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Educational data mining research has demonstrated that the large volume of learning

data collected by modern e-learning systems could be used to recognize student

behavior patterns and group students into cohorts with similar behavior. However, few

attempts have been done to connect and compare behavioral patterns with known

dimensions of individual differences. To what extent learner behavior is defined by known

individual differences? Which of them could be a better predictor of learner engagement

and performance? Could we use behavior patterns to build a data-driven model of

individual differences that could be more useful for predicting critical outcomes of the

learning process than traditional models? Our paper attempts to answer these questions

using a large volume of learner data collected in an online practice system. We apply

a sequential pattern mining approach to build individual models of learner practice

behavior and reveal latent student subgroups that exhibit considerably different practice

behavior. Using these models we explored the connections between learner behavior

and both, the incoming and outgoing parameters of the learning process. Among

incoming parameters we examined traditionally collected individual differences such as

self-esteem, gender, and knowledge monitoring skills. We also attempted to bridge the

gap between cluster-based behavior pattern models and traditional scale-based models

of individual differences by quantifying learner behavior on a latent data-driven scale. Our

research shows that this data-driven model of individual differences performs significantly

better than traditional models of individual differences in predicting important parameters

of the learning process, such as performance and engagement.

Keywords: individual differences, learner modeling, sequential pattern mining, learning technology, online

practice, SQL

1. INTRODUCTION

Learners’ individual differences have been recognized as a critical factor in the learning process. A
wide range of cognitive, personal, motivational, and other dimensions of individual differences was
introduced by researchers in the areas of cognitive science and educational psychology (Jonassen
andGrabowski, 1993). However, traditional dimensions of individual differences haven’t yet proven
their value in addressing the needs of modern e-learning. In particular, there are few successes in
using these differences in solving the important problem of predicting student performance and
engagement (Upton and Adams, 2006; Chen et al., 2016; An and Carr, 2017). At the same time,
e-learning research has demonstrated that the large volume of learning data collected by modern
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e-learning systems could be used to recognize student behavior
patterns and connect these patterns with measures of student
performance (Sharma et al., 2015; Geigle and Zhai, 2017; Hansen
et al., 2017; Boroujeni and Dillenbourg, 2018; Lorenzen et al.,
2018; Mouri et al., 2018; Gitinabard et al., 2019).

In this paper, we attempt to bridge these research directions by
developing a data-driven model to capture individual differences
that were possibly exposed through practice behavior in an
e-learning system and by representing learner behavior on a
continuous scale following the traditional work on modeling
individual differences. After reviewing related literature (Section
2) and introducing the online practice system, datasets,
measures and procedures used in this study (Section 3),
we start our analysis by examining connections between the
individual differences measured at the start of the learning
process (“incoming” parameters) with learner engagement and
performance (Section 4). Next, we build a simple model of
learner practice behavior during the usage of the online system.
We achieve this goal in two steps. On the first step, we
build representative profiles of individual practice behavior by
applying sequential pattern mining to the logs of an online
practice system (Section 5). On the second step, we cluster
individual profiles to reveal student subgroups that demonstrate
noticeably different practice behavior (Section 6). The obtained
clusters represent a simple formal model of learner practice
behavior where individual students are modeled by association
with one or another cluster. We use this model for our first
examinations of connections between learner behavior and other
parameters of the learning process such as individual differences
and performance (Section 7). The obtained results indicated
that our simple cluster model captures important individual
differences between learners not represented by the traditional
dimensions of individual differences used in our study. Following
this encouraging results, we proceed with refining the simple
cluster model into a complete data-driven model of individual
differences in a form of a continuous behavior scale (Section
8), similar to traditional models of individual differences, such
as the achievement goal orientation framework and the self-
esteem scale (Rosenberg, 1965; Elliot and McGregor, 2001). We
assess the value of the data-driven model by comparing the
predictive power of this model to the traditional models of
individual differences. Our results indicate that the data-driven
model performs significantly better than traditional models of
individual differences in predicting learner performance and
engagement. Further, we demonstrate the transferability of our
model by evaluating its predictive power on a new dataset.

2. RELATED WORK

2.1. Individual Differences and Academic
Achievement
Individual differences have been the focus of research on
educational psychology and learning technology (Jonassen and
Grabowski, 1993). Numerous works have attempted to discover
and examine various dimensions of individual differences,
find their connections to academic achievement, and address

these differences in order to better support teaching and
learning. A learner’s position within a specific dimension
of individual differences is usually determined by processing
carefully calibrated questionnaires and placing the learner on a
linear scale, frequently between two extreme ends. In this section,
we briefly review several dimensions of individual differences
that are frequently used in learning technology research.

Self-efficacy refers to one’s evaluation of their ability to perform
a future task (Bandura, 1982) and is shown to be a good predictor
of educational performance (Multon et al., 1991; Britner and
Pajares, 2006). Students with higher self-efficacy beliefs are
more willing to put effort into learning tasks and persist
more, as compared to students with lower self-efficacy. Self-
esteem represents individuals’ beliefs about their self-worth and
competence (Matthews et al., 2003). Some studies have shown
the positive effect of self-esteem on academic achievement, while
other studies have pointed out how academic achievement affects
self-esteem (Baumeister et al., 2003; Di Giunta et al., 2013).
Researchers also stated the indirect effect of low self-esteem
on achievement through distress and decreased motivation (Liu
et al., 1992). Learners can also differ by their achievement
goals, which guide their learning behaviors and performance by
defining the expectations used to evaluate success (Linnenbrink
and Pintrich, 2001). Studies have demonstrated the positive
effects of achievement goals on performance (Harackiewicz
et al., 2002; Linnenbrink and Pintrich, 2002). There are several
known questionnaire-based instruments to capture achievement
goals (Midgley et al., 1998; Elliot and McGregor, 2001).

Another important group of individual differences is related
to metacognition, which plays an important role in academic
performance (Dunning et al., 2003). In particular, students
who successfully distinguish what they know and do not
know can expand their knowledge instead of concentrating on
already mastered concepts (Tobias and Everson, 2009). It has
been shown that high-achieving students are more accurate
in assessing their knowledge (DiFrancesca et al., 2016). To
measure some metacognitive differences, Tobias and Everson
(Tobias and Everson, 1996) proposed a knowledge monitoring
assessment instrument to evaluate the discrepancy between the
actual performance of students and their own estimates of their
knowledge in a specific domain.

2.2. User Behavior Modeling and
Performance Prediction
The rise of interest to modeling learner behavior in online
learning system is associated with attempts to understand learner
behavior in early Massive Open Online Courses (MOOCs)
with their surprisingly high dropout rate. Since MOOCs
usually recorded full traces of learner behavior producing
rich data for a large number of students, it was natural to
explore this data to predict dropouts (Balakrishnan, 2013) and
performance (Anderson et al., 2014; Champaign et al., 2014).
This appealing research direction quickly engaged researchers
from the educational datamining community who were working
on log mining and performance prediction in other educational
contexts and led to a rapid expansion of research that
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connected learner behavior with learning outcomes in MOOCs
and beyond.

While the first generation of this research focused on one-step
MOOC performance prediction from learning data (Anderson
et al., 2014; Champaign et al., 2014; Boyer and Veeramachaneni,
2015; Brinton and Chiang, 2015), the second generation
attempted to uncover the roots of performance differences to
better understand the process and improve predictions. The
core assumption of this stream of work was the presence of
latent learner cohorts composed of students who exhibit similar
patterns. By examining connections between these cohorts and
learning outcomes, the researchers expected to identify positive
and negative patterns and advance from simple prediction of
learner behavior to possible interventions. While the idea of
cohorts was pioneered by the first generation research, the
early work on cohorts attempted to define them using either
learner demographic (Guo and Reinecke, 2014) or simple activity
measures (Anderson et al., 2014; Sharma et al., 2015). In contrast,
the second generation research attempted to automatically
discover these cohorts from available data. Over just a few years,
a range of approaches to discover behavior patterns and use
them to cluster learners into similarly-behaving cohorts were
explored. This included various combinations of simple behavior
clustering (Hosseini et al., 2017; Boubekki et al., 2018), transition
analysis (Boubekki et al., 2018; Gitinabard et al., 2019), Markov
models (Sharma et al., 2015; Geigle and Zhai, 2017; Hansen
et al., 2017), matrix factorization (Lorenzen et al., 2018; Mouri
et al., 2018; Mirzaei et al., 2020), tensor factorization (Wen
et al., 2019), sequence mining (Hansen et al., 2017; Hosseini
et al., 2017; Venant et al., 2017; Boroujeni and Dillenbourg, 2018;
Mirzaei et al., 2020), random forests (Pinto et al., 2021), and deep
learning (Loginova and Benoit, 2021). In this paper, we focus on
the sequence mining approach to behavior modeling which is
reviewed in more detail in the next section.

