
What Does Dynamic Optimality Mean in External1

Memory?2

Michael A. Bender �3

Stony Brook University, Stony Brook, NY, USA4

Martín Farach-Colton �5

Rutgers University, New Brunswick, NJ, USA6

William Kuszmaul �7

MIT, Cambridge, MA, USA8

Abstract9

A data structure A is said to be dynamically optimal over a class of data structures C if A is10

constant-competitive with every data structure C œ C. Much of the research on binary search trees11

in the past forty years has focused on studying dynamic optimality over the class of binary search12

trees that are modified via rotations (and indeed, the question of whether splay trees are dynamically13

optimal has gained notoriety as the so-called dynamic-optimality conjecture). Recently, researchers14

have extended this to consider dynamic optimality over certain classes of external-memory search15

trees. In particular, Demaine, Iacono, Koumoutsos, and Langerman propose a class of external-16

memory trees that support a notion of tree rotations, and then give an elegant data structure, called17

the Belga B-tree, that is within an O(log log N)-factor of being dynamically optimal over this class.18

In this paper, we revisit the question of how dynamic optimality should be defined in external19

memory. A defining characteristic of external-memory data structures is that there is a stark asym-20

metry between queries and inserts/updates/deletes: by making the former slightly asymptotically21

slower, one can make the latter significantly asymptotically faster (even allowing for operations with22

sub-constant amortized I/Os). This asymmetry makes it so that rotation-based search trees are not23

optimal (or even close to optimal) in insert/update/delete-heavy external-memory workloads. To24

study dynamic optimality for such workloads, one must consider a di�erent class of data structures.25

The natural class of data structures to consider are what we call bu�ered-propagation trees.26

Such trees can adapt dynamically to the locality properties of an input sequence in order to optimize27

the interactions between di�erent inserts/updates/deletes and queries. We also present a new form28

of beyond-worst-case analysis that allows for us to formally study a continuum between static and29

dynamic optimality. Finally, we give a novel data structure, called the JÁllo Tree, that is statically30

optimal and that achieves dynamic optimality for a large natural class of inputs defined by our31

beyond-worst-case analysis.32

2012 ACM Subject Classification Theory of computation æ Sorting and searching33

Keywords and phrases Dynamic optimality, external memory, bu�er propagation, search trees34

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.12035

Funding Michael A. Bender : Supported in part by NSF grants CCF-2118832, CCF-2106827, CCF-36

1725543, CSR-1763680, CCF-1716252, and CNS-1938709.37

Martín Farach-Colton: Supported in part by NSF grants CSR-1938180, CCF-2106999, and CCF-38

2118620.39

William Kuszmaul: Funded by a Hertz Fellowship and an NSF GRFP Fellowship. Research was40

also partially sponsored by the United States Air Force Research Laboratory and the United States41

Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement42

Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the43

authors and should not be interpreted as representing the o�cial policies, either expressed or implied,44

of the United States Air Force or the U.S. Government. The U.S. Government is authorized to45

reproduce and distribute reprints for Government purposes notwithstanding any copyright notation46

herein.47

© Michael A. Bender, Martín Farach-Colton, William Kuszmaul;
licensed under Creative Commons License CC-BY 4.0

13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Editor: Mark Braverman; Article No. 120; pp. 120:1–120:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bender@cs.stonybrook.edu
mailto:martin@farach-colton.com
mailto:kuszmaul@mit.edu
https://doi.org/10.4230/LIPIcs.ITCS.2022.120
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

120:2 What Does Dynamic Optimality Mean in External Memory?

Acknowledgements Portions of this work were completed at the Second Hawaii Workshop on Parallel48

Algorithms and Data Structures. The authors would like to thank Nodari Sitchinava for organizing49

the workshop.50

1 Introduction51

Static and dynamic optimality in internal memory52

Since the early 1960s, many balanced binary trees have been developed with worst-case53

O(log N) time per operation [1,6,22], where N is the number of elements in the tree. In such54

trees, the cost of any particular operation can be much smaller, even O(1), if the element55

being queried is stored near the root of the tree. This means that a search tree can potentially56

achieve o(log N) time per operation on workloads that exhibit locality properties.57

Since the 1980s, considerable e�ort has been devoted to designing distribution-sensitive58

binary search trees that perform workload-specific optimizations. Broadly speaking, there59

are two approaches to analyzing distribution-sensitive search trees. The first approach is to60

bound the performance based on some property of the input sequence [5,13,17–19,25,26,33,34],61

e.g., the sequential access bound [34], the working set bound [26,33], the weighted dynamic62

finger bound [13,18,19], and the unified bound [5,26]. The second approach is competitive63

analysis, where one must select a class of data structures C, such as static binary trees or64

binary trees that are modified via rotations, and then design a single data structure A (not65

necessarily from C) that is competitive with any data structure in C. If the members of66

C are static, a O(1)-competitive algorithm1 is said to be statically optimal against C67

and if they are dynamic, a O(1)-competitive algorithm is said to be dynamically optimal68

against C.69

Splay trees are famously statically optimal against the class of binary trees [33]. On70

the other hand, whether dynamic optimality can be achieved against the class of binary-71

trees-with-rotations remains one of most elusive problems in the field of data structures72

(see [27] for a survey). The Tango Tree [23] is known to be within a factor of O(log log N) of73

dynamic optimality. The splay tree [32] is widely believed to achieve dynamic optimality,74

but it remains open whether the structure is even o(log N)-competitive.75

Research on dynamic optimality against internal-memory search trees has historically76

considered sequences of operations consisting exclusively of queries. We emphasize that this77

is not a limitation of past work—indeed, it turns out that queries and inserts/updates/deletes78

are su�ciently similar to one another that the queries-only assumption is without loss of79

generality. As we will see later, this equivalence does not hold in external memory.80

Static and dynamic optimality in external memory81

Search trees are every bit as ubiquitous in external memory as they are in internal memory—82

e.g., they are used prominently in file systems [28, 37], databases [7, 20], and key-value83

stores [12, 21, 30]. The principle di�erence with internal memory is that disks are accessed in84

blocks of some (typically large) size B.2 External-memory search trees are analyzed in the85

1 Here, we can see an example where it is especially important that A not have to be a member of C. In
particular, if we wish to construct an A that is O(1)-competitive with any (omnisciently constructed)
static C, then we must allow for A to adapt dynamically over time.

2 As a convention, B is measured in terms of the number of machine words that fit in a block.

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:3

Disk-Access Model [2], where the goal is to minimize the number of block accesses (also86

known as I/Os).87

B-trees [7, 20] are balanced search trees optimized for external memory, which means88

they have fanout �(B), and hence a worst case of O(logB N) I/Os per operation. Again,89

the cost of any particular operation can be much smaller if the element being queried is90

stored near the root. This raises a natural question: what can be said about static and91

dynamic optimality for external-memory search trees? We remark that most of the work on92

this question has focused on dynamic optimality and treated static optimality implicitly.93

The notion of dynamic optimality in external-memory search trees is less well understood94

than in internal memory. Part of the reason for this is the di�culty of identifying the95

class of data structures over which dynamic optimality should be defined, and in particular96

identifying the mechanism by which elements can move vertically in the tree.97

Early work focused on a skip-list-like mechanism where keys can move towards the root98

in the tree by becoming a pivot and splitting some node in two [14,31]. We call this class99

of data structures merge-split trees. Bose et al. [14] gave a data structure that achieves100

dynamic optimality in this model and showed that the performance of their data structure is101

determined by the working-set bound [26,33].102

Merge-split trees are limited in their ability to exploit the locality of a workload. For103

example, on the sequential workload in which 1, 2, . . . , N are accessed round robin, merge-split104

trees incur amortized cost �(logB N) per operation. In contrast, even in-memory binary trees105

implemented using rotations can achieve the sequential access bound [34] on the same106

workload, that is, an amortized O(1) I/Os. The main di�erence between merge-split trees107

and binary trees with rotations is that merge-split trees move individual elements up and108

down the tree, but they do not move entire subtrees together (as is the case for rotations).109

Recently, Demaine et al. [24] introduced a di�erent class of dynamic trees that support110

“rotations” similar to those in in-memory binary search trees. The authors study dynamic111

optimality over this class of data structures and introduce the Belga B-tree, which they prove112

is O(log log N)-competitive against any rotation-based search tree.113

The work on external-memory dynamic optimality so far has focused on exploiting the114

underlying locality properties of the workload in order to optimize queries. The tradeo�115

being explored is the decision of which keys are stored near the root of the tree and which116

keys are stored further down.117

This paper: optimizing the asymmetry of external-memory operations118

One of the remarkable (and perhaps unexpected) di�erences between search trees in internal119

and external memory, however, is that in external memory, inserts/updates/deletes can120

be implemented to have amortized performance asymptotically faster than that of queries.121

While the worst-case cost of queries is logarithmic, inserts/updates/deletes can take an122

amortized subconstant number of I/Os [8–10,15,16,29].123

An important consequence of this asymmetry is that there are many input sequences124

for which the positioning of di�erent keys in the tree is not the dominant factor controlling125

performance. To study dynamic optimality for such sequences, we must consider a class of126

algorithms that can optimize the cost of queries vs insertion/deletions/updates.127

