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1 Abstract11

How self-organization leads to the emergence of structure in social populations12

remains a fascinating and open question in the study of complex systems. One13

frequently observed structure that emerges again and again across systems is14

that of self-similar community, i.e., homophily. We use a game theoretic per-15

spective to explore a case in which individuals choose affiliation partnerships16

based on only two factors: the value they place on having social contacts, and17

their risk tolerance for exposure to threat derived from social contact (e.g., in-18

fectious disease, threatening ideas, etc.). We show how diversity along just these19

two influences are sufficient to cause the emergence of self-organizing homophily20

in the population. We further consider a case in which extrinsic social factors21

influence the desire to maintain particular social ties, and show the robustness22

of emergent homophilic patterns to these additional influences. These results23

demonstrate how observable population-level homophily may arise out of indi-24

vidual behaviors that balance the value of social contacts against the potential25

risks associated with those contacts. We present and discuss these results in the26

context of outbreaks of infectious disease in human populations. Complement-27

ing the standard narrative about how social division alters epidemiological risk,28

we here show how epidemiological risk may deepen social divisions in human29

populations.30
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2 Introduction31

Many studies have considered the impact of individual homophilic behaviors on32

emergent social structures [1, 2, 3, 4, 5, 6]. Communities in which individuals33

are more likely to interact with others like them have been discussed widely as34

both positives (e.g. modularity potentially inhibiting disease spread [7, 8, 9]) and35

negatives (e.g. echo chambers into which important information may be less able36

to penetrate [10]). Few studies, however, have considered whether observable37

homophily in population organizational structure can itself have emerged from38

more fundamental self-organizing individual-level behaviors. For members of39

social species, there is a likely benefit from social contacts themselves, but also40

that benefit may be dampened by costs associated with risk that arises directly41

from that same contact. One clear example of such systems is infectious disease42

spreading through social populations.43

During a disease outbreak, infection risk can be mitigated through preven-44

tative measures [11], such as social distancing, that have been presented as part45

of a behavioral immune system [12, 13]. Individual adherence to preventative46

behaviors has been associated with experimental measures of risk aversion [14].47

Thus, all else equal, in response to an epidemic, more risk averse individuals can48

be expected to adhere more to social distancing. By definition, the act of social49

distancing impedes interactions; a phenomenon that is antithetical with human50

beings’ need-to-belong [15]. Loneliness can have a diversity of health and men-51

tal costs [16]; pain associated with social circumstances shares neural pathways52

with physical pain [17]. This trade-off between the need-to-belong and the be-53

havioral immune system has not gone unrecognized, and has been the subject54

of several laboratory-based studies [18, 19]. Outside of the laboratory, however,55

individuals live in a heterogeneous society with distinct predilections towards56

prioritizing social interactions against their own risk aversion.57

Explicit consideration of this social heterogeneity can be explored by incorpo-58

rating individually distinct strategies of decision-making. Both social isolation59

and infection have the capacity to cause very real physical and mental maladies;60

as such, there is unlikely to be a unique, globally optimal solution that accom-61

modates needs across a diverse population. Contingent on risk categories (such62

as age, immunocompetence, nutrition, or underlying health factors; [20, 21]),63

individuals can face uncertainty as to the actual risks of contracting a disease64

and its severity, given those contingencies. This is significant, as risk-averse65

individuals have been suggested to be intolerant, or aversive, of uncertainty66

[22, 23, 24]. Importantly, risk assessment and aversion have a deep evolution-67

ary history [25, 26], with evidence for them to be heritable traits [27, 28]. In68

humans, individual differences, such as the extraversion or sociability dimen-69

sions of personality, have been shown to predict scores on scales of risk-taking70

behavior, inclusive of health behavior [29, 30]. An infectious disease outbreak71

simultaneously introduces large-scale (often unequally perceived) risk factors72

and, thus, has the capacity to alter the social dynamics of a community [31, 32].73