2.3. Sequential Pattern Mining
In educational research, mining sequential patterns has become
one of the common techniques to analyze and model students’
activity sequences. This technique helped researchers to find
student learning behaviors in different learning environments.
Nesbit et al. (2007) applied this technique to find self-regulated
behaviors in a multimedia learning environment. In Maldonado
et al. (2011), authors identified the most frequent usage
interactions to detect high/low performing students in
collaborative learning activities. To find differences among
predefined groups (e.g., high-performing/low-performing),
Kinnebrew and Biswas (2012) proposed a differential sequence
mining procedure by analyzing the students’ frequent patterns.
Herold et al. (2013) used sequential pattern mining to predict
course performance, based on sequences of handwritten tasks.
Guerra et al. (2014) examined the students’ problem solving
patterns to detect stable and distinguishable student behaviors. In
addition, Hosseini et al. (2017) used a similar approach to Guerra
et al. (2014) and detected different student coding behaviors on
mandatory programming assignments, as well as their impact on
student performance. Venant et al. (2017) discovered frequent
sequential patterns of students’ learning actions in a laboratory

environment and identified learning strategies that associated
with learners’ performance. Mirzaei et al. (2020) explored specific
patterns in learner behavior by applying both sequential pattern
mining and matrix factorization approaches. In the earlier
version of this paper (Akhuseyinoglu and Brusilovsky, 2021),
the authors applied the sequence mining approach to analyzing
student behavior in an online practice system.

3. METHODS

In this paper, we explore connections (Figure 2) between
incoming parameters of the learning process (i.e., individual
differences, prior knowledge, gender), learner practice behavior,
and outgoing parameters (engagement and performance) by
examining activity logs of an online practice system for SQL
programming (Figure 1). The system was available over several
semesters to students taking a database class. The non-mandatory
nature of the system allowed students to decide when and how
much to practice and increased their chances to expose individual
differences through their free practice behavior. This section
explains in detail the nature of the practice system, components
of the dataset. In addition, we defined the important measures
and procedures used in performance and engagement prediction.

3.1. The Course and the Online Practice
System
In this study, we use data collected from four semesters of
classroom studies in a graduate level Database Management
course at a large North American university. Learning Structured
Query Language (SQL) was one of the objectives of the course.
The structure of the course remained the same for all four
semesters, including the syllabus and the grading policy.

The SQL practice system (Brusilovsky et al., 2016) was
offered to all classes as a non-mandatory tool for learning and
self-assessment. The system provided access to two types of
interactive learning content: SQL problems focused on SQL
SELECT statements and annotated examples of SQL statements
(Brusilovsky et al., 2010). The content was grouped into topics,
and each topic had multiple problems and examples (Figure 1A).
Students could freely choose the topic and the content to practice.
To encourage the students to explore the practice system, one
percentage point of extra credit was provided to the students who
solved at least 10 SQL problems.

The worked-out examples (Figure 1B) offered complete
examples of SQL code augmented with explanations, which
students could examine interactively, line by line. The problems
were designed to help students practice their SQL code
writing skills. Each problem was parameterized; i.e., generated
from a set of pre-defined templates with randomly selected
parameters (Figure 1C). This design allowed students to practice
the same problem multiple times. The correctness of their
responses was tested against a fixed database schema and
immediate correct/incorrect feedback was provided (Figure 1C).
The problem tool also offered a query execution mode, which
allows students to execute their SQL queries while working
with the problems and see the actual query results in the form
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FIGURE 1 | (A) SQL practice system offered access to SQL examples and problems organized by topics. The figure shows the list of available learning content for the

topic “SELECT-FROM-WHERE” (B) An instance of an example in the “group-by and having” topic in the SQL practice system. Here, the student has clicked on the

third line and an explanation is shown below the line that demonstrates the usage of group by clause. (C) An instance of a problem in the “select-from” topic in the

SQL practice system. Here, the student successfully solved the problem and system provided an immediate feedback. Next, the student can try solving a similar

problem or switch to query execution mode to see the actual query results.

of tables. This tool allowed students to check their SQL code
before submitting it as an answer to a problem. Altogether, the
system allowed students to study 64 annotated examples with 268
distinct explained code lines and to practice code writing with 46
problem templates.

3.2. The Dataset Collection
The collected dataset included the activity logs of the online
practice system, knowledge measures, such as pre/post test
scores, and several questionnaires focused on identifying
learners’ individual differences. Below, we explained collected
metrics in more detail.
Knowledge Measures: To measure overall knowledge
improvement throughout the course, a pre-test and a post-
test were administered. Before the SQL topics were introduced, a
pretest was administered. At the end of the semester, a post-test
was administered. Both tests consist of 10 problems covering data
definition, data query and data manipulation SQL statements
related to a given database schema. Post-test problems were
isomorphic to the pretest. The normalized learning gain (NLG)
was calculated as the ratio of the actual gain to the maximum
possible gain as follows:

NLG = (post − pre)/(max_possible_post − pre) (1)

Each test had 10 problems that required writing SQL statements.
Reported pre- and post-test scores ranged between 0 and 10.

Questionnaires: We collected gender data, and used several
instruments to measure individual differences. To measure
global self-worth, in the first three semesters we administered
a 10-item Rosenberg Self-Esteem Inventory (Rosenberg, 1965).
Responses (α = 0.82) were converted to a continuous scale
(ranges from 0 to 30) where higher scores indicate higher self-
esteem (SE). To perform a Tobias-Everson knowledge monitoring
assessment (KMA) (Tobias and Everson, 1996), we asked
students to estimate correctness of their answers to 10 pre-
test problems. This way, we evaluated the differences between
a students’ actual performance and her confidence for each
problem. A correct estimate means that a student answered a
problem correctly/incorrectly and estimated that she solved that
problem correctly/incorrectly. Then, we counted the number
of correct and incorrect estimates, and a score was computed
as follows:

KMA = (correct_estimates−incorrect_estimates)/total_estimates
(2)

The KMA score ranges from−1 to 1, where a score of 1 indicates
that the student knows perfectly what they know or do not know.
In KMA score calculation, we only considered problems with
an estimate.
Activity Logs: We collected students’ timed interaction logs
with the online practice system for each of the four consecutive
semesters. The logs offer a detailed view of student practice
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FIGURE 2 | An overview of key measures used in the study. We explored

possible connections between learners’ individual differences (i.e., incoming

parameters) collected at the start of the learning process, practice behavior,

performance and engagement measures. We used practice system usage

logs to model practice behavior of learners and constructed a data-driven

model of individual differences.

behavior, including problem solving attempts, example and
explanation line views, and query executions in the query
execution mode.

We examined the differences in knowledge measures for the
first three semesters and found out that there were no significant
differences in pre-test scores [Kruskal-Wallis χ2

(2)
= 5.03, p =

0.08], post-test scores [Kruskal-Wallis χ2
(2)

= 1.10, p = 0.58],

and NLG [F(2,78) = 1.13, p = 0.33]. These findings suggested that
students cohorts were similar based on the knowledge measures.
Given that we had the full set of individual difference data for the
first three semesters, we combined the data from these semesters
into the main dataset. The main dataset was used for building
and evaluating the data-driven model of individual differences.
Data collected during the fourth semester was used to test the
transferability of the proposed model (Section 8.4) and we refer
it as the transfer dataset. None of the students in the datasets
repeated the course. Also, note that some students didn’t respond
to some of the instruments and pre/post tests. Table 1 presents
the summary about collected metrics for each dataset. In this
table and the remaining analysis, we only used the data collected
from students who gave their consent and who tried the practice
system by attempting at least one SQL problem and viewing at
least one example. Detailed filtering process shared along with
the reported analyses. For practice system usage, we reported the
average number of attempted distinct problems, viewed distinct
examples, and explanation lines, as well as the average number of
query executions.

