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Entanglement devised barren plateau mitigation
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Hybrid quantum-classical variational algorithms are one of the most propitious implementations of quantum
computing on near-term devices, offering classical machine-learning support to quantum scale solution spaces.
However, numerous studies have demonstrated that the rate at which this space grows in qubit number could
preclude learning in deep quantum circuits, a phenomenon known as barren plateaus. In this work, we implicate
random entanglement, i.e., entanglement that is formed due to state evolution with random unitaries, as a
source of barren plateaus and characterize them in terms of many-body entanglement dynamics, detailing their
formation as a function of system size, circuit depth, and circuit connectivity. Using this comprehension of
entanglement, we propose and demonstrate a number of barren plateau ameliorating techniques, including
initial partitioning of cost function and non-cost function registers, meta-learning of low-entanglement circuit
initializations, selective inter-register interaction, entanglement regularization, the addition of Langevin noise,
and rotation into preferred cost function eigenbases. We find that entanglement limiting, both automatic and
engineered, is a hallmark of high-accuracy training and emphasize that, because learning is an iterative organiza-
tion process whereas barren plateaus are a consequence of randomization, they are not necessarily unavoidable
or inescapable. Our work forms both a theoretical characterization and a practical toolbox; first defining
barren plateaus in terms of random entanglement and then employing this expertise to strategically combat
them.
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I. INTRODUCTION

The rapid development of noisy quantum devices [1] has
led to great interest in hybrid quantum-classical variational
algorithms, through which classical machine-learning tech-
niques are employed to prepare, sample, and optimize states
on noisy quantum hardware [2–6]. Not only do these algo-
rithms show potential for a variety of near-term applications
[7], they are inherently robust against certain coherent errors
and are free to minimize decoherence effects through the
exploration of unconventional gate sequences. Of particular
interest are quantum neural networks (QNNs) [8], in which
quantum input states are transformed into output states by a
parametrized quantum circuit (PQC). The output states then
undergo a series of measurements, collectively referred to
as a cost function, and the measurement results are used to
optimize the circuit.

Although QNNs offer a straightforward approach, their
implementation can be quite challenging. Among the greatest
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of these difficulties are barren plateaus [9]: regions of the cost
function’s parameter space where it is rather constant, varying
too little for successful gradient-based optimization. While
in shallow circuits these barren landscapes are cost-function
dependent [10,11], the effect is cost-function independent for
circuits that are sufficiently deep. Moreover, even gradient-
free algorithms can be impacted [12,13]. While certain
restricted subsets of PQCs are somewhat resilient to barren
plateaus [14,15], the most general implementation, known
as the “hardware efficient ansatz,” becomes exponentially
barren with increasing qubit number. Numerous techniques
have been suggested for the amelioration of barren plateaus,
including layer-wise and symmetry-based training [16,17],
correlated and identity-esq circuit initialization [18,19], and
quantum convolutional neural network protocols [20], but
they have yet to form a complete toolbox that is suitable for
large-scale, general purpose QNNs.

Likewise, our understanding of barren plateaus is extensive
yet far from complete. For some years, it has been understood
that barren plateaus are a consequence of concentration of
measure [21,22], stemming from the effects of randomness
on the exponential dimension of quantum state space. More
recently, the relationship between entanglement and barren-
ness has been explored by quantum scrambling studies [23]
and in terms of visible and hidden units [24]. However, we
still lack comprehensive understanding of how entanglement
induces barren plateaus with respect to cost function register
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size, qubit connectivity, and circuit depth. As a result, barren
plateau mitigation strategies that rely on these insights have
yet to be developed.

In this work, we give a detailed account of how random
entanglement leads to barren plateau formation. We define
“random entanglement” as the entanglement that arises as
a quantum state undergoes unitary transformation by matri-
ces with randomly sampled, statistically independent rotation
angles, such as those routinely employed in quantum cir-
cuits [9–15]. In Ref. [9], it was shown that quantum circuits
parametrized in this way match the Haar distribution up to at
least the second moment with even moderate circuit depth.
While barren plateaus can be both noise-independent and
noise-induced [25], we consider here only the former variety.
In particular, we derive the relationship between cost function
barrenness and qubit entanglement, including the rate at which
barrenness scales with circuit depth. As our findings quantify
barrenness via the entanglement of specific qubit subsets, we
develop partitioning methods that initially or continuously
restrict such entanglement. This generates nonbarren cost
function landscapes and thus improves circuit learning. We
find that initially partitioned circuits not only learn faster,
but often produce less entangled solutions. Because entangled
states are more sensitive to decoherence, this factorizability
can decrease the number of measurements required to ac-
curately estimate the cost function, potentially reducing the
problematic number of expectation values required for each
circuit iteration [26–28].

To verify and exploit these findings, we design a classical
meta-learning protocol that avoids barren plateaus while gen-
erating an arbitrary circuit with rich entanglement structure. In
contrast with other QNN meta-learning proposals [29] which
address specific problem classes, ours is suitable for gen-
eral PQCs. Moreover, because our meta-learning technique
does not pretrain circuit output, it is itself immune to barren
plateaus. Furthermore, we model a real-time regularization
process that penalizes forms of entanglement that are po-
tentially problematic and show that this method ameliorates
barren landscapes, decreasing both training time and error.
We also make the novel identification of barren plateaus as
a form of Langevin noise in the circuit parameter space and
demonstrate the effectiveness of injecting additional Langevin
noise into the training process, a technique that has been used
to combat overfitting in deep classical neural networks [30].
Finally, we draw a parallel between entanglement dynamics
and the improved performance of QNNs in certain measure-
ment bases.

