribution, which
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was found as the limiting distribution of the Wilks’ generalized likelihood

ratio statistic for the null case of α = β = 0, being different from the

chi-square distribution under the other null cases. This technical contribu-

tion serves an important technical preparation; because once a new method

enables us to differentiate null parameter configurations, the respective lim-

iting distributions of the LR test statistic are ready to be applied to achieve

the optimal solution (i.e. a desirable size alpha LR test).

To apply our LR approach to testing for a cluster of high-dimensional

potential mediators, one needs to first divide them into subgroups according

to prior scientific knowledge or certain clustering techniques, and then carry

out the test for a group-level mediation effect, each for one subgroup of me-

diator. A future work of interest would be to extend the current framework

to the case of high-dimensional mediators with no need of dividing them

into subgroups. In addition, to deal with the issue of dimensionality as

well as complex patterns arising from the simultaneous testing setup (e.g.

243 possible null parameter configurations for Q = 5), alternative solutions

such as an extension of Dai et al. (2020)’s approach is worth an exploration.

All test methods, including our LR test, have appeared to be conserva-

tive for the null case of α = β = 0. This is an open problem in the theory

of statistical inference for mediation effect, even in the setting of one single
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mediator. The technical difficulty pertains to the presence of multiple null

parameter configurations, each giving rise to a specific distribution for the

test statistic, but the lack of knowledge which null configuration is the truth

hinders us from obtaining a desirable size α in the type I error control. The

κQ distribution is proposed to improve the overly conservative type I error

control in that the κQ distribution has some chance to be selected in the

decision making. However, as shown in the simulation study, under the case

of α = β = 0 this improvement is moderate and the type I error rate is

still below 0.05. Some better solutions to overcome such conservatism are

worth future exploration.

A. Appendix

A.1 Information Matrix

I(θ) = −E

(
1

n

∂2`(θ)

∂θθ>

)

=

 1
n
Σ−1M ⊗B>B(L+1)Q×(L+1)Q 0(L+1)Q×(Q+L+1)

0(Q+L+1)×(L+1)Q
1
nσ2

y
E(W>W)(Q+L+1)×(Q+L+1)

 ,

where

E(W>W) =

 ᾱ>B>Bᾱ + nΣM ᾱ>B>V

V>Bᾱ V>V

 ,

and Vn×(L+1) = (Z1, . . . ,ZL,X).
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A.2 Proof of Lemma 1

First, we prove the part (i) of Lemma 1. Recall that

H(θ) = ∇θḣ(θ) =

 0(L+1)Q×(L+1)Q H̃(L+1)Q×(Q+L+1)

H̃>(Q+L+1)×(L+1)Q 0(Q+L+1)×(Q+L+1)

 ,

where

H̃(L+1)Q×(Q+L+1) =

 IQ 0Q×(L+1)

0LQ×Q 0LQ×(L+1)

 .

Then, we have H2(θ) = Block-diag
(
H̃H̃>, H̃>H̃

)
.

Since H2(θ) is a diagonal matrix, and it has 2Q 1’s and (LQ+L+1) 0’s

on diagonal, implying that H2(θ) has 2Q nonzero eigenvalues equal to 1,

and (LQ+ L+ 1) zero eigenvalues. This shows that H(θ) has 2Q nonzero

eigenvalues with their absolute values being 1. Note that tr(H(θ)) = 0,

implying h1 = · · · = hQ = 1, hQ+1 = · · · = h2Q = −1.

Now we prove part (ii) of Lemma 1. From Theorem 1.4 in (Lu and

Pearce, 2000), matrix A(θ) = I(θ)−
1
2 H(θ)I(θ)−

1
2 has Q positive eigen-

values, Q negative eigenvalues and the rest eigenvalues are zero since the

eigenvalues of I(θ)−
1
2 are all positive. Thus, the 2Q nonzero eigenvalues of

A(θ), υ1 ≥ υ2 ≥ · · · ≥ υQ > 0 > υQ+1 ≥ · · · ≥ υ2Q. Let I11 = 1
n
Σ−1M ⊗B>B

and I22 = 1
nσ2

y
E(W>W). Writing I(θ) = Block-diag (I11, I22) , we have

A(θ) = I(θ)−
1
2 H(θ)I(θ)−

1
2 =

 0 I
− 1

2
11 H̃I

− 1
2

22

I
− 1

2
22 H̃>I

− 1
2

11 0

 .
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Consequently, tr(A(θ)) = 0, and (I
− 1