3.3. Key Variables in the Study
In this section, we summarized the key parameters and measures
used in the study. Figure 2 provides an overview of these
variables and their connections.
Incoming Parameters: Throughout the paper, we used the term
incoming parameters to refer to variables representing differences
among students at the start of the course. These parameters
include starting level of knowledge measured by the pre-test,
gender, and traditional scales of individual differences such as
SE and KMA scores. In the main dataset, SE and KMA scores
were not correlated with each other and with the knowledge
measures1.
Performance Measures: Performance represents the outcomes
of the learning process and is the most typical measure of
the learning process. To measure student performance, we used
(1) post-test scores and (2) NLG as the objective performance
measures collected outside the practice system.
Engagement Measures: Engagement is a less traditional
group of metrics, yet it remains essential in the context
of non-mandatory learner-driven practice. While practicing
with interactive learning content is usually beneficial for the
growth of learner knowledge, many students tend to ignore
the opportunity to practice or practice very little. In this
context, the engagement with practice becomes a critical factor
of the learning process. Connecting individual differences to
engagement measures is important to plan interventions and to
improve learner performance.

Learner engagement measures have been extensively
discussed in the research literature (Appleton et al., 2006;
Grier-Reed et al., 2012). In modern e-learning, engagement is
frequently approximated by the amount of student voluntary
work (i.e., work not directly required and graded). For example,
in MOOCs, engagement is frequently assessed by the fraction of
watched videos, the number of attempted quizzes, or the number
of posts to a discussion forum (Anderson et al., 2014; Davis
et al., 2017; Crues et al., 2018). Similarly, online practice systems
generally measure learner engagement through the amount of
voluntary practice with worked examples and problems (Denny
et al., 2018; Hosseini et al., 2020). Following this trend, we
approximated engagement as the amount of students’ non-
mandatory work with different learning activities available in the
practice system. The measures that we used for engagement are:
(1) the total number of learning actions performed: calculated by
summing up the number of problem solving attempts (regardless
of correctness), the number of query execution attempts, the
number of annotated examples viewed, and the number of line
explanations viewed (referred as total-actions); and (2) the total
number of distinct learning activities performed: calculated
by summing up the number of distinct problems attempted
(DPA), distinct annotated examples viewed (DEV), and distinct
explanation lines viewed (DLV) (referred as distinct-content).
Note that the total-actions measure counts duplicate accesses to
the same learning content, such as opening the same example

1SE&KMA (r=0.14, p = 0.26); SE&pre-test (r=0.08, p = 0.26); SE&post-test (r =

0.00, p = 0.98); SE&NLG (r=–0.13, p = 0.27); KMA&pre-test (r = –0.15, p = 0.24);

KMA&post-test (r = –0.12, p = 0.34); KMA&NLG (r = –0.05, p = 0.72).
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TABLE 1 | Summary statistics of the main and transfer datasets.

Incoming parameters Performance Practice system usage

Female SE KMA Pre-test Post-test Problem Example Line Query

Dataset N % score score score score NLG attempts views views executions

Main 88 53 21.3(4.2) 0.54(0.43) 1.3(1.5) 4.9(1.7) 0.41(0.17) 33.2(16.4) 53.0(16.7) 122.6(70.3) 54.2(59.4)

Transfer 36 NA NA NA 1.9(1.9) 5.2(2.2) 0.40(0.24) 33.0(17.4) 51.2(19.0) 132.6(65.5) 57.8(75.6)

Mean and (SD) are reported.

or attempting to solve the same problem more than once. Thus,
this measure reflects the overall levels of engagement with the
practice system. On the other hand, distinct-content incorporates
uniqueness of the learning content and reflects overall content
coverage by a student.
Outgoing Parameters: In our study, performance and
engagement are considered to be outgoing parameters of
the learning process because both could be affected by incoming
parameters and learning behavior. However, the roles of these
variables are not symmetric. While performance represents
the final learning outcomes of the process, the engagement
is a process variable that can impact the learning outcomes
(Figure 2).

3.4. Engagement and Performance
Prediction Procedure
Throughout the paper, we fitted multiple regression models to
separately predict each performance and engagement measure
and compared the overall fit of the models using likelihood
ratio tests. In some cases, we compared simple regression
models by checking the adjusted R2. Moreover, we compared
the relative importance of features based on the regression
estimates. We used negative binomial generalized linear models
to predict count outcome variables due to over-dispersion.
For other measures, we fitted simple linear regressions. We
considered adding a random effect to the regression models
to account for the variability in semesters, but given the very
low estimated variance of the random effect, we continued with
only the fixed effects models. In addition, we checked regression
assumptions, including the multicollinearity, by calculating the
variance inflation factors (VIF) and made sure that none of the
features had

√
VIF > 2.

For both prediction analyses, we used students’ data from the
main dataset who filled out the questionnaire, took the pre-test,
attempted at least one problem, and viewed at least one example
in the practice system. For engagement prediction, we used 70
students’ data. For performance prediction analyses, we further
excluded four students who did not take the post-test and who
had zero NLG and used data of 66 students.

In performance prediction, we wanted to control for the
students’ “amount of practice” by adding user engagement
measures to our regression models as covariates. To do so, we
considered the total number of distinct problems attempted
(DPA), distinct examples viewed (DEV), and distinct explanation
lines viewed (DLV) as possible covariates. We performed a
backward step-wise feature selection process and found out that

DPA was the only feature that significantly predicts the post-
test scores (after controlling by the pre-test scores) and NLG.
Thus, we added DPA as a covariate to all regression models that
fitted for performance prediction. To predict post-test scores, in
addition to the DPA, we added pre-test scores to control for the
levels of prior knowledge. However, for NLG prediction, we did
not include pre-test scores as a feature, since it was already used
to calculate NLG itself.

4. USING INCOMING PARAMETERS FOR
ENGAGEMENT AND PERFORMANCE
PREDICTION

As explained above, one of the key goals of this paper is to explore
connections between incoming parameters of the learning
process, learner practice behavior, and outgoing parameters of
the process (Figure 2). This goal can’t be achieved directly
using the data in our dataset because exploring connections
of incoming and outgoing parameters with learning behavior
requires building a model of this behavior. Building of this
model requires a relatively complex process presented in Sections
5 and 6.1. However, direct connections between incoming
and outgoing variables can be examined without this complex
behavior model and offer an early opportunity to demonstrate
an example of our analysis procedure. In this section, we
examine the predictive power of the incoming parameters
on performance and engagement measures summarized in
Section 3.3 by following the prediction procedure described in
Section 3.4.

We started our analyses by predicting both of the engagement
measures (i.e., total-actions, and distinct-content) using the
incoming parameters as features. Results indicated that the
incoming parameters did not improve the overall fit of the model
when compared to an intercept-onlymodel when predicting both
total-actions (χ2

(4)
= 5.230, p = 0.265) and distinct-content

[χ2
(4)

= 4.146, p = 0.387]. We continued with performance

prediction analyses by predicting both post-test scores and the
NLG. For post-test prediction, we fitted a regression model
(incoming-model) by adding rest of the incoming parameters
(i.e., KMA and SE scores) as features to pre-test scores and DPA.
Compared to a regression model with only pre-test scores and
DPA as features, the incoming-model did not fit the data better
[χ2

(3)
= 0.326, p = 0.955] and none of the features related

to incoming parameters were significant, except for the pre-test
scores (B = 0.620, t = 5.824, p < 0.001) and DPA (B =
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0.216, t = 2.128, p = 0.037). Similar to post-test prediction
results, we discovered that none of the incoming parameters were
significant predictors of NLG, except for marginally significant
DPA feature (B = 0.244, t = 1.946, p = 0.056).

To sum up, in this section we observed that none of the
incoming parameters were significant predictors in engagement
and performance prediction, and as features, they did not
improve the overall fit of the regression models.

5. BUILDING LEARNER PRACTICE
BEHAVIOR PROFILE

While traditional individual differences measured in our study
have no direct impact on engagement and performance (Section
4), their impact might be indirect, i.e., individual differences
might influence learner practice behavior in the system and, in
turn, the behavior could affect performance and engagement
(Figure 2). To assess connections between incoming factors,
behavior, and outcomes, we need to model learner practice
behavior in some form that enables us to examine these
connections formally. In this section, we present the first step
of the behavior modeling procedure: building individual practice
behavior profile. In the next step of the modeling procedure
presented in Section 6, these profiles are used to reveal groups
of users with divergent behavior and build a cluster model of
practice behavior.

Given the non-mandatory nature of the practice system,
students accessed practice problems and examples without
predefined order or deadlines. In this “free” learning context,
the order of their work with learning content is likely to be the
most characteristic feature of their practice behavior. This context
and past success of behavior mining approaches encouraged us
to apply sequence mining for modeling practice behavior. A
distinctive feature of our procedure compared to other sequence-
mining approaches is representing the practice behavior of
individual learners as a stable practice profile that differentiates
them from each other.

