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» 1 Abstract

12 How self-organization leads to the emergence of structure in social populations
13 remains a fascinating and open question in the study of complex systems. One
1 frequently observed structure that emerges again and again across systems is
15 that of self-similar community, i.e., homophily. We use a game theoretic per-
16 spective to explore a case in which individuals choose affiliation partnerships
v based on only two factors: the value they place on having social contacts, and
18 their risk tolerance for exposure to threat derived from social contact (e.g., in-
v fectious disease, threatening ideas, etc.). We show how diversity along just these
2 two influences are sufficient to cause the emergence of self-organizing homophily
21 in the population. We further consider a case in which extrinsic social factors
2 influence the desire to maintain particular social ties, and show the robustness
;3 of emergent homophilic patterns to these additional influences. These results
2 demonstrate how observable population-level homophily may arise out of indi-
»  vidual behaviors that balance the value of social contacts against the potential
2 risks associated with those contacts. We present and discuss these results in the
27 context of outbreaks of infectious disease in human populations. Complement-
» ing the standard narrative about how social division alters epidemiological risk,
2 we here show how epidemiological risk may deepen social divisions in human
s populations.
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2 Introduction

Many studies have considered the impact of individual homophilic behaviors on
emergent social structures [1, 2, 3, 4, 5, 6]. Communities in which individuals
are more likely to interact with others like them have been discussed widely as
both positives (e.g. modularity potentially inhibiting disease spread [7, 8, 9]) and
negatives (e.g. echo chambers into which important information may be less able
to penetrate [10]). Few studies, however, have considered whether observable
homophily in population organizational structure can itself have emerged from
more fundamental self-organizing individual-level behaviors. For members of
social species, there is a likely benefit from social contacts themselves, but also
that benefit may be dampened by costs associated with risk that arises directly
from that same contact. One clear example of such systems is infectious disease
spreading through social populations.

During a disease outbreak, infection risk can be mitigated through preven-
tative measures [11], such as social distancing, that have been presented as part
of a behavioral immune system [12, 13]. Individual adherence to preventative
behaviors has been associated with experimental measures of risk aversion [14].
Thus, all else equal, in response to an epidemic, more risk averse individuals can
be expected to adhere more to social distancing. By definition, the act of social
distancing impedes interactions; a phenomenon that is antithetical with human
beings’ need-to-belong [15]. Loneliness can have a diversity of health and men-
tal costs [16]; pain associated with social circumstances shares neural pathways
with physical pain [17]. This trade-off between the need-to-belong and the be-
havioral immune system has not gone unrecognized, and has been the subject
of several laboratory-based studies [18, 19]. Outside of the laboratory, however,
individuals live in a heterogeneous society with distinct predilections towards
prioritizing social interactions against their own risk aversion.

Explicit consideration of this social heterogeneity can be explored by incorpo-
rating individually distinct strategies of decision-making. Both social isolation
and infection have the capacity to cause very real physical and mental maladies;
as such, there is unlikely to be a unique, globally optimal solution that accom-
modates needs across a diverse population. Contingent on risk categories (such
as age, immunocompetence, nutrition, or underlying health factors; [20, 21]),
individuals can face uncertainty as to the actual risks of contracting a disease
and its severity, given those contingencies. This is significant, as risk-averse
individuals have been suggested to be intolerant, or aversive, of uncertainty
[22, 23, 24]. Importantly, risk assessment and aversion have a deep evolution-
ary history [25, 26], with evidence for them to be heritable traits [27, 28]. In
humans, individual differences, such as the extraversion or sociability dimen-
sions of personality, have been shown to predict scores on scales of risk-taking
behavior, inclusive of health behavior [29, 30]. An infectious disease outbreak
simultaneously introduces large-scale (often unequally perceived) risk factors
and, thus, has the capacity to alter the social dynamics of a community [31, 32].

