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ABSTRACT
Smoothing splines have been used pervasively in nonparametric regressions. However, the computational
burden of smoothing splines is signi!cant when the sample size n is large. When the number of predictors
d ≥ 2, the computational cost for smoothing splines is at the order of O(n3) using the standard approach.
Many methods have been developed to approximate smoothing spline estimators by using q basis func-
tions instead of n ones, resulting in a computational cost of the order O(nq2). These methods are called
the basis selection methods. Despite algorithmic bene!ts, most of the basis selection methods require the
assumption that the sample is uniformly distributed on a hypercube. These methods may have deteriorating
performance when such an assumption is not met. To overcome the obstacle, we develop an e"cient
algorithm that is adaptive to the unknown probability density function of the predictors. Theoretically, we
show the proposed estimator has the same convergence rate as the full-basis estimator when q is roughly
at the order of O[n2d/{(pr+1)(d+2)}], where p ∈ [1, 2] and r ≈ 4 are some constants depend on the type of
the spline. Numerical studies on various synthetic datasets demonstrate the superior performance of the
proposed estimator in comparison with mainstream competitors. Supplementary !les for this article are
available online.
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1. Introduction

Smoothing spline estimators have been used pervasively in non-
parametric regression models

yi = η(xi) + εi i = 1, . . . , n, (1)

where yi ∈ R is the response, xi ∈ Rd is the predictor, η

is the unknown function to be estimated, and {εi}n
i=1 are iid

normal random errors with zero mean and unknown variance
σ 2 (Wahba 1990; Wang 2011; Gu 2013; Zhang et al. 2018a).
Despite their impressive performance, smoothing splines su!er
from a huge computational burden when the sample size n is
large. Although univariate smoothing splines can be computed
in O(n) time (Reinsch 1967), in general cases when the num-
ber of predictors d ≥ 2, the classical method for calculating
smoothing splines requires computing the inverse of a n × n
matrix. The standard algorithm for calculating matrix inversion
requires O(n3) computational time. To reduce such a huge com-
putational cost, existing methods approximate smoothing spline
estimators by using q % n basis functions instead of n ones.
These methods are called the basis selection methods, which can
reduce the computational cost to O(nq2). Notice that one can
further re"ne the order O(n3) and O(nq2) to o(n3) and o(nq2),
respectively, using Strassen algorithm, Coppersmith–Winograd
algorithm or Optimized CW-like algorithms (Bernstein 2009;
Golub and Van Loan 2013). These algorithms are beyond the
scope of this article.

CONTACT Ping Ma pingma@uga.edu University of Georgia Franklin College of Arts and Sciences, Athens, GA 30602.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

Various basis selection methods have been proposed. Luo
and Wahba (1997) and Zhang et al. (2004) selected the basis
functions through variable selection techniques. Hastie (1996)
and Ruppert (2002) considered pseudosplines, also called P-
splines, which use q "xed basis functions to approximate splines.
Such "xed basis functions are also called knots and di!er from
the construction of the basis functions in smoothing splines.
He, Shen, and Shen (2001), Sklar et al. (2013), and Yuan,
Chen, and Zhou (2013) considered the cases that the regression
function has nonhomogeneous smoothness across the design
space. They developed data-driven methods to select basis
functions or knots, such that the selected ones are adaptive to
non-homogeneous smoothness of the regression function.

There also exist other strategies that aim to approximate
splines or other nonparametric regression estimators in a
computationally e#cient manner through parallel computing.
Zhang, Duchi, and Wainwright (2013) and Zhang, Duchi, and
Wainwright (2015) studied the divide-and-conquer kernel ridge
regression (dacKRR), and showed that it achieves minimax
optimal convergence rates under relatively mild conditions.
Wood et al. (2017) accelerated the "tting of penalized regression
spline based generalized additive models. They showed that
their method could run reliably and e#ciently on a desktop
workstation for d up to 104 and n up to 108. Xu and Wang
(2018) and Xu, Shang, and Cheng (2019) considered the
problem of how to estimate the tuning parameter e!ectively
for dacKRR. They proposed a variant of the generalized
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cross-validation for dacKRR, and showed that their proposed
technique is computationally scalable for massive datasets
and is asymptotically optimal under mild conditions. Shang
and Cheng (2017) analyzed the theoretical properties of one-
dimensional smoothing splines under the divide-and-conquer
setting. Liu, Shang, and Cheng (2018) and Liu, Shang, and
Cheng (2020) studied the theoretical properties of dacKRR
respecting the number of machines. They showed that there
exists a speci"c bound for the number of machines in order to let
the dacKRR estimators to achieve statistical minimax. (Shang,
Hao, and Cheng 2019) developed scalable Bayesian inference
procedures for a general class of nonparametric regression
models using distributed learning. In practice, it is possible to
combine the aforementioned parallel-based strategies with the
proposed method for more computational savings.