5.1. Practice Action Labeling for Sequence
Mining
The first step in sequential pattern mining is to label students’
practice actions and define the specific action sequences to
be mined. We believed that the sequence of interactions with
learning activities and transitions between the activities (i.e.,
examples and problems) were critical in modeling individual
differences. To pursue this idea, we performed a labeling process
that highlights these critical interactions. We started the labeling
process by mapping each student action to a unique label.Table 2
lists key learning actions and the corresponding labels used in
the labeling process. As described earlier, practice activities were
grouped into several SQL topics. To access a list of activities
for a topic, a student opens a topic. Once the topic is opened,
learners can work with activities of the topic in any order. With
this design, student work with a topic becomes a unit of practice.
To reflect this, we formed behavior sequences corresponding
to learners’ work with individual topics: all learning actions

TABLE 2 | List of labels and the corresponding learning actions that were used in

the labeling process.

Pattern label Learning action

topic-o Opening a topic.

prob-s Successful problem solving attempt.

ex-o Opening an example activity.

prob-f Failed attempt for a problem.

ex-line Viewing an explanation line.

query-o Opening query execution mode.

prob-o Opening a problem.

query-e Checking query results in query execution mode.

between two topic openings are considered to be one sequence,
and each sequence starts with the topic opening label topic-
o. We also introduced labels for opening and working with
each type of content (i.e., ex-o, ex-line). If a student performed
a content action after opening a content item (attempting a
problem or viewing an explanation line), we collapsed labels
for content opening and kept the labels for the actual learning
actions. For example, a sequence {prob-o, prob-o} means that
a student opened two problems consecutively without trying
to solve any of them. In addition, we distinguished a failed
and a successful problem solving attempt from one another to
differentiate learning actions that occurred after either a failed or
a successful attempt.

One of the challenges of sequence analysis of learning data is
the presence of repetitive learning actions, such as a row of failed
problem solving attempts, or a row of multiple line explanation
views where exact number or repetition is not essential, but the
relative scale of repetition is. To address it, we collapsed these
sequences so that we can capture what actually happened after
these repetitive actions. In this process, we first generated all
sequences with repetitive labels. Then, we calculated the median
length of repeated labels for all students. Then, we went over
the original action sequences and replaced each repetitive label
with a single uppercase version of that label if the length of
that repetition was greater than the median length, or with a
single lowercase label otherwise. At the end of this process, each
label could represent one or more consecutive repeated actions,
depending on the median length. Only ex-line and query-e had a
median length of two, while others had amedian length of one. As
the result of the labeling process, 3432 sequences were generated
from interaction logs of 88 students in the main dataset.

5.2. Discovering Frequent Patterns of
Practice Behavior
To discover the frequent patterns in student action sequences,
we used the SPAM sequence mining algorithm (Ayres et al.,
2002; Fournier-Viger et al., 2016). The sequences generated after
the activity labeling process were used for mining frequent
patterns. To reveal sequences that could highlight individual
differences, we set the minimum support for the SPAM algorithm
at 0.5%. Due to our labeling process with repetition reduction,
the sequences used in the mining process were already dense
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TABLE 3 | Discovered top 10 frequent patterns with sequence explanations and frequency of occurrence.

Pattern Freq.(%) Explanation Pattern Freq.(%) Explanation

{topic-o, EX-LINE} 4.8 Opening a topic followed by viewing a long

sequence of line explanations.

{topic-o, ex-o} 2.1 Opening a topic followed by an example

opening without line viewing.

{topic-o, ex-line} 2.7 Opening a topic followed by viewing a short

sequence of line explanations.

{prob-f, prob-s} 2.0 Failed attempt followed by a successful

attempt.

{topic-o, prob-o} 2.5 Opening a topic followed by a problem

opening without any attempt.

{query-e, prob-s} 2.0 Short sequence of query executions followed

by a successful attempt.

{prob-f, query-e} 2.3 Failed attempt followed by a short sequence

of query executions.

{prob-s, prob-f} 1.8 Successful attempt followed by a failed

attempt.

{topic-o, EX-O} 2.2 Opening a topic followed by a long sequence

of example openings without line viewing.

{PROB-S, prob-f} 1.7 Long sequence of successful attempts

followed by a failed attempt.

Lowercase actions mean that the repetition of that action is less than or equal to the median repetition length, while uppercase actions mean the opposite.

in information. Even if some sequences were not frequently
followed (not having high levels of support), they could be
important in revealing discriminative practice behaviors. The
SPAM algorithm discovered 169 frequent patterns that appeared
at least in 0.5% of sequences (18 sequences). All discovered
patterns consist of two or three consecutive learning actions, as
we did not include any gap constraint to the SPAM algorithm.
Table 3 shows the top 10 most frequent patterns.

Out of 88 students, 82 students had at least one frequent
pattern after the mining process. We further filtered out students
with less than 25 frequent patterns (Q1: 45.75, Med: 97.00,
M: 103.20) to have a fair amount of representation of practice
behavior by the discovered frequent patterns. After the filtering
process, the number of students with frequent patterns dropped
to 75.

5.3. Building and Assessing Individual
Practice Profile With Frequent Patterns
In the final step, we built a practice profile for each student as
a frequency vector using the discovered 169 frequent patterns.
Each position in this vector represents how many times the
corresponding frequent pattern appears in the practice work of
the modeled student. To eliminate any possible impact of the
amount of practice, we normalized the frequency vectors per
student and now the resulting vectors represent the probability of
the occurrence of each frequent pattern. This approach was first
introduced in Guerra et al. (2014) and successfully used to model
learner behavior in Hosseini et al. (2017). Following these works,
we called the practice behavior profile the practice genome.

To make sure that the constructed “practice genomes” in
the form of probability vectors represent a sufficiently stable
model of practice behavior and reliably distinguish students from
each other, we checked the stability of the practice genomes.
Following the procedure suggested in Guerra et al. (2014), we
split students’ sequences into two “halves” using two approaches:
(1) random split, and (2) temporal split. In the random-
split approach, we shuffled students’ topic-level sequences and
divided them into two halves randomly. In the temporal-split
approach, we first ordered the sequences based on time and
divided the sequences into early and late halves. For either split
approach, we built separate practice “half-profiles” from each of

the halves and calculated the pairwise distances for the whole
set of “half-profiles” using the Jenson-Shannon (JS) divergence
(as we are calculating the distance between two probability
distributions). To assert genome stability, the distance between
the two “half-profile” vectors of the same student (self-distance)
should be smaller than the distance to half-vectors of other
students (others-distance).

To evaluate this expectation, we conducted a paired t-test
to compare the calculated self-distances to others-distances for
both random-split and temporal-split approaches. The random-
split self-distances (M = 0.35, SD = 0.11) were significantly
smaller than the random-split other-distances (M = 0.46, SD =

0.05); t(79) = −7.531, p < 0.001, Cohen’s d = 0.58. Similarly,
the temporal-split self-distances (M = 0.42, SD = 0.11)
were significantly smaller than the temporal-split other-distances
(M = 0.48, SD = 0.05); t(76) = −5.034, p < 0.001, Cohen’s
d = 0.87. These findings showed that the practice genomes
were successful in distinguishing students from each other. This
property opens a way to use practice genomes for the data-driven
modeling of individual differences.

6. DISCOVERING GROUPS OF LEARNERS
WITH SIMILAR PRACTICE BEHAVIOR

As reviewed in Section 2.2, the dominated approach to behavior
modeling in educational data mining is discovering latent learner
groups composed of students who exhibit similar behavior
patterns. We follow a similar approach: we reveal these latent
learner groups by clustering practice profiles of students. These
clusters may be considered as a simple “cluster” model of
learner behavior where individual students are modeled by their
association with these latent groups. In this section, we explain
the process of clustering students in groups with similar behavior
and explain the process of assessing the quality of these clusters.

6.1. Forming Clusters of Learners Based
on Practice Genomes
Given the confirmed stability, the practice genomes offer
a reliable foundation to find students with similar practice
behavior. The clustering of genomes was performed in two
steps. First, we mapped the higher-dimensional practice genomes
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(i.e., 169 dimensions of the probability vectors) into a
two-dimensional space by using a dimensionality-reduction
technique. Next, we clustered students using the lower-
dimensional representation of the practice genomes.

The main rationale behind the two-step clustering approach
was that low-dimensional representation makes it easier for us
to convert categorical cluster representation into a continuous
behavioral scale, which is the goal of the final step of our study
explained in Section 8. In our approach, we fixed the number
of clusters to two (k = 2) by analyzing the higher-dimensional
practice genomes using silhouette method (Rousseeuw, 1987)
and gap statistics (Tibshirani et al., 2001).