Risk aversion during a disease outbreak has been posited to be an ‘impure
public good’ [14, 15, 33, 34]: individuals’ actions contribute to public health,
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but individuals may not have a vested interest in public health (either actual or
self-perceived) and are, instead, acting out of self-preservation [33, 34]. Such a
perspective emphasizes the importance of understanding how individuals’ per-
sonal decision-making processes, in the midst of an outbreak, scale to have
emergent social consequences. These emergent social consequences could have
important implications for the progression of the outbreak while simultaneously
altering people’s experience of their social world and the benefits that they ob-
tain from socializing. One such emergent consequence might be that individuals
preferentially associate with alike individuals, which might be evident via social
assortativity, i.e., homophily [6]. Homophilic associations have been demon-
strated across numerous axes of individual variation, including shared values
or characteristics [6], inclusive of personality [35]. Recently, risk aversion has
been recognized as a key component of the structural emergence of homophily
[36, 37]. For example Kovaiik and van der Leij [37] demonstrate an association
between risk aversion and social network structure in an economic context, with
risk aversion correlating with local clustering/transitivity in empirical data and
theoretical models. This is relevant as transitivity and homophily are often
linked in social networks [38]. Subsequent experimental work has emphasized
the correlation between homophily and risk aversion, but emphasized the need
to explore what generates network homophily [36], and the role of risk aversion
in this process.

Here we present a game theoretical approach to understanding how prioriti-
zation of individual strategies may shape the social associations of a population.
We extend beyond prior research by exploring how balancing risk aversion with
socialization can alter association dynamics without imposing a preexisting so-
cial structure (i.e., lacking a pre-imposed social network or hierarchy). We
implement a socializing game, in which individuals have distinct strategies for
prioritizing risk or socialization and demonstrate how these simple dynamics
may lead to well-defined emergent structures that have implications for both
disease risk and societal function. We then extend this model to incorporate
potential pre-existing social relationships between agents to examine how so-
cial structure can reorganize based on risk aversion when exposed to extreme
exogenous events [37], in this case an infectious disease epidemic.

3 Methods

We define a socializing game during an epidemic with susceptible-infected-
susceptible (SIS) dynamics. We assume players are short-sighted and subra-
tional; rather than being perfectly rational agents who can predict the behavior
of other players and compute the optimal response, players repeatedly play
games and incrementally update their behavior in the direction of the best re-
sponse to their current environment.
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Game Formalism

Let M >> 0 be a large constant. At each time ¢, for each player y, player
x decides on a social action strategy @, (t) = {as4(t) € [0,M] : y € G}, cor-
responding to an amount of social contact they want to have with each other
player. ' This social contact requires mutual agreement, so the amount of
socializing that actually occurs between players x and y is

Ay (1) 1= min(ag,y (1), ay (1)) (1)

The utility of player z at time ¢ is defined by

uz(t) = oy f(az) At — pwp(c;’x, At) (2)

Where f is a nondecreasing concave function (such as In) which yields greater
utility for higher inputs at diminishing rates, a, = f al, . dy, At is the amount

T,y
of time that passes between each time step, and p(c?xm,At) is the expected
probability of becoming infected as a result of socializing in each time step.? o,
represents the value player x places on socializing. More social players will have
higher values of o, and place more emphasis on socializing. p, represents the
value player x places on health. More health conscious (risk averse) players will

have higher values of p,, and place more emphasis on avoiding disease.

Epidemiological Calculations within the Game Formalism

Since the force of infection can be expected to scale proportionally to the amount
of social contact among the players [39], then, assuming player x is uninfected,

p(dls, At) = At / Bal, ,aydy 3)

where 3 be the inherent transmissibility of the disease, and ¢, is 1 if player
y is infected, and 0 otherwise.

Let v be the recovery rate of an infected individual from the disease, and
assume that recovered individuals return to the susceptible population with
no residual protective immunity. Then this defines a Susceptible-Infectious-
Susceptible (SIS) model [40] with

IThis assumes that all players in the population are socially connected to each other. If
we relax this assumption by arranging players spatially and setting az,y = 0 for players more
than a certain distance apart then, assuming players from each group are equally distributed
spatially and so is the initial infection, this will yield identical results to our model. If we
don’t make those assumptions, or relax this restriction in other ways such as arranging players
on a social network graph, then this is likely to create new dynamics, but is beyond the scope
of this work.

2If f is an unbounded function, this raises the concern of a degenerate case where so-
cialization rates increase infinitely and the cost of near-constant infection is made up for by
unbounded gains from socializing. This is prevented via two features of the model. First,
players do not change their behavior even when infected, so players behave as if they can be
infected repeatedly, disincentivizing players from this case. Second, we bound socialization by
a constant M so truly extreme scenario are ruled out directly.
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dl

E = —I’Y + /(]— - qz)p(cpz)dl' (4)

where we explicitly model the contribution to the I class as the expected
rate of recruitment determined by the behaviorally-driven force of infection, and
p(d'2) = plalz, At) /AL,

To ensure that p is a proper probability distribution, we require the max-
imum socialization M < 1/8, though in practice this limit is not relevant for
small 3.

