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ABSTRACT: Atomic force microscopy-single-molecule force spectroscopy (AFM-SMFS) is a powerful methodology to probe
intermolecular and intramolecular interactions in biological systems because of its operability in physiological conditions, facile and
rapid sample preparation, versatile molecular manipulation, and combined functionality with high-resolution imaging. Since a huge
number of AFM-SMFS force−distance curves are collected to avoid human bias and errors and to save time, numerous algorithms
have been developed to analyze the AFM-SMFS curves. Nevertheless, there is still a need to develop new algorithms for the analysis
of AFM-SMFS data since the current algorithms cannot specify an unbinding force to a corresponding/each binding site due to the
lack of networking functionality to model the relationship between the unbinding forces. To address this challenge, herein, we
develop an unsupervised method, i.e., a network-based automatic clustering algorithm (NASA), to decode the details of specific
molecules, e.g., the unbinding force of each binding site, given the input of AFM-SMFS curves. Using the interaction of heparan
sulfate (HS)−antithrombin (AT) on different endothelial cell surfaces as a model system, we demonstrate that NASA is able to
automatically detect the peak and calculate the unbinding force. More importantly, NASA successfully identifies three unbinding
force clusters, which could belong to three different binding sites, for both Ext1f/f and Ndst1f/f cell lines. NASA has great potential to
be applied either readily or slightly modified to other AFM-based SMFS measurements that result in “saw-tooth”-shaped force−
distance curves showing jumps related to the force unbinding, such as antibody−antigen interaction and DNA−protein interaction.

■ INTRODUCTION
Single-molecule force spectroscopy (SMFS), including optical
tweezer, magnetic tweezer, and atomic force microscopy
(AFM), has been developed as a powerful methodology to
probe the details of intermolecular and intramolecular
interactions and thus to obtain mechanistic insights of the
systems that cannot be probed using traditional methods in
bulk systems. SMFS is particularly useful in studying biological
systems, such as protein folding/unfolding, nucleic acid
structures, protein−drug interactions, and cellular surface
receptor−ligand interactions,1−17 due to its multifunction-
alities. Compared with optical and magnetic tweezers, the
AFM-based SMFS (AFM-SMFS) is advantageous in several
aspects, such as facile and rapid sample preparation, molecular
manipulation with an AFM tip by tethering the target
molecules on the AFM tip, and spatial discrimination of
SMFS with the high-resolution imaging.3,14,18,19 It makes the
AFM-SMFS superior in the study of biomolecular interactions,
especially in complicated physiological conditions. For
example, in an early study, the unbinding force of five different
avidin−biotin pairs was probed using AFM-SMFS.2 Recently,

AFM-SMFS was used to image single human protease-
activated receptor-1 (PAR1), a typical G protein-coupled
receptor, in proteoliposomes. Moreover, AFM-SMFS was used
to simultaneously quantify the dynamic binding strength of
PAR1 to different ligands under physiologically relevant
conditions.20

A typical AFM-SMFS force−distance curve provides
unbinding events for intermolecular studies. The change of
rupture force with a loading rate and the shape of rupture force
distribution can provide parameters of the energy landscape of
the intermolecular reaction, such as zero-force dissociation rate
constant, the distance to the transition state, and the height of
the energy barrier.18,21 The accuracy of the parameters requires
the statistical analysis of a large amount of the AFM-SMFS
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curves, which suffers from the subjectivity of manual methods.
To avoid these biases and human errors and to save time,
established algorithms are employed to analyze the AFM-
SMFS curves. These algorithms include Hooke,22 Open-
Fovea,23 AtomicJ,24 FRAME,25 FC_analysis,26 FEATHER,27

ForSDAT,28 etc. However, some of these algorithms lack
automatic curve selection functions or automatic threshold
selection functions to distinguish specific interactions from
nonspecific interactions, while others are supervised methods
that require human-labeled data. In sum, all aforementioned
methods can not automatically specify an unbinding force to a
corresponding/each binding site.
To tackle these challenges, herein, we present our proposed

algorithm, i.e., a network-based automatic clustering algorithm
(NASA). Network-based machine learning methods have
shown surprising effectiveness to characterize complex systems
and have gained increasing popularity in recent years.29−32