II. VARIATIONAL ALGORITHMS IN LAYERED
ONE-DIMENSIONAL QUANTUM CIRCUITS

Before characterizing the relationship between entangle-
ment and barren plateaus, we provide a brief overview
of hybrid quantum-classical variational algorithms in one-
dimensional (1D) circuits. Examples of such circuits are
shown in Figs. 1(a) and 1(b). These circuits have a total num-
ber of n qubits partitioned into two registers: the cost function
register RC , whose qubits are measured with some observable
MC , and the non-cost function register RN , with qubits that

FIG. 1. (a) Diagram of a linear circuit with nC = 3, nN = 2,
and L = 4. Qubits qi and qj interact in layers k through two-qubit
unitaries uk

i j , which comprise layer unitaries Uk , and ultimately form
total unitary U . The qubits of RC are then read out by the cost
function operator MC . (b) Ground-state compressor for randomly
generated 9-qubit long-range interaction Hamiltonian [Eq. (8)]
ground states. The circuit learns to represent the ground states |�g〉
as 3-qubit representations |ψg〉. (c) An illustration of barren plateaus
with L = 〈σ z

1 σ z
2 〉 (nC = 2) and n = 3, 5, 7, 9 (blue, orange, green,

red), with each data point sampling two-thousand distinct circuit
iterations. The variance σ 2

O of the partial cost function derivative O
is known to decrease rapidly with increasing circuit layers L until
ultimately reaching the plateau magnitude σ 2

B ∝ 2−n.

are not directly measured. These registers have nC and nN

qubits, respectively, such that n = nC + nN . In a 1D system,
the qubits interact only with their nearest neighbors via two-
qubit unitaries, denoted uk

i j for interactions between the ith
and jth qubit in layer k. As this work considers pure states,
all wave functions respect time-reversal symmetry and can be
generally parametrized as completely real. This simplification
renders the subset SO(4) of SU(4) to be fully expressive
for any two-qubit unitary uk

i j [31], such that it can be fully

described with six rotation angles θ̂i jk = [θ1, θ2, θ3, θ4, θ5, θ6]
as [32]

uk
i j (θ̂i jk ) = R34(θ6)R23(θ5)R12(θ4)R34(θ3)R23(θ2)R34(θ1),

(1)

where Ri j (θ ) is a sinusoidal rotation matrix on axes i and j
that can be expressed as Ri j (θ ) = exp(−iθKi j ). We initialize
the circuits by normally and independently assigning each
θ from the interval [0, 2π ]. Here, Ki j is a Hermitian matrix
that is equal to ±i at elements i j and ji and zero elsewhere.
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The universal nature of this parametrization distinguishes our
work from studies that impose a restricted unitary structure
[14,15] and ensures that, for sufficient depth, our unitaries
are random enough to generate barren plateaus [33,34]. We
note that the θi which correspond to uk

nC ,nC+1 are especially
significant, as they entangle registers RC and RN , and we
denote them θE

i when relevant.
These two-qubit interactions are then organized into full

layer unitaries

Uk =
(n−1)/2∏

m=0

uk
q+2m,q+2m+1, (2)

where q is the remainder of k/2. As all interactions are pair-
wise, the uk

i j in each single-layer unitary Uk commute.
We describe the unitary of the full system as

U =
L∏

i=1

Ui, (3)

with total number of gate layers L. Figure 1(a) illustrates
a generic example of such a circuit for n = 5, nC = 3, and
L = 4.

In hybrid quantum-classical variational algorithms, circuit
training is described by a cost function L, which is some
function f of expectation value

〈MC〉 = 〈ψout|MC |ψout〉, (4)

such that L = f [〈MC〉] and where |ψout〉 = U |ψin〉 is the
output of the quantum circuit U with input state |ψin〉. Unless
otherwise specified, we take |ψin〉 = |0〉. The classical learn-
ing algorithm then minimizes L by updating the parameters θi

through use of the partial derivatives

Oi = ∂L
∂θi

= ∂ f

∂〈MC〉
∂〈MC〉

∂θi
. (5)

Figure 1(b) illustrates a specific learning example: a
ground-state compressor. The ground-state compressor is a
circuit that takes n = 9 qubit ground states |�g

i 〉 and their
average z-axis magnetization

〈Mi〉 = 〈
�

g
i

∣∣1

n

n∑
i

σ z
i

∣∣�g
i

〉
, (6)

as training data, where σ b
i is the Pauli operator along axis b

acting on qubit i. The circuit then learns to compress |�g
i 〉

into nC = 3 qubit equivalents |ψg
i 〉 in the x basis by using their

average x-axis magnetization

〈mi〉 = 〈
ψ

g
i

∣∣ 1

nC

nC∑
i

σ x
i

∣∣ψg
i

〉
(7)

as training labels. Here, we generate Ng different |�g
i 〉 from

randomly parametrized long-range interaction Hamiltonians

H =
9∑

i, j=1

(
Jz

i jσ
z
i σ z

j + Jx
i jσ

x
i σ x

j

) +
9∑

i=1

(
wiσ

x
i + vσ z

)
, (8)

with uniformly sampled variables Jz
i j ∈ [−1, 0], Jx

i j ∈ [−1, 1],
wi ∈ [−0.04, 0.04], and v ∈ [−6, 6], chosen so as to study the
effects of barren plateaus in an otherwise successful quantum

machine-learning algorithm [31]. In this case, 〈MC〉 is a
series of 〈mi〉 and we choose L as the L1 loss between the
training output and labels

Lg =
Ng∑
i

|〈mi〉 − 〈Mi〉|. (9)

This circuit is an extension of that used in Ref. [31]. We
remark that this task is inherently global, requiring magneti-
zation information from both RC qubits 4–6 and RN qubits
1–3 and 7–9.

III. THE EFFECT OF ENTANGLEMENT
ON BARREN PLATEAUS

Barren plateaus are a manifestation of concentration of
measure [35], meaning that they arise from the tendency of
high-dimensional, random distributions to cluster about their
mean. In a PQC, the measurement expectation value 〈MC〉 of
the quantum circuit is determined by parameters θi. For ran-
dom circuit initialization, as the number of these parameters
grows, the impact of the individual parameter uncertainties
becomes small and, for the vast majority of parameter sets
θi, 〈MC〉 approaches its mean with very low variance such
that ∂〈MC 〉

∂θi
→ 0. In the interest of building intuition, we can

draw an analogy between the collective effects of parameters
θi on 〈MC〉 and the behavior of an average of M Gaussian
distributions X = 1

M

∑M
i Ni(μ, σ 2), where Ni are Gaussian

distributions with mean μ and variance σ 2. Assuming that
all Ni are independent, the uncertainty of individual Ni are
washed out and X = N (μ, σ 2/M ). That is, the probability
that X deviates from μ vanishes polynomially in M.