Risk aversion during a disease outbreak has been posited to be an ‘impure74

public good’ [14, 15, 33, 34]: individuals’ actions contribute to public health,75
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but individuals may not have a vested interest in public health (either actual or76

self-perceived) and are, instead, acting out of self-preservation [33, 34]. Such a77

perspective emphasizes the importance of understanding how individuals’ per-78

sonal decision-making processes, in the midst of an outbreak, scale to have79

emergent social consequences. These emergent social consequences could have80

important implications for the progression of the outbreak while simultaneously81

altering people’s experience of their social world and the benefits that they ob-82

tain from socializing. One such emergent consequence might be that individuals83

preferentially associate with alike individuals, which might be evident via social84

assortativity, i.e., homophily [6]. Homophilic associations have been demon-85

strated across numerous axes of individual variation, including shared values86

or characteristics [6], inclusive of personality [35]. Recently, risk aversion has87

been recognized as a key component of the structural emergence of homophily88

[36, 37]. For example Kovář́ık and van der Leij [37] demonstrate an association89

between risk aversion and social network structure in an economic context, with90

risk aversion correlating with local clustering/transitivity in empirical data and91

theoretical models. This is relevant as transitivity and homophily are often92

linked in social networks [38]. Subsequent experimental work has emphasized93

the correlation between homophily and risk aversion, but emphasized the need94

to explore what generates network homophily [36], and the role of risk aversion95

in this process.96

Here we present a game theoretical approach to understanding how prioriti-97

zation of individual strategies may shape the social associations of a population.98

We extend beyond prior research by exploring how balancing risk aversion with99

socialization can alter association dynamics without imposing a preexisting so-100

cial structure (i.e., lacking a pre-imposed social network or hierarchy). We101

implement a socializing game, in which individuals have distinct strategies for102

prioritizing risk or socialization and demonstrate how these simple dynamics103

may lead to well-defined emergent structures that have implications for both104

disease risk and societal function. We then extend this model to incorporate105

potential pre-existing social relationships between agents to examine how so-106

cial structure can reorganize based on risk aversion when exposed to extreme107

exogenous events [37], in this case an infectious disease epidemic.108

3 Methods109

We define a socializing game during an epidemic with susceptible-infected-110

susceptible (SIS) dynamics. We assume players are short-sighted and subra-111

tional; rather than being perfectly rational agents who can predict the behavior112

of other players and compute the optimal response, players repeatedly play113

games and incrementally update their behavior in the direction of the best re-114

sponse to their current environment.115
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Game Formalism116

Let M >> 0 be a large constant. At each time t, for each player y, player117

x decides on a social action strategy ~ax(t) = {ax,y(t) ∈ [0,M ] : y ∈ G}, cor-118

responding to an amount of social contact they want to have with each other119

player. 1 This social contact requires mutual agreement, so the amount of120

socializing that actually occurs between players x and y is121

a′x,y(t) := min(ax,y(t), ay,x(t)) (1)

The utility of player x at time t is defined by122

ux(t) = σxf(ax)∆t− ρxp(~a′x,∆t) (2)

Where f is a nondecreasing concave function (such as ln) which yields greater123

utility for higher inputs at diminishing rates, ax =
∫
a′x,ydy, ∆t is the amount124

of time that passes between each time step, and p(~a′xm,∆t) is the expected125

probability of becoming infected as a result of socializing in each time step.2 σx126

represents the value player x places on socializing. More social players will have127

higher values of σx and place more emphasis on socializing. ρx represents the128

value player x places on health. More health conscious (risk averse) players will129

have higher values of ρx, and place more emphasis on avoiding disease.130

Epidemiological Calculations within the Game Formalism131

Since the force of infection can be expected to scale proportionally to the amount132

of social contact among the players [39], then, assuming player x is uninfected,133

p(~a′x,∆t) = ∆t

∫
βa′x,yqydy (3)

where β be the inherent transmissibility of the disease, and qy is 1 if player134

y is infected, and 0 otherwise.135

Let γ be the recovery rate of an infected individual from the disease, and136

assume that recovered individuals return to the susceptible population with137

no residual protective immunity. Then this defines a Susceptible-Infectious-138

Susceptible (SIS) model [40] with139

1This assumes that all players in the population are socially connected to each other. If
we relax this assumption by arranging players spatially and setting ax,y = 0 for players more
than a certain distance apart then, assuming players from each group are equally distributed
spatially and so is the initial infection, this will yield identical results to our model. If we
don’t make those assumptions, or relax this restriction in other ways such as arranging players
on a social network graph, then this is likely to create new dynamics, but is beyond the scope
of this work.