The key technique for such optimizations is bu�ered propagation in which one propag-128

ates insert/update/delete operations down the tree in bu�ered batches. This allows for a129

single I/O to make progress on many insert/update/delete operations simultaneously, so that130

the amortized cost of such operations is small. We emphasize that, on insert/update/delete-131

heavy workloads, even standard trees that non-adaptively use bu�ered propagation, such132

ITCS 2022

120:4 What Does Dynamic Optimality Mean in External Memory?

as the B
Á-trees [3, 8, 10, 15], can be asymptotically faster than the best possible adaptive133

rotation-based search trees.134

Bu�ered propagation comes with a tradeo� curve: we can make inserts/updates/deletes135

faster (up to a factor of O(B)) at the cost of making queries slower (up to a factor of136

O(log B)). This means that there is an opportunity to adapt dynamically to a sequence of137

operations, both by adjusting the amount of bu�ered propagation over time, and by using138

di�erent amounts of bu�ered propagation in di�erent parts of the tree. There is also an139

opportunity to adapt the choice of pivots used by each internal node in the tree in order to140

strategically split collections of operations in a way that sends queries in one direction and141

inserts/updates/deletes in another.142

All of these tradeo�s can be formally captured with a class of data structures that we143

call bu�ered-propagation trees—the problem of optimizing the tradeo�s between queries144

and non-queries in an external-memory search tree corresponds to the problem of achieving145

dynamic optimality against bu�ered-propagation trees.146

We remark that even static optimality against bu�ered propagation trees is an interesting147

question. That is, given a workload of query operations and update operations (which148

change values associated with keys, so the set of keys does not change over time), can one149

construct a data structure that is competitive with the optimal statically-structured bu�ered150

propagation tree? Even though the bu�ered propagation tree has a static structure, it can151

still strategically select the pivots and the amount of bu�ered propagation at each internal152

node in order to optimize for spatial locality between operations. Even if we are given the153

operations up front (in an o�ine manner), it is not immediately clear how one should go154

about constructing the optimal static bu�ered propagation tree.155

A continuum between static and dynamic optimality156

Achieving full dynamic optimality against any sophisticated class of search trees (whether157

it be internal-memory rotation-based trees or external-memory bu�ered-propagation trees)158

is a di�cult problem to get traction on: even small changes to a tree can have significant159

impact on asymptotic performance, so an omniscient adversary can potentially perform rapid160

modifications to the data structure in order to adapt to the workload at a very fine-grained161

level. In addition to considering the question of how to model dynamic optimality in external162

memory, a second contribution of this paper is to revisit the question of how we should163

perform beyond-worst-case analysis within that model, in order to characterize how “close”164

a given data structure is to achieving dynamic optimality.165

One insight is that, in practice, it is natural to expect that the properties of an input166

sequence may evolve slowly over time, meaning that the (o�ine) optimal dynamic bu�ered167

propagation tree will also evolve slowly. We capture this property formally by declaring168

a sequence of operations to be K-smooth if there exists an optimal dynamic bu�ered169

propagation tree T for the sequence such that only a 1/K-fraction of T ’s I/Os are spent170

restructuring the tree.171

We propose a natural form of beyond-worst-case analysis: rather than trying to achieve172

full dynamic optimality, can we achieve dynamic optimality for the class of K-smooth inputs173

(and for some reasonably small K)? Instead of thinking of this as a restriction on input174

sequences, one can also think of it as a type of resource augmentation. Can we design a data175

structure that is O(1)-competitive with any K-speed-limited bu�ered propagation tree,176

that is any bu�ered propagation tree that is limited to spend at most a 1/K-fraction of its177

I/Os on modifying the tree? Note that any data structure that is O(1)-competitive against178

K-speed-limited bu�ered propagation trees is guaranteed to be O(1)-competitive on all K-179

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:5

smooth input sequences—therefore the problem of achieving competitive guarantees against180

K-speed-limited adversaries subsumes the problem of achieving optimality on K-smooth181

inputs.182

The study of K-speed-limited adversaries o�ers an intriguing continuum between static183

and dynamic optimality. Optimality against Œ-speed-limited adversaries is equivalent to184

static optimality, and optimality against 1-speed-limited adversaries is equivalent to full185

dynamic optimality. The smaller a K that we can achieve optimality against, the closer we186

are to achieving true dynamic optimality. We remark that this same continuum would also187

be interesting to study for internal-memory search trees, and we leave this direction of work188

as an open problem.189

Achieving dynamic optimality against a speed-limited adversary190

The third contribution of the paper is a new data structure that we call the JÁllo Tree. The191

JÁllo Tree is statically optimal, meaning that on any workload of updates and queries, the192

tree is constant competitive with any static bu�ered propagation tree. The JÁllo Tree is also193

dynamically optimal against any su�ciently speed-limited bu�ered propagation tree.194

Our main theorem is that, for any ” œ (0, 1) fl �(log log N/ log B), we can build a JÁllo195

Tree that is O(1/”)-competitive with any B
3”-speed-limited bu�ered propagation tree. The196

construction and analysis of the JÁllo Tree is the main technical result of the paper.197

In addition to requiring that the adversary is speed limited, our competitive analysis198

assumes a B
3”-factor of resource augmentation on cache size, meaning that we compete an199

adversary whose cache is a B
3”-factor smaller than ours. We also present a version of the200

analysis that incurs a small additive overhead in exchange for eliminating the cache-size201

resource augmentation.202

Paper outline203

In Section 2, we formally define bu�ered propagation trees and speed-limited adversaries,204

and we state our main results. Then in Section 3 we give a sketch of the JÁllo Tree’s design205

and analysis. The full design and analysis appear in the extended version of the paper [11].206

2 Defining the Class of Speed-Limited Bu�ered Propagation Trees207

In this section, we formally define bu�ered propagation trees (and speed-limited bu�ered208

propagation trees). We then define the adversary Speed-Limited OPT (or OPT for short)209

against which we will analyze the JÁllo Tree. And finally we use these definitions to formally210

state the main result of the paper.211

Both bu�ered propagation trees and the JÁllo Tree live in the Disk-Access Model [2].212

In particular, the computer has a cache of size M machine words, and has access to an213

(unbounded-size) external memory consisting of blocks of some size B machine words. An214

algorithm can read/write a block from external memory to cache at the cost of one block215

access (or I/O), and time is measured as the total number of I/Os incurred by the algorithm.216

2.1 An introduction to bu�ered propagation217

In external-memory data structures, there is an asymmetry that allows for inserts/updates/de-218

letes to be implemented asymptotically faster than query operations. The fundamental219

technique for achieving these speedups is bu�ered propagation, in which one propagates220

insert/update/delete operations down the tree in bu�ered batches. For each node x in221

ITCS 2022

120:6 What Does Dynamic Optimality Mean in External Memory?

the tree, if x has f children c1, . . . , cf , then x maintains a bu�er of size B/f for each of222

those children. Each bu�er collects insert/update/delete messages destined for that child223

ci. Messages are flushed down from x to the children c1, . . . , cf in collections of size B/f224

(i.e., whenever a bu�er for one of the children overflows). The O(1) I/Os that are used to225

perform a bu�er flush are shared across �(B/f) insert/update/delete operations. By giving226

a node x a smaller fanout, one can decrease the amortized cost of a bu�er flush, making227

inserts/updates/deletes faster. On the other hand, smaller fanouts also make the height of228

the tree larger, which makes queries slower.229

A classic example of bu�ered propagation is the B
Á-tree [8, 10,15,16], which has found230

applications in databases [10, 35, 36] and file systems [28, 37–41]. In a B
Á-tree, all nodes231

have the same fixed fanout f (typically, one sets f = B
Á for some constant Á). Queries cost232

O(logf n) and insert/update/delete operations have amortized cost O(f
B logf N), so that,233

e.g., an insert/update/delete-heavy workload can be performed asymptotically faster than in234

standard B-trees if f is selected to be small. An interesting feature of this tradeo� curve235

is that, if B ∫ f logf N , then insert/update/delete operations can even take sub-constant236

amortized time—the same guarantee is not possible for queries.237

The fanout f used within a B
Á-tree can be tuned to the sequence of operations. One238

must be careful not to select the wrong fanout for the workload, however. For example, the239

B
1/2-tree, where f =

Ô
B, achieves an insert/update/delete performance O(logB nÔ

B
) while240

achieving an optimal query performance of O(logB n). But, if a workload consists exclusively241

of inserts/updates/deletes then the B
1/2-tree will perform a factor of

Ô
B away from optimal.242

Although we typically think of B
Á-trees as having fanout f that is uniform across all243

nodes (and unchanging), the B
Á-tree generalizes to a class of data structures where di�erent244

nodes can have di�erent fanouts. In this paper we define a broad class of data structures that245

we call bu�ered propagation trees, and which can be viewed as weight-balanced B
Á-trees246

with non-uniform fanout.247

Non-uniform fanouts are especially natural if some parts of the key space are insert/up-248

date/delete heavy and other parts of the key space are query heavy. A bu�ered propagation249

tree can pick a large f for nodes that see mostly queries and a small f for nodes that see250

mostly inserts/updates/deletes. This means that pivots can be strategically selected in order251

to split collections of operations in a way that sends queries in one direction and inserts/up-252

dates/deletes in another.3 By contrast, since f is uniform in a B
Á-tree, the performance of253

the tree is fairly insensitive to pivot choice. By choosing the right pivots and local f , one254

can potentially exploit the underlying spatial locality of the workload to achieve asymptotic255

improvements over any uniform-fanout B
Á-tree. In the dynamic case, where a bu�ered256

propagation tree is permitted to change its structure over time, it can also adapt to the257

temporal locality of the sequence of operations being performed.258

2.2 Formally defining bu�ered propagation trees259

We now formally define the class of bu�ered propagation trees. To simplify discussion,260

we restrict ourselves to queries/inserts/updates—discussion of deletes can be found in the261

extended version of the paper [11].262

For each node x in a bu�ered propagation tree, let K(x) be the keys stored in the subtree263

rooted at x. Let d(x) be the number of children that x has and call them c1, . . . , cd(x). Then264

3 As we will see later in this paper, the careful selection of pivots can have substantial asymptotic impact
on the performance of the tree, even when fanouts are selected optimally.