We emphasize that both concentration of measure and the
barren plateaus that they produce are a product of random-
ness in large-dimensional systems, not large dimensionality
alone. For this reason, barren plateaus are typically discussed
in the context of random PQCs and quantified in terms of
unitary t designs [34,36,37], or probability distributions that
approximate the average of polynomial functions of degree
�t . Figure 1(c) illustrates the characteristic behavior of these
features, as detailed in Ref. [9]. Figure 1(c), like all nu-
merical quantities in this work, is calculated with data from
two-thousand distinct random circuit parametrizations. As
previously explained, such randomly parametrized circuits
have statistical moments that match those of the Haar distri-
bution up to at least second order (unitary 2-design) for even
moderate circuit depth [9]. We define the mean of Oi over the
probability distribution of all Haar random unitary matrices U
as μOi . Assuming that U is at least as random as a quantum
1-design, μOi = 0 [9] and the training dynamics rely solely
on the variance of this quantity. For relatively shallow circuit
depth L, it is known that the unitary approaches a quantum 2-
design [34]. As such, the variance of the gradient with respect
to this unitary ensemble σ 2

Oi
= var(Oi ) decreases rapidly in L,

ultimately reaching the steady-state 2-design value ≈2−n [9].
As n becomes large, randomly initialized circuit parameters
cease to update and training fails. In what follows, we use the
omitted subscript O to refer in general to arbitrary parameters
θi, using the subscripted version Oi to specify only when the
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FIG. 2. (a) Variance σ 2
O of cost function derivative O for L =

〈∏nC
i=1 σ z

i 〉 in units of its barren plateau value σ 2
B [horizontal asymp-

tote for each n in Fig. 1(c)] vs number of gate layers, L, for n = 9
and various nC . The inset shows the change in entanglement entropy
S vs circuit depth L for a 2–3 qubit bipartition, as defined in Eq. (11)
and illustrated in the inset of panel (b). As the nC = 4 system has
an entropy bipartition which is exactly aligned with the RC-RN

partitioning, S describes the entanglement growth analytically for
this case, while it is only an approximation for nC = 1, 2, 3. This ap-
proximation could be improved by using an initial nC-nN bipartition.
(b) Variance σ 2

O of cost function derivative O in units of its barren
plateau value σ 2

B vs normalized change in entropy S for L = 〈σ z
1 σ z

2 〉
(nC = 2) and n = 3, 5, 7, 9 (blue, orange, green, and red). Larger
values of n experience greater relative suppression of σ 2

O as σ 2
O/σ 2

B ∝
SB = 2−S , which is the analytical solution for n = 5 (orange) and an
approximation for other n. The inset shows a schematic of bipartition
entropy of entanglement S for the smaller system n = 5. Full density
matrix ρ broken into two subsets Rα and Rβ , where Rα always
contains as much of RC as possible. In all subfigures, each data point
sampling two-thousand distinct circuit iterations.

distinction is relevant. For instance, our numerical data are
calculated with O1.

To intuitively understand how random entanglement causes
barren plateaus, we point out that, for a randomly initialized
parameter θi to contribute to the concentration of 〈MC〉 and
thus to the vanishing of O, it must have some form of in-
fluence over the qubits of RC . For the qubits of RN , this
interaction occurs via U and results in entanglement between
the two registers. According to this reasoning, barren plateau
emergence should be proportional to the spread of random
entanglement. Figure 2(a) shows the emergence of barren
plateaus vs circuit depth L. As L increases, σ 2

O decreases ex-
ponentially with

√
L until approaching its asymptotic limit σ 2

B .
While shallow circuits with smaller cost function registers RC

initially enjoy greater σ 2
O, n determines σ 2

B for deep circuits
and we will later conjecture that this asymptote corresponds
to entanglement saturation between all qubits on the random
circuit. As circuit depth is a form of discretized interaction
time τ , this scaling is equivalent to the τ dependence of late-
time entanglement growth of two-level quantum systems in
1D [38–41].

To describe these entanglement dynamics quantitatively,
we consider the density matrix of the output qubits

ρ = |ψ〉〈ψ | = U |0〉〈0|U †. (10)

In a compromise between simplicity and generality, in this
work we describe the spread of circuit entanglement with the
bipartite entanglement entropy

S = −Tr[ρα log2 ρα], (11)

where ρα is the reduced density matrix of (n − 1)/2 connected
qubits of register Rα , taken so as to contain as many cost
function qubits as possible. The remaining (n + 1)/2 qubits
are in Rβ , such that ρα = Trβ[ρ], as illustrated in the inset
of Fig. 2(b). We here partition the qubits as Rα and Rβ

to discuss the dynamic spread of entanglement during state
evolution, as opposed to the static specification of RC and RN ,
which are determined by the measurement scheme. For pure
states, this entropy is symmetric and S = −Tr[ρβ log2 ρβ] is
equivalent. As the bipartite entanglement entropy measures
the entanglement between Rα and Rβ , it is most accurate in
describing the spread of entanglement between RC and RN

when RC = Rα . Figure 2(a) displays σ 2
O vs circuit depth for

a variety of nC in an n = 9 system. While all nC scale roughly
as 2−S (inset), nC = 4 is most accurately characterized as, for
that case, RC = Rα .

Thus, while a single such partitioning is adequate for de-
scribing entanglement spread in configurations with |RC | ∼
|Rα| = (n − 1)/2, various such partitions may be used to
track short-term entanglement growth when |RC | 
 |Rα| or
long-term entanglement growth when |RC | � |Rα|, such that
the entanglement entropy does not temporarily stagnate, like
Fig. 2(b), n = 9 (red), or rapidly saturate, such as Fig. 2(b),
n = 3 (blue). The plot is scaled from initial entanglement S0

and normalized to asymptotic difference SB − S0. In particu-
lar, n = 3 (blue) is initially saturated because it is nearly fully
entangled with the minimal number of gates L = 2, while
as |RC | < |Rα|, n = 7, 9 (green, red) have superlogarithmic
scaling for S → SB. At the expense of computational simplic-
ity, more general metrics could be adopted, such as a nN -fold
sum of bipartite mutual information I2

SN =
∑

q∈RN

I2(RC,Rq ), (12)

where Rq is the single-qubit subspace for each qubit q ∈ RN .
We now derive the relationship between S and σ 2