Despite its popularity, this work is the first to leverage this
powerful tool in studying the single-molecule AFM-SMFS
data. Given the input (i.e., AFM-SMFS curves), NASA first
extracts the unbinding forces from the curves, constructs a
network depicting the relationship between the unbinding
forces, and then detects the community structure of this
network. Each community corresponds to a binding site, of
which the details can be decoded by investigating the features
(e.g., average unbinding force) in this community.
Previously, we have conducted an AFM-SMFS study of

heparan sulfate (HS)−antithrombin (AT) interaction on
different endothelial cell surfaces. Using an AT-functionalized

AFM tip, we revealed that the AT interacts with endothelial
HS on the cell surface through multiple binding sites.33 Here,
we apply this new NASA method to decode the complex HS−
AT interaction on different cell surfaces under physiological
conditions with more experimental data. We demonstrate the
capabilities of NASA for a diverse set of experimental data (i.e.,
the single-molecule interaction of HS with AT on four
endothelial cell membrane surfaces), confirming the accuracy
of our manually statistical results. More importantly, we show
that NASA is capable of identifying and characterizing the
specific unbinding force for each binding site, which has not
been achieved by conventional analysis methods. Such
biophysical details on the AT−HS binding modes on the cell
surface will help us to have a deeper understanding of the
function of HS in both physiological and pathological
processes. More importantly, this provides a radical method
that can be applied to any system to reveal more accurate
single-molecule interaction properties.

■ METHODS
Architecture of NASA. Figure 1 shows the workflow of NASA.
Given the input data (i.e., force−distance curves resulted from
AFM-SMFS measurements), as shown in Figure 1a, NASA first
filters out noninformative curves, as shown in Figure 1b. Here,
the noninformative curve is defined as a curve that does not
show any unbinding event, thus providing no information
about the binding site. After this data preprocessing, for each
curve, NASA then automatically detects the unbinding process
during which the unbinding event happens, as shown in Figure

Figure 1. Workflow of NASA. (a) AFM-SMFS data collection. In this case, the interaction of HS−AT on different endothelial cell surfaces is
studied. An AFM tip is modified with AT to probe the HS−AT interaction. (b) Data preprocessing. In this procedure, NASA retains informative
curves and removes noninformative curves. (c) Unbinding process detection. (d) Unbinding forces calculation. (e) Network representation. (f)
Community detection. (g) Outputs of NASA: details of each binding site, including the histogram of unbinding forces, and the average force ±
standard deviation.
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1c. This unbinding process provides information about the
AT−HS unbinding forces. To extract this information, NASA
further identifies all unbinding forces from the curves in two
steps. Step 1: Identify all peaks, which indicate AT−HS
unbinding events on the cell surface during the unbinding
process. For example, two peaks are extracted in Figure 1d.
Step 2: Calculate the unbinding force f i of each peak i. For
example, in Figure 1d, with the calibrated AFM tip spring
constant, we get two unbinding forces for two peaks.
To specify the unbinding force for each binding site, NASA

employs network-based methods. More specifically, NASA
constructs a network, where nodes represent unbinding forces,
and edges represent the relationship between unbinding forces,
as shown in Figure 1e. NASA then clusters nodes, as shown in
Figure 1e, into different communities by leveraging a
community detection algorithm.34 Using the aforementioned
detected community information, we redraw the network in a
new layout so that nodes in the same community are close to
each other, while nodes in different communities are far away
from each other, as shown in Figure 1f. Different communities
represent different types of binding sites. By characterizing
each community, we get the details (e.g., the mean unbinding
force) of each binding site, as shown in Figure 1g.
Three characteristics distinguish NASA from other methods:

(1) NASA is an unsupervised method that learns patterns from
the data without human intervention. (2) NASA employs the
network-based method in an innovative way, which allows us
to distinguish each binding site and investigate their details.
(3) NASA is an automatic tool that avoids time-consuming
and error-prone manual efforts.
AFM-SMFS Data Preprocessing. When conducting the