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:7

x selects some subset p1 < · · · < pd(x)≠1 œ K(v) to act as pivots. The children c1, . . . , cd(x)265

of x then have key sets K(c1) = K(x) fl (≠Œ, p1], K(c2) = K(x) fl (p1, p2], . . . , K(cj) =266

K(x) fl (pj≠1, Œ]. The result is that each node x is associated with some interval of keys,267

called x’s key range, such that any operation on that key range is routed through x.268

The size of a node is the number of keys in the node’s key range in the tree.4 Every269

node in the tree has a target size (for leaves the target size is B/2), dictating what size the270

node is supposed to be: as a rule, at any given moment, if a node has target size s, then271

its true size must be in the range [s, O(s)]. All the children of a node must have the same272

target sizes as one another, and we refer to the target size of the children of a node as its273

target child size. Without loss of generality, the target child size of a node is smaller than274

the target size.275

Flushing messages between nodes in a bu�ered propagation tree276

The target fanout of an internal node is defined to be the target size divided by the target277

child size. If a node has target fanout f , then the node maintains a bu�er of size B/f278

for each of its children. The bu�er for each child c stores insert/update messages for that279

child—these messages keep track of insert/update operations that need to be performed on280

keys in c’s key range.281

To understand how insert/update messages work, it is helpful to think about the progres-282

sion of a given message down the tree. Any given insert/update operation on some key k283

inserts a message into a bu�er at the root. Over time, the message then travels to the leaf284

whose key range contains k, at which point the insert/update operation is finally applied.285

Whenever a bu�er for some child y overflows in a node x, that bu�er is flushed to the child286

y; and the messages in the bu�er are distributed appropriately across y’s bu�ers; this may287

then cause bu�ers in y to overflow, etc..288

In order to perform a query on a key k, one traverses the root-to-leaf path to the leaf ¸289

that contains k in its key range. By examining the messages in the bu�ers of the nodes in290

the root-to-leaf path, as well as the contents of leaf ¸, the tree can answer the query on key k.291

Modifying a bu�ered propagation tree and defining speed-limitation292

A bu�ered propagation tree can dynamically change the fanouts and pivot-choices within293

nodes in order to adapt to the sequence of operations being performed.294

The most basic operation that a bu�ered propagation tree can perform is to split a node295

x into two nodes x1, x2 whose target-sizes/target-child-sizes are the same as x’s were. This is296

known as a balanced split. Balanced splits allow for the tree to perform weight-balancing,297

and we will treat balanced splits as being free (for our adversary), meaning they do not cost298

any I/Os, even if the tree is K-speed-limited for some K.299

The other way that a bu�ered propagation tree can modify itself is through batch rebuild,300

in which some collection of nodes in the tree are replaced with new nodes (using possibly301

di�erent pivots and fanouts than before).302

In more detail, when performing a batch rebuild, we can take any set of nodes X =303

{x1, . . . , xm}, and and replace them with a di�erent set of nodes Y = {y1, . . . , ymÕ} arbitrarily,304

with the restriction that after the replacement, the tree should still be valid (i.e., each node305

meets its target size requirement, each child has target size equal to the parent’s child target306

4 This can di�er from |K(x)| for node x because insertions into x’s key range can reside in a bu�er above
x.

ITCS 2022

120:8 What Does Dynamic Optimality Mean in External Memory?

size, and pairs of consecutive key ranges are separated by a valid pivot). Note that after a307

batch rebuild, bu�ers may be significantly overflowed in some nodes, in which case the tree308

must perform a series of bu�er flushes to fix this. If a bu�er is overflowed by a factor of k,309

then flushing that bu�er takes �(k) I/Os.5310

A K-speed-limited bu�ered propagation tree is limited as follows: the tree is only311

permitted to devote a 1
K fraction of its I/Os to batch rebuilds. Another way to think about312

this is that I/Os spent on batch rebuilds are a factor-of-K more expensive than other I/Os.313

So a batch rebuild of a set of nodes X into a new set of nodes Y costs (|X| + |Y |)K I/Os.314

Defining K-smooth inputs315

A K-smooth input is any sequence of operations with the following property: The optimal316

bu�ered propagation tree cost C for those operations is within a constant factor of the317

optimal K-speed-limited bu�ered propagation tree cost C
Õ for those operations. Intuitively,318

this means that there is an optimal (or at least near-optimal) bu�ered propagation tree that,319

during the sequence of operations, spends only a O(1/K)-fraction of its I/Os on optimizing320

the structure of the tree for the sequence.321

Note that we are intentionally generous in what we consider to be “optimizing the322

structure of the tree”. Balanced splits are not counted against the adversary, are not a�ected323

by K-speed-limitation, and thus do not factor into K-smoothness. This is important because324

on an insertion-heavy workload, a tree may be forced to perform a large number of balanced325

splits, even if the tree is not changing its fanouts/pivots in any interesting way. Thus,326

insertion-heavy workloads would penalize the adversary unfairly for I/Os that the adversary327

has no choice but to spend.328

To achieve dynamic optimality for K-smooth inputs, it su�ces to achieve dynamic329

optimality (for all inputs) against K-speed-limited bu�ered propagation trees:330

I Observation 1. If a data structure T is c-competitive against dynamic K-speed-limited331

bu�ered propagation trees, then T is O(c)-competitive on K-smooth input sequences against332

dynamic bu�ered propagation trees.333

Throughout the body of the paper, we shall focus on the problem of achieving dynamic334

optimality against K-speed-limited bu�ered propagation trees, since this problem is strictly335

more general than the problem of considering K-smooth inputs.336

Defining Speed-Limited OPT337

In this paper, we will consider the class of K-speed-limited bu�ered propagation trees, where338

K = B
3” for some parameter ”. Given a sequence of operations S, we define speed-limited339

OPT (or OPT for short) to be the K-limited bu�ered propagation tree that achieves the340

minimum total I/O cost on that sequence of operations. We will design a data structure, the341

JÁllo Tree, that is competitive with OPT.342

Caching in OPT and in the JÁllo Tree343

OPT is assumed to a have a cache that stores the top of OPT’s tree. As per the Disk-Access344

Model [2], any accesses to nodes that are cached are free, in the sense that they do not345

5 We can also think of the flush as being partitioned into ÂkÊ distinct flushes, each of which flushes B/f

items.

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:9

incur I/Os. We assume that the cache for OPT stores any node x whose target size is above346

N/C, for some caching parameter C. (Note that this means, w.l.o.g., that OPT may as347

well make such nodes be fully insert/update-optimized with �(1) fanouts—and furthermore,348

w.l.o.g., OPT does not perform batch rebuilds on cached nodes.) We will further assume349

N/C = N
1≠�(1) (meaning that if OPT were to have uniform fanout, then at most a constant350

fraction of OPT’s tree levels would be cached).351

In the same way that we assume a factor of B
3” resource augmentation in terms of speed-352

limitation, the JÁllo Tree will is also given a factor of B
3” cache-size resource augmentation353

against OPT. Namely, we will assume that the JÁllo Tree caches any node x whose size is354

above N
CB3” . If both data structures were B

”-trees, this would correspond with caching O(1)355

more layers than OPT caches.356

2.3 Results357

Our main theorem is the following:358

I Theorem 2. Suppose that B Ø �(log N) and that B is su�ciently large as a function359

of 1/”. Let – be the total I/O cost incurred by the JÁllo Tree, and let — be the total cost360

incurred by the optimal B
3”

-speed-limited bu�ered propagation tree OPT using a factor of361

B
3”

smaller cache than does the JÁllo Tree. Then – Æ O(—/”).362

We also present a version of the theorem that does not assume resource augmentation on363

cache size. As long as N ∫ B, then the cost of removing the resource augmentation is only364

a small additive I/O cost per operation.365

I Theorem 3. Suppose that B Ø �(log N) and that B is su�ciently large as a function

of 1/”. Let – be the total I/O cost incurred by the JÁllo Tree, let I be the total number

of inserts/updates performed on the JÁllo Tree, and let R be the total number of queries

performed on the JÁl lo Tree. Let — be the total cost incurred by the optimal B
3”

-speed-limited

bu�ered propagation tree OPT using the same cache size as the JÁllo Tree uses. Then

– Æ O(—/”) + min{I/B
”
, R log B

”}.