O. In par-
ticular, we consider RE , the subspace of qubits that are either
directly measured by, or entangled with the qubits measured
by (causal to) the cost function. We begin by proving that σ 2

O
is dependent on the dimension dE of RE and then establish the
link between dE and S. Let us assume that the circuit input is a
product state, here specifically |0〉. Then the output state ρ =
|ψ〉〈ψ | can be written as ρ = ρE ⊗ ρD, where ρE belongs
to RE (measured in MC or entangled with the qubits that
are) and ρD does not. For simplicity, in the following proofs
we assume that a given qubit is either completely entangled
or disentangled. A similar result for the more general case
of partial entanglement follows straightforwardly by taking
general |ψ〉 = ∑

i ci|ψ i
E 〉|ψ i

D〉, following the above steps, and
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repartitioning each component of the sum

ρ =
∑
i, j

cic
∗
j

∣∣ψ i
E

〉∣∣ψ i
D

〉〈
ψ

j
E

∣∣〈ψ j
D

∣∣ (13)

into |ψk
E ′ 〉〈ψk

E ′ | ⊗ |ψk
D′ 〉〈ψk

D′ | such that the dimension of |ψk
E ′ 〉

is maximal under the factorization constraint. The factoriza-
tion ρ = ρE ⊗ ρD implies that

ρE ⊗ ρD = U |0〉〈0|U † → U = UE ⊗ UD, (14)

where UE |0E 〉〈0E |U †
E = ρE and UD|0D〉〈0D|U †

D = ρD. Then,
the expectation value of our observable 〈MC〉 becomes

〈0E |U †
EMCUE |0E 〉〈0D|U †

DUD|0D〉 = 〈0E |U †
EMCUE |0E 〉,

(15)

rendering its derivative ∂〈MC 〉
∂θi

for θi in layer l

∂〈MC〉
∂θi

= i〈0E |U †
R [K,U †

LMCUL]UR|0E 〉, (16)

where UR and UL are the products of unitaries Uk for k < l and
k � l , respectively and where K is the rotation generator for
θi. Assuming a randomly initialized circuit, this reduces the
problem to that of Ref. [9], where using the Haar measure
it is shown that μOi = 0 with respect to any θi, with vari-
ance σ 2

O ∼ 1/dE , where dE = 2nE is the dimensionality of the
entangled subspace ρE . We contrast this with the barrenness
of a fully entangled circuit ∼1/d = 2−(nE +nD ) = 2−n, which
can, for many applications, be numerous orders of magnitude
smaller.

To implicate S in this barren plateau process, we note that,
for ρ = ρE ⊗ ρD,

S = −Tr[Trβ[ρE ⊗ ρD] log2(Trβ[ρE ⊗ ρD])]. (17)

Given that, if nE < nα , we need to describe early entangle-
ment spread with a smaller bipartition of S, we can assume
that ρD is fully contained in ρβ such that Trβ[ρE ⊗ ρD] =
TrβE [ρE ]Tr[ρD] = TrβE [ρE ], where βE is the entangled por-
tion of Rβ . Then

S = −Tr[TrβE [ρE ] log2 TrβE [ρE ]]

= −Tr[(ρE )α log2(ρE )α] = nβE = nE − nα, (18)

because this is precisely the definition of the number of entan-
gled qubits shared between ρα and ρβ . Then, the total number
of RC entangled qubits is nβE + nα = nE such that dE = 2nE .
Therefore, σ 2

O ∝ 2−nE and changes proportionally to 2−S .
This mapping between the number and degree of cost

function-entangled qubits and plateau barrenness highlights
that circuit connectivity, and not simply overall circuit depth,
is an accurate indicator for the barrenness of the training
landscape. Figure 3(a) is a proof of principle illustration of this
point. We remove the register connecting the uk

2,3 (unitaries
between qubits q2 and q3) gates from each layer k for cir-
cuits where nC = 2 and L = 〈σ z

1σ z
2 〉, permanently separating,

or partitioning, the registers RC and RN . As circuit depth
grows, entanglement with the qubits of RN suppresses σ 2

O
much faster than its partitioned counterpart σ 2

OP , which never
exceeds the variance of circuit of total n = 2 and is therefore
numerous orders of magnitude larger than the variance σ 2

O of

FIG. 3. (a) Partitioned cost function derivative variance σ 2
OP for

L = 〈σ z
1 σ z

2 〉 in units of its nonpartitioned value σ 2
O vs number of gate

layers L for n = 3, 5, 7, 9 (blue, orange, green, and red) and nC = 2.
As expected, σ 2

OP is approximately a factor of 2nN larger than σ 2
O due

to the absence of random RC-RN entanglement. (b) Training loss
L = Lg of Eq. (9) for ground-state compressor in Fig. 1(b) (gray)
and L = |〈σ z

1 σ z
2 σ z

3 〉| (red) vs training epochs for L = 200. Solid lines
are initially partitioned circuits and dashed lines are fully random
initializations, with increased learning performance in the latter. The
corresponding evolution of S is shown in the inset. In both subfigures,
each data point sampling two-thousand distinct circuit iterations.

the fully entangled system. While insightful, permanent par-
titioning is clearly not a practical solution for barren plateaus
because it limits not only the barrenness but also the express-
ibility of the circuit to that of only nC qubits.

The various methods of barren plateau mitigation pre-
sented throughout this work serve to regularize, either
explicitly or implicitly, the circuit cost function by moderating
the entanglement generated by random unitaries. This cost
function regularization can also be seen as a penalization of
high connectivity in the circuit, such that qubit connectivity is
selectively attenuated when not providing outsized benefit to
cost function minimization.

IV. INITIALIZATION TECHNIQUES FOR BARREN
PLATEAU MITIGATION

While permanent partitioning is tantamount to simply em-
ploying a circuit of smaller n, initial parameter restrictions
can improve circuit trainability without reducing circuit ex-
pressibility. Intuitively, the advantages of this method stem
from the role of entropy as a thermodynamic arrow that drives
statistical processes forward. As a toy example, let us imagine
a classical machine-learning protocol where we would like to
create a gaseous mixture with optimized concentrations of two
gases. If we initially partition the gases, the learning algorithm
can simply allow the gases to mix themselves by passing
through a vent in the partition, sealing the vent when the
ideal concentration is reached on one side. This process occurs
independently, driven forward by entropic considerations. If,
however, the gases are initially mixed and therefore have
a maximum entropy configuration, the learning algorithm
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cannot succeed by simply unsealing a vent. The problem has
been complicated and learning will fail unless more heroic
measures are taken.