Logic of the System

To simplify simulation and analysis of this system, we consider populations of
players with o, and p, determined randomly from discrete probability distribu-
tions. We define o; < oy, p; < pp, and assume each player x has an equal chance
of having o, equal g; or gy, and p,, equal p; or pp,. This effectively partitions the
set of all players G into four homogeneous subsets of equal size G;. Because all
players within a group have the same utility function, they will make the same
decision regarding @. When referring to specific groups, we denote them iden-
tifiers based on their combined parameters: AS (asocial, o; = 07), SO (social,
o; = op), RT (Risk-Taking, p; = p;), RA (Risk-Averse, p; = pp). Combining
these identifiers leads to the four subgroups: ASRT, ASRA, SORT, SORA.

Additionally, we assume that the utility functions of each player is common
knowledge. We believe this is a realistic assumption because sociability and risk-
averseness (in the context of health outcomes) are discernable personality traits
which social contacts tend to know about each other. We also assume players
know the frequency of infection within each subgroup, but do not know the
infection status of any particular individual. So they can, for instance, choose
to socialize more with groups that currently have fewer infected members, but
cannot choose to socialize exclusively with uninfected individuals within a group.
(Note: this is consistent with unreliable proximate cues of infection, especially
for diseases with a pre-symptomatic phase; [41, 42, 43].)

Due to this information restriction, we can rewrite all variables using group-
subscripts. The amount of socializing among these groups will be

ajk(t) = |Grlaz,y(t) (5)
aj . (t) = |Grlag,, (1) (6)

where z is any player from G, and y is any player from G}. This allows us
to write the SIS dynamics in terms of these subgroups. Let I;(t) be the fraction
of players in G; who are infected at time ¢. Then

dl;
Sl = Ly + Y (- L) bal, 7)
k
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and likewise the probability of becoming infected for an uninfected member
of group j is

p((;’j,At) = AtZIkﬂa;k (8)
k

If we let the socialization function f(a) = In(a), and substitute, the utility
function for a member of group j is

uj(t) = At(oyin(Y_dfx) = p; Y InBa ) (9)
k k

Population Dynamics

Rather than rationally predicting other player’s strategies and computing the
optimal response to every circumstance, players gradually adapt their strategy
over time in response to feedback from games they play (i.e., subrationality).
In particular, each player starts with a set of strategies @ corresponding to their
pre-existing social preferences. At each time step, players play one round of the
game with each other, and receive payoffs according to the results. Some time
At passes, and the disease progresses according to the SIS equations and the
amount of socialization played in the game. Each player is then informed of the
new frequency of infection Iy for each subgroup of players. Each player then
updates their social preferences in the direction of best response. In particular,
we fix an update speed Aa, then for each group k, player j estimates u; in
the counterfactual situations where their socialization with group k£ had been
a;’k + nAaAt, where n € {—1,0,1}, and all other socialization levels remained
unchanged. The player then increments a;, by nAaAt according to the n that
yields the highest utility. This is computed simultaneously and independently
for each k. 3

This allows players to incrementally update their strategy in response to the
changing environment of their peer’s behavior and the state of the epidemic.
By adjusting the ratio % we can change the speed of social adaptation relative
to the speed of the epidemic.

We assume infected individuals have a latent period in which they are con-
tagious but pre-symptomatic, so they continue socializing at the same rate as
uninfected individuals.

3Because aj,r, does not directly control a;’k except through mutual agreement via ay_ ;, this
can lead to a situation in which a player repeatedly increases a; x, but this yields no change
in the actual dynamics. A value of a;; much greater than aj,; behaves no differently from a
value of a; j that’s only slightly greater than ay ; except that it takes longer to update if the
incentives change causing player j to start decreasing it. To prevent cases such as this, we fix
a small integer n. = 4 and restrict a; ; < ag,; +ncla
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Extending the Model to Include Differentially Valued Con-
tacts

Thus far, the model has remained agnostic among social contacts, allowing
any interaction to serve equally to fulfill any individual’s desire to socialize.
To incorporate scenarios in which certain social contacts across groups are of
greater personal value than others, we also fix a constant m corresponding to an
additional utility gained from each individual’s most high-valued relationships
and social activities, and an exponential decay term r» < 1. We then incorporate
a distribution of utilities across interactions by multiplying the value of each
marginal social interaction by 1+ mr® and instead use

aj g
a; == CZ/O 1+ mrfde (10)
k

as the term characterizing the social contribution to the utility function, where
¢ is a constant to scale the resulting function.
This simplifies to

aj = CZ (a;’k + w> (11)
k

when 7 # 1, and a; = ¢} a’;; whenr=1.