During the first step of the clustering process, we used t-
Stochastic Neighbor Embedding (t-SNE) (van der Maaten and
Hinton, 2008), a non-linear dimensionality-reduction algorithm
that is mainly used to explore high-dimensional data, to
project practice genomes to 2-D points. t-SNE minimizes the
objective function using a randomly-initiated gradient descent
optimization. Thus, each run of t-SNE generates a different
projection. For the results presented in this paper, we first
applied a grid-search technique to tune hyper-parameters (e.g.,
exaggeration factor, perplexity, theta) and selected the projection
that leads to the most distinct cluster separation (in Step 2),
based on the frequent patterns. Thus, for the grid-search and the
projection selection, we executed the first and the second step of
the clustering process together for each run.

During the second step of the clustering process, we applied
partition around medoids (PAM) clustering to the 2-D results
of t-SNE projections. To judge the cluster separation for the
grid-search and projection selection, we performed a differential
sequence mining approach similar to Kinnebrew and Biswas
(2012) to compare the mean probability (ratio) of each frequent
pattern between the discovered clusters (k = 2) using multiple
t-tests at α = 0.05 and counted the number of significantly
different patterns between each cluster. Based on this approach,
we selected the 2-D t-SNE projection. The selected t-SNE
projection of the practice behaviors and the PAM clustering
results are presented in Figure 3. After clustering, there were
38 and 37 students in clusters 1 and 2, respectively (avg.
silhouette score= 0.40).

6.2. Examining Cluster Separation Quality
With Incoming Parameters
We need to perform quality assessment to examine whether
the clustering process was successful in grouping learners with
similar practice behavior. To do so, we checked the differences
between clusters in various dimensions and compared the
separation quality against other grouping metrics based on the
incoming parameters. For all numeric metrics in the incoming
parameters (e.g., pre-test, SE, KMA scores), we used median
values to split students into two opposing subgroups. To examine
possible impact of gender, we split students in female and
male groups.

6.2.1. Exploring Frequent Pattern Differences
We started our exploration by checking differences between
discovered clusters in frequent patterns. We expected to find
strong differences between the clusters given that practice

FIGURE 3 | Student practice behavior representation on 2-D t-SNE projection

with PAM clustering results (k = 2). The orange circle represents the mean

Euclidean distance of all students to the Cluster 1 medoid (the orange empty

square), and the blue circle represents the mean Euclidean distance of all

students to the Cluster 2 medoid (the empty blue diamond).

genomes were used in clustering process. However, we performed
this exploration as a sanity check and as a reference point for
comparison with other grouping metrics.

We followed a differential sequence mining approach similar
to Kinnebrew and Biswas (2012) to compare themean probability
(ratio) of each frequent pattern between the clusters and formed
subgroups using multiple t-tests at α = 0.05. In this approach,
there is no implemented procedure for controlling for the family-
wise error rate. However, we applied Bonferroni correction to
control family-wise error rate. In Table 4, we reported the total
number of significantly different patterns by considering top-10,
top-50 and all frequent patterns (i.e., 169) for different grouping
metrics with and without performing p-value corrections.

As shown in the table, cluster separation differentiated
students rigidly. When considered all 169 frequent patterns,
64 (38%) patterns found to be significantly different between
clusters. For top-10 and top-50, we reached to similar conclusion
where approximately half of the patterns were significantly
different between clusters. More importantly, even after applying
Bonferroni correction, some patterns remained significantly
different that highlights the significance of pattern-based
differences between clusters.

We followed the same procedure for the opposing subgroups
formed based on the incoming parameters. When all 169
frequent patterns considered, the maximum number of
significantly different patters was 22 (13%) for SE-based
grouping. Other grouping metrics could not even reach that
level of separation (see Table 4 for details). When Bonferroni
correction applied2, none of the grouping metric had any

2We reached exactly the same results when applied less conservative p-value

adjustment procedures such as false discovery rate (FDR), and Holm-Bonferroni.
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TABLE 4 | Summary of differential sequential mining results based on each

grouping metric.

Grouping metric Top-10 Top-50 All patterns

Cluster 5(3) 22(9) 64(7)

Pre-test 1(0) 2(0) 6(0)

KMA 0(0) 1(0) 6(0)

SE 1(0) 7(0) 22(0)

Gender 0(0) 4(0) 8(0)

The number of significantly different patterns and (the number of significantly different

patterns after Bonferroni correction) are reported by considering top-10, top-50, and all

available (169) frequent patterns.

significantly different pattern, which was not the case for
clustering. However, it was interesting to observe that almost
all significantly different patterns between opposing subgroups
were unique to that particular grouping metric. There were
41 (25%) significantly different patterns between all opposing
subgroups in total (without Bonferroni correction). Only one
frequent pattern was significantly different for two grouping
metric. It looks like each incoming parameter captured only
limited practice behavior differences between subgroups based
on frequent patterns.

To summarize, in this section, we observed that none of the
collected incoming parameters was strong enough to distinguish
learners as good as clusters based on frequent patterns.

6.2.2. Exploring Practice Genome Differences
In the previous section, we detected only minor differences
among subgroups by checking individual frequent patterns. In
this section, we extended this approach and instead of checking
differences in patterns, we followed a more holistic approach
and explored differences between subgroups using the practice
genomes. Namely, we used the same subgroups that we already
formed in the previous section (including clusters) and calculated
the pairwise distances between a learner’s practice genome and
other students’ genomes in the opposing subgroups using Jenson-
Shannon (JS) divergence as we used it for checking the stability
of the practice genomes (see Section 5.3).

At the end of the subgroup formation, each student was
assigned to a particular subgroup. For example, a male student
might belong to Cluster 1, high SE, low pre-test, and low KMA
subgroups. Thus, for this particular student, we can calculate the
average distance of his practice genome to the genomes of all
students in the opposing subgroups; i.e., female group, Cluster
2, low SE, high pre-test, and high KMA subgroups. At the end
of this process, each student had five average genome distances
to the opposing subgroups. In total, we calculated 70 average
genome distances for each grouping metric, one for each student.

If one of the grouping metric was more distinguishing than
the others, we expect that the average distance to that opposing
subgroup should be the maximum compared to others. To
check this hypothesis, we performed multiple paired t-tests to
compare average pairwise distance values for each subgroup and
further adjusted p-values using Bonferroni correction. Results

showed that the cluster based grouping generated significantly
higher pairwise JS distance compared to other four grouping
metrics [Pre-test: t(69) = 6.290, p < 0.001; KMA: t(69) =

7.921, p < 0.001; SE: t(69) = 5.821, p < 0.001; Gender:
t(69) = 7.773, p < 0.001]. Similar to pattern based exploration
performed in the previous section, we conclude that clustering
was the most powerful grouping metric to separate learners’
practice genomes compared to other groupings created by the
incoming parameters.

6.3. Practice Behavior Differences
Between Clusters
By examining the cluster separation quality in the previous
section, we quantified differences between clusters based
on individual frequent patterns and practice genomes; and
compared to other subgroups based on each incoming parameter.
The eventual goal of the clustering process was to discover latent
student groups with considerably different practice behavior.
Thus, we continue assessing the quality of clustering process
by analyzing practice behavior differences between clusters. To
achieve this, we calculated the average ratio (probability) of
frequent patterns in both clusters. In Figure 4A, we plotted the
average ratio of 20 patterns that had the highest absolute ratio
difference between two clusters and sorted them by the difference
of the absolute ratio. In the figure, there are 10 patterns that more
frequently occurred in Cluster 1 (top half of the graph) and 10
patterns that more frequently occurred in Cluster 2 (bottom half
of the graph). The significantly different patterns are labeled with
a red colored text.

As shown in the figure, students in two clusters exhibited
considerably different practice behavior. Students in Cluster 1
significantly more frequently opened and explored examples
right after they began to work with a topic (e.g., {topic-
o, EX-LINE}, {topic-o, ex-o}). Moreover, they switched more
frequently from viewing explanations to successful problem
solving, suggesting that they valued examples as a preparation
tool for problem solving (e.g., {EX-LINE, PROB-S}, {topic-o, EX-
LINE, PROB-S}). The students in this cluster were also engaged
significantly more frequently in a sequence of uninterrupted
problem solving attempts, in which a sequence of failed attempts
was followed by a sequence of successful attempts (e.g., {PROB-F,
PROB-S}, {PROB-F, prob-s}).