In this section, we explore methods for quantum equiva-
lents of such entropy-limiting initialization schemes and in
Sec. V we detail some of these “more heroic” measures.

A. Initial entanglement partitioning

One way to avoid barren plateaus without suppressing ex-
pressibility is to initially partition the circuit, like in Fig. 3(a),
but then to allow RC-RN entanglement throughout the train-
ing process. This method is fundamentally distinct from
Refs. [15,19] because we only initialize a subset of two-qubit
gates uk

i j to the identity and have devised a cost function and
entanglement-based strategy to motivate this choice. Further-
more, our treatment applies to universal PQCs of potentially
great depth, not restricted subspaces of U [15]. Figure 3(b)
displays the n = 9 ground-state compressor loss L = Lg of
Eq. (9) (gray) and training of L = |〈σ z

1σ z
2σ z

3 〉| (red) for both
initially partitioned (solid lines) and fully random (dashed)
initializations with L = 200. These loss functions were cho-
sen for their relevance to various approaches in quantum
machine learning, with the loss functions L = 〈σ z

1σ z
2σ z

3 〉 and
L = |〈σ z

1σ z
2σ z

3 〉| serving as simple yet astoundingly effec-
tive representations of solution-encoded state preparation,
i.e., standard implementations of generic variational quantum
eigensolver, and the ground-state condenser as a minimal but
complete example of generalization problems in quantum cir-
cuits. Throughout this work, the AMSGrad gradient descent
algorithm is used for circuit parameter update [42]. The cor-
responding bipartite entanglement entropies S are in the inset
and an in-depth discussion of the behavior of L = 〈σ z

1σ z
2σ z

3 〉
is given in Sec. V.

At first, initially partitioned circuits suffer a bout of de-
creased accuracy, which corresponds to a period of low yet
rapidly growing entanglement S (inset) that is either insuffi-
cient to express the target state of interest (gray) or simply
lower than those of many of the degenerate solutions (red).
Later, initially partitioned circuits can produce lower error
and require fewer training epochs, which we hypothesize
stems from the responsiveness of the gradient during the
initial phase of low entanglement, enabling the system to
train unfettered by barren plateaus and driving interactions
forward through entropy growth. We emphasize that, while
the benefits of initial partitioning for n = 9 qubits in Fig. 3(b)
are definitive yet moderate, they become vital to training for
larger networks [9], where barren plateaus can completely
preclude circuit learning due to the exponential suppression of
the training gradient. In particular, Fig. 4(b) illustrates that ini-
tial partitioning combats the vanishing gradient with matched
exponential scaling, rendering it an effective method at-scale.
Finally, although initially partitioned training of the ground-
state compressor (gray) is initially delayed, such training
outperforms random initialization at finding high-accuracy
solutions, which is the ultimate goal of such machine-learning
generalization tasks. Strategic initializations may be sufficient
to avoid barren plateaus throughout training. We emphasize
that the relationship between plateau barrenness and S (or
alternatively, in other works, n and L) is a product of circuit

FIG. 4. (a) A deep circuit (L = 100) pretraining procedure for
L = 〈σ z

1 σ z
2 〉 that minimizes collective entanglement SC [Eq. (21)],

the entanglement entropy between both the input and output registers
of RC and RN for n = 3, 5 (blue, orange). As random entanglement
decreases with SC , σ 2

O increases. Crucially, this pretraining proce-
dure is unique from partitioned initialization as it permits nontrivial
interaction at the level of individual circuit layers (inset), with mag-
nitude of inter-register interaction remaining 2/π ≈ 0.637, which is
consistent with that of random θi. (b) Derivative variance σ 2

O for
L = 〈σ z

1 σ z
2 〉 (nC = 2) and initially partitioned registers RC and RN in

units of its nonpartitioned value σ 2
B vs number of register entangling

gate layers LE . Here, L = 200 and n = 3, 5, 7, 9 (blue, orange, green,
and red). In both subfigures, each data point sampling two-thousand
distinct circuit iterations.

parameter randomness of at least a quantum 2-design and can
thus only be assumed for random circuit initializations. That
is, such randomness cannot generally be assumed throughout
the training process, as this represents an inherently structured
organizing of circuit parameters.

When initially partitioned cost functions are learned with
high accuracy [here, ground-state compression, but also in
both the partitioned training of L = 〈σ z

1σ z
2σ z

3 〉 in Fig. 5(c)],
S peaks towards the end of the rapid training period before
dropping down to a lower steady-state value. This indicates
that the initially partitioned circuit identifies an appropriate
solution that is less entangled with the unmeasured qubits of
RN , a potentially desirable quality as widespread entangle-
ment can lower the coherence time of qubits. Moreover, an
extension of this technique could be used to partially factor the
cost function registers themselves, resulting generally in fewer
required readouts for a given cost function determination and
ameliorating the so-called “measurement problem” [26–28].

We indicate that this ultimate drop in bipartite entangle-
ment is reminiscent of the late-stage decrease in tripartite
mutual information noted in Ref. [31]. The two phenomena
are not in conflict, however, the former indicating the dis-
entanglement of measured and unmeasured qubits after the
necessary information from those qubits had been collected,
while the latter signals that the global features of the input in-
formation are learned towards the end of the training process.
In fact, both observations suggest that information locality
is the salient feature of late-stage hybrid quantum-classical
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FIG. 5. Loss function vs epochs averaged over two-thousand it-
erations of both entanglement regularized and initially partitioned
circuits (solid lines) and initially partitioned only circuits (dashed
lines) of (a) ground-state compressor L = Lg [Eq. (9)], (b) L =
|〈σ z