Changing the social contribution of the utility function in this way allows for
the maintenance of social contacts across groups and the creation of new ones
by creating an incentive for players to spread their social interactions among all
of the groups. Of course, the benefits of socializing with members of different
groups are then balanced against the differing infection exposure that results.
(We explore boundary conditions for the system in Appendix 1 [44]. We find
that for any set of parameters other than M and At, there exist M and At
such that the observed behaviors of the model are consistent with the results
presented in the main text.)

Metrics and Analysis

We record emergent patterns by quantifying social contacts within and across
preference groups over time and the coupled outcomes in the prevalence of
infection in those groups.

In order to characterize emergent homophily in the context of this composite
utility behavior, we fix constants w and 7 with the goal of fixing fOT 1+mrodx =
w. For simulations presented here we use 7 = 1, w = 1.25. We let r range from
0 to 1 as a free variable, and set m = % In this way, the area under
the curve can be normalized by setting ¢ = ». When r = 1 this yields a flat line,
equivalent to the model with no social differentiation in value among individual
contacts. As r decreases, m increases, and the ratio in benefit skews in favor of
diversity among contacts across groups (i.e., allowing maintenance of particular
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contacts, despite mismatch in axes of socialization and risk tolerance). As r
goes to 0, the function approaches an infinitely steep exponential decay, which
incentivizes socializing across descriptive groups. We then measure homophily
using a modified version of Krackhardt’s EI homophily index. 4 In particular,
for each group j we define

Int; = aj; (12)
1 I
k#j
Int — Ext
L 14
7 Int + Ext (14)

Where H; measures the homophily in the socialization of each group. We
then define the overall homophily of the population, H, as the average H;.
When players socializing equally among all groups, we get H = 0, as players
socialize more in their own groups this increases up to a maximum of 1, and in
the hypothetical scenario where players socialized more externally this decreases
down to a minimum of —1.

In order to see how the parameter differences between groups impacts ho-
mophily, we define an independent variable s > 0, fix o; = 4, p; = 30, and set
op = 4+ 16s, pp, = 30 + 60s. Thus, when s = 0 all four groups have identical
parameters, and thus behave identically. As s increases the risk averse and high
social groups become more distinct from the risk tolerant and low social groups.

4 Results and Discussion

Neutral Re-assortment of Social Contacts

In its most extreme expression, individuals were allowed to abandon all existing
social contact with individuals who did not maximize their individual joint util-
ity in both socializing and risk tolerance. Figure 1 shows the total socialization
of players within each group over time for one instance of the simulation. Under
this scenario, 7 = 1 and we see that players settle into an equilibrium level of
socializing and infection, and that both levels are higher for groups with higher
o; and lower p;. The utility gained from socializing is subject to two levels of
negative feedback. In the short term, higher levels of socialization receive less
marginal utility due to the logarithm, meaning that increasing socialization is of
less benefit to the more social groups. In the long term, higher levels of social-
ization result in higher levels of infection in the population, increasing the costs

4The standard EI homophily index uses total number of internal and external network
connections, while we define them based on total socialization for our groups. Additionally,
we define Ext using the average socialization with each external group rather than the sum, so
that we get a score of 0 when players are indifferent among socializing among groups, rather
than when precisely half of socialization is internal. Finally, we negate our measure relative
to the typical EI homophily score so that perfect homophily yields a score of 1 rather than
—1.
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Figure 1: Illustration of the dynamics of the system over time. A. The social-
ization rates of all groups decline initially before stabilising at different levels,
related to B. corresponding changes in the prevalence of infection in different
groups. Model parameters are set as o, = 4,0, = 12,p; = 30, p5, = 60,7 = 1.
Line colors designate the different groups as indicated in the figure. ASRT is
asocial risk-tolerant, ASRA is asocial risk-averse, SORT is social risk-tolerant,
SORA is social-risk averse.

of socializing. If we take the derivative of u; with respect to a}y i and rearrange,
we find that

(15)

Thus we see more socialization in groups with higher ¢; and lower p;.