2If f is an unbounded function, this raises the concern of a degenerate case where so-
cialization rates increase infinitely and the cost of near-constant infection is made up for by
unbounded gains from socializing. This is prevented via two features of the model. First,
players do not change their behavior even when infected, so players behave as if they can be
infected repeatedly, disincentivizing players from this case. Second, we bound socialization by
a constant M so truly extreme scenario are ruled out directly.
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dI

dt
= −Iγ +

∫
(1− qx)p(~a′x)dx (4)

where we explicitly model the contribution to the I class as the expected140

rate of recruitment determined by the behaviorally-driven force of infection, and141

p(~a′x) = p(~a′x,∆t)/∆t.142

To ensure that p is a proper probability distribution, we require the max-143

imum socialization M ≤ 1/β, though in practice this limit is not relevant for144

small β.145

Logic of the System146

To simplify simulation and analysis of this system, we consider populations of147

players with σx and ρx determined randomly from discrete probability distribu-148

tions. We define σl < σh, ρl < ρh, and assume each player x has an equal chance149

of having σx equal σl or σh, and ρx equal ρl or ρh. This effectively partitions the150

set of all players G into four homogeneous subsets of equal size Gj . Because all151

players within a group have the same utility function, they will make the same152

decision regarding ~a. When referring to specific groups, we denote them iden-153

tifiers based on their combined parameters: AS (asocial, σj = σl), SO (social,154

σj = σh), RT (Risk-Taking, ρj = ρl), RA (Risk-Averse, ρj = ρh). Combining155

these identifiers leads to the four subgroups: ASRT, ASRA, SORT, SORA.156

Additionally, we assume that the utility functions of each player is common157

knowledge. We believe this is a realistic assumption because sociability and risk-158

averseness (in the context of health outcomes) are discernable personality traits159

which social contacts tend to know about each other. We also assume players160

know the frequency of infection within each subgroup, but do not know the161

infection status of any particular individual. So they can, for instance, choose162

to socialize more with groups that currently have fewer infected members, but163

cannot choose to socialize exclusively with uninfected individuals within a group.164

(Note: this is consistent with unreliable proximate cues of infection, especially165

for diseases with a pre-symptomatic phase; [41, 42, 43].)166

Due to this information restriction, we can rewrite all variables using group-167

subscripts. The amount of socializing among these groups will be168

aj,k(t) = |Gk|ax,y(t) (5)

a′j,k(t) = |Gk|a′x,y(t) (6)

where x is any player from Gj , and y is any player from Gk. This allows us169

to write the SIS dynamics in terms of these subgroups. Let Ij(t) be the fraction170

of players in Gj who are infected at time t. Then171

dIj
dt

= −Ijγ +
∑
k

(1− Ij)Ikβa′j,k (7)
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and likewise the probability of becoming infected for an uninfected member172

of group j is173

p(~a′j ,∆t) = ∆t
∑
k

Ikβa
′
j,k (8)

If we let the socialization function f(a) = ln(a), and substitute, the utility174

function for a member of group j is175

uj(t) = ∆t(σj ln(
∑
k

a′j,k)− ρj
∑
k

Ikβa
′
j,k) (9)

Population Dynamics176

Rather than rationally predicting other player’s strategies and computing the177

optimal response to every circumstance, players gradually adapt their strategy178

over time in response to feedback from games they play (i.e., subrationality).179