AFM-SMFS measurement experiments, we use an AFM tip to
investigate the unbinding force between the AT on the AFM
tip and the HS on the cell surface. Usually, unbinding events
are observed on SMFS curves, as shown in the peaks in the

right panel of Figure 1a. Nevertheless, in some cases, the
force−distance curves may only measure a very gentle tip-bare
membrane interaction, i.e., the tip barely touches the
membrane. An example of such curves is shown in the right
panel of Figure 1b, from which we observe that (i) this curve is
rather smooth and (ii) no unbinding event is present. Such
curves do not express any information about the unbinding
force. To filter out these noninformative curves, NASA works
in the following steps.
The first step is to fit the kth degree polynomial regression

model (see the Supporting Information, SI 1.1, for details), i.e.,
y = a + b1x1 + ... + bkxk for each force−distance curve. Herein, y
denotes the force and x denotes the distance. We employ the
Bayesian information criterion (BIC)35,36 (see SI 1.1 for
details) to determine the appropriate polynomial order k. The
second step is to calculate the corresponding R-squared (R2)37

value (see SI 1.1 for details) for the selected model. The R2

value measures how well the model fits the force−distance
curve. The third step is to exclude curves with R2 greater than a
threshold. The threshold is determined by a data-driven
method (see SI 1.5.1), which is general for all unbinding
processes, but the specific value may vary with different
systems due to the different details of the force−distance
curves. Particular to the system presented in this paper, the
threshold is determined to be 0.990. In other words, a curve
with R2 less than 0.99 is labeled as an informative curve, and
thus is retained. Otherwise, the curve is labeled as a
noninformative curve, and thus is discarded.

Unbinding Process Detection. After filtering out those
noninformative force−distance curves, we detect the unbind-
ing process with abrupt changes in force.38,39 The detection of
the unbinding process depends on the detection of the
baseline, i.e., the zero-force background line. Usually, the
baseline is flat if we operate on a hard surface. Nevertheless, in
this work, we operate on a living cell, which is very soft. A

Figure 2. (a) Example of the fitted smooth curve. The red curve is the smooth curve and the blue line is the original curve. There are two window
examples, i.e., window t and window t − 1. In window t − 1 and window t, there are five data points (in green) and five data points (in pink),
respectively. The red line fitted to five points in each window is the fitted linear regression line. (b) Illustration of snap breaking point detection.
The point t* is the snap breaking point. (c) Illustration of unbinding process detection. The solid red dot is the snap breaking point detected by
(b). The baseline intersects with the force−distance curve at the solid blue dot. The unbinding process starts at the solid blue dot and ends at the
solid red dot.
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sloped baseline is thus very common in practice,40 requiring us
to consider the baseline to measure the rigidity of the cell
membrane.
To detect the baseline, we first smooth the curve by

employing the local regression method41 (see SI 1.2.2 for
details), which can smooth out the noise while preserving the
main trend. The red curve in Figure 2a shows an example of
the fitted smooth curve. Our following analysis is based on the
fitted smooth curve, i.e., the y in the following analysis denotes
the value in the fitted smooth curve.
After this denoising procedure, we then aim to detect the

snap breaking point, which starts the baseline. Before the snap
breaking point, the local slope of the force−distance curve
changes drastically, while after the snap breaking point, the
local slope of the force−distance curve seldom changes.
Motivated by this observation, we develop a sliding window
method to calculate the local slope and detect the snap
breaking point. A sliding window method is a standard
statistical technique to detect local pattern.42,43 Herein, a
window consists of a proportion of all data points on the
smoothed force−distance curve, the proportion is denoted as h
∈ [0,1].
The window slides from left to right over the force−distance

curve. For example, in Figure 2a, we show two consecutive
windows, i.e., window t − 1 (highlighted in green) and window
t (highlighted in pink). We train a linear regression model in
each window. For example, the red lines are the fitted linear
regression line using the corresponding data points. If h is too
big, e.g., 0.5, the pattern will be “smoothed out”, and we cannot
accurately detect the snap breaking point. If h is too small, e.g.,
0.001, it will be too sensitive to accurately detect the snap
breaking point. By conducting extensive studies on different
force−distance curves, we suggest that the appropriate value
for h is between 0.05 and 0.1 (see SI 1.5.2). In this work, we
set h = 0.05.
Suppose the number of windows is T, we thus fit T