In contrast, students in Cluster 2 interleaved attempts to solve
problems by using the query execution mode. As seen in the
figure, all 10 “distinguishing” patterns that involved the query
execution mode (e.g., query-e) were significantly more frequent
in Cluster 2. For example, when Cluster 2 students failed on a
problem, they checked their query results in the query execution
mode to get more detailed feedback (e.g., {prob-f, query-e},
{PROB-F,query-e}). Further, they typically managed to solve
problems after using the query execution mode (e.g., {query-e,
prob-s}, {query-e, PROB-S}, {prob-f, query-e, prob-s}. In some
cases, they used the query execution mode even after successfully
solving a problem (e.g., {prob-s, query-e}), suggesting that at
particular cases they wanted to verify their correct queries by
checking the actual query result.
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To provide a side-by-side comparison, in Figure 4B, we
demonstrated the average ratio (probability) of 20 frequent
patterns that had the highest absolute difference between
low and high pre-test students. Based on the figure, we can
speculate that students with high prior knowledge exhibitedmore
skimming behavior (e.g., {topic-o, EX-O}, {topic-o, prob-o},
{topic-o, ex-o}). However, given the only significantly different
pattern, {topic-o, EX-O}, it was hard to strongly support this
hypothesis. Compared to discovered clusters, it can be easily
noticed that pre-test based grouping was not highly successful
in separating students according to the frequent patterns even
if we concentrated on the most divergent patterns between
opposing subgroups.

In summary, by clustering practice genomes, we discovered
two divergent practice behaviors. To simplify the difference,
Cluster 1 students tended to learn by distilling SQL knowledge
encapsulated in examples and then applying it to practice
problems. Cluster 2 students preferred to “generate” SQL
knowledge through their own experience obtained by
experimenting with various SQL queries, which they used
as exploration, debugging, and verification tools.

7. CONNECTING PRACTICE BEHAVIOR TO
INCOMING AND OUTGOING PARAMETERS
THROUGH CLUSTER MODEL

The clusters of learners obtained through the profiling and
clustering process explained above represent a simple formal

model of learner behavior, which is currently typical for data-
driven studies of learner behavior in the field of educational
datamining (see Section 2.2). With this cluster model, individual
learners are modeled by their association with one of the behavior
clusters. The ability to compress complex learner behavior into a
simple model enables us to investigate two groups of connections
displayed in Figure 2 that we were not able to assess before. The
next (Section 7.1) explores the connections between incoming
parameters and learning behavior modeled by clusters. Following
that, Section 7.2 investigates the connections between the clusters
and the outgoing parameters (engagement and performance).

7.1. Connecting Clusters to Incoming
Parameters
Since the discovered clusters revealed some divergent learning
behavior, it is important to check whether the observed
behavioral differences could be explained by some incoming
parameters collected in our study (i.e., gender, pre-test, SE, and
KMA scores). To draw the connection from the obtained clusters
to incoming parameters, we checked whether there are any other
noticeable differences between behavior clusters in terms of each
of these parameters. We summarized the incoming parameters
for each cluster in Table 5. For each incoming parameter, we
only considered students with available data. As seen in the table,
the clusters were balanced in respect to each of the incoming
parameters. The percentage of female students were 56 and 44%,
respectively. The mean scores of SE, KMA, and pre-test were also
very similar. Our formal analysis did not reveal any statistically
significant differences in SE scores [t(68) = −0.53, p = 0.60],

FIGURE 4 | Frequent pattern comparison between (A) discovered clusters and (B) high/low pre-test students. The frequent patterns are selected to highlight the

highest absolute ratio difference between two groups, and sorted by mean ratio (probability) difference. Red texts denote significantly different patterns between two

clusters, based on the results of the t-test without applying any p-value correction.
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TABLE 5 | Summary of the incoming parameters, engagement and performance measures for the discovered clusters.

Incoming parameters Engagement Performance

Female SE KMA Pre-test Total- Distinct- Post-test

Clusters N % score score score actions content score NLG

Cluster 1 38 56 21.2(4.2) 0.53(0.44) 1.2(1.5) 485(258) 233(80) 5.2(1.6) 0.45(0.14)

Cluster 2 37 44 21.7(4.4) 0.60(.45) 1.4(1.6) 600(304) 226(87) 4.8(1.9) 0.39(0.20)

Mean and (SD) are reported.

TABLE 6 | Summary of the fitted regression models to predict engagement and

performance measures by categorical cluster labels.

Dependent variable:

Total-actions Distinct-content post-test score NLG

negative negative OLS OLS

binomial binomial

Pre-test score 0.639∗∗∗

DPA 0.243∗∗ 0.275∗∗

Cluster (C2) 0.214 –0.014 –0.203 –0.241

Adjusted R2 0.408 0.045

Log Likelihood –491.666 –417.967

Akaike Inf. Crit. 987.331 839.934

F Statistic 15.919∗∗∗ 2.514

(df = 3; 62) (df = 2; 63)

Standardized regression coefficients are reported for the independent variables.
∗∗p<0.05; ∗∗∗p<0.01.

KMA scores (U = 468, p = 0.43), and pre-test scores (U =

645, p = 0.52) between the behavior clusters.
To draw the connection in the opposite direction, from

the incoming parameters to the clusters, we fitted a binomial
generalized linearmodel to predict categorical cluster labels using
pre-test, KMA, SE scores, and gender. Compared to an intercept-
only model, the incoming parameters did not improve the overall
fit of the model [χ2

(3)
= 1.383, p = 0.710] and achieved a

very low area under the ROC curve (AUC) of 0.587, which
suggests that cluster assignments cannot be explained by the
incoming parameters.

The lack of connections between traditional dimensions of
individual differences and other incoming parameters collected
in our study and learner practice behavior indicates that observed
differences in practice behavior may reflect a latent dimension
of individual differences that can’t be reduced to traditional
measures, but could be revealed through divergent learner
behavior. This observation enables us to treat the cluster behavior
model as a simple data-driven model of individual differences.

7.2. Connecting Clusters to Outgoing
Parameters
In this section, we attempt to connect the cluster model of
practice behavior to outgoing parameters (i.e., engagement and

performance measures as described in Section 3.3). Similarly to
the previous subsection, we perform this analysis in two different
ways. We first checked if there were any observable differences
between clusters for each engagement and performancemeasures
and we only considered students with available data for each
measure. Table 5 reports the summary of the incoming and
outgoing parameters for each cluster. We found out that there
were no statistically significant differences between clusters in
total-actions (U = 539, p = 0.08), distinct-content (U = 739, p =

0.71), post-test scores [t(70) = 0.88, p = 0.38], and NLG (U =

733, p = 0.34). In other words, the clusters can’t be directly
explained by differences in the outgoing parameters (what we see
are not clusters of “good learners” and “bad learners”, neither they
are clusters of “well-enageged” and “poorly-engaged” learners).

We further fitted regression models to predict outgoing
parameters. This analysis could be also considered as an attempt
to assess the predictive power of our simple data-driven model
of individual differences. We added the categorical cluster labels
as a predictor in these fitted models and followed the prediction
procedure described in Section 3.4. Table 6 summarizes the fitted
regression models. Results indicated that the model that used
categorical cluster labels (cluster-model) to predict total-actions
did not improve the overall fit of the model as compared to
an intercept-only model [χ2

(1)
= 2.55, p = 0.110] and the

incoming-model (i.e., model that used incoming parameters as
features that was fitted in Section 4) [χ2

(3)
= 2.677, p =

0.444]. Similarly, the cluster-model did not fit the data better
in distinct-content prediction when compared to the intercept-
only [χ2

(1)
= 0.018, p = 0.893] and incoming-model [χ2

(3)
=

4.128, p = 0.248]. In post-test scores prediction, cluster labels
did not improve the overall fit of the model compared to the
intercept-only [χ2

(1)
= 1.133, p = 0.287] and incoming-model

[χ2
(2)

= 0.807, p = 0.668]. However, compared to the incoming-

model, the cluster-model improved the explained variance by
2.7% (based on adj. R2). In parallel, for NLG prediction, the
cluster-model did not predict NLG better compared to both
intercept-only [χ2

(1)
= 0.975, p = 0.324] and incoming-

model [χ2
(1)

= 0.757, p = 0.685]. Yet, it improved the

explained variance by 2.1%. This result indicates that the cluster

model treated as a simple data-driven model of individual

differences could be more useful for predicting important

outgoing parameters of learning than traditional models. This
finding motivated the last stage of our work presented in the
next section.
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8. DEVELOPING A DATA-DRIVEN MODEL
OF INDIVIDUAL DIFFERENCES

This section focuses on the final goal of our study: building
a data-driven model of individual differences that could
complement existing dimensions of individual differences and
improve our ability to connect learner practice behavior
to performance and engagement. In the previous section,
we demonstrated the presence of two clusters that exhibit
significantly divergent practice behavior. We also observed
that these behavior differences can’t be explained by incoming
parameters hinting that the observed divergent behavior could be
used to construct a data-driven model of individual differences,
which is “orthogonal” to the traditional models of individual
differences collected in our study. While our simple data-driven
model of individual differences was not able to offer significant
help in prediction tasks, our attempts hinted that it could bemore
useful than traditional models (Section 7.2).