In particular, each player starts with a set of strategies ~a corresponding to their180

pre-existing social preferences. At each time step, players play one round of the181

game with each other, and receive payoffs according to the results. Some time182

∆t passes, and the disease progresses according to the SIS equations and the183

amount of socialization played in the game. Each player is then informed of the184

new frequency of infection Ik for each subgroup of players. Each player then185

updates their social preferences in the direction of best response. In particular,186

we fix an update speed ∆a, then for each group k, player j estimates uj in187

the counterfactual situations where their socialization with group k had been188

a′j,k + n∆a∆t, where n ∈ {−1, 0, 1}, and all other socialization levels remained189

unchanged. The player then increments aj,k by n∆a∆t according to the n that190

yields the highest utility. This is computed simultaneously and independently191

for each k. 3
192

This allows players to incrementally update their strategy in response to the193

changing environment of their peer’s behavior and the state of the epidemic.194

By adjusting the ratio ∆a
∆t we can change the speed of social adaptation relative195

to the speed of the epidemic.196

We assume infected individuals have a latent period in which they are con-197

tagious but pre-symptomatic, so they continue socializing at the same rate as198

uninfected individuals.199

3Because aj,k does not directly control a′j,k except through mutual agreement via ak,j , this

can lead to a situation in which a player repeatedly increases aj,k, but this yields no change
in the actual dynamics. A value of aj,k much greater than ak,j behaves no differently from a
value of aj,k that’s only slightly greater than ak,j except that it takes longer to update if the
incentives change causing player j to start decreasing it. To prevent cases such as this, we fix
a small integer nc = 4 and restrict aj,k ≤ ak,j + nc∆a
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Extending the Model to Include Differentially Valued Con-200

tacts201

Thus far, the model has remained agnostic among social contacts, allowing202

any interaction to serve equally to fulfill any individual’s desire to socialize.203

To incorporate scenarios in which certain social contacts across groups are of204

greater personal value than others, we also fix a constant m corresponding to an205

additional utility gained from each individual’s most high-valued relationships206

and social activities, and an exponential decay term r ≤ 1. We then incorporate207

a distribution of utilities across interactions by multiplying the value of each208

marginal social interaction by 1 + mrx and instead use209

aj := c
∑
k

∫ a′j,k

0

1 +mrxdx (10)

as the term characterizing the social contribution to the utility function, where210

c is a constant to scale the resulting function.211

This simplifies to212

aj = c
∑
k

(
a′j,k +

m(1− ra
′
j,k)

−ln(r)

)
(11)

when r 6= 1, and aj = c
∑
a′j,k when r = 1.213

Changing the social contribution of the utility function in this way allows for214

the maintenance of social contacts across groups and the creation of new ones215

by creating an incentive for players to spread their social interactions among all216

of the groups. Of course, the benefits of socializing with members of different217

groups are then balanced against the differing infection exposure that results.218

(We explore boundary conditions for the system in Appendix 1 [44]. We find219

that for any set of parameters other than M and ∆t, there exist M and ∆t220

such that the observed behaviors of the model are consistent with the results221

presented in the main text.)222

Metrics and Analysis223

We record emergent patterns by quantifying social contacts within and across224

preference groups over time and the coupled outcomes in the prevalence of225

infection in those groups.226

In order to characterize emergent homophily in the context of this composite227

utility behavior, we fix constants w and τ with the goal of fixing
∫ τ

0
1+mrxdx =228

w. For simulations presented here we use τ = 1, w = 1.25. We let r range from229

0 to 1 as a free variable, and set m = ln(r)(w/r−τ)
rτ−1 . In this way, the area under230

the curve can be normalized by setting c = r. When r = 1 this yields a flat line,231

equivalent to the model with no social differentiation in value among individual232

contacts. As r decreases, m increases, and the ratio in benefit skews in favor of233

diversity among contacts across groups (i.e., allowing maintenance of particular234
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contacts, despite mismatch in axes of socialization and risk tolerance). As r235

goes to 0, the function approaches an infinitely steep exponential decay, which236

incentivizes socializing across descriptive groups. We then measure homophily237

using a modified version of Krackhardt’s EI homophily index. 4 In particular,238

for each group j we define239

Intj = a′j,j (12)