regression models, and we have T corresponding regression
coefficients (i.e., slopes) {S1, ..., ST}. Intuitively, when the
window moves after the snap breaking point, the slope does
not change dramatically. We then utilize the change of the
slopes to detect the snap breaking point. More specifically, we
consider the slope change ΔSt = St − St−1 between two
consecutive windows t and t − 1. If |ΔSt| < s d(ΔSt), i.e., ΔSt
falls within the upper and lower orange bounds, as shown in
Figure 2b, we accept window t as a nonchange point.
Otherwise, if ΔSt falls outside the bounds, the t is considered
as a change point. As shown in Figure 2b, blue points are
nonchange points, and orange ones are change points. If t* is a
change point while {t* + 1, ..., T} are all nonchange points, t*
is identified as the snap breaking point. With the snap breaking
point t* (e.g., the solid red dot in Figure 2c) identified, we
then fit a linear regression model (see SI 1.2.1 for details) for
all data after the snap breaking point. The fitted line is the
estimated baseline, e.g., the solid orange line in Figure 2c.
Extending the baseline to an intersection with the smooth

force−distance curve, we extract the unbinding process
between the intersection and the snap breaking point. As
shown in Figure 2c, the force−distance curve in the red shaded
area is the unbinding process.
Unbinding Forces Calculation. Identifying the unbinding

events, i.e., the peaks during the unbinding process, is an
essential step for calculating the unbinding forces. First, we
detect the boundary points (shown in the green stars in Figure

3) between two unbinding events. Near the boundary point,
there are three possible changes of the first derivative of y, and

we denote the first derivative of y as y′. (i) y′ changes from
positive to zero, as shown in case 1 in Figure 3. (ii) y′ changes
from positive to negative, as shown in case 2 in Figure 3. (iii)
y′ changes from a higher positive value to a lower positive
value, as shown in case 3 in Figure 3. All three cases suggest
that the boundary point is a change point when y′ changes and
y″ < 0. Hence, we first employ a change point detection
method (see SI 1.3 for details) to detect all change points of y′,
and then identify the change points at which y″ < 0 as the
boundary points.
Second, we detect the jump point (shown in the pink

triangles in Figure 3) representing the “snap-off” of the
interaction bonding in each unbinding event. The force
difference between the jump point and the boundary point or
the snap breaking point is calculated as the unbinding force.
Near the jump point, there are also three possible changes of
the first derivative y′: (i) y′ changes from zero to positive, as
shown in case 1 of Figure 3. (ii) y′ changes from negative to
positive, as shown in case 2 of Figure 3. (iii) y′ changes from a
lower positive value to a higher positive value, as shown in case
3 of Figure 3. All three cases have a common fact: the jump
point is a change point when y′ changes and y″ > 0. Hence, we
first employ a change point detection method (see SI 1.3 for
details) to detect all change points of y′, and then identify the
change points at which y″ > 0 as the jump points.
After finding the boundary point and jump point, we

calculate the force difference in the raw data between the jump
point and boundary point as unbinding force. Finally, we
obtain all unbinding forces f i, i = 1, ..., n, from the force−
distance curves, where n is the number of unbinding forces. To
ensure that the unbinding forces we include represent the
specific AT−HS unbinding events, forces less than 40 pN are
excluded because the typical noise level of 10−40 pN is
determined from the baseline fluctuations.