1 σ z
2 σ z

3 〉|, and (c) L = 〈σ z
1 σ z

2 σ z
3 〉 with L = 200. In all cases,

nonzero regularization terms lead to (c) equal or (a), (b) faster and
more accurate learning with decreased S, mitigating the effects of
barren plateaus. Moreover, the behavior of S is reflective of the over-
all training difficulty (insets), whereas the cost functions of panels
(a) and (c) can be learned rather rapidly and accurately and do so
with naturally lower levels of bipartite entanglement S that are more
responsive to regularization, that of panel (b) trains slower and with
less accuracy, with entanglement growth that is controlled very little
by regularization. The black dashed line in panel (c) corresponds to
S for unregularized, unpartitioned L = 〈σ z

1 σ z
2 σ z

3 〉, which learns with
equal effectiveness as its partitioned and regularized counterparts,
highlighting the increased learnability eigenstate learning.

learning algorithms. Finally, we indicate that a reduction in
S also occurs for nonpartitioned circuits that can be learned
with high accuracy [dashed gray in Fig. 3(b) and dashed black
Fig. 5(c)], whereas it is absent from low-accuracy circuits
(red). Indeed, some degree of automatic RC-RN factorization
appears to be a natural feature of high-accuracy QNN training.

Finally, we comment that certain cost functions [see L =
〈σ z

1σ z
2σ z

3 〉 in Fig. 3(c)] train rapidly when initialized to a barren
plateau, and neither the time nor accuracy are improved by
mitigating these barren plateaus via initial partitioning. This
suggests that certain classes of cost functions (in this case
observables that target one of their eigenstates, as will be
discussed in Sec. V) may be naturally resistant to barren
plateaus. This could potentially be due to an accelerating
ordering process, wherein even initially slow learning (small
initial gradient variation) reduces entanglement and, in turn,
leads to progressively larger gradients and faster learning. In

this manner, even small σ 2
O might quickly navigate L to a

nonbarren region of its landscape.

B. Entanglement meta-learning as circuit pretraining

A similar yet more sophisticated solution for nonbar-
ren initializations is classical pretraining of the circuit gates
to control RC-RN entanglement. This process is a form
of meta-learning [43], a branch of machine-learning algo-
rithms directed at optimizing the learning process of other
algorithms.

We must be careful, however, in our choice of pretraining
cost function. Simply minimizing S would itself be a form
of randomly parametrized gradient descent algorithm on the
output qubits and would, thus, like previous meta-learning
techniques, tend to generate the concentration of parameters
that lead to barren plateaus [29]. We reiterate that this ob-
servation is not in conflict with our claim that σ 2

O vanishes
∝2−S for randomly initiated PQCs, because this relation is not
universal, but rather applies to circuit unitaries that are Haar
distributed, and can therefore only be assumed in random, not
pretrained, circuits.

As an alternative to S, we can combat barrenness by min-
imizing the collective entanglement SC of registers RC and
RN , which considers the 2n-qubit space of both input and
output registers. To define SC , we boost into the 2n-qubit pure
state

|�〉 =
2n−1∑
i, j=0

〈ψi|U |ψ j〉√
2n

|ψ j〉|ψi〉, (19)

where |ψi〉 represent some set basis vectors in the n-
dimensional Hilbert space. We can then define the density-
matrix operator of the full 2n collective qubit system

P = |�〉〈�|. (20)

Now the reduced density matrix and corresponding entropy of
entanglement of RC are defined over its 2nC input and output
qubits as

PC = TrN [P], SC = −Tr[PC log2 PC], (21)

where TrN is a trace over the 2nN input and output qubits
of RN . Figure 4(a) shows the pretraining process for n =
3, 5 (blue, orange), nC = 2, and L = 100, wherein the loss
function is set as L = SC and circuit parameters are updated
according to gradient descent. As the SC entanglement is mini-
mized, σ 2

O draws closer to its partitioned value σ 2
n≈nC

, reducing
the initialization problem of the barren plateau from O(2−n) to
approximately O(2−nC ) as the initialization SC of the circuit
is minimized through training. This comparison is approx-
imate because the pretraining method, while quite general,
implies some inherent ordering that may distinguish it from a
bipartition of 2-designs. As SC → 0 and RC and RN become
factorized, σ 2

O grows more similar to the variance of an nC

qubit system, reducing the barren plateau effect by ≈2n−nC

orders of magnitude. We note that as SC � 2min(nC, nN ), σ 2
O

of n = 3 is constant for SC > 2.
Critically, the average magnitude of RC-RN interaction on

a given layer k is not reduced. To see this, consider a rough
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metric of inter-register mixing

〈∣∣ sin
(
θE

i

)∣∣〉 = 1

3L

∑
θE

i

∣∣ sin
(
θE

i

)∣∣, (22)

where θE
i are the 3L rotation angles of the uk

nC ,nC+1 gates
that entangle the registers RC and RN . 〈| sin(θE

i )|〉 describes
these interactions because it is the average of off-diagonal (or
rotating) elements in the two-qubit rotation matrices uk

nC ,nC+1.
The inset of Fig. 4 demonstrates that this quantity remains
at its uniformly distributed value 2/π , even as the collective
registers become increasingly factored. This indicates that,
while the total entanglement of collective RC and RN is re-
duced, the average inter-register interaction at any given layer
k remains unaffected, providing a highly nontrivial circuit
initialization. This method is distinct from Ref. [19] because
it does not produce a network of identity-producing blocks
but rather a nearly arbitrary initialization with the sole yet
crucial constraint of adjustable factorizability along a single
connection. This distinction may be particularly important for
deep circuits [44]. What is more, this method assumes no
specification of problem structure [29], making it generally
applicable. Due to this generality, once a pretrained set of
parameters is learned, it may be stored and redeployed for
various cost functions.

Although classical pretraining is untenable for circuits of
large n, it can serve as meta-learning for the fundamental
effect of entanglement on PQCs and their optimal initializa-
tions. As such, it may lead to some scalable generalization of
the procedure. It could also be applied iteratively on subsets
of large circuits, i.e., on the qubits which form the border
between RC and RN . Most promisingly, recent advances
in efficient subsystem entanglement measuring techniques,
such as random measurements [45] and fidelity out-of-time
correlators [46], may pave the way for on-hardware hy-
brid quantum-classical variational minimization of collective
entanglement SC , or some analogous measure, enabling full-
circuit, high-variance gradient initializations for arbitrary-size
PQCs.