One fundamental question for basis selection methods is
how to determine the size of q, which balances the tradeo!
between the computation time and the prediction accuracy. In
this paper, we focus on the widely-used asymptotic criterion,
which aims to determine the smallest order of q such that the q-
basis estimator converges to the true function η at the same rate
as the full-basis estimator. Zhou and Shen (2001) proposed an
estimator for regression spline using the spatial adaptive basis
functions. This method has been applied in univariate cases;
however, it is not clear whether it can be extended to multivariate
cases. Xiao, Li, and Ruppert (2013) proposed an estimator for
P-spline under the scenario that the observations are supported
on a n1 × n2 grids, and showed that the essential number of
basis q = n1n2/4. One limitation of their estimator is that
it can only be applied in the cases when the observations are
supported on a two-dimensional grid. Gu and Kim (2002) and
Ma, Huang, and Zhang (2015a) developed the uniform basis
selection (UBS) method and the adaptive basis selection (ABS)
method, respectively. Both methods require q roughly be of the
order O{n2/(pr+1)}, where p ∈ [1, 2] and r ≈ 4 are some

constants depend on the type of the spline. We provide a discus-
sion on these two constants in Section 4. Recently, Meng et al.
(2020b) proposed a more e#cient basis selection method that
only require q roughly be of the order O{n1/(pr+1)}, when d ≤
pr + 1. Their method aims to select approximately uniformly
distributed observations by using space-"lling designs or low-
discrepancy sequences, resulting in a faster convergence rate
compared with the UBS method.

Despite algorithmic bene"ts, the key to the success of most
of the existing basis selection methods depends on the assump-
tion that the sample is uniformly distributed in a hypercube
or a hyper-rectangular. In practice, most basis selection meth-
ods may su!er from deteriorating performance when such an
assumption is not met. We now demonstrate the case that the
sample is not uniformly distributed using a toy example. In
this example, we generate 2000 data points from a banana-
shape distribution on [0, 1]2, and we show the heat map of the
true response surface y = sin{20(x1 + x2)} in the le$most
panel of Figure 1. The marginal distribution of such banana-
shape distribution conditional on x1 is a Gaussian distribution;
thus, more data points are located in the middle than on the
boundary. We compare the proposed method, denoted by HBS,
with the mainstream competitors, which includes the UBS (Gu
and Kim 2002), the ABS (Ma, Huang, and Zhang 2015a), and
the space-"lling basis selection (SBS) (Meng et al. 2020b). We
set q = 5 × (2000)2/9 ≈ 27 for all basis selection methods,
and we mark the selected basis functions as black triangles. The
right four panels of Figure 1 show the heat maps of the spline
estimates of all four basis selection methods, respectively. We
observe the UBS method and the ABS method perform simi-
larly: both select very few basis functions on the boundary. As
a result, these two methods fail to capture the periodic pattern
of the response surface on the boundary. In contrast, the SBS
method selects very few basis functions in the middle, resulting
in degenerated performance in such an area. These observations

Figure 1. The leftmost panel shows the heat map for the true function. The heat maps for the spline estimates based on the UBS method, the ABS method, the SBS
method, and the proposed HBS method are presented in the other panels, respectively. Black triangles are the selected basis functions. We observe that the proposed
method outperforms the other methods in approximating the true function.
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suggest that the performance of a basis selection method may
deteriorate signi"cantly when the sample is not uniformly gen-
erated in a hypercube. Finally, we observe the proposed method
is adaptive to the arbitrary distribution of the sample, resulting
in the best estimation of the true function, compared with
other methods.

In practice, the distribution of the sample is almost always
unknown to practitioners. The basis selection method, hence, is
highly desirable to be robust to arbitrary distribution of the sam-
ple. To achieve the goal, it is suggested in Chapter 4 of Gu (2013)
to select the basis functions corresponding to roughly equally
spaced observations, even when the sample is not uniformly
distributed. Analogously, Eilers and Marx (2010) found that
equally spaced knots, which can be regarded as the basis func-
tions here, are always preferred in practice. These discoveries are
consistent with the common key idea in importance sampling
techniques, which are widely used for variance-reduction in
numerical integration (Liu 1996, 2008). We now brie%y intro-
duce such an idea in the following.

Let f be an integrand and g be a probability density function
on $ ⊆ Rd. To estimate the integration

∫
$ f (x)g(x)dx, one can

simply generate an iid sample {xi}n
i=1 from g, then calculate the

mean of {f (xi)}n
i=1. Instead, one can also generate an iid sample

from a probability density function h, then calculate the mean of
{f (xi)g(xi)/h(xi)}n

i=1. Kahn and Marshall (1953) showed when
both f and g are known, the optimal h(x) in terms of variance-
reduction is proportional to |f (x)|g(x), outside of trivial cases
where

∫
|f (x)|g(x)dx = 0. The intuition is that h(x) needs to

have su#ciently large value for the x such that |f (x)|g(x) is close
to zero. Otherwise, if h(x) is extremely small for such x, the
variance of Eg(|f (x)|) = |f (x)|g(x)/h(x) can be in%ated to be
arbitrarily large. Consequently, in the cases when either f or g is
unknown, a safe strategy is to let h be the uniform distribution
on $; thus simply avoids the scenario that h(x) is extremely
small for any x ∈ $.

Inspired by such a strategy in importance sampling tech-
niques, we propose a novel basis selection method by selecting
the basis functions corresponding to roughly equally spaced
observations. To achieve the goal, we develop an e#cient algo-
rithm that uses the Hilbert space-"lling curve. The proposed
algorithm can be used to select a uniformly distributed sub-
sample without knowing the probability density function of
the predictors. Theoretically, we show the proposed estimator
has the same convergence rate as the full-basis estimator. Fur-
thermore, we show the order of q for the proposed method
is reduced from roughly O(n2/(pr+1)) in the UBS method to
roughly O(n2d/{(pr+1)(d+2)}). To the best of our knowledge, in
the cases when the sample follows an arbitrary distribution, the
proposed estimator is the one that requires the smallest order of
q. Numerical studies on various synthetic datasets demonstrate
the superior performance of the proposed estimator in compar-
ison with mainstream competitors.