Network Representation. Previous methods calculate the
unbinding forces from force−distance curves. Nevertheless, it
is hard to distinguish different binding sites from the massive
unbinding forces. Here, we consider that one binding site is
corresponding to a certain unbinding force for a single-

Figure 3. Illustration of unbinding event detection. The blue dot
denotes the intersection between the baseline and the force−distance
curve. The red dot denotes the snap breaking point. The pink triangle
denotes the jump point. The green star denotes the boundary point,
which separates two adjacent peaks.
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molecular AT−HS interaction. If we have two AT−HS
interactions from the same binding site, the unbinding force
would be twice the one AT−HS interaction. Different binding
sites have different unbinding forces, which do not have integer
multiple relationship. Taking all of the abovementioned
considerations into account, we employ a network representa-
tion method to shed light on the relationship between
unbinding forces and then provide information for different
binding sites.
For each cell line, we construct an undirected network G,

where each node represents an unbinding force, as shown in
Figure 4a. We draw an edge between two unbinding forces f i
and f j if they have an approximate multiplicative relationship,
i.e., there exists a positive integer l satisfying the following
condition,

| − · | < ϵ | − · | < ϵf l f f l fori j j i

where ϵ is a predefined tolerance parameter that specifies the
maximum acceptable variation. Two unbinding forces f i and f j
are defined to be similar if |f i − f j | < ϵ. If ϵ is too large, e.g.,
100, we will draw an edge between two forces with a significant
difference, e.g., f1 = 100 and f 2 = 190. If ϵ is too small, e.g., 0.1,
even two forces shown in Figure 4b will not have an edge; we
will thus lose too much information. In this study, we set ϵ = 5,
by taking all of the abovementioned considerations into
account.
For example, as shown in Figure 4b, f1 and f 2 are connected

because they are similar. In this case, these two unbinding
forces may come from the same binding site. If two unbinding
forces f i and f j are connected with l = 2, and this means that
either f i is almost twice the f j or f j is almost twice the f i. In this
case, these two unbinding forces may also come from the same
binding site. Thus, if two nodes are connected, they have a
high probability of coming from the same binding site.
Community Detection. In a network, a community is a

group of nodes that have dense edges within the community
and sparse edges between communities. In this work, an edge
is constructed between two nodes (forces) if they are likely to
come from the same binding site. Thus, nodes (forces) in the
same community are likely to come from the same binding site.
Community detection aims to find out the communities.44,45

In this work, we employ the fast-greedy modularity
optimization algorithm46 (see SI 1.4.2 for details) for
community detection. This algorithm clusters nodes into
different communities, each of which may correspond to a
binding site. By characterizing each community, e.g., the mean
unbinding force, we present the details of each binding site.

■ RESULTS AND DISCUSSION
We selected a set of AFM-SMFS curves of different cell lines
Ext1f/f, Ext1−/−, Ndst1f/f, and Ndst1−/− to proceed with the
NASA analysis, which yielded 442, 857, 650, and 613 force−
distance curves, respectively. Among these collected curves,
NASA identifies 215, 209, 147, and 168 curves as informative
curves for these four cell lines. By analyzing these informative
curves, NASA extracted 376, 306, 246, and 212 unbinding
forces for the four cell lines. For each cell line, NASA leveraged
these unbinding forces to construct a network.
In summary, we constructed four networks for these four cell

lines. Table 1 presents the summary statistics of these four

networks, including the number of nodes, the number of edges,
and the clustering coefficient. The clustering coefficient (see SI
1.4.1 for details) measures the degree to which nodes in a
network tend to cluster together.35 The number of nodes
ranges from 212 to 376, while the number of edges is between
476 and 14 689. The clustering coefficients of the four
networks are all greater than 0.5, suggesting the existence of
communities.
By employing the fast-greedy modularity optimization

algorithm,46 we clustered nodes into different communities
for each network. Figure 5 visualizes four networks (for four
different cell lines). For each network, nodes in the same color
come from the same community. It is observed that the
optimal numbers of communities in networks of both the
Ndst1f/f and Ext1f/f cell lines are three, as shown in Figure 5.
This observation suggests that there are three possible binding
sites for Ndst1f/f and Ext1f/f cell lines. These results are
consistent with the conclusions in our experimental study.33

Then, we investigated the details of each community. Figure
5 shows the average force ± standard deviation (sample size)
of each community. Note that Figure 5 shows the results after
deleting outlier nodes. Details of outlier node deletion can be
found in SI 1.2.1. Figure 5a shows the unbinding force
histogram in the red community of the Ext1f/f cell surface. We
can observe that the unbinding forces can be further divided
into two groups. The forces in the dark red group (i.e., right
group) are almost twice the light red one (i.e., left one). Other
communities show an analogous pattern, as shown in Figure

Figure 4. (a) Network for cell line Ext1f/f. (b) Example of two nodes, i.e., f1 and f 2, in the network shown in (a). f1 measured from the first peak is
90.6. The f 2 measured from the second peak is 90.8. Since |90.6 − 90.8| < 5, f1 and f 2 are connected.