However, the comparison of the simple data-driven model
with the traditional models was not fully fair. In contrast to
traditional models that usually offer a continuous scale between
two opposite ends (i.e., low/high self-esteem, etc), our simple
“binary” model has to fully allocate every student to one of the
latent groups, which might be too simplistic to offer a good
modeling and predictive power. In this section we attempt to
refine our data-driven binary model into a more traditional
continuous behavioral scale and evaluate the predictive power of
the data-driven scale on various engagement and performance
measures (see Section 3.3 for details about measures). We
compare the relative predictive power of the behavioral scale (i.e.,
distance to cluster medoids) against the incoming parameters
(i.e., gender, pre-test scores, KMA, and SE scores) and the
categorical behavioral cluster representations. Further, we check
the transferability of the constructed behavioral scale using the
transfer dataset.

8.1. Developing a Continuous Behavioral
Scale
In this section, we attempted to refine the categorical cluster
assignments into a continuous behavioral scale that can model
individual differences reflected through the practice behavior,
similar to traditional scales of individual differences.

To follow existing “bi-polar” scales of individual differences,
we attempted to quantify the position of a student with respect
to each main practice behavior (depicted by the clusters) as the
Euclidean distance from the student’s 2-D point to the cluster
medoids found by the PAM clustering algorithm. Thus, we
modeled the practice behavior of a student using two numerical
values: (1) distance to the first cluster medoid (M1), and (2)
distance to the second cluster medoid (M2).

To investigate how distances to cluster medoids captured
differences among students (i.e., incoming parameters,
engagement, and performance), we divided students into
five bins using Euclidean distances on 2D dimension. The bins
are numbered from 1 to 5 in increasing average distance for
M1 and M2, where bin 1 is the closest group to the medoids,

as illustrated in Figure 5. As Table 7 shows, grouping based on
distance to M1, the average number of distinct explanation lines
viewed drops considerably as the distance increases, and we
found a significant negative correlation (r = −0.48, p < 0.001).
We also found a weak positive correlation with the average
number of query executions (r = 0.23, p = 0.04), but there
was no constant decrease or increase based on the distance.
Thus, with the increase of the distance to M1, the number of
distinct line views decreases and the number of query executions
increases. For grouping based on the distance to M2, we found
a significant negative correlation between distance and the
number of distinct problems attempted (r = −0.30, p = 0.009),
and between distance and the number of query executions
(r = −68, p < 0.001). We also found a significant positive
correlation with the NLG (r = 0.24, p = 0.038). Thus, we can
summarize that when students move away from M2, the NLG
increases while they attempted fewer distinct problems and
performed fewer number of query executions. The correlations
summarized in this section overlaps with the practice behaviors
described in Section 6.3, where students in Cluster 1 were
more concentrated on examples and students in Cluster 2 were
performing more query executions.

To check if there was any connection between the distance
values and the incoming parameters, we fitted linear regression
models to predict both distance values by adding pre-test,
KMA, SE scores and gender as predictors. We did not find
any significant correlation between distance and the incoming
parameters. This means that we cannot explain distances to
cluster medoids and the attributed practice behavior by the
incoming parameters.

8.2. Predicting Engagement With
Behavioral Scale
We began our analyses by predicting total-actions with the
behavioral scale, i.e., distances to cluster medoids. Regression
results indicated that the model with distance to medoids as
features (distance-model) fitted data significantly better than
both the intercept-only model [χ2

(2)
= 14.744, p < 0.001]

and the model that used the incoming parameters (incoming-
model) as features [χ2

(2)
= 9.514, p = 0.009]. Moreover,

the distance-model also fitted data significantly better than the
model that used categorical cluster labels (cluster-model) [χ2

(1)
=

12.191, p = 0.001]. We further fitted a separate model with
both distance measures and individual parameters together as
features (full-model) to compare relative regression coefficients.
In this model, distance to M1 and distance to M2 were the only
significant predictors of total-actions, where moving away from
both medoids was associated with a fewer number of actions. We
canmention that the distance toM2 had a slightly higher negative
effect on total-actions.

We continued predicting engagement measures with distinct-
content. Comparable to the results for total-actions prediction,
we found out that the distance-model fitted the data significantly
better than the intercept-only model [χ2

(2)
= 10.575, p = 0.005],

the cluster-model [χ2
(1)

= 10.557, p = 0.001], and the incoming-

model [χ2
(2)

= 6.428, p = 0.004]. Next, we fitted a model with
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FIGURE 5 | Student practice behavior representations are divided into five bins according to their Euclidean distances to cluster medoids and color-coded for easier

interpretation on the 2-D t-SNE projection. Bins are numbered from 1 to 5 in increasing average distance for (A) Cluster 1 medoid (M1) and (B) Cluster 2 medoid (M2).

TABLE 7 | Summary of groups obtained by dividing students into five bins based on the Euclidean distances to the two cluster medoids on 2D dimension.

Incoming parameters Performance Practice system usage

Female SE KMA Pre-test Post-test Problem Example Line Query

N % score score score score NLG attempts views views executions

Distance to

Medoid 1

Bin 1 12 40 21.80 0.46 1.17 5.40 0.49 41.50 60.50 170.00 51.25

Bin 2 23 55 21.65 0.57 1.37 4.96 0.41 37.00 56.13 152.39 35.30

Bin 3 21 56 21.68 0.65 1.24 4.78 0.41 35.76 56.47 141.86 90.14

Bin 4 12 42 20.17 0.50 1.17 4.83 0.41 41.08 56.00 93.75 81.92

Bin 5 7 50 21.67 0.59 1.71 5.17 0.39 35.28 52.43 61.57 61.57

Distance to

Medoid 2

Bin 1 11 44 22.27 0.59 0.45 4.27 0.40 42.18 58.73 156.72 153.36

Bin 2 20 53 21.89 0.59 1.82 4.73 0.34 42.35 57.55 124.80 86.65

Bin 3 16 43 19.93 0.51 0.81 5.00 0.46 36.81 55.19 123.81 38.31

Bin 4 16 43 21.00 0.63 2.06 5.80 0.48 34.63 56.31 125.13 31.50

Bin 5 12 70 21.17 0.49 0.83 4.96 0.45 32.17 55.08 156.42 16.42

Mean values are reported.

both distance and incoming parameters together (full-model)
and found that only the distance measures were significant
predictors. Based on the regression coefficients, we saw that the
distance to M1 had a higher negative impact on distinct-content
compared to the distance to M2. Table 8 presents the summary
of the fitted models for predicting engagement measures.

In summary, students who were close to M2 performed
more learning actions, which can be explained by the
overall practice behavior of Cluster 2: they failed more on
problem attempts and used query execution more frequently,
as compared to Cluster 1. Students who were close to M1
covered more unique content, such as viewing more unique
explanation lines.

8.3. Predicting Performance With
Behavioral Scale
In this section, we advanced to performance prediction by
predicting both post-test scores and the NLG by using the
behavioral scale. The summary of the fitted models is presented
in Table 8.

To predict post-test scores, we fitted a regression model with
distance to medoids as features (distance-model). We found out
that the distance-model fitted the data significantly better than
the incoming-model (i.e., the model with incoming parameters
as features) [χ2

(1)
= 4.928, p = 0.026], and better than the

model that used binary cluster assignments, pre-test scores and
DPA as features [χ2

(1)
= 4.121, p = 0.042]. Next, we fitted a
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TABLE 8 | Summary of the fitted regression models to predict engagement and performance measures.