Simulations of this model repeatedly show the emergence of perfect ho-
mophily as time progresses. Each group segregates from the others and in-
dividuals only socialize within their own group.

Figures 1 and 2 shows how these social patterns emerge over time. The initial
epidemic drives all socialization levels down, which in turn causes the infection
to recede. However, when socialization levels recover, gains in socialization pri-
marily occur within each group due to a natural stratification of epidemiological
risk.

The differing levels of infection within each group mean that only more social
players are willing to tolerate higher levels of infection to socialize more, so they
begin increasing a sooner after the initial epidemic, and stably socialize more
at equilibrium. As a result, other players are less willing to socialize with those
players in particular. Because the positive term in each player’s utility function
does not vary based on player subgroup, socializing with less-infected subgroups
yields the same payoff for a smaller risk.

Therefore, everyone wants to socialize with the safest, least social group -
the one with high p; and low o; (ASRA). However, everyone in this group also
prefers to socialize with players from their own group. Consequently, players
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Figure 2: Within and between group socialization rates over time with » = 1.
Within group socialization rates increase over time until the system stabilises
with perfect homophily according to group membership. Model parameters are
set as op = 4,0, = 12, p; = 30, pp, = 60. ASRT is asocial risk-tolerant, ASRA is
asocial risk-averse, SORT is social risk-tolerant, SORA is social risk-averse.

from least social and most risk averse group can increase their utility by decreas-
ing all as to 0, where k # 2, and increasing as 2 to compensate. This lowers
their risk while still allowing them to benefit from socializing. And because
ah 5 = ag,2, they are able to socialize at exactly their preferred level, rendering
other socialization with other groups unnecessary.

The continuation of the above mechanism propagated through successively
more social and less risk averse groups recursively creates a linear hierarchy in
the population. Every other group increases a; 2, but this is not reciprocated,
SO a;ﬂ = 0. The least infected group has effectively removed itself from the pop-
ulation Without the ability to socialize with their preferred group, they have
to increase other a; . The second least infected group (group 1 in the figure)
then becomes the preferred social partner of each group, including themselves.
As the same process repeats recursively, each group in turn segregates itself
from the more infected groups and achieves its equilibrium socialization level
internally. Eventually, all groups end up socializing internally, with more in-
fected groups unilaterally being rebuffed in their attempts to socialize more by
increasing their socialization with less infected groups (a;x > 0, but ax ; = 0).

Retention of Preexisting Social Contacts

The perfect homophily generated above results from a scenario in which indi-
viduals drop all of their existing social relationships from outside of their group

10



305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

and replace them with individuals from their own group. This assumption is
unrealistic because individuals value aspects of their relationships other than
the risk of infection, or may also be constrained in their choice of associations.
This means that relationships are not perfectly replaceable, with each potential
partner equivalently able to satisfy the desire for social contact. We therefore
also explore an adjusted scenario for our model to account for some relationships
being more valuable by increasing the benefits of heterogeneous socialization.
In this scenario, we assume that possible social relationships and activities have
varying values, and that players will drop the least valuable ones first when pos-
sible within a group, meaning the benefits obtained by socializing are limited if
a player adheres too closely within any one group.
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Figure 3: Within and between group socialization rates over time with r = 1/2
and m = 3. Within group socialization rates increase over time until the system
stabilises with partial homophily according to group membership. Other model
parameters are set as o = 4,0, = 12,p; = 30,pr, = 60. ASRT is asocial
risk-tolerant, ASRA is asocial risk-averse, SORT is social risk-tolerant, SORA
is social risk-averse. Final homophily scores in this figure for each group are
0.479, 0.782, 0.720, 0.482, respectively.]

Figure 3 shows the pairwise socialization between members of each group
over time that result from adding these social constraints. We see now only
partial homophily emerging. Players still socialize primarily within their own
group at equilibrium, but still maintain certain associations with other groups
as the benefits from the multiplier outweigh the increased infection risks. Pairs
with more similar home-group infection risks still tend to socialize more than
dissimilar pairs.

We can vary the value individuals place on particular, irreplaceable contacts
by adjusting the steepness of the multiplier function (Fig. 4c). At low values of

11
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r (less steep multiplier function) we see low levels of homophily. However, as we
increase r we see that mixing between groups decreases until perfect homophily
emerges at values of r close to one, as in as in Fig. 2.