Table 1. Summary Statistics for Four Networks of Four
Different Cell Lines

cell line Ext1f/f Ext1−/− Ndst1f/f Ndst1−/−

number of nodes 376 306 246 212
number of edges 14 689 1730 8746 476
clustering coefficient 0.75 0.90 0.66 0.90
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5b−f. Herein, we focus on the analysis results of Ndst1f/f and
Ext1f/f cell lines. More analysis results of Ext1−/− or Ndst1−/−

could be found in SI 1.2.2.
These observations suggest the following conclusions. (1)

There are three binding sites between AT and endothelial HS
on Ndst1f/f and Ext1f/f cell lines. (2) In each binding site, the
first group corresponds to the case when a single molecule
from this site is measured. (3) In each binding site, the second
group corresponds to the case when two molecules are
measured.
We then conducted a manual analysis of the same data set

used in this paper. First, manually extracted unbinding forces
and NASA output unbinding forces have similar distribution
(see SI 1.7.1), confirming that NASA can calculate unbinding
forces accurately. Second, we conducted a manual analysis for
these unbinding forces using our previous method33 (see SI
1.7.1). In addition, we compared NASA with other clustering
methods, i.e., PCA-based clustering, autoencoder-based
clustering, K-means, and density-based spatial clustering of
applications with noise (DBSCAN) (see SI 1.7.2). Briefly, the
NASA method can group the data and identify three binding
sites, while manual analysis and other clustering methods
cannot provide these details.

■ CONCLUSIONS
We have developed a new algorithm, NASA, for unsupervised
automatic analysis of AFM-SMFS data. We apply the new
algorithm to analyze our previous AT−HS interaction on
different endothelial cell lines and are able to automatically
detect the peak and calculate the unbinding force under
physiological conditions. Moreover, we demonstrate that

NASA is able to group the data into three clusters and thus
identify three corresponding binding sites for both Ext1f/f and
Ndst1f/f cell lines. It should be noted that currently, the exact
structure of binding sites is not clear, which may be addressed
in the future by combining other complementary techniques
such as molecular dynamics simulation. NASA has great
potential to be applied either readily or slightly modified to
other AFM-based SMFS measurements that result in “saw-
tooth”-shaped force−distance curves showing jumps related to
the force unbinding, such as antibody−antigen interaction and
DNA−protein interaction. Application of our method to other
AFM-based SMFS data is beyond the scope of the current
publication and will be studied in our future work.
There are also inevitable limits to our method. First, the

unbinding forces we analyze seem to be well separated, making
it relatively easy to group into communities. Other
biomolecular interactions may not have unbinding forces that
are as well separated, so in our ongoing work, we are trying to
extend NASA to analyze unbinding forces with overlapping
distributions. Second, in this paper, we treat unbinding forces
less than 40 pN as noise, which is deduced from 1 nm
movement of a cantilever in the self-thermo vibration with
energy kBT, which is reasonable due to the soft, flexible, and
complex cell environment at room temperature. The noise
threshold may need to be adjusted for other systems since this
assumption may not be suitable for other AFM-SMFS data
collected from other interactions.

Figure 5. Visualization of four networks of four different cell lines. We use different symbols to distinguish four cell lines: Ext1f/f (square), Ext1−/−

(triangle), Ndst1f/f (circle), and Ndst1−/− (star). In Ext1f/f and Ndst1f/f cell lines, we use a lighter color to represent the interaction force between a
single AT and a single HS molecule and the darker color to denote the interaction force between two AT with two HS molecules. The number
annotated beside the colored symbol is, average force ± standard deviation, and the number in the parentheses is the sample size. We only display
parts of the noise and outlier nodes, which are colored in gray. (a−f) Force distributions for each community of Ndst1f/f and Ext1f/f cell lines.
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