366

In the extended version of the paper [11], we also discuss how to incorporate deletes into367

both the definition of a speed-limited adversary and the design and analysis of the JÁllo Tree.368

3 Technical Overview369

Because both the JÁllo Tree itself and its analysis are quite intricate, in this section we present370

a sketch of the main ideas in the data structure and our proofs. The full data structure and371

its analysis appear in the extended version of the paper [11].372

To simplify the presentation, we begin by considering optimality against a weakened373

version of OPT. As subsections proceed, we remove restrictions on OPT and work our way374

towards achieving dynamic optimality the optimal B
3”-speed-limited bu�ered propagation375

tree.376

We begin in Subsection 3.1 by considering an OPT that has uniform fanouts (i.e., OPT377

is a B
Á-tree with optimal fanout). In Subsection 3.2, we consider an OPT that is allowed378

arbitrary fanouts, but is restricted in its ability to select pivots. In Subsection 3.3, we379

examine the obstacles that arise OPT is permitted to select pivots arbitrarily. Finally, in380

Subsection 3.4, we consider the full version of OPT, in which OPT gets to select both pivots381

and fanouts freely.382

ITCS 2022

120:10 What Does Dynamic Optimality Mean in External Memory?

3.1 A warmup: designing a fanout-convergent tree383

Suppose we are given an initial set of N records to be stored in a bu�ered propagation tree384

T with L = �(N/B) leaves, and we are given a sequence of operations S = Ès1, s2, . . . , skÍ385

of inserts/updates and queries. Let Cf (S) be the cost that the operations S would incur386

if T were implemented as a B
Á-tree with fanout f . In this section, we present the fanout-387

convergent tree, which is a data structure for implementing the operations S so that the388

total cost is O(minf Cf (S)) (without knowing S ahead of time).389

Problem: the cost of rebuilds390

A natural approach to achieving cost O(minf Cf (S)) would be to treat the selection of f391

as a multi-armed bandit problem [4]. The problem with this approach is that, in order to392

o�set the costs of rebuilding the tree in each trial of the multi-armed bandit problem, each393

individual trial must be very long. The result is that, in the time that it takes for the tree to394

change size by a constant factor we would only be able to perform a small number of trials,395

preventing the multi-armed bandit algorithm from converging fast enough to be useful.396

Saving time by moving in only one direction397

In order to keep the total costs of tree rebuilds small, we only adjust the fanout f in one398

direction. The tree begins as fully query-optimized, i.e., with fanout B, and over time the399

fanout decreases monotonically. A key insight is that, whenever a tree with fanout f is400

rebuilt as a new tree with smaller fanout, the number of I/Os needed to perform this is only401

O(L/f), since only the internal nodes of the tree need to be reconstructed. It follows that if402

a tree begins with fanout B, and each successive rebuild shrinks the fanout by a factor of at403

least two, then the total cost of all of the rebuilds is a geometric series bounded by O(L)404

I/Os. (Here we are treating the size of the tree as staying O(N) at all times, but as we shall405

see momentarily, this assumption is without loss of generality.)406

Any bu�ered propagation tree must incur at least �((log N)/B) Ø �(1/B) cost per407

insert/update and at least �(logB N) Ø �(1) cost per query. Thus, whenever either (a) the408

total number of inserts/updates surpasses N or (b) the total number of queries surpasses L,409

then the O(L) cost of rebuilds has been amortized away. Whenever either (a) or (b) occurs,410

we restart the entire procedure from scratch, returning to a fanout of B.411

Since we restart our data structure each time that one of (a) or (b) occurs, we can assume412

without loss of generality that the number of inserts/updates in S is at most N , that the413

number of queries in S is at most L, and that one of the two inequalities is strict (there are414

either exactly N inserts/update or exactly L queries). Given such an S, our challenge is to415

decrease the fanout over time in such a way that we achieve total cost O(minf Cf (S)).416

Selecting query-biased fanouts417

Let f0, f1, ... be the sequence of fanouts, where operation si is performed on a tree of fanout418

fi≠1. Note that f0 = B, that f0 Ø f1 Ø f2 Ø · · · , and that the fanout fi≠1 must be419

determined based only on the first i ≠ 1 operations. When selecting fanouts, we do not need420

to consider the costs of rebuilds, since in total they sum to at most O(L).421

We select the fanouts f0, f1, f2, . . . so that they are always slightly query-biased. In422

particular, if the first i operations contain Ri Æ L queries and Wi Æ N inserts/updates,423

then we select the fanout fi to be the optimal fanout for performing L queries and Wi424

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:11

inserts/updates. That is, we always treat the number of queries as L, even if it is much425

smaller. This rule ensures that the sequence f0 Ø f1 Ø f2 Ø · · · is monotone decreasing.426

Analyzing the performance427

The analysis of each si is made slightly di�cult by the fact that si is performed with fanout428

fi≠1 instead of with fanout fi. One useful observation is that, by slightly tweaking the429

algorithm, we can achieve performance asymptotically as good as if each operation i were430

performed with fanout fi. This can be enforced by performing the i-th operation with fanout431 
fi≠1 (note that square-rooting the fanout only hurts the query cost by a constant factor432

and improves insert/update cost). As long as


fi≠1 Æ fi, then this is asymptotically as433

good as using fanout fi. On the other hand, since the sequence f0, f1, f2, . . . is monotone434

decreasing there can only be O(log log B) indices i for which


fi≠1 Ø fi and the cost of435

these O(log log B) operations is negligible since each costs O(log L) I/Os.436

Let f be the optimal fanout for performing all of the operations in S (recall that, without437

loss of generality, S has at most L queries and N inserts/updates). Each of the fanouts438

f0, f1, f2, . . . are query-biased in the sense that fi Ø f . As a result, we need not worry439

about the performance of query operations, that is, we can perform the analysis as though440

queries take time 0. It follows that, without loss of generality, we may assume that all query441

operations are performed at the beginning of the workload (since the positions of the queries442

do not a�ect the fanouts used for the inserts/updates). Furthermore, we can assume that the443

number of queries is precisely L, since it turns out that adding Æ L queries to a workload444

with N inserts/updates does not a�ect the asymptotic cost of the workload.445

In summary, the following two simplifying assumptions are without loss of generality:446

that fi is the fanout used to perform si, and that S starts with L queries followed only447

inserts/updates. One consequence of the second assumption is that the query-biased rule for448

selecting the fanouts is equivalent to:449

fi = argminf Cf (Ès1, . . . , siÍ). (1)450

Using Eq. 1, we can prove that the first i operations cost at most Cfi(Ès1, . . . , siÍ) (which in451

turn is minf Cf (Ès1, . . . , siÍ)). If we assume that this holds for i ≠ 1, then by induction the452

cost of the first i operations is at most,453

Cfi≠1(Ès1, . . . , si≠1Í) + Cfi(ÈsiÍ)454

= min
f

Cf (Ès1, . . . , si≠1Í) + Cfi(ÈsiÍ)455

Æ Cfi(Ès1, . . . , si≠1Í) + Cfi(ÈsiÍ)456

= Cfi(Ès1, . . . , siÍ).457
458

It follows that the cost of all the operations s1, . . . , sk is bounded by minf Cf (Ès1, . . . , skÍ),459

as desired.460

The guarantee achieved above, in which we are competitive with the best fixed fanout461

f , is the simplest adaptive guarantee that one could hope for. It does not adapt to the462

spatial-locality of where operations are performed in the tree, however, meaning it is still far463

from optimal.464

3.2 Considering an OPT with Fixed Pivots and Keys465

Before considering dynamic optimality over the class of speed-limited bu�ered propagation466

trees, we consider a simpler class of adversaries that we call fixed-pivot bu�ered propaga-467

tion trees (or fixed-pivot trees for short). A fixed-pivot tree contains some fixed set of N468

ITCS 2022

120:12 What Does Dynamic Optimality Mean in External Memory?

Each supernode has a bu↵er of size B1+�

Each supernode has fanout B�

Figure 1 The fixed-pivot JÁllo Tree consists of supernodes with fixed fanouts B
”. Each supernode

has a bu�er of size B
1+”. To handle the fact that the bu�er is size Ê(B), each bu�er is itself

implemented as a fanout-convergent tree.

records (where N is assumed to be a power of two) and supports query and update operations469

(but not inserts and deletes). A fixed-pivot tree is any bu�ered propagation tree that satisfies470

the fixed-pivot-structure property: every internal node x has a power-of-two fanout,471

and each of x’s children subtrees are exactly equal-size. The fixed-pivot-structure property472

ensures that there is essentially no freedom to select pivots in a fixed-pivot tree. In particular,473

each subtree has some power-of-two size 2j and the rank of the subtree’s final element (i.e.,474

the pivot for the subtree) is forced to be a multiple of 2j . We now describe the fixed-pivot475

JÁllo Tree, which is O(”≠1)-competitive with any B
3”-speed-limited fixed-pivot tree.476

The structure of a fixed-pivot JÁllo Tree477

One of the challenges of dynamically adapting the fanout of a node x is that, whenever the478

x’s fanout changes, x’s children must be split or merged accordingly, which consequently479

a�ects their fanouts (and, in particular, when you increase or decrease the fanout of x,480

the merging/splitting that this action forces upon the children has the opposite e�ect of481

decreasing or increasing their fanouts, respectively). The interdependence between each node482

x and its children complicates the task of dynamically adapting fanouts.483

The fixed-pivot JÁllo Tree solves this issue by decomposing the tree into what we call484

supernodes. Every supernode has a fixed fanout of B
” (which we will also assume is a485

power of two). Abstractly, each supernode x maintains a bu�er of size B
1+”, allowing for486

the supernode to bu�er up to B messages for each of its children. This large bu�er allows487

for the supernode x to be fully insert/update-optimized (meaning that it flushes messages B488

at a time) while still having large fanout.489

The downside of a large bu�er is that the cost of maintaining and searching within490

the bu�er is potentially substantial. In order to optimize this cost, we implement each491

supernode’s bu�er as a fanout-convergent tree (i.e., the data structure from Section 3.1) that492

is rebuilt from scratch every B
” log B

” I/Os.6 The supernode structure of a fixed-pivot JÁllo493

Tree is illustrated in Figure 1.494

Whereas the supernode structure of the fixed-pivot JÁllo Tree is static, the internals of495

each supernode (and namely the fanout-convergent tree that implements the bu�er) adapt496

6 We remark that supernodes will continue to play a critical role in the design of the (non-fixed-pivot) JÁllo
Tree later in this overview. The key di�erence will be that, in order to simulate optimal pivot-selection,
the internal structure of each supernode will become substantially more sophisticated.