Although we mainly focus on smoothing splines in this
paper, it is possible that the proposed method could also acceler-
ate the estimation of other nonparametric regression estimators,
includes the thin plate regression splines, kernel ridge regres-
sion and etc (Geer and van de Geer 2000; Wood 2003; Györ"
et al. 2006; Wasserman 2006; Hastie, Tibshirani, and Friedman
2009; Yang, Pilanci, and Wainwright 2017). Some simulation

results are provided in supplementary material to support this
claim.

The rest of the article is organized as follows. We review
smoothing splines and basis selection methods in Section 2. In
Section 3, we "rst introduce the Hilbert curve and some of its
properties. We then introduce our basis selection method using
the Hilbert curve. In Section 4, we present theoretical properties
of the proposed method. We evaluate the empirical performance
of the proposed method via extensive simulation studies and a
real-world data analysis in Sections 5 and 6, respectively. Section
7 includes some discussion of the article. Proofs of the theorems
are collected in the supplementary material.

2. Preliminaries

2.1. Background of Smoothing Splines

To estimate the unknown function η in Model (1), a common
strategy is to minimize the penalized least squares criterion
(Wahba 1990; Wang, Shen, and Ruppert 2011; Gu 2013; Wang,
Du, and Shen 2013),

1
n

n∑

i=1
{yi − η(xi)}2 + λJ(η), (2)

where J(·) is a squared semi-norm, and J(η) is called the
roughness penalty. The λ here is the smoothing parameter,
which balances the tradeo! between the goodness of "t of
the model and the roughness of the function η. Such λ can
be selected based on the generalized cross-validation (GCV)
criterion (Wahba and Craven 1978). Xu and Wang (2018) and
Xu, Shang, and Cheng (2019) generalized the GCV criterion to
the setting of distributed learning. Recently, Sun, Zhong, and Ma
(2021) proposed a more e#cient approach for accelerating the
calculation of λ.

In this article, we focus on minimizing the objective func-
tion (2) in a reproducing kernel Hilbert space, resulting in a
smoothing spline estimate for η. Let H = {η : J(η) < ∞} be a
reproducing kernel Hilbert space and NJ = {η : J(η) = 0} be
the null space of J(η). Let NJ be a m-dimensional linear subspace
of H and {ξi}m

i=1 be a set of basis for NJ . Moreover, let HJ to
denote the orthogonal complement of NJ in H such that H =
NJ ⊕ HJ . It can be shown that HJ is a still a reproducing kernel
Hilbert space, and we use RJ(·, ·) to denote the reproducing
kernel of HJ . Let Y = (y1, . . . , yn)T be the response vector,
S ∈ Rn×m be a matrix where the (i, j)th element equals ξj(xi),
and R ∈ Rn×n be a matrix where the (i, j)th element equals
RJ(xi, xj). According to the representer theorem (Wahba 1990),
the minimizer of the objective function (2) in the space H
takes the form η(x) = ∑m

k=1 αkξk(x) + ∑n
i=1 βiRJ(xi, x). Let

α = (α1, . . . , αm)T and β = (β1, . . . , βn)T be the coe#cient
vectors. With trivial modi"cation, it can be shown that "nding
the minimizer of the objective function (2) is equivalent to
solving

(α̂, β̂) = argmin
α∈Rm, β∈Rn

1
n (Y−Sα−Rβ)T(Y−Sα−Rβ)+λβTRβ .

(3)
Although the solution of the minimization problem (3) has a

closed form (Gu and Kim 2002; Ma, Huang, and Zhang 2015a),
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the computational cost for calculating the solution is of the order
O(n3), in a general case where n + m and d ≥ 2.

2.2. Basis Selection Methods

To alleviate the computation burden for smoothing splines,
various basis selection methods have been developed. These
methods are of similar nature to the subsampling methods,
which are widely used in large-scale data analysis (Mahoney
2011; Drineas et al. 2012; Ma, Mahoney, and Yu 2015b; Ma and
Sun 2015; Meng et al. 2017; Zhang, Xie, and Ma 2018b; Ai et al.
2021b; Xie et al. 2019; Ma et al. 2020; Yu et al. 2020; Ai et al.
2021a; Meng et al. 2020a; Zhong, Liu, and Zeng 2021). We refer
to Li and Meng (2020) for a recent review.

The standard basis selection method works as follows. One
"rst use subsampling techniques to select a subsample {x∗

i }
q
i=1

from the observed sample {xi}n
i=1. The selected subsample is

then used to construct the so-called e!ective model space HE =
NJ ⊕ span{RJ(x∗

i , ·), i = 1, . . . , q}. Finally, the objective func-
tion (2) is minimized in the e!ective model space HE, and
the solution thus can be written as ηE(x) = ∑m

k=1 αkξk(x) +∑q
i=1 βiRJ(x∗

i , x). Analogous to Equation (3), the coe#cients
αE = (α1, . . . , αm)T and βE = (β1, . . . , βq)T can be obtained
through solving

(α̂E, β̂E) = argmin
αE∈Rm, βE∈Rq

1
n (Y − SαE − R∗βE)T

× (Y − SαE − R∗βE) + λβT
ER∗∗βE, (4)

where R∗ ∈ Rn×q is a matrix where the (i, j)th element equals
RJ(xi, x∗

j ) and R∗∗ ∈ Rq×q is a matrix where the (i, j)th element
equals RJ(x∗

i , x∗
j ). In general cases where m % q % n, solving

the optimization problem (4) requiring only O(nq2) computa-
tion time, which is a signi"cant reduction compared with O(n3).