V. DYNAMIC CONTROL OF BARREN PLATEAUS

As the difficulties of training the relatively simple cost
function L = |〈σ z

1σ z
2σ z

3 〉| for deep circuits in Fig. 3(b) alludes,
initialization techniques can be insufficient for complete mit-
igation of barren plateaus. To combat this, we now propose
a variety of methods to directly manage the long-term en-
tanglement of the RC and RN output registers. Returning to
the analogy of optimal mixing of a classical bipartite gas in
Sec. IV, this section details quantum analogies to the more
“heroic” methods that we can take to dynamically control the
gaseous mixture’s entropy, such as regularization of (penaliza-
tion of the learning algorithm) or the introduction of additional
dynamics into the system.

A. Hard limit on RC-RN entangling gates

The simplest of these dynamic methods is imposing a
hard limit on the number of RC-RN entangling layers LE

in an otherwise deep circuit. This is explored in Fig. 4(b).

Although total depth L = 200, relatively large gradients can
still be achieved while still permitting a considerable num-
ber of RC-RN interactions. As LE grows, σ 2

O decays with a
similar scaling in LE as unrestricted circuits do in total gate
number L, corroborating that barren plateaus indeed arise with
the spread of cost function entanglement, not circuit depth
itself. This method could be particularly fruitful when using a
reinforcement learning algorithm [29,47] because the circuit
could learn to process and extract the most relevant portions
of RN before ultimately transferring them to RC in a limited
number of LE .

B. Entanglement regularization

A yet more dynamic method for limiting entanglement is
with regularization of RC-RN gates. Regularization adds a
penalizing term with adjustable scale parameter λ,

η = λ
∑

i

∣∣ sin
(
θE

i

)∣∣L, (23)

to the original cost function L in order to implicitly limit
the amount of cross-register entanglement.

∑
i | sin(θE

i )| is
proportional to the inter-register mixing measure 〈| sin(θE

i )|〉
of Sec. IV and serves to limit entanglement-generating inter-
actions. Moreover, as the values θi are already stored within
the classical learning algorithm, this metric does not require
additional queries to the quantum hardware. Scaling η by
L results in an adaptive regularization process that resists
entanglement in regions of poor solutions while relaxing to
the original learning problem as L approaches zero. This
adaptivity can be even more fruitful by making λ a decreasing
function of L, such that η disturbs the learning process even
less near optimal solutions.

The regularized gradient is then

Oi =
(

1+ λ
∑

i

∣∣sin
(
θE

i

)∣∣)∂L
∂θi

+ λ cos (θi )sign(sin (θi ))L.

(24)

During portions of the training process that are still largely
random, the average of ∂L

∂θi
over all Haar random unitaries

μOi = 0, as we can assume by concentration of measure for
deep circuits that

∑
i | sin(θE

i )| is approximately constant. The
variance, however, does increase to

σ 2
Oi

→
(

1 + λ
6L

π

)2

σ 2
Oi

. (25)

We highlight that, although regularization only directly
augments the variance of parameters θE

i upon which it acts,
we observe a similar increase in the unregularized angles,
indicating that its mitigation of barren plateaus is a system-
wide effect. Furthermore, we note that λ is adjustable and that
the regularized variance grows quadratically in circuit depth,
whereas σ 2

O is constant for deep circuits with a given num-
ber of qubits n. While effective for relatively small (n = 9)
quantum circuits (see Fig. 5), the necessity of regularization
or other techniques to combat barren plateaus becomes expo-
nentially more vital for large networks.

Figure 5 displays this learning process for an ini-
tially partitioned circuit trained with a λ which is
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piecewise-adaptive in (solid line) comparison with an algo-
rithm using only initial partitioning; that is, λ = 0 (dashed)
for L = 200. Three different loss functions are used: (a,
gray) ground-state compressor L = Lg [Eq. (9)], (b, red)
L = |〈σ z

1σ z
2σ z

3 〉|, and (c, green) L = 〈σ z
1σ z

2σ z
3 〉. Ground-state

compression can be achieved both faster and with greater
factorization of the output solution, while solutions to L =
|〈σ z

1σ z
2σ z

3 〉| have greatly improved accuracy. The persistence
of high entanglement for L = |〈σ z

1σ z
2σ z

3 〉| further supports
our claim that entanglement from randomly parametrized
quantum circuits is the source of barren plateau-related
training problems, correlating learning difficulty with sus-
ceptibility to entanglement growth. The mechanism by
which entanglement regularization increases the accuracy
learned for L = |〈σ z

1σ z
2σ z

3 〉| without reducing entanglement
is derived in the following section by a novel refram-
ing of barren plateaus in terms of Langevin noise, and
the results are used to design a new, general-purpose bar-
ren plateau amelioration technique. Finally, although L =
〈σ z

1σ z
2σ z

3 〉 is rapidly learned both with and without regulariza-
tion and/or initial partitioning, its regularized solutions still
benefit from the increased factorizability, with the dashed
black line in the inset of Fig. 5(c) showing its unparti-
tioned S.

As discussed in Sec. IV, we again comment on the seem-
ing resilience from barren plateaus of L = 〈σ z

1σ z
2σ z

3 〉 and
other cost function measurements that target their eigen-
states. While still beginning in a barren landscape with
overwhelming probability for random circuit initializations,
these algorithms learn equally well as without barren plateau
mitigation.

C. Langevin noise as gradient supplement

The results of Fig. 5(b) raise an interesting point: the addi-
tion of regularization terms to the cost function can improve
accuracy without significantly decreasing entanglement. We
hypothesize that this is because η, while sometimes success-
fully limiting entanglement, is always providing additional
perturbation in the form of noise. Langevin noise in partic-
ular has proven fruitful in classical machine learning and has
been used to prevent overfitting in classical neural networks
[30].