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:13

n/B�

n/B�

OPT

Chopped OPT

(The new nodes are highlighted in blue)

Figure 2 Chopped OPT is constructed from OPT by adding additional nodes so that every
root-to-leaf path includes nodes of sizes N, N/B

”
, N/B

2”
, Here, we show an example of nodes

being added of sizes N/B
” (the new nodes are in blue). Notice that, when a node is added, it takes

some of the children of its parent.

to the operations that go through the supernode. At first glance, the fixed-pivot JÁllo Tree497

may seem quite coarse-grained, in the sense that each supernode adapts as an entire unit498

rather than having individual nodes adapt their fanouts. Nonetheless, we will see that the499

adaptive power of the data structure is su�cient to make it O(”≠1)-competitive with any500

B
3”-speed-limited fixed-pivot tree.501

Imposing a supernode structure on OPT502

Consider a sequence of query and update operations S = Ès1, s2, . . .Í on the fixed-pivot JÁllo503

Tree, and let OPT be the optimal B
3”-speed-limited fixed-pivot tree for S.504

In order to compare the fixed-pivot JÁllo Tree to OPT, we begin by modifying OPT into505

a new structure that we call Chopped OPT that can be partitioned into supernodes. To506

do this, we add to OPT a layer of nodes whose sizes (i.e., the number of keys in their key507

range) are all exactly B
1+”, a layer of nodes whose sizes are all exactly B

1+2”, a layer of508

nodes whose sizes are all exactly B
1+3”, and so on; see Figure 2. (Note that some of these509

nodes may already be present in OPT, in which case they need not be added.) One can510

think of Chopped OPT as consisting of supernodes, where each supernode has a root of size511

B
1+h” for some h and leaves of size B

1+(h≠1)”.512

Each root-to-leaf path in Chopped OPT is at most a factor of ”
≠1 longer than the same513

path in OPT. The result is that Chopped OPT is O(”≠1)-competitive with OPT. In order to514

analyze the fixed-pivot JÁllo Tree, we show that it is O(1)-competitive with Chopped OPT.515

Competitive analysis against Chopped OPT516

Each supernode in the fixed-pivot JÁllo Tree has a corresponding supernode in Chopped517

OPT that covers the same key range. For each (non-root) supernode x in the fixed-pivot518

JÁllo Tree, define the Chopped-OPT parent p(x) of x to be the supernode in Chopped519

ITCS 2022

120:14 What Does Dynamic Optimality Mean in External Memory?

OPT whose key range contains x’s key range, and whose size (in terms of the number of520

keys in its key range) is B
” times larger than x’s size. The size requirement means that p(x)521

sits one layer higher in Chopped OPT than x sits in the fixed-pivot JÁllo Tree.522

In order to analyze the performance of a supernode x, there are two cases to consider,523

depending on whether Chopped OPT modifies the structure of p(x) during x’s lifetime. We524

will see that if p(x) is modified then the speed-limitation on Chopped OPT can be used to525

amortize the cost incurred by the JÁllo Tree, and otherwise a competitive analysis can be526

performed to compare the performance of supernode x to that of its parent p(x) in Chopped527

OPT.528

The first case is that, at some point during x’s life (recall that each supernode x gets529

rebuilt from scratch after B
” log B

” I/Os), Chopped OPT modifies p(x). In this case, because530

Chopped OPT is B
3”-speed-limited, one can think of the modification of p(x) as costing531

Chopped OPT B
3” I/Os. On the other hand, the supernode p(x) in Chopped OPT is a parent532

supernode for at most B
” supernodes x in the JÁllo Tree. Thus we can think of Chopped533

OPT as paying B
(3≠1)” I/Os to our supernode x. In other words, the B

3”-speed-limitation534

on Chopped OPT pays for the B
” log B

” I/Os incurred by x during its life.535

The second case is that, over the course of x’s lifetime, Chopped OPT never modifies536

p(x). In this case, we compare the total cost incurred by operations in x to the cost incurred537

by the same operations in p(x).7538

Define Sx to be the set of query and update operations that go through supernode x539

during x’s lifetime. Whereas the operations in Sx may take di�erent paths than each other540

down supernode x, all of the operations in Sx take the same root-to-leaf path P through541

supernode p(x) in Chopped OPT. We show that the cost incurred by the operations Sx on542

the path P in Chopped OPT is minimized by setting all of the fanouts in P to be equal;543

we call this the equal-fanout observation. Note that the equal-fanout observation does544

not mean that the entire supernode p(x) is optimized by having all of its fanouts equal; the545

observation just means that for each individual path in p(x), the cost of the operations that546

travel all the way down that path would be optimized by setting the fanouts in that path to547

be equal (di�erent paths would have di�erent optimal fanouts, however).548

By the equal-fanout observation, the cost that operations Sx incur in p(x) is asymptotically549

at least the cost that operations Sx would incur in a fanout-convergent tree containing550

L = �(B”) leaves. On the other hand, the bu�er in x is implemented as a fanout-convergent551

tree with �(B”) leaves. It follows that the cost of operations Sx to x is O(1)-competitive552

with the cost of operations Sx to p(x).553

The analysis described above ignores the fact that update messages may propagate down554

the JÁllo Tree at di�erent times than when they propagate down Chopped OPT. As a result,555

some of the operations in Sx may actually remain bu�ered above supernode p(x) in Chopped556

OPT until well after the end of x’s lifetime. By the time these bu�ered messages make it557

to p(x), Chopped OPT may have already modified p(x). It turns out that, whenever this558

occurs, one can extend the charging argument from the first case in order to pay for any559

I/Os incurred by x.560

7 An important subtlety is the e�ect that caching may have on x and p(x). We assume that OPT caches
all nodes with key-range sizes N/C or larger for some parameter C, and that the JÁllo Tree caches all
nodes with key-range sizes N/(B3”

C) or larger. In other words, the JÁllo Tree caches O(1) more layers
of supernodes than does Chopped OPT. The resource augmentation on cache size ensures that, if x is
(partially) uncached by the JÁllo Tree, then p(x) is (completely) uncached by Chopped OPT. In Section
2, we also give a version of the analysis that does not assume any resource augmentation in caching, at
the cost of incurring a small additional additive cost in the analysis.

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:15

3.3 The Pivot-Selection Problem561

The importance of pivot selection562

The selection of pivots in a bu�ered propagation tree can have a significant impact on563

asymptotic performance. Consider, for example, a sequence of operations S = Ès1, s2, . . .Í,564

where each operation is either a query for some key k1 or an update for some key k2, where k2565

is the successor of k1. If the pivots in the tree are selected independently of the workload S,566

then all of the operations in S will (most likely) be sent down the same root-to-leaf path. On567

the other hand, if the bu�ered propagation tree uses k1 as a pivot in the root node, then all568

of the queries to k1 will be sent down one subtree, while all of the updates to k2 will be sent569

down another, allowing for the tree to implement updates in amortized time O((log N)/B)570

and queries in amortized time O(logB N). Therefore, in order to be competitive with OPT,571

one must be competitive even in the cases were OPT’s pivots split the workload into natural572

sub-workloads, each of which is optimized separately with properly selected fanouts. As was573

the case in this example, the exact choice of pivot can be very important, meaning that there574

is no room to select a pivot that is “almost” in the right position.575

What supernodes must guarantee576

Define the fanout-convergent cost for a set of operations S in a supernode x to be the cost577

of implementing S in a fanout-convergent tree that has �(B”) leaves. We say that a key-range578

[k1, k2] in supernode x achieves fanout-convergence over some time window W if579

the cost of the operations S that apply to [k1, k2] during W is within a constant factor of580

the fanout-convergent cost of those operations.581

Consider what goes wrong in the analysis of the fixed-pivot JÁllo Tree if we allow Chopped582