Despite algorithmic bene"ts, most of the existing basis selec-
tion methods heavily rely on the condition that the sample is
uniformly distributed on a hypercube. When such a condition
is not met, they may su!er from deteriorating performance, as
shown in Figure 1. Recall that a common strategy in importance
sampling techniques is to select a roughly uniformly distributed
subsample, which tends to be bene"cial for numerical integra-
tion. Such a strategy motivates us to select the basis functions
corresponding to roughly equally spaced observations, even
when the sample is not uniformly distributed. Intuitively, such
a goal can be easily achieved when d = 1, in which cases one
can "rst divide the sample space into equally-spaced bins, and
then select an equal number of observations within each bin.
The selected subsample is roughly uniformly distributed when
the number of bins is carefully determined. Unfortunately, such
a naive strategy is not easily extendable to the cases that d ≥ 2,
due to the curse-of-dimensionality.

To overcome the barrier, a natural strategy is to "nd a contin-
uous mapping F : $ → R that preserves local structures, where
$ ⊂ Rd is a bounded design space. In other words, we aim to
"nd a mapping F such that, for any xi, xj ∈ $, i, j ∈ {1, . . . , n},
a small value of ||xi − xj|| is associated with a small value of
||F(xi) − F(xj)||, where || · || represents the Euclidean norm.
Loosely speaking, let {F(x∗

i )}
q
i=1 be a roughly uniformly dis-

tributed subset selected from {F(xi)}n
i=1, the subsample {x∗

i }
q
i=1

thus tends to be uniformly distributed in $. One family of the
mappings that approximately achieve this goal is the family of
space-"lling curves, which include the Hilbert curve, the Peano
curve, and the Z-order curve (Sagan 2012). We develop a novel
basis selection method using space-"lling curves, as detailed in
the next section.

3. Basis Selection Using Space-Filling Curves

3.1. Hilbert Curves

Space-"lling curves have long been studied in mathematics and
have become important computational tools since the 1980s
(Bader 2013). Nowadays, space-"lling curves have been widely
used for computer graphics, approximately the nearest neigh-
bor searching, solving partial di!erential equations, and so on
(Zumbusch 2012). We now brie%y introduce the Hilbert curve,
a representative of space-"lling curves, and some of its prop-
erties that we need. The formal de"nition of the Hilbert curve
is relegated to the supplementary material. Other space-"lling
curves enjoy similar properties, and we refer to Sagan (2012);
Zumbusch (2012) for more details.

We "rst introduce a sequence of the so-called Hilbert space-
"lling curves, denoted by {Hk}∞k=1. Intuitively, for each k, the kth
Hilbert space-"lling curve Hk is a bijection between a partition
of [0, 1] and a partition of [0, 1]d. In particular, the curve Hk par-
titions both [0, 1] and [0, 1]d into (2k)d blocks, respectively, and
construct a bijection between these blocks. Figure 2 illustrates
how a partition of [0, 1] is mapped to a partition of [0, 1]2 using
H1, H2, and H3, respectively. The Hilbert curve is de"ned as
H(x) = limk→∞ Hk(x), which becomes a mapping from [0, 1]
to [0, 1]d. It is well-known that the Hilbert curve H enjoys the
locality-preserving property (Zumbusch 2012). In particular,
for any x, y ∈ [0, 1], one has

||H(x) − H(y)|| ≤ 2
√

d + 3|x − y|1/d. (5)

Inequality (5) indicates a small value of |x − y| is associated
with a small value of ||H(x) − H(y)||, despite the fact that
the converse cannot always be true. Inequality (5) inspired us
to select approximately equally-spaced observations using the
Hilbert curve H. In practice, Hk is used as a surrogate of H due
to the computational concern.

3.2. Hilbert Basis Selection Method

We develop a novel basis selection method using Hilbert space-
"lling curves, called the Hilbert basis selection (HBS) method.
The proposed method works as follows. We "rst scale the sample
{xi}n

i=1 ∈ Rd to [0, 1]d as a preprocessing step. Recall that the
Hilbert space-"lling curve Hk partitions both [0, 1] and [0, 1]d

into 2kd blocks, denoted by {c′
j}2dk

j=1 and {cj}2dk
j=1, respectively, and

construct a bijection between these blocks. For any data point
x ∈ [0, 1]d, we assign x to its corresponding block cj in [0, 1]d,
j ∈ {1, . . . , 2kd}, then map x to the center of the block c′

j =
H−1

k (cj). This is to say, all the data points that belong to the
same block are mapped to the same point in [0, 1]. Next, given
a positive integer C, we draw the histogram for the mapped
data points with C bins. Let C̃ be the number of nonempty bins

https://doi.org/10.1080/10618600.2021.2002161
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Figure 2. Illustration for the !rst three stages of the Hilbert’s space !lling curves when d = 2. From left to right, each panel shows H1, H2, and H3, respectively.