To motivate this hypothesis, we make the observation that
the cost function gradient in barren plateaus can be concep-
tualized as a form of Langevin noise in circuit parameter
space. Typically, Langevin noise is defined for functions g
that vary with time τ . Then g(τ ) satisfies the conditions that
〈g(τ )〉Lan ≡ ∫

g(τ )dτ = 0 and 〈g(τ )g(τ ′)〉Lan = 2Dδ(τ − τ ′),
where δ is the Dirac δ function and D is some finite, nonzero
diffusion constant [48]. In the case of O, the moments are
not integrals over time, but rather over the parameters θi as
described by the Haar measure, such that D = σ 2

O/2.
By introducing this novel Langevin noise formulation, we

reframe barren plateaus as an entanglement-induced diminu-
tion of D. In this framework it becomes apparent that, even
when a network’s random entanglement cannot be restricted,
barren plateaus can still be mitigated by introducing additional
Langevin noise λ

∑N
i |φi|L to the original loss function such

FIG. 6. Preparing a state |ψ〉 under barren plateau conditions
(random initialization of L = 200) for n = 9 and cost function L =
|〈σ z

1 σ z
2 σ z

3 〉| through both (a) the addition of Langevin noise on a sub-
set of parameters and (b) substitution of measurement basis for which
the target state is an eigenstate. (a) Additional Langevin noise term
λ

∑N
i |φi|L increases the gradient variance σ 2

Oi
→ (1 + λNπ )2σ 2

Oi

with respect to parameters φi, thus helping to navigate barren plateau
landscapes. This can be viewed as an increase in diffusion constant
2D. (b) By substituting the cost function 〈σ z

1 σ z
2 σ x

3 〉, for which our
target state |ψ〉 is an eigenstate (or alternatively, choosing a “natu-
ral” cost function basis), we obtain a faster, more accurate learning
process. Both experiments are the average over two-thousand distinct
randomly parametrized circuits.

that

G =
(

1 + λ

N∑
i

|φi|
)
L, (26)

with derivatives gi = ∂G
∂φi

and where φi are an arbitrarily cho-
sen subset of circuit parameters of size N . For uniformly
distributed φi ∈ φ̂ on the interval [0, 2π ), this yields the
equivalent relation

〈gi(φ̂)gi(φ̂)〉Lanφ ≡ 2D = (1 + λNπ )2σ 2
Oi

. (27)

Figure 6(a) illustrates the effectiveness of such Langevin
noise in barren landscapes, producing a high-accuracy solu-
tion for L = |〈σ z

1σ z
2σ z

3 〉| despite fully random initialization
for n = 9 on a deep circuit (L = 200). We note that, like the
increased variance of entanglement regularization, angles that
are not directly perturbed by added Langevin noise still enjoy
an increase in variance from the system-wide effect of the
technique.

D. Natural cost function bases

Finally, we discuss our repeated observation that successful
learning in initially barren landscapes is greatly facilitated
when the target output is an eigenstate of the cost function
observables, a basis choice that we refer to as “natural.”
This observation of a natural basis has been made for other
product-state PQC objective functions, such as in the basis
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transformations of electronic structure reference states in
quantum chemistry [2]. Not only do such configurations learn
more rapidly, their training rate and accuracy are not impacted
by otherwise successful barren plateau mitigation techniques.

We have suggested a potential link between this train-
ability of natural basis cost functions and the tendency of
these circuits to limit their own entanglement, navigating
out of the barren landscapes of random matrices and into a
tractable configuration. In particular, the variational prepa-
ration of measurement eigenstates has several entropy-based
advantages, such as a vanishing gradient variance when circuit
approaches an optimal solution. As discussed in Sec. IV, this
effect may also be due to a rapidly accelerating ordering
process, wherein even small σ 2

O lead to L efficiently escaping
into nonbarren regions of its landscape.

Regardless of the origin of its effect, rotating cost func-
tion measurements into natural bases can be a strong barren
plateau mitigating strategy. Figure 6(b) illustrates that, by sub-
stituting L = 〈σ z

1σ z
2σ x

3 〉 for L = |〈σ z
1σ z

2σ z
3 〉|, we can obtain a

desired solution |ψ〉 such that 〈ψ |σ z
1σ z

2σ z
3 |ψ〉 = 0 much more

effectively. The replacement of a single σ z with the operator
σ x reduces the problem to an eigenstate optimization and
results in a learning process that trains quickly and automat-
ically limits entanglement [entanglement behavior analogous
to the black dashed line in Fig. 5(c)], in contrast to the diffi-
culties of the original problem [red dashed line in Fig. 3(b)].

VI. CONCLUSION

We have demonstrated the relationship between total qubit-
cost function random entanglement and the barrenness of
a learning landscape both analytically and numerically and
oriented these findings within the context of many-body
entanglement dynamics. Based on these results, we estab-
lished various metrics for barren plateau prediction, both
in terms of entanglement and, for a 1D system, circuit
depth. We also proposed an input-output entanglement metric,
whose minimization we suggest is key to circuit learnabil-
ity. Using this knowledge, we went on to propose various
mitigation schemes, including initial partitioning of cost
function and non-cost function registers, meta-learning of
low-entanglement high-interaction PQC initializations, lim-
iting inter-register interaction, entanglement regularization,
the addition of Langevin noise, and utilizing natural cost

function bases. We demonstrated the effectiveness of these
techniques, elucidating the role that entanglement minimiza-
tion plays in both the assisted and unassisted training of
QNNs and emphasizing that, as existing barren plateau proofs
assume sufficiently random parametrizations which do not
apply under all circumstance, barren plateaus can potentially
be avoided or escaped in generic PQCs.

While these findings imply that QNN learning must strike
a nontrivial balance between randomness, expressibility, and
barrenness, they lay the groundwork for numerous miti-
gation techniques that may facilitate large-scale quantum
circuit learning. Furthermore, these methods furnish vari-
ous secondary benefits, such as solution factorization, novel
paradigms of quantum meta-learning, and increased under-
standing of circuit optimization, to name a few. Furthermore,
they suggest that the growth of circuit entanglement could
potentially be harnessed to drive the learning process.

Oftentimes, the presence of barren plateaus in PQCs is
interpreted as an absolute impasse, because it is typically
believed to preclude learning. However, this work emphasizes
that not only can barren plateaus be ameliorated through
entanglement considerations, they should be understood as
manifestations of circuit randomness that have not been
proved to apply to more organized configurations, such as
those which may manifest during the learning process. To
understand the relationship between cost function barrenness
and total circuit learnability, the evolution of circuit param-
eter distributions throughout the learning process should be
characterized. Such a statistical characterization will also shed
further light on the viability of barren plateau mitigation
methods.
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