2
11 H̃I

− 1
2

22 )> = I
− 1

2
22 H̃>I

− 1
2

11 . Let I
− 1

2
11 H̃I

− 1
2

22 =

C. We have A2(θ) = Block-diag
(
CC>,C>C

)
. The eigenvalues of A2(θ)

are λ(A2(θ)) = (λ(CC>), λ(C>C)), where the non-zero eigenvalues of

CC> and C>C are the same. This indicates υ21 = υ22Q, υ
2
2 = υ22Q−1, . . . , υ

2
Q =

υ2Q+1. In summary, A(θ) has 2Q nonzero eigenvalues in a descending or-

der υ1 ≥ υ2 ≥ · · · ≥ υQ > 0 > υQ+1 ≥ · · · ≥ υ2Q, satisfying
∑2Q

i=1 vi =

tr(A(θ)) = 0. This implies that υ1 = −υ2Q, υ2 = −υ2Q−1, . . . , υQ = −υQ+1.

A.3 Proof of Lemma 2

Let D = {Y,W,M,B} = {di}ni=1 denote all observations where di repre-

sents the data from subject i. Let u(θ) =
∑n

i=1∇θ`(θ; di) denote the score

function of length 2Q + p, where p = LQ + L + 1. Let U(θ) = ∇θu(θ) be

the Hessian matrix. Under the regularity conditions, by the Central Limit

Theorem, 1√
n
u(θ0)

d→ N{0, I(θ0)}. Moreover, by the Law of Large Number,

− 1
n
U(θ0)

p→ I(θ0). Let {θ̃, λ̃} be the solution of the Lagrange multiplier

equation (2.4). Then, they satisfy the following two equations:

u(θ) + nλḣ(θ) = 02Q+p, and h(θ) = 0. (A.1)

It is easy to show that the k-th order (k ≥ 3) partial derivatives of h(θ) are

all zero for any θ. Taking the Taylor expansion on h(θ̃) in the 2nd equation

of (A.1) around θ0, h(θ̃) = h(θ0)+ḣ(θ0)
>(θ̃−θ0)+

1
2
(θ̃−θ0)

>H(θ0)(θ̃−θ0).
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Since α = β = 0, h(θ0) = h(θ̃) = 0 and ḣ(θ0) = 02Q+p, then

(θ̃ − θ0)
>H(θ0)(θ̃ − θ0) = 0. (A.2)

Similarly, taking the Taylor expansion of the first equation of (A.1) around

θ0 gives, subject to a high order error term,

u(θ0) + U(θ0)(θ̃ − θ0) + nλ̃
{
ḣ(θ0) + H(θ0)(θ̃ − θ0)

}
≈ 02Q+p,

u(θ0) + U(θ0)(θ̃ − θ0) + nH(θ0)
[
λ̃(θ̃ − θ0)

]
≈ 02Q+p,

{U(θ0) + nλ̃H(θ0)}(θ̃ − θ0) ≈ −u(θ0).

Given that the matrix U(θ) + nλH(θ) is invertible for {θ, λ} in the small

neighborhood of {θ0, 0}, we have

(θ̃ − θ0) ≈ −{U(θ0) + nλ̃H(θ0)}−1u(θ0), (A.3)

√
n(θ̃ − θ0) ≈

1√
n
{−U(θ0)/n− λ̃H(θ0)}−1u(θ0)

≈ {I(θ0)− λ̃H(θ0)}−1
u(θ0)√

n
.

This implies that for any λ∗ ∈ R, the conditional distribution of θ̃ given

λ̃ = λ∗ is

[√
n(θ̃ − θ0) | λ̃ = λ∗

]
→ N

(
0, {I(θ0)− λ∗H(θ0)}−1I(θ0){I(θ0)− λ∗H(θ0)}−1

)
.

By plugging (A.3) into (A.2), we define

f(λ̃) = u(θ0)
>{U(θ0) + nλ̃H(θ0)}−1H(θ0){U(θ0) + nλ̃H(θ0)}−1u(θ0).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



A.3 Proof of Lemma 234

Taking derivative of f(λ̃) in λ̃ yields,

∂f(λ̃)

∂λ̃
= ḟ(λ̃) = −2nu(θ0)

>{U(θ0) + nλ̃H(θ0)}−1H(θ0){U(θ0) + nλ̃H(θ0)}−1

H(θ0){U(θ0) + nλ̃H(θ0)}−1u(θ0).