Figure 3. Illustration for Algorithm 1.

Algorithm 1 Hilbert basis selection method
Step 1. The sample {xi}n

i=1 is "rst scaled to [0, 1]d.
Step 2. Calculate the bijection between {c′

j}2dk
j=1 and {cj}2dk

j=1
using the Hilbert space-"lling curve Hk.

Step 3. For each data point xi, i = 1, . . . , n, suppose xi
belongs to the block cj, map xi to the center of the
block c′

j = H−1
k (cj).

Step 4. Draw a histogram for the mapped points with
C bins; let C̃ be the number of nonempty bins.

Step 5. Randomly select roughly [q/C̃] number of data
points from each nonempty bin; let {x∗

i }
q
i=1 to

denote the selected ones.
Step 6. Minimize the objective function (2) over the

e!ective subspace HE = NJ ⊕ span{RJ(x∗
i , ·),

i = 1, . . . , q}.

and q be the subsample size. We then randomly select roughly
[q/C̃] data points from each nonempty bin. The subsample
corresponding to the selected data points is used to construct the
e!ective subspace HE. Finally, we calculate the smoothing spline
estimator ηE in such a subspace. The algorithm is summarized
below.

Figure 3 gives an illustration of Algorithm 1, in which all data
points are shown in Figure 3(a). We set k = d = 2 in Algo-
rithm 1, resulting in 22×2 = 16 blocks in Figure 3(b), denoted
by c1, . . . , c16, respectively. All the data points are then mapped
to the center of c′

js, j = 1, . . . , 16, as shown in Figure 3(c).
Let the subsample size q = 8. We then draw C = 8 bins for
the histogram in Figure 3(c), resulting in C̃ = 8 nonempty
bins. We then randomly select C̃/q = 1 data point from each
bin. The selected data points are labeled as black triangles in
both Figure 3(c) and 3(d). Note that each bin in Figure 3(c) is

associated with a “meta-block”, as illustrated in Figure 3(d). As
a result, when C̃ = q, Algorithm 1 ensures none of the two
selected data points lie in the same meta-block, and thus the
selected subsample tend to be equally-spaced.

The choice of k is a key to Algorithm 1, while the perfor-
mance of Algorithm 1 is not sensitive to the choice of k, as long
as k is not too small. The reasons are as follows. Recall that for
dimension d, the curve Hk0 with respect to (w.r.t.) a positive
integer k0 partitions the interval [0, 1] into 2dk0 blocks, denoted
by {c′

j}2dk0
j=1 . One nice property of the Hilbert space-"lling curve

is that, suppose one data point x is mapped into a block using
the curve Hk0 , then for any k ≥ k0, the curve Hk always map
x into the same block, despite the fact that its position within
the block may vary. Note that Algorithm 1 draws a histogram
for the mapped data points with C bins and randomly selects
several data points from each of the nonempty bins. As a result,
when C is properly chosen and is "xed, the value of k ≥ k0 does
not a!ect such a histogram, and thus does not a!ect the result
of Algorithm 1.

The computational cost for Algorithm 1 mainly resides in
Step 2 and Step 6. It can be shown that the computational cost
for Step 2 is of the order O(n), which is negligible compared
to the computational cost for Step 5, which is of the order
O(nq2). In sum, analogous to other basis selection methods,
the overall computational cost for Algorithm 1 is at the order
of O(nq2).

4. Convergence Rates for Function Estimation

Let fX be the probability density function of the predictors
de"ned on $. We require $ to be bounded, and without loss
of generality, we assume $ ⊆ [0, 1]d. Let V(g) =

∫
$ g2fXdx.

A function f (x) de"ned on $ is said to be Lipschitz contin-
uous, if for any x, y ∈ $, there exist a constant M such that
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|f (x) − f (y)| ≤ M||x − y||, where || · || is the Euclidean
norm. We introduce some essential regularity conditions in the
following.

• Condition 1. The function V is completely continuous with
respect to J;

• Condition 2. For some β > 0 and r > 1, ρν > βνr for
su#ciently large ν;

• Condition 3. For all µ and ν, var{φν(x)φµ(x)} ≤ B, where
φν , φµ are the eigenfunctions associated with V and J in H,
B denotes a positive constant.

• Condition 4. For all µ and ν, φµ(x)φν(x) ∈ L2($), and is
Lipschitz continuous.

• Condition 5. Assume that max{(qni)/n}C
i=1 = Op(1), where

ni is the number of observations in the ith bin.
• Condition 6. As n → ∞, q1+2/d = O(n).

Condition 1 implies that there exist a sequence of eigen-
functions φν ∈ H and the associated sequence of eigenvalues
ρν ↑ ∞ satisfying V(φν , φµ) = δνµ and J(φν , φµ) = ρνδνµ,
where δνµ is the Kronecker delta. The growth rate of ρν is
closely related to the convergence rate of smoothing spline
estimates (Gu 2013). Condition 1 can be veri"ed under some
special cases when the eigenfunctions are available in explicit
forms. Consider J(η) =

∫ 1
0 η

′′dx, where η is a periodic
function on [0, 1]. The eigenfunctions φνs are the sine and
cosine functions in such a case, and thus Condition 1 holds
naturally. We refer to Section 9.1 of Gu (2013) for more
details on the construction of the eigenfunctions. In general,
Conditions 1–3 are widely-used in the asymptotic analysis for
smoothing spline estimates, and we refer to Gu (2013), Ma,
Huang, and Zhang (2015a) for more technical discussion of
these conditions. Condition 4 is satis"ed naturally for various
choices of eigenfunctions. Condition 5 naturally holds for the
regular sampling in [0, 1]d. Moreover, Condition 5 prevents
some extreme cases of the probability density function fX . For
example, when the one-dimensional data points {H−1

k (xi)}n
i=1

follow the Dirac delta function, one has max{(qni)/n}C
i=1 =

qn/n = q, which is in con%ict with Condition 5. Finally,
Condition 6 naturally holds when the number of basis q is not
too large. For example, when d ≥ 2, Condition 6 holds when
q = O(n1/2).