OPT to select arbitrary pivots. Recall that in the competitive analysis, we compare each583

supernode x to its parent p(x) in Chopped OPT.584

If Chopped OPT is permitted to select arbitrary pivots, however, then x may actually585

have two parents p1(x) and p2(x), each of which partially overlaps x’s key range.8 We need586

the supernode x to achieve fanout-convergence on both of the key ranges x fl p1(x) and587

x fl p2(x) (rather than simply achieving for the entire key range of x).588

Since the (non-fixed-pivot) JÁllo Tree does not know what the pivot p is that separates589

p1(x) and p2(x), the JÁllo Tree must be able to provide a guarantee for all possible such590

pivots. For any pivot p, define the p-split cost of a supernode x to be the sum of (a) the591

fanout-convergent cost for the operations in x that involve keys Æ p, and (b) the fanout-592

convergent cost for the operations in x that involve keys > p. Each supernode x must provide593

what we call the Supernode Guarantee: for any p, x’s total actual cost is O(1)-competitive594

with its p-split cost.595

One additional requirement in the supernode guarantee: speed596

One of the aspects of pivot selection that makes it di�cult is that a supernode x’s lifetime597

may be relatively short. In particular, whenever a supernode x’s size changes by a su�ciently598

large constant factor, the JÁllo Tree is forced to perform rebalancing on that supernode,599

thereby ending x’s life. In the worst case, for supernodes x in the bottom layer of the tree,600

the lifetime of the supernode may consist of only O(B1+”) inserts (and some potentially601

8 Because each of x’s parents covers a larger key-range than x, x can have at most two parents.

ITCS 2022

120:16 What Does Dynamic Optimality Mean in External Memory?

small number of queries), meaning that the total I/O-cost of the supernode could be as small602

as O(B” log B
”). Thus convergence to the supernode guarantee must be fast.603

This issue is further exacerbated by the fact that the supernode guarantee requires not604

only pivot selection but also optimal fanout-convergence on each side of that pivot. But605

even just the time to achieve optimal fanout-convergence on a tree with B
” leaves, using606

the approach in Subsection 3.1, may take �(B” log B
”) I/Os. This means that the natural607

approach of achieving fanout convergence from scratch (on both sides of the pivot) every608

time that we modify our choice of pivot is not viable. Instead, the processes of pivot selection609

and fanout convergence must interact so that both pieces of the supernode guarantee can be610

achieved concurrently within a small time window.611

The di�culty of a moving target612

One natural approach to pivot-selection is to keep a random sampling of the operations613

performed so far and to use this to determine an approximation of the pivot popt that is614

optimal for performing all of the operations so far. If the pivot popt is relatively static615

over time (e.g., if the operations being performed are drawn from some fixed stochastic616

distribution), then such an approach may work well. On the other hand, if popt shifts over617

time, then the approach of “following” popt fails.618

To see why, suppose that popt(t) is the optimal pivot choice for performing the first t619

operations and that for operation t we use popt(t ≠ 1) as our pivot, i.e., we perfectly follow620

popt. Further suppose that the optimal pivot popt(t) places the insert-heavy portion of the621

workload on its left side and the query-heavy portion on its right side. One example of what622

may happen is that popt drifts to the right over time, due to inserts being performed to623

the right of where popt just was. The result is that, for many insert operations t, the pivot624

popt(t ≠ 1) may be to the left of the insert-key even though the pivot popt(t) is to the right of625

the insert-key — this makes popt(t ≠ 1) a poor pivot to use for operation t. One can attempt626

to mitigate this by overshooting and using a pivot to the right of popt(t ≠ 1), but this then627

opens us up to other vulnerabilities (such as popt drifting to the left).628

In the next subsection, where we describe our techniques for implementing the supernode629

guarantee, we will see an alternative approach to pivot selection that allows for our perform-630

ance to converge to that of the optimal pivot, without having to “follow” it around. We will631

then also see how to integrate pivot selection with fanout convergence so that the supernode632

guarantee holds even for supernodes with short lifetimes.633

3.4 Providing the supernode guarantee634

As is the case for the fixed-pivot JÁllo Tree, the supernodes bu�ers in the (non-fixed-pivot)635

JÁllo Tree are implemented with a tree structure. To avoid ambiguity, we refer to the leaves636

of this tree structure as the supernode’s leaves (even though they are the children of the637

supernode, and are therefore other supernodes).638

Simplifying pivot selection by shortcutting leaves639

A given supernode may have a large number of possible pivots (especially if the supernode is640

high in the tree). On the other hand, as discussed in Subsection 3.3, picking the wrong pivot641

(even by just a little) can be disastrous.642

We can reduce the e�ective number of pivot options by adding a new mechanism called643

shortcutting. In order to shortcut a leaf ¸, we store the bu�er for leaf ¸ directly in the root644

node of the supernode, meaning that the root takes 1 more block of space than it would645

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:17

normally. Whenever a leaf is shortcutted, all messages within the supernode destined for646

that leaf are stored within the root bu�er (and not in any root-to-leaf paths). Queries that647

go through leaf ¸ incur only O(1) I/Os in the supernode, since they can access ¸ directly in648

the root. Inserts/updates that go through leaf ¸ incur only O(1/B) amortized cost in the649

supernode, since the leaf gets its own bu�er of size B in the root of the supernode.650

Because each shortcutted leaf increases the size of the root by 1 block, we can only support651

O(1) shortcutted leaves at a time. We prove that, to simulate optimal pivot-selection, one652

can instead select O(1) shortcutted leaves in a way so that one of those shortcutted leaves653

contains the optimal pivot. This means that, rather than satisfying the supernode guarantee654

directly, it su�ces to instead satisfy the following “shortcutted” version of the guarantee:655

The Shortcutted Supernode Guarantee: Consider a sequence of operations S on656

a supernode x. For any possible shortcutted leaf ¸, define the ¸-split cost of S to be657

the sum of (a) the fanout-convergent cost of the operations in S that are on keys smaller658

than those in ¸; (b) the fanout-convergent cost of the operations in S that are on keys659

larger than those in ¸; and (c) the shortcutted cost of implementing the operations in S660

that apply to leaf ¸. The total cost of all operations S on a supernode x in its lifetime is661

guaranteed to be O(1)-competitive with the ¸-split cost of S.662

The shortcutted supernode guarantee implies the standard supernode guarantee, but663

the former is more tractable because now, rather than selecting a specific pivot (out of a664

possibly very large number of options), we only have to select one of O(B”) leaves to shortcut.665

Moreover, we get to select multiple such leaves at a time (we will end up selecting 3 at a666

time), which will allow for us to perform an algorithm in which we “chase” the optimal667

shortcutted leaf from multiple directions at once.668

An algorithm for shortcut selection669

Fix a supernode x and consider the task of implementing the shortcutted supernode guarantee.670

The algorithm breaks the supernode’s lifetime into short shortcut convergence windows,671

where each shortcut convergence window satisfies the shortcutted supernode guarantee.672

Each shortcut convergence window is broken into phases, where the first phase has some673

length T (in I/Os), and then each subsequent phase i is defined to consist of 1/8-th as many674

I/Os as the sum of phases 1, 2, . . . , i ≠ 1. If we think of I/Os as representing time, then each675

phase i extends the length of the shortcut convergence window by a factor of 1 + 1/8. At the676

beginning of each phase i, our algorithm will select three leaves q < r < s to be shortcutted677

during that phase. These are the only leaves that are shortcutted during the phase; see678

Figure 3.679

At any given time t, define the optimal static shortcut ¸opt(t) for the supernode x680

to be the leaf ¸ that minimizes the ¸-split cost of the operations performed up until time t681

(during the current shortcut convergence window). During each shortcut convergence window,682

we keep track of the optimal static shortcut ¸opt as it changes over time.683

For now, we will describe the shortcut selection algorithm with two simplifying assump-684

tions. The first is that the key-ranges between shortcuts9 each achieve fanout-convergence685

during each phase. The second is that the set of leaves in supernode x does not change686

during the shortcut convergence window (i.e., no node-splits occur). Later we will see how687

to modify the algorithm to remove both of these assumptions.688

9 By this we mean the four key ranges corresponding with the four sets of leaves, {1, 2, . . . , q ≠ 1},
{q + 1, . . . , r ≠ 1}, {r + 1, . . . , s ≠ 1}, {s + 1, . . .}.

ITCS 2022

120:18 What Does Dynamic Optimality Mean in External Memory?

q r sT1 T2 T3

Figure 3 Each supernode selects three children q, r, s (at a time) to shortcut. These children have
their bu�ers stored at the top of the supernode. The four key ranges between q, r, s are implemented
as fanout-convergent trees T1, T2, T3, T4.