Note the fact that f(λ̃) ≈ f(0) + ḟ(0)λ̃ = 0. Then, we have

nf(0) =
u(θ0)

>
√
n

{
−U(θ0)

n

}−1
H(θ0)

{
−U(θ0)

n

}−1
u(θ0)√

n

=

[
u(θ0)

>
√
n

{
−U(θ0)

n

}− 1
2

][{
−U(θ0)

n

}− 1
2

H(θ0)

{
−U(θ0)

n

}− 1
2

]
[{
−U(θ0)

n

}− 1
2 u(θ0)√

n

]
.

Since
{
−U(θ0)

n

}− 1
2 p→ I(θ0)

− 1
2 and u(θ0)√

n

d→ N{0, I(θ0)}, by Slutsky’s Therorem,{
−U(θ0)

n

}− 1
2 u(θ0)√

n

d→ N{0, I}. Also
{
−U(θ0)

n

}− 1
2
H(θ0)

{
−U(θ0)

n

}− 1
2 p→ A(θ).

It follows that, as n→∞,

nf(0)
d→ F0, where F0

d≡
2Q∑
q=1

υqξq =

Q∑
q=1

υq(ξq − ξq+Q),

with ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q.

nḟ(0) = 2
u(θ0)

>
√
n

{
−U(θ0)

n

}−1
H(θ0)

{
−U(θ0)

n

}−1
H(θ0)

{
−U(θ0)

n

}−1
u(θ0)√

n
,

similarly, we have as n→∞,

nḟ(0)
d→ G0, where G0

d≡ 2

2Q∑
q=1

υ2qξq = 2

Q∑
q=1

υ2q (ξq + ξq+Q),
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with ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q. In summary the asymptotic distribution

of λ̃ is given as follows,

λ̃ = −nf(0)

nḟ(0)

d→ Λ0, where Λ0
d≡ −

∑Q
q=1 υq(ξq − ξq+Q)

2
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,

with ξq
i.i.d.∼ χ2

1, q = 1, · · · , 2Q. The proof is completed.

A.4 Proof of Theorem 1

When α = β = 0, taking the Taylor expansion on {I(θ0) − λ̃H(θ0)}−1

around a small neighborhood of λ̃ = 0, we have, subject to a high order

error term, {I(θ0) − λ̃H(θ0)}−1 ≈ {I(θ0)}−1 + λ̃I(θ0)
−1H(θ0)I(θ0)

−1. It

follows that

√
n(θ̃ − θ0) ≈

[
{I(θ0)}−1 + λ̃I(θ0)

−1H(θ0)I(θ0)
−1
] u(θ0)√

n

= {I(θ0)}−1
1√
n

u(θ0) + λ̃I(θ0)
−1H(θ0)I(θ0)

−1u(θ0)√
n

≈
√
n(θ̂ − θ0) + λ̃I(θ0)

−1H(θ0)I(θ0)
−1u(θ0)√

n
.

Noting that
√
n(θ̃ − θ̂) = λ̃I(θ0)

−1H(θ0)I(θ0)
−1 u(θ0)√

n
, we have

Tn = −2{`(θ̃)− `(θ̂)} (A.4)

≈
√
n(θ̃ − θ̂)>

{
−U(θ0)

n

}−1√
n(θ̃ − θ̂)

≈ λ̃2
u(θ0)√

n

>

I(θ0)
−1H(θ0)I(θ0)

−1H(θ0)I(θ0)
−1u(θ0)√

n

= λ̃2
u(θ0)√

n

>

I(θ0)
− 1

2 A(θ0)
2I(θ0)

− 1
2
u(θ0)√

n
.
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Note λ̃
d→ Λ0, where Λ0

d≡ −
∑Q

q=1 υq(ξq−ξq+Q)

2
∑Q

q=1 υ
2
q (ξq+ξq+Q)

, and u(θ0)>√
n

I(θ0)
− 1

2
d→ N(0, I2Q+p).

Hence,

Tn
d→ Λ1, where Λ1

d≡

[∑Q
q=1 υq(ξq − ξq+Q)

]2
4
∑Q

q=1 υ
2
q (ξq + ξq+Q)

,

with ξq
i.i.d.∼ χ2

1 for q = 1, . . . , 2Q. The proof is completed.
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