Extj =
1

3

∑
k 6=j

a′j,k (13)

Hj =
Int− Ext
Int+ Ext

(14)

Where Hj measures the homophily in the socialization of each group. We240

then define the overall homophily of the population, H, as the average Hj .241

When players socializing equally among all groups, we get H = 0, as players242

socialize more in their own groups this increases up to a maximum of 1, and in243

the hypothetical scenario where players socialized more externally this decreases244

down to a minimum of −1.245

In order to see how the parameter differences between groups impacts ho-246

mophily, we define an independent variable s ≥ 0, fix σl = 4, ρl = 30, and set247

σh = 4 + 16s, ρh = 30 + 60s. Thus, when s = 0 all four groups have identical248

parameters, and thus behave identically. As s increases the risk averse and high249

social groups become more distinct from the risk tolerant and low social groups.250

4 Results and Discussion251

Neutral Re-assortment of Social Contacts252

In its most extreme expression, individuals were allowed to abandon all existing253

social contact with individuals who did not maximize their individual joint util-254

ity in both socializing and risk tolerance. Figure 1 shows the total socialization255

of players within each group over time for one instance of the simulation. Under256

this scenario, r = 1 and we see that players settle into an equilibrium level of257

socializing and infection, and that both levels are higher for groups with higher258

σj and lower ρj . The utility gained from socializing is subject to two levels of259

negative feedback. In the short term, higher levels of socialization receive less260

marginal utility due to the logarithm, meaning that increasing socialization is of261

less benefit to the more social groups. In the long term, higher levels of social-262

ization result in higher levels of infection in the population, increasing the costs263

4The standard EI homophily index uses total number of internal and external network
connections, while we define them based on total socialization for our groups. Additionally,
we define Ext using the average socialization with each external group rather than the sum, so
that we get a score of 0 when players are indifferent among socializing among groups, rather
than when precisely half of socialization is internal. Finally, we negate our measure relative
to the typical EI homophily score so that perfect homophily yields a score of 1 rather than
−1.
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Figure 1: Illustration of the dynamics of the system over time. A. The social-
ization rates of all groups decline initially before stabilising at different levels,
related to B. corresponding changes in the prevalence of infection in different
groups. Model parameters are set as σl = 4, σh = 12, ρl = 30, ρh = 60, r = 1.
Line colors designate the different groups as indicated in the figure. ASRT is
asocial risk-tolerant, ASRA is asocial risk-averse, SORT is social risk-tolerant,
SORA is social-risk averse.

of socializing. If we take the derivative of uj with respect to a′j,k and rearrange,264

we find that265

∂u

∂a′j,k
> 0 iff Σa′j,k <

σj
ρjβIk

. (15)

Thus we see more socialization in groups with higher σj and lower ρj .266

Simulations of this model repeatedly show the emergence of perfect ho-267

mophily as time progresses. Each group segregates from the others and in-268

dividuals only socialize within their own group.269

Figures 1 and 2 shows how these social patterns emerge over time. The initial270

epidemic drives all socialization levels down, which in turn causes the infection271

to recede. However, when socialization levels recover, gains in socialization pri-272

marily occur within each group due to a natural stratification of epidemiological273

risk.274

The differing levels of infection within each group mean that only more social275

players are willing to tolerate higher levels of infection to socialize more, so they276

begin increasing a sooner after the initial epidemic, and stably socialize more277

at equilibrium. As a result, other players are less willing to socialize with those278

players in particular. Because the positive term in each player’s utility function279

does not vary based on player subgroup, socializing with less-infected subgroups280

yields the same payoff for a smaller risk.281

Therefore, everyone wants to socialize with the safest, least social group -282

the one with high ρj and low σj (ASRA). However, everyone in this group also283

prefers to socialize with players from their own group. Consequently, players284
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Figure 2: Within and between group socialization rates over time with r = 1.
Within group socialization rates increase over time until the system stabilises
with perfect homophily according to group membership. Model parameters are
set as σl = 4, σh = 12, ρl = 30, ρh = 60. ASRT is asocial risk-tolerant, ASRA is
asocial risk-averse, SORT is social risk-tolerant, SORA is social risk-averse.