We can now describe how the algorithm works. At the beginning of each phase i > 1,689

there are two anchor shortcuts q and s that have already been shortcutted for all of phase690

i ≠ 1. The key property that the anchor shortcuts satisfy is that the optimal static shortcut691

¸opt is between them. The two anchor shortcuts q and s remain shortcutted for all of phase i.692

If, at any point during phase i, the optimal static shortcut ¸opt crosses one of q or s (so that693

it is no longer between them), then we terminate the entire shortcut convergence window694

and begin the next one starting with phase 1 again — in a moment, we will argue that695

whenever the shortcut convergence window terminates, it satisfies the shortcutted supernode696

guarantee.697

In addition to shortcutting the anchors q and s during phase i, we also shortcut the leaf698

r that is half-way between q and s. At the end of the phase, we then select the anchor699

shortcuts for phase i + 1 to be {q, r} if ¸opt is between q and r, and to be {r, s} if ¸opt is700

between r and s. The result is that, if the shortcut convergence window does not terminate701

during a phase i, then the distance between the anchor shortcuts used in phase i + 1 will be702

half as large as the distance between the anchor shortcuts in phase i.703

Analyzing running time704

Before proving the shortcutted supernode guarantee, we first bound the running time of the705

shortcut convergence window W . Because the distance between the anchor shortcuts halves706

between consecutive phases, the window W is guaranteed to terminate within O(log B
”)707

phases. This means that the number of I/Os incurred by x is at most O(T (1 + 1/8)log B”) Æ708

O(TB
”/5). As long as T is reasonably small (e.g., less than B

”/2), then the length of each709

shortcut convergence window is small enough to fit in a supernode’s lifetime.710

Proving the shortcutted guarantee711

We now argue that, whenever a shortcut convergence window W terminates, the supernode712

x satisfies the shortcutted supernode guarantee. Recall that the window terminates when713

the static optimal shortcut ¸opt crosses over one of the anchors q or s (let’s say it crosses q).714

The fact that ¸opt crosses over q can be used to argue that the q-split cost of x during W is715

O(1)-competitive with the ¸opt-split cost of the x during W . Thus our goal is to compare716

the total cost incurred on x during the shortcut convergence window by our data structure717

to the q-split cost of x for the same time window.718

Let A1, A2, . . . , Ai be the costs in I/Os of phases 1, 2, . . . , i to supernode x, and let719

B1, B2, . . . , Bi be the q-split costs of the operations in each of phases 1, 2, . . . , i (here q is the720

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:19

shortcut from the final phase i). We wish to show that A1 + · · · + Ai Æ O(B1 + · · · + Bi).721

In particular, this will establish that the cost incurred by x during window W is constant-722

competitive with the q-split cost during the same window.723

Recall that each phase is defined to take a constant-fraction more I/Os than the previous724

phase, meaning that A1, . . . , Ai are a geometric series (except for the final term Ai which725

may be smaller). Thus, rather then proving that A1 + · · · + Ai Æ O(B1 + · · · + Bi), it su�ces726

to show that Ai≠1 Æ O(Bi≠1).727

The fact that q is an anchor shortcut in the final phase i implies that q was shortcutted in728

x for all of phase i ≠ 1. This means that the cost of supernode x to our data structure during729

phase i≠1 is at most the q-split cost of the operations in phase i≠1, that is, Ai≠1 Æ O(Bi≠1).730

As observed above, it follows that A1 + · · · + Ai Æ O(B1 + · · · + Bi), which completes the731

proof of the shortcutted supernode guarantee.732

Removing the simplifying assumptions733

At this point, we have completed a high-level overview of how an algorithm can perform734

shortcut selection in order to achieve the shortcutted supernode guarantee. As noted earlier,735

however, the analysis makes several significant simplifying assumptions: (1) that the key736

ranges between shortcuts each achieve fanout-convergence during each phase; and (2) that737

the set of leaves for supernode x is a static set. Removing these simplifications requires738

several significant additional technical ideas which we give an overview of in the rest of this739

subsection.740

Handling a dynamically changing leaf set741

We begin by removing the assumption that x’s leaf set is static. For supernodes x in the742

bottom layer of the tree (which are the supernodes we will focus on for the rest of this section),743

the leaf-set of the supernode may change dramatically over the course of the supernode’s744

lifetime, due to inserts causing leaves to split. Thus, during a given phase i of a shortcut745

convergence window, the number of leaves between the two anchor shortcuts q and s may746

increase by more than factor of two. This means that the distance between the anchor747

shortcuts that are used in phase i + 1 (in terms of number of leaves between them) could be748

larger than the distance between the anchor shortcuts in phase i. If this happens repeatedly,749

then the shortcut convergence window may never terminate.750

To combat this issue, we modify the supernode guarantee as follows. Rather than751

comparing the cost of a supernode x to the p-split cost of x for every possible pivot p, we752

only compare the cost of x to the p-split costs for pivots p that were already present in the753

tree at the beginning of x’s lifetime. We call these the valid pivot options for x.754

Similarly, we modify the shortcutted supernode guarantee to only consider the ¸-split cost755

for leaves ¸ that contain at least one valid pivot option. One can show that the weakened756

version of the two guarantees still su�ces for performing a competitive analysis on the JÁllo757

Tree.758

In order to provide the new version of the shortcutted supernode guarantee, we modify759

the pivot-selection algorithm as follows. Rather than halving the number of leaves between760

the anchor shortcuts in each phase, we instead halve the number of valid pivot options761

contained in the leaves between the anchor shortcuts. That is, rather than selecting the762

shortcutted leaf r to be half way between the two anchor shortcuts q and s, we instead select763

r so that it evenly splits the set of valid pivot options between q and s.764

ITCS 2022

120:20 What Does Dynamic Optimality Mean in External Memory?

`0

`

Figure 4 We break each supernode x into two levels, each of which is implemented using micro-
supernodes with fanouts B

”/2. To shortcut a leaf ¸ in x, we find the micro-supernode ¸
Õ containing

¸; we then rebuild the root micro-supernode r so that ¸
Õ is shortcutted in r; and finally we rebuild ¸

Õ

so that ¸ is shortcutted in ¸
Õ. Importantly, this process only disrupts fanout-convergence in two of

the �(B”/2) micro-supernodes.

With this new algorithm, each shortcut convergence window is guaranteed to terminate765

within O(log B
1+”) phases. In order to keep the length of each shortcut convergence window766

small, we make it so that each phase i is only an O(”)-fraction as large as the sum of phases767

1, 2, . . . , i ≠ 1 (rather than a 1/8-fraction). One side-e�ect of this is that, for supernodes768

in the bottom layer of the tree, the competitive ratio for the supernode guarantee ends up769

being O(”≠1) (rather than O(1)). Nonetheless, this weakened guarantee still turns out to be770

su�cient for the competitive analysis of the JÁllo Tree.10771

E�ciently combining pivot selection with fanout-convergence772

Next we remove the assumption that, within a given phase of a shortcut convergence window,773

the key ranges between consecutive shortcuts each achieve fanout-convergence. Recall that a774

fanout-convergent tree with B
” leaves requires up to �(B” log B

”) I/Os to converge. Since775

we cannot a�ord to make the minimum phase length T be �(B” log B
”), we cannot simply776

perform fanout-convergence blindly within each phase.777

In order to perform fanout-convergence and shortcut selection concurrently, we modify778

the structure of a supernode as follows. Each supernode now consists of two layers of micro-779

supernodes, where each micro-supernode has fanout �(B”/2). Each micro-supernode has780

the same structure as what we previously gave to supernodes: each micro-supernode can have781

up to three shortcut leaves, and each micro-supernode implements the key ranges between782

shortcut leaves as fanout-convergent trees. A leaf ¸ in the full supernode x is considered to783

be shortcutted in x if ¸ is shortcutted in the micro-supernode ¸
Õ containing ¸, and if ¸

Õ is, in784

turn, shortcutted in the root micro-supernode; see Figure 4.785

Whenever the shortcut selection algorithm for a supernode x selects a new shortcut786

at the beginning of the phase, it does this by clobbering and rebuilding only two of the787

micro-supernodes (specifically, the root micro-supernode and one micro-supernode in the788

bottom layer of x). Critically, this means that the other micro-supernodes continue to789

perform fanout convergence without interruption.790

If a micro-supernode y survives for cB
”/2 log B

”/2 I/Os, for some su�ciently large constant791

10 Importantly, it is only in the bottom layer of the tree where we have this weakened supernode guarantee.
That is, the guarantee continues to hold with O(1)-competitiveness for all supernodes in higher layers.

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:21

c, and the shortcuts of y are never changed by the shortcut selection algorithm during those792

I/Os, then each of the fanout-convergent trees in y are guaranteed to have achieved fanout793

convergence (or to have incurred negligibly few I/Os). In this case, we say that y also achieves794

fanout convergence.795

When a new shortcut is selected, the actual cost of rebuilding the two micro-supernodes796

is only O(B”/2) I/Os. Additionally, the fact that we clobber two micro-supernodes (possibly797

before they have a chance to achieve fanout-convergence) may disrupt fanout convergence for798

up to O(B”/2 log(B”/2)) I/Os. In this sense, the total cost of selecting a new shortcut (both799

the cost in terms of I/Os expended to rebuild the micro-supernodes, and the cost in terms of800

the I/Os that those supernodes had incurred prior to being clobbered) at the beginning of a801

phase is O(B”/2 log(B”/2)) I/Os. By setting the minimum phase length T to cB
”/2 log(B”/2)802

for a su�ciently large constant c, we can amortize away this cost using the I/Os incurred in803

other micro-supernodes during the phase.804

Analyzing pivot selection and fanout-convergence concurrently805

The two-level structure of a supernode, described above, allows for us to perform shortcut806

selection and fanout-convergence concurrently with minimal interference. One issue, however,807

is that the time frame in which a given micro-supernode achieves fanout convergence may808

overlap multiple phases (and even multiple shortcut convergence windows) of the shortcut809

selection algorithm. Thus, the introduction of micro-supernodes misaligns fanout-convergence810

and pivot selection so that the individual shortcut convergence windows may no longer satisfy811

the shortcutted supernode guarantee.812

In order to get around these issues, we define what we call the p-re-shortcutted cost of813

a supernode x with respect to a given pivot p. Roughly speaking, the re-shortcutted cost of814

the supernode x with respect to a pivot p is just the sum of (a) the actual costs incurred by815

micro-supernodes in x that do not contain p in their key range, and (b) the p-split cost of each816

micro-supernode that does contain p in its key range. Rather than proving that each shortcut817

convergence window satisfies the supernode guarantee, we instead prove a weaker property:818

for each pivot p, the cost of x in each shortcut convergence window is O(1)-competitive819

with the p-re-shortcutted cost of x during the same window. Combining this guarantee820

across all shortcut convergence windows, we get that the cost of x over its entire lifetime is821