Recall that {x∗
j }

q
j=1 is a subsample selected by the proposed

algorithm. Moreover, C and C̃ are the number of bins and
the number of nonempty bins in Step 4 of Algorithm 1,
respectively. For brevity, throughout this section, we assume
only one data point is selected from each nonempty bin; that
is, we assume q = C̃. The extensions to more general cases
where q/C̃ = O(1) are straightforward. We let ñj to denote the
number of data points within the bin that x∗

j lies in. Consider
the estimator

∑q
j=1{ñj/n}φν(x∗

j )φµ(x∗
j ). Intuitively, such an

estimator can be regarded as the mean estimator of the strati"ed
sampling. This is because, for j = 1, . . . , q, {ñj/n}φν(x∗

j )φµ(x∗
j )

can be regarded as the sample mean of the jth strata. The
following lemma gives the convergence rate of the selected
subsample in terms of numerical integration. All the proofs
throughout this section are relegated to the supplementary
material.

Lemma 4.1. Under Conditions 4–6, for all µ and ν,
∑q

j=1{ñj/n}
φν(x∗

j )φµ(x∗
j ) is an asymptotically unbiased estimate for

∫
$ φν(x)φµ(x)fX(x)dx. Furthermore, when $ ⊆ [0, 1]d, we

have





∫

$
φν(x)φµ(x)fX(x)dx −

q∑

j=1
{ñj/n}φν(x∗

j )φµ(x∗
j )






2

= Op(q−1−2/d).

Lemma 4.1 shows the advantage of {x∗
i }

q
i=1 over a randomly

selected subsample {x+
i }q

i=1. To be speci"c, for all µ and ν, as
a direct consequence of Condition 3, which assumes that the
variance of φν(x)φµ(x) is "nite, we have

E




∫

$
φν(x)φµ(x)fX(x)dx − 1

q

q∑

j=1
φν(x+

j )φµ(x+
j )




2

= O(q−1).

Consequently, Lemma 4.1 suggests that one can approx-
imate the integration

∫
$ φν(x)φµ(x)fX(x)dx more e!ec-

tively, by calculating
∑q

j=1(nj/n)φν(x∗
j )φµ(x∗

j ) instead of
∑q

j=1 φν(x+
j )φµ(x+

j )/q. Lemma 1 paves the way for our main
theorem below.

Theorem 4.1. Suppose
∑

i ρ
p
i V(η0, φi)2 < ∞ for some p ∈

[1, 2]. Under Conditions 1–6, as λ → 0 and q1+2/dλ2/r → ∞,
we have (V+λJ)(η̂E−η0) = Op(n−1λ−1/r+λp). In particular, if
λ 2 n−r/(pr+1), the estimator achieves the optimal convergence
rate

(V + λJ)(η̂E − η0) = Op{n−pr/(pr+1)}.

It is shown in Theorem 9.17 of Gu (2013) that the full-basis
smoothing spline estimator η̂ has the convergence rate (V +
λJ)(η̂ − η0) = Op{n−pr/(pr+1)}. Theorem 1 thus states that the
proposed estimator η̂E achieves the identical convergence rate
as the full-basis estimator. In particular, the convergence rate of
the full-basis estimator gives a lower bound for all the estimators
that are based on a subset of the basis functions. According to
Gu and Kim (2002), Ma, Huang, and Zhang (2015a), and Meng
et al. (2020b), all these proposed estimators have the sample
convergence rate as the full-basis estimator η̂, under di!erent
conditions.

We emphasize that the goal of Theorem 1 is not to demon-
strate that the proposed estimator enjoys a more superior con-
vergence rate. Instead, Theorem 1 indicates that to achieve such
a convergence rate, the proposed estimator requires a relatively
smaller q, compared with other estimators. In particular, both
the UBS method (Gu and Kim 2002) and the ABS method
(Ma, Huang, and Zhang 2015a) require q = O{n2/(pr+1)+δ} for
an arbitrary small positive number δ. While for the proposed
method, combining the condition q1+2/dλ2/r → ∞ and λ 2
n−r/(pr+1) in Theorem 1 yields, an essential choice of q should
satisfy q = O[n2d/{(pr+1)(d+2)}+δ], which is a smaller order of
O{n2/(pr+1)+δ}. Although the estimator proposed in Meng et al.
(2020b) only require q = O{n(1+δ)/(pr+1)}, their work assume
the sample is uniformly generated from a hypercube, and such
an assumption is not always achievable in practice. In the cases

https://doi.org/10.1080/10618600.2021.2002161
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when the sample follows an arbitrary distribution, to the best of
our knowledge, the proposed estimator is the one that requires
the smallest order of q.