from least social and most risk averse group can increase their utility by decreas-285

ing all a2,k to 0, where k 6= 2, and increasing a2,2 to compensate. This lowers286

their risk while still allowing them to benefit from socializing. And because287

a′2,2 = a2,2, they are able to socialize at exactly their preferred level, rendering288

other socialization with other groups unnecessary.289

The continuation of the above mechanism propagated through successively290

more social and less risk averse groups recursively creates a linear hierarchy in291

the population. Every other group increases aj,2, but this is not reciprocated,292

so a′j,2 = 0. The least infected group has effectively removed itself from the pop-293

ulation Without the ability to socialize with their preferred group, they have294

to increase other aj,k. The second least infected group (group 1 in the figure)295

then becomes the preferred social partner of each group, including themselves.296

As the same process repeats recursively, each group in turn segregates itself297

from the more infected groups and achieves its equilibrium socialization level298

internally. Eventually, all groups end up socializing internally, with more in-299

fected groups unilaterally being rebuffed in their attempts to socialize more by300

increasing their socialization with less infected groups (aj,k > 0, but ak,j = 0).301

Retention of Preexisting Social Contacts302

The perfect homophily generated above results from a scenario in which indi-303

viduals drop all of their existing social relationships from outside of their group304
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and replace them with individuals from their own group. This assumption is305

unrealistic because individuals value aspects of their relationships other than306

the risk of infection, or may also be constrained in their choice of associations.307

This means that relationships are not perfectly replaceable, with each potential308

partner equivalently able to satisfy the desire for social contact. We therefore309

also explore an adjusted scenario for our model to account for some relationships310

being more valuable by increasing the benefits of heterogeneous socialization.311

In this scenario, we assume that possible social relationships and activities have312

varying values, and that players will drop the least valuable ones first when pos-313

sible within a group, meaning the benefits obtained by socializing are limited if314

a player adheres too closely within any one group.315

Figure 3: Within and between group socialization rates over time with r = 1/2
and m = 3. Within group socialization rates increase over time until the system
stabilises with partial homophily according to group membership. Other model
parameters are set as σl = 4, σh = 12, ρl = 30, ρh = 60. ASRT is asocial
risk-tolerant, ASRA is asocial risk-averse, SORT is social risk-tolerant, SORA
is social risk-averse. Final homophily scores in this figure for each group are
0.479, 0.782, 0.720, 0.482, respectively.]

Figure 3 shows the pairwise socialization between members of each group316

over time that result from adding these social constraints. We see now only317

partial homophily emerging. Players still socialize primarily within their own318

group at equilibrium, but still maintain certain associations with other groups319

as the benefits from the multiplier outweigh the increased infection risks. Pairs320

with more similar home-group infection risks still tend to socialize more than321

dissimilar pairs.322

We can vary the value individuals place on particular, irreplaceable contacts323

by adjusting the steepness of the multiplier function (Fig. 4c). At low values of324
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r (less steep multiplier function) we see low levels of homophily. However, as we325

increase r we see that mixing between groups decreases until perfect homophily326

emerges at values of r close to one, as in as in Fig. 2.327

We can also observe that the level of homophily increases as groups become328

more distinct in their strategies (Fig. 4b). We vary an independent variable329

s ≥ 0, fix σl = 4, ρl = 30, and set σh = 4 + 16s, ρh = 30 + 60s. We see that330

homophily increases with s, meaning a population of groups with more disparate331

strategies will exhibit more homophily.332

We can observe this trend more broadly by varying both r and s (Fig. 4a).333

We see that homophily increases with respect to each of r and s, though r has334

a larger impact, suggesting that pre-existing social connections are more influ-335

ential than the intrinsic differences between groups in the extent of homophily336

that emerges.337

(a) (b)