O(1)-competitive with the p-re-shortcutted cost of x during its entire lifetime. Then, using822

the fact that (almost all of) the micro-supernodes in x achieve fanout-convergence by the823

end of x’s lifetime, we conclude that the p-re-shortcutted cost of x during its lifetime is824

constant-competitive with the p-split cost of x. Thus, even though each individual shortcut825

convergence window may not satisfy the supernode guarantee, the supernode x does satisfy826

the supernode guarantee over the course of its lifetime.827

References828

1 George M Adel’son-Vel’skii and Evgenii Mikhailovich Landis. An algorithm for organization829

of information. In Doklady Akademii Nauk, volume 146, pages 263–266. Russian Academy of830

Sciences, 1962.831

2 Alok Aggarwal and S. Vitter, Je�rey. The input/output complexity of sorting and related832

problems. Communications of the ACM, 31(9):1116–1127, September 1988.833

3 Lars Arge. The bu�er tree: A new technique for optimal i/o-algorithms. In Workshop on834

Algorithms and Data structures, pages 334–345. Springer, 1995.835

ITCS 2022

120:22 What Does Dynamic Optimality Mean in External Memory?

4 Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged836

casino: The adversarial multi-armed bandit problem. In Proceedings of IEEE 36th Annual837

Foundations of Computer Science, pages 322–331. IEEE, 1995.838

5 Mihai B�doiu, Richard Cole, Erik D Demaine, and John Iacono. A unified access bound on839

comparison-based dynamic dictionaries. Theoretical Computer Science, 382(2):86–96, 2007.840

6 Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta841

informatica, 1(4):290–306, 1972.842

7 Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered843

indexes. Acta Informatica, 1(3):173–189, February 1972. doi:10.1145/1734663.1734671.844

8 Michael A Bender, Rathish Das, Martín Farach-Colton, Rob Johnson, and William Kuszmaul.845

Flushing without cascades. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium846

on Discrete Algorithms, pages 650–669. SIAM, 2020.847

9 Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel, Bradley C.848

Kuszmaul, and Jelani Nelson. Cache-oblivious streaming B-trees. In Proc. 19th Annual ACM849

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 81–92, 2007.850

10 Michael A Bender, Martin Farach-Colton, William Jannen, Rob Johnson, Bradley C Kuszmaul,851

Donald E Porter, Jun Yuan, and Yang Zhan. And introduction to be-trees and write-852

optimization. Login; Magazine, 40(5), 2015.853

11 Michael A Bender, Martin Farach-Colton, and William Kuszmaul. What does dynamic854

optimality mean in external memory? arXiv preprint, 2021.855

12 Dhruba Borthakur. Under the hood: Building and open-sourcing rocksdb. Facebook Engineering856

Notes, 2013.857

13 Presenjit Bose, Karim Douïeb, John Iacono, and Stefan Langerman. The power and limitations858

of static binary search trees with lazy finger. In International Symposium on Algorithms and859

Computation, pages 181–192. Springer, 2014.860

14 Prosenjit Bose, Karim Douïeb, and Stefan Langerman. Dynamic optimality for skip lists861

and b-trees. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete862

algorithms, pages 1106–1114. Citeseer, 2008.863

15 Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external memory dictionaries. In864

Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 546–554,865

2003.866

16 Adam L Buchsbaum, Michael H Goldwasser, Suresh Venkatasubramanian, and Je�ery R867

Westbrook. On external memory graph traversal. In SODA, pages 859–860, 2000.868

17 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol869

Saranurak. Multi-finger binary search trees. arXiv preprint arXiv:1809.01759, 2018.870

18 Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger871

conjecture for splay trees. part i: Splay sorting log n-block sequences. SIAM Journal on872

Computing, 30(1):1–43, 2000.873

19 Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger874

conjecture for splay trees. part i: Splay sorting log n-block sequences. SIAM Journal on875

Computing, 30(1):1–43, 2000.876

20 Douglas Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, June 1979.877

21 Alex Conway, Martin Farach-Colton, and Philip Shilane. Optimal hashing in external memory.878

In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018,879

page 39. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2018.880

22 T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To Algorithms. MIT881

Press, 2001.882

23 Erik D Demaine, Dion Harmon, John Iacono, and Mihai P a � tra�cu. Dynamic optimal-883

ity—almost. SIAM Journal on Computing, 37(1):240–251, 2007.884

24 Erik D Demaine, John Iacono, Grigorios Koumoutsos, and Stefan Langerman. Belga b-trees.885

In International Computer Science Symposium in Russia, pages 93–105. Springer, 2019.886

http://dx.doi.org/10.1145/1734663.1734671

M. A. Bender, M. Farach-Colton, W. Kuszmaul 120:23

25 John Howat, John Iacono, and Pat Morin. The fresh-finger property. arXiv preprint887

arXiv:1302.6914, 2013.888

26 John Iacono. Alternatives to splay trees with o (log n) worst-case access times. In Proceedings889

of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 516–522. Society890

for Industrial and Applied Mathematics, 2001.891

27 John Iacono. In pursuit of the dynamic optimality conjecture. In Space-E�cient Data892

Structures, Streams, and Algorithms, pages 236–250. Springer, 2013.893

28 William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng Jiao, Ankur894

Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, et al. Betrfs: Write-optimization in895

a kernel file system. ACM Transactions on Storage (TOS), 11(4):1–29, 2015.896

29 Patrick O’Neil, Edward Cheng, Dieter Gawlic, and Elizabeth O’Neil. The log-structured897

merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1996. doi:http://dx.doi.org/10.898

1007/s002360050048.899

30 Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. Pebblesdb: Building900

key-value stores using fragmented log-structured merge trees. In Proceedings of the 26th901

Symposium on Operating Systems Principles, pages 497–514, 2017.902

31 Murray Sherk. Self-adjusting k-ary search trees. Journal of Algorithms, 19(1):25–44, 1995.903

32 Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of904

computer and system sciences, 26(3):362–391, 1983.905

33 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal906

of the ACM (JACM), 32(3):652–686, 1985.907

34 Robert Endre Tarjan. Sequential access in splay trees takes linear time. Combinatorica,908

5(4):367–378, 1985.909

35 Tokutek, Inc. TokuDB® for MySQL Storage Engine, 2009. http://www.tokutek.com. URL:910

http://www.tokutek.com.911

36 Tokutek Inc. TokuDB. http://www.tokutek.com/, 2011.912

37 Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala, Kanchan913

Chandnani, Pooja Deo, Zardosht Kashe�, Leif Walsh, Michael Bender, et al. Optimizing every914

operation in a write-optimized file system. In 14th {USENIX} Conference on File and Storage915

Technologies ({FAST} 16), pages 1–14, 2016.916

38 Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala, Kanchan917

Chandnani, Pooja Deo, Zardosht Kashe�, Leif Walsh, Michael A Bender, et al. Writes wrought918

right, and other adventures in file system optimization. ACM Transactions on Storage (TOS),919

13(1):1–26, 2017.920

39 Yang Zhan, Alex Conway, Yizheng Jiao, Eric Knorr, Michael A Bender, Martin Farach-Colton,921

William Jannen, Rob Johnson, Donald E Porter, and Jun Yuan. The full path to full-path922

indexing. In 16th {USENIX} Conference on File and Storage Technologies ({FAST} 18),923

pages 123–138, 2018.924

40 Yang Zhan, Alexander Conway, Yizheng Jiao, Nirjhar Mukherjee, Ian Groombridge, Michael A925

Bender, Martin Farach-Colton, William Jannen, Rob Johnson, Donald E Porter, et al. How926

to copy files. In 18th {USENIX} Conference on File and Storage Technologies ({FAST} 20),927

pages 75–89, 2020.928

41 Yang Zhan, Yizheng Jiao, Donald E Porter, Alex Conway, Eric Knorr, Martin Farach-Colton,929

Michael A Bender, Jun Yuan, William Jannen, and Rob Johnson. E�cient directory mutations930

in a full-path-indexed file system. ACM Transactions on Storage (TOS), 14(3):1–27, 2018.931

ITCS 2022

http://dx.doi.org/http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/http://dx.doi.org/10.1007/s002360050048
http://www.tokutek.com
http://www.tokutek.com/

	1 Introduction
	2 Defining the Class of Speed-Limited Buffered Propagation Trees
	2.1 An introduction to buffered propagation
	2.2 Formally defining buffered propagation trees
	2.3 Results

	3 Technical Overview
	3.1 A warmup: designing a fanout-convergent tree
	3.2 Considering an OPT with Fixed Pivots and Keys
	3.3 The Pivot-Selection Problem
	3.4 Providing the supernode guarantee