Consider the parameter p and q in Theorem 1. It is known
that q is associated with the type of the spline, and p is
closely associated with η0. Both parameters have an impact
on the convergence rate of the proposed estimator. According
to Gu (2013), a common strategy is to set p ∈ [1, 2] and
r ∈ [4 − δ, 4] for cubic smoothing splines and tensor-product
splines, in which case the size of q roughly lies in the interval
(O(n2d/{9(d+2)}), O(n2d/{5(d+2)})). We refer to Gu (2013) for
more technical discussion on how to select p and r in practice.

5. Simulation Results

To show the e!ectiveness of the proposed smoothing spline
estimator, we compare it with three mainstream competitors
in terms of prediction accuracy. The competitors include the
UBS method (Gu and Kim 2002), the ABS method (Ma, Huang,
and Zhang 2015a; Ma et al. 2017), and the SBS method (Meng
et al. 2020b). All the methods are implemented in R, and all the
parameters are set as default.

We measure the performance for each method using the pre-
diction mean squared error (MSE), de"ned as [∑n

i=1{η̂E(ti) −
η0(ti)}2]/n, where {ti}n

i=1 is an independent testing dataset
generate from the same probability density function as the
training sample. Standard errors are calculated through a
hundred replicates. In each replicate, we generate a synthetic
training sample with n = 2000 from each of the following four
probability density functions, and the sample is then scaled
to [0, 1]d,

• D1: Uniform distribution on [0, 1]d;
• D2: A mixture t-distribution (T1, . . . , Td), where {Ti}d

i=1 are
independently generated from t(10, −5)/2 + t(10, 5)/2;

• D3: A multivariate Gaussian distribution N (0, -), where
-ij = 0.9|i−j|, i, j = {1, . . . , d};

• D4: A banana-shape distribution, which is generated by
(Z1, Z2 + Z2

1
1.2 , . . . , Zd + Z2

1
1.2 ), where (Z1, Z2, . . . , Zd) is gener-

ated from the standard multivariate Gaussian distribution.

We consider four di!erent regression functions, which are anal-
ogous to the functions considered in (Wood 2003; Lin and
Zhang 2006):

• F1: A 2-d function sin(10/(x1 + x2 + 0.15));
• F2: A 2-d function h1(x1, x2) + h2(x1, x2), where σ1 = 0.1,

σ2 = 0.2, and
h1(t1, t2) = {0.75/(πσ1σ2)}

× exp{−(t1 − 0.2)2/σ 2
1 − (t2 − 0.3)2/σ 2

2 },
h2(t1, t2) = {0.75/(πσ1σ2)}

× exp{−(t1 − 0.7)2/σ 2
1 − (t2 − 0.5)2/σ 2

2 };
• F3: A 3-d function sin(π(x1 + x2 + x3)/3) − x1 − x2

2;
• F4: A 4-d function

x1 + (2x2 − 1)2/2 + [sin(10πx3)/{2 − sin(10πx3)}]/3
+{0.1 sin(2πx4) + 0.2 cos(4πx4) + 0.3 sin(6πx4)

2

+0.4 cos(8πx4)
3 + 0.5 sin(10πx4)

3}/4.

The signal-to-noise ratio, de"ned as var{η(X)}/σ 2, is set to be
two. We "nd the results show similar patterns with a large range
of signal-to-noise ratios. We set the number of basis q to be
{20, 40, 60, 80, 100}. To combat the curse-of-dimensionality, we
"t smoothing spline analysis of variance models with all main
e!ects and two-way interactions.

Figure 4 shows the log prediction MSE versus di!erent q
under various settings. Each row represents a particular data
distribution D1–D4, and each column represents a particular
regression function F1–F4. We use solid lines to denote the
proposed HBS method, dash-dotted lines to denote the ABS
method, dashed lines to denote the SBS method, and dotted
lines to denote the UBS method. The standard error bars are
obtained from one hundred replicates. The results for the full-
basis estimator is omitted here due to its high computation
cost.

Three signi"cant observations can be made from Figure 4.
We "rst observe that all the methods perform similarly, while
the UBS method performs slightly worse, in the "rst row of
Figure 4, in which cases the observations are uniformly dis-
tributed in a hypercube. Such an observation is consistent with
the simulation results in Meng et al. (2020b), which suggests
both the SBS method and the ABS method consistently outper-
form the UBS method. Nevertheless, in the lower three rows of
Figure 4, we observe the UBS method yields decent performance
occasionally. Such an observation suggests when the predictors
do not follow the uniform distribution on a hypercube, none
of the four basis selection methods consistently dominates the
others.

Second, the MSE for the proposed estimator decreases faster
than the other estimators as q increase. This observation is con-
sistent with Theorem 1, which suggests the proposed estimator
requires smaller q to achieve the identical convergence rate as
the full-basis estimator.

Third, the proposed estimator may su!er from deteriorat-
ing performance when q is too small. We attributed such an
observation to the fact that, when q is small, the proposed
method tends to select a large proportion of basis functions
corresponding to the data points that are close to the bound-
ary. These basis functions may not have adequate bene"ts in
terms of prediction. As q increases, the proportion of such basis
functions decreases, and thus the proposed estimator achieves
better performance. It is suggested in Gu (2014) to let q ≥ 30
for robust prediction in practice. According to such a suggestion
and consider the cases when q ≥ 30 in Figure 4, we observe the
proposed estimator outperforms the competitors in most of the
settings.