(c)

Figure 4: Homophily in socialization rates according to group membership as a
function of both r and s (a), a function of s for r = 0.5 (b), and as a function of
r for s = 0.5 (c). Other model parameters are set as σl = 4, σh = 4 + 16s, ρl =
30, ρh = 30 + 60s.
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Diversity as a Driver of Homophily338

Here we demonstrate that the behavioural response of a population to an infec-339

tious outbreak can drive the emergence of homophily as a result of individual340

decision-making strategies. Explaining emergent organizational structures that341

impact the function and efficiency of populations, but arise solely from indi-342

vidual behaviors, is a fundamental challenge in understanding social systems343

[45, 46, 47, 48, 49]. The role of infectious disease is of particular interest due344

to both the successful function of a society (a benefit) and successful trans-345

mission of infection (a cost) relying on similar types of contacts and behaviors346

[50, 51, 52, 53]. Changing our assumptions to assign value to pre-existing rela-347

tionships lessens, but does not remove, the emergence of homophily. Further,348

we see that increasing the magnitude of the differences between groups, in their349

utility functions, increases the level of homophily, while more similar popula-350

tions are more willing to engage in intergroup interactions. (We provide an351

analytic explanation for general system behaviors in Appendix 2 [44].)352

In our model, the unanticipated emergence of homophilous groups along353

axes prioritizing risk aversion or social interactions parallels experimental and354

theoretical work emphasizing risk aversion as a key component of the structural355

emergence of homophily [36, 37]. Uncertainty of the environment and individ-356

ual differences in risk aversion have been posited to interact for the generation357

of network structure [37]. Interestingly, our results are similar, but achieve358

these similarities without making the previously included assumption of exist-359

ing social structure. Even in our extended model that places value on existing360

relationships, homophilous ties emerge in response to a system-wide outbreak361

when both risk and risk perception are driven by behavior. (For exploration362

of the impact of relative values of the social and risk-aversion parameters, see363

Appendix 3 [44].) This shows that large epidemics have the capacity to dis-364

turb and reorganize social structure along axes of risk and social preference,365

as evidenced during the HIV and COVID-19 pandemics [54, 55, 56, 57]. Such366

population level emergence of assortative mixing has important consequences367

for anticipating the spread of disease in a heterogeneous society, especially as368

homophily will also increase modularity and alter the dynamics of the spread369

of both disease and information [58, 59, 60, 7].370

Perhaps most intriguingly, however, our findings suggest that observable371

emergent community structure may arise from individual differences in cate-372

gorical preference or assessment of the risks and benefits of social contact over373

time. While disease is an important example of socially contagious risk, it is374

certainly not the only one. Cultural norms and the perceived threat of homog-375

enization eroding group identity [61, 62] may similarly act as a driving factor376

in constructing and maintaining social divisions among groups. Of course, indi-377

vidual game theoretic perspectives are not the only proposed mechanism for the378

emergence of such structures [63, 64, 65, 66]. However, our results contribute379

to understanding how simple, individual perceptions and behaviors may yield380

highly organized, and operationally beneficial, global outcomes.381
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Implications for Public Health382

Emergent structure in society that arises out of individual needs to balance con-383

flicting goals, can provide critical insight into how to influence the individual384

perceptions and behaviors from which they are formed. In the case of infec-385

tious disease outbreaks in human populations, the natural self-organization into386

homophilous groups offers immediate potential routes for public health interven-387

tion. Understanding the independent value propositions that drive community388

formation can allow the design of strategies that, while marginally less effec-389

tive in the absolute reduction of infection risk, achieve meaningful reduction390

without incurring the same social costs. By considering self-organization rooted391

in multi-factorial utility we can begin to produce useful, quantitative tools to392

inform policy and improve real-world adoption of mitigation strategies.393
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