We can also observe that the level of homophily increases as groups become
more distinct in their strategies (Fig. 4b). We vary an independent variable
s >0, fix oy = 4, pp = 30, and set o, = 4 + 165, pp, = 30 + 60s. We see that
homophily increases with s, meaning a population of groups with more disparate
strategies will exhibit more homophily.

We can observe this trend more broadly by varying both r and s (Fig. 4a).
We see that homophily increases with respect to each of r and s, though r has
a larger impact, suggesting that pre-existing social connections are more influ-
ential than the intrinsic differences between groups in the extent of homophily
that emerges.

Homophily
.
0 1

S 1
05— T 00000
Homophily
0 0 s 1

Homophily

0 r 1

Figure 4: Homophily in socialization rates according to group membership as a
function of both 7 and s (a), a function of s for » = 0.5 (b), and as a function of
r for s = 0.5 (¢). Other model parameters are set as oy = 4,05, = 4 + 165, p; =
30, pp, = 30 + 60s.
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Diversity as a Driver of Homophily

Here we demonstrate that the behavioural response of a population to an infec-
tious outbreak can drive the emergence of homophily as a result of individual
decision-making strategies. Explaining emergent organizational structures that
impact the function and efficiency of populations, but arise solely from indi-
vidual behaviors, is a fundamental challenge in understanding social systems
[45, 46, 47, 48, 49]. The role of infectious disease is of particular interest due
to both the successful function of a society (a benefit) and successful trans-
mission of infection (a cost) relying on similar types of contacts and behaviors
[50, 51, 52, 53]. Changing our assumptions to assign value to pre-existing rela-
tionships lessens, but does not remove, the emergence of homophily. Further,
we see that increasing the magnitude of the differences between groups, in their
utility functions, increases the level of homophily, while more similar popula-
tions are more willing to engage in intergroup interactions. (We provide an
analytic explanation for general system behaviors in Appendix 2 [44].)

In our model, the unanticipated emergence of homophilous groups along
axes prioritizing risk aversion or social interactions parallels experimental and
theoretical work emphasizing risk aversion as a key component of the structural
emergence of homophily [36, 37]. Uncertainty of the environment and individ-
ual differences in risk aversion have been posited to interact for the generation
of network structure [37]. Interestingly, our results are similar, but achieve
these similarities without making the previously included assumption of exist-
ing social structure. Even in our extended model that places value on existing
relationships, homophilous ties emerge in response to a system-wide outbreak
when both risk and risk perception are driven by behavior. (For exploration
of the impact of relative values of the social and risk-aversion parameters, see
Appendix 3 [44].) This shows that large epidemics have the capacity to dis-
turb and reorganize social structure along axes of risk and social preference,
as evidenced during the HIV and COVID-19 pandemics [54, 55, 56, 57]. Such
population level emergence of assortative mixing has important consequences
for anticipating the spread of disease in a heterogeneous society, especially as
homophily will also increase modularity and alter the dynamics of the spread
of both disease and information [58, 59, 60, 7].

Perhaps most intriguingly, however, our findings suggest that observable
emergent community structure may arise from individual differences in cate-
gorical preference or assessment of the risks and benefits of social contact over
time. While disease is an important example of socially contagious risk, it is
certainly not the only one. Cultural norms and the perceived threat of homog-
enization eroding group identity [61, 62] may similarly act as a driving factor
in constructing and maintaining social divisions among groups. Of course, indi-
vidual game theoretic perspectives are not the only proposed mechanism for the
emergence of such structures [63, 64, 65, 66]. However, our results contribute
to understanding how simple, individual perceptions and behaviors may yield
highly organized, and operationally beneficial, global outcomes.
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Implications for Public Health

Emergent structure in society that arises out of individual needs to balance con-
flicting goals, can provide critical insight into how to influence the individual
perceptions and behaviors from which they are formed. In the case of infec-
tious disease outbreaks in human populations, the natural self-organization into
homophilous groups offers immediate potential routes for public health interven-
tion. Understanding the independent value propositions that drive community
formation can allow the design of strategies that, while marginally less effec-
tive in the absolute reduction of infection risk, achieve meaningful reduction
without incurring the same social costs. By considering self-organization rooted
in multi-factorial utility we can begin to produce useful, quantitative tools to
inform policy and improve real-world adoption of mitigation strategies.
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