6. Real Data Example

In petroleum re"nery, a debutanizer column is used to separate
butane from gasoline. Estimating the butane concentration in
the bottom product of the debutanizer column is essential for
improving the performance of the re"ning process. Of interest
is to predict the butane concentration using the conditions
of debutanizer columns and other related information, which
are measured by the so$ sensors in the petroleum re"nery
process. We consider a dataset with n = 2395 and seven
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Figure 4. Simulation under di"erent regression functions (from left to right) and di"erent probability density functions for the predictors (from upper to lower). The
prediction errors are plotted versus di"erent q. Vertical bars represent the standard errors obtained from a hundred replicates.

predictor variables, includes temperature, pressure, %ow, and
so on.1 More details of this dataset can be found in Fortuna
et al. (2007). The sample is "rst scaled to [0, 1]7 as a prepro-
cessing step. Figure 5 shows histograms for each of the pre-
dictors in diagonal panels and scatterplots for each pair of the
predictors in o!-diagonal panels. We observe the sample in
this dataset is extremely nonuniformly distributed. The basis
functions selected by the proposed HBS method and the UBS
method are marked as black dots in the lower diagonal pan-
els and the upper panels, respectively. Compare with the UBS
method, we observe the proposed method selects the basis func-
tions corresponding to the observations that are more equally
spaced.

1The dataset can be downloaded from https:// home.isr.uc.pt/ ~fasouza/
datasets.html

We "tted the cubic tensor product smoothing spline analysis
of variance model to the dataset, and we considered two di!er-
ent model settings,

• M1: additive model,

yi = η∅ +
7∑

j=1
ηj(xij) + εi, i = 1, . . . , n;

• M2: by the preliminary model diagnostics (Gu 2004), we
considered the following functional ANOVA decomposition:

yi = η∅ +
7∑

j=1
ηj(xij) + η1,3(xi1, xi3)

+ η1,5(xi1, xi5) + η1,6(xi1, xi6)

+ η3,5(xi3, xi5) + εi, i = 1, . . . , n.

https://home.isr.uc.pt/~fasouza/datasets.html
https://home.isr.uc.pt/~fasouza/datasets.html
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Figure 5. The diagonal panels show histograms for each of the predictors. The o"-diagonal panels show the scatterplots corresponding to each pair of the predictors. The
bases selected by the proposed method and the uniform basis selection method are shown in the lower diagonal panels and the upper diagonal panels, respectively. The
black dots are the observations corresponding to the selected basis functions when q = 40.

Figure 6. The left panel shows the log prediction MSE versus di"erent q under model setting M1 for the debutanizer column dataset. The right panel shows the log
prediction MSE versus di"erent q under model setting M2. The horizontal lines represent the performance for the full sample estimator.
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Here, the response yi is the butane concentration of ith
observation, xij is the value of the jth predictor of the ith
observation, η∅ is a constant function, {ηj}7

j=1 are main e!ect
functions, η1,3, η1,5, η1,6, and η3,5 are two-way interaction
functions of corresponding predictors, and εi’s are iid normal
errors with zero mean and unknown variance. We replicated
the experiment one hundred times. To show the e!ectiveness
of the proposed estimator, we compared it with the other
three mainstream competitors, as mentioned in the previous
section, in terms of the prediction MSE calculated on a
holdout testing set. Figures 6 shows the log prediction MSE
versus di!erent q under two di!erent model settings. Vertical
bars represent the standard errors obtained from a hundred
replicates. The horizontal lines represent the performance
for the full sample estimator. We observe that the proposed
estimator, labeled as solid lines, yields the second-best result
for the smallest q considered here and the best result for
other cases. We attribute such an observation to the fact
that the proposed method selects the basis functions corre-
sponding to roughly equally spaced observations, resulting
in a more e!ective estimation of the underlying regression
function.

7. Discussion

In this article, we proposed a novel basis selection method for
smoothing splines approximation. Unlike the existing basis
selection approaches, which mainly focus on the setting that
the sample is uniformly distributed on a unit hypercube, the
proposed method aims to provide an e!ective estimation
that is adaptive to an arbitrary probability distribution of
the sample. Motivated by importance sampling, we achieved
the goal by carefully selecting a set of approximately equally
spaced observations, even when the sample is not uniformly
distributed. We proposed an e#cient algorithm for identifying
such observations by using the Hilbert space-"lling curve. The
proposed estimator has the same convergence rate as the full-
basis estimator when the number of basis q is roughly at the
order of O[n2d/{(pr+1)(d+2)}]. The superior performance of HBS
over mainstream competitors was justi"ed by various numerical
experiments.

Our work is related to Meng et al. (2020b). In particular,
Meng et al. (2020b) used space-"lling design techniques,
or low-discrepancy sequences, to identify an approximately
equally spaced subsample from “uniformly distributed” sample,
resulting in an e#cient approximation. Our work extended
their work to the nonuniform distribution setting and theo-
retically showed that the basis functions corresponding to an
equally spaced subsample still bene"ts the smoothing splines
approximation.

The proposed method has the penitential to be applied
to many large-sample applications, including but not limited
to Gaussian process regression, kernel ridge regression, and
low-rank approximation of matrices. This work may speed
up these techniques with theoretical guarantees. Some addi-
tional simulation results are provided in the supplementary
material.
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