Dependent variables total-actions distinct-content Post-test score NLG

Regression Type Negative binomial Negative binomial OLS OLS

Model Name Distance-model Full-model distance-model Full-model Distance-model Full-model Distance-model Full-model

Pre-test score –0.002 0.0001 0.611∗∗∗ 0.587∗∗∗

Gender (M) 0.124 0.050 0.112 0.258

SE score 0.097 0.071 –0.031 –0.075

KMA score –0.071 –0.053 –0.012 –0.019

DPA 0.293∗∗∗ 0.291∗∗∗ 0.354∗∗∗ 0.353∗∗∗

Dist. to M1 –0.216∗∗∗ –0.207∗∗∗ –0.201∗∗∗ –0.196∗∗∗ 0.124 0.124 0.194 0.184

Dist. to M2 –0.292∗∗∗ –0.289∗∗∗ –0.121∗∗ –0.121∗∗ 0.264∗∗ 0.266∗∗ 0.365∗∗ 0.361∗∗

Adjusted R2 .435 0.409 0.104 .083

Log likelihood –485.570 –483.257 -412.689 –410.900

Akaike Inf. Crit. 977.141 980.513 831.378 835.801

F Statistic 13.486∗∗∗ 7.434∗∗∗ 3.527∗∗ 1.984

(df = 4; 61) (df = 7; 58) (df = 3; 62) (df = 6; 59)

Standardized regression coefficients are reported for the independent variables. ∗∗p<0.05; ∗∗∗p<0.01.

model with all features together (full-model), and these results
indicated that after pre-test scores and DPA, the distance to M2
was the only significant predictor. Thus, after controlling for the
prior knowledge and the number of distinct problems attempted,
the distance to the second cluster medoid significantly predicts
post-test scores.

In NLG prediction, we discovered that the distance to M2
significantly predicted NLG after controlling for the DPA in
the distance-model. We further fitted a model with all features
together (full-model), and again, only DPA and distance to M2
were significant predictors. Given the positive sign of the M2
regression coefficients in both post-test and NLG predictions,
we concluded that the distance from the Cluster 2 medoid was
associated with higher performance.

8.4. Transferability of Performance
Prediction
In this section, we assess the transferability of our data-driven
modeling approach by predicting the performance of students
in a new dataset (i.e., transfer dataset) that was not used in
discovering the clusters and building the behavior scale. In
addition, to assess whether the data-driven modeling approach
can be used for early prediction of student performance, we
only used students’ action sequences from the first half of the
course. There were 36 students who used the practice system
(attempted at least one problem and viewed at least one example)
in the transfer dataset. We filtered out students who did not
take both pre- and post-tests and who did not have any frequent
patterns that could be used to build the practice genome. After
this filtering process, 27 students remained.

The main challenge in this process was projecting new
students’ practice genomes on an already constructed 2-D tSNE
projection, as shown in Figure 3, because the t-SNE algorithm
learns a non-parametric mapping. To overcome this challenge,
we trained a multivariate regression model to predict the location

(x and y coordinates) of new practice genomes on a 2-D map
using the practice genomes from the main dataset. This way, we
can predict new students’ locations and calculate their distances
to the same cluster medoids.

Using the first-half sequences, we discovered 109 frequent
patterns following the same approach presented in Section
5, where 102 of the discovered patterns overlapped with the
previously discovered patterns (i.e., 169 frequent patterns) and
49 of them overlapped with the previously discovered top-50
frequent patterns from the main dataset. To build the model
without overfitting, we only used these overlapping frequent
patterns as features and further reduced this set to 28 patterns
by applying a multivariate backward step-wise feature selection
procedure. The final trained model explained the variance in the
coordinates reasonably well (x: adj.R2 = 0.89, y: adj.R2 = 0.83)
and convinced us to proceed. Using this model, we predicted
the locations of new students on the 2-D map and calculated
Euclidean distances to both medoids.

Similar to the analyses in Section 8.3 to predict post-test
scores, in addition to the DPA feature, we added pre-test scores
to control for levels of prior knowledge. Since we did not have
incoming parameters in the transfer dataset, we can only report
prediction results of the distance measures on this dataset. Our
results indicated that the overall model was significant [F(4,#22) =
5.365, p = 0.004, adj.R2 = 0.40]. Compared to the same model
fitted in the main dataset, we lost 3.4% in explained variance
(based on adj. R2, 0.435 in main dataset and 0.401 in transfer
dataset), but this finding could simply be a result of using only
the half-sequences of students. Based on the regression results,
similar to our previous findings, the distance to M2 was a
significant predictor(B = 0.642, t = 2.588, p = 0.017) but not
the distance toM1 (B = −0.357, t = −1.312, p = 0.203). In NLG
prediction, we found a similar trendwhere the distance toM2was
a significant feature (B = 0.605, t = 2.072, p = 0.049) but not the
distance to M1 (B = −0.525, t = −1.758, p = 0.092). These
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results indicate that the data-driven model of practice behavior
that was built by using the main dataset represents a reasonably
stable dimension of individual differences that could be used in
new datasets to predict learner performance.

9. DISCUSSIONS AND CONCLUSION

In this paper, we examined connections between several
traditional dimensions of individual differences, practice
behavior, engagement and performance in an online practice
system for learning SQL. As a part of this process, we used
sequence mining approach to build profiles of learner practice
behavior as a probability vector of frequent patterns (i.e., practice
genomes) and discovered clusters of learners with significantly
divergent behavior. We discovered that none of the incoming
parameters was useful to predict learner practice behavior.
We considered these results as an indication that differences
in learner practice behavior reflected a new latent dimension
of individual differences that can not be reduced to other
dimensions modeled in the study. Our data also demonstrated
that even a simple cluster-based model of learner behavior was
more useful in predicting engagement and performance than the
established scales of individual differences such as KMA and SE.
On the final step of our study, we attempted to convert the simple
cluster model of practice behavior into a complete data-driven
model of individual differences using a continuous behavioral
scale. We evaluated this scale against the main dataset and
examined the transferability of our modeling approach against a
new semester-long dataset. Our findings showed that the data-
driven behavioral scale can predict both learners’ engagement
within the online practice system and their performance.
This results demonstrated that our data-driven model not
only offers a much stronger connection to practice behavior
than traditional models of individual differences, but is also
more useful than traditional models in predicting engagement
and performance.

An interesting “side” result that we observed is that
“closeness” of practice profile to one of the cluster
medoids was associated with higher post-test scores and
NLG. However, we obtained this result after controlling
for the practice “efforts.” This finding indicates that
learner performance is not defined solely by the sheer
amount of practice efforts, it is also important how a
student practiced.

We believe that our results offer valuable contributions to
the study of individual differences in education, the role of AI,
and data analytic. As the results show, the data-driven individual
differences might be better in predicting both the engagement
and the performance than traditional individual differences.
These results indicate the critical power of learner data in the
studies of individual differences. One important finding is that
modern learning environments offer students an unusual level
of freedom in choosing what, when, and how to learn. With this
freedom of choice, students might have higher chances to expose
latent individual differences through their practice behavior,
which enables researchers to collect valuable student data to

discover new dimensions of individual differences through data-
driven approaches. Compared to traditional models that are
formed through relatively brief subjective questionnaires, the
data-driven models that leverage a large volume of learner
data could be both more reliable and sophisticated. From the
prospect of AI, it is critical to confirm that modern AI-based
data mining technologies might successfully uncover latent
individual differences captured in learner data. While our study
demonstrated the value of our specific approach based on
sequence mining, dimensionality reduction, and clustering, we
believe that researchers could obtainmore impressive results with
a range of methods reviewed in Section 2. In turn, a higher
predictive power of data-driven individual differences opens a
range of opportunities for building AI-based interventions that
can make the learning process more productive and successful.

The reported results are interesting and important, but our
study does have limitations. The first group of limitations is
related to the measures applied. Based on multiple regression
analysis, we showed that traditionally modeled individual
differences such as SE and KMA were not effective in both
engagement and performance prediction. This finding supports
the prior research showing that SE has no impact on performance
(Baumeister et al., 2003). However, the SE measure used in
this study focuses on global self-worth. More specific self-
concept constructs had a stronger relationship to the academic
achievement (Marsh and Craven, 2006). In addition, we
administered KMA on SQL problems that required students to
write short SQL statements without having any options to select.
We believe that the nature of such problems might reduce the
predictive power of KMA. Other modified versions of similar
measures could be used (Gama, 2004) or knowledge assessment
could be monitored during usage of the practice system. In
addition, the collected individual differences were limited and
researchers should consider collecting other possible measures to
model learners’ individual differences. Finally, the performance
measures that we used in this paper were based on pre/post tests
rather than on actual course grades, due to having no access to
this information.

Since the practice was system offered as a non-mandatory
resource, our analyses are subject to self-selection bias, where we
can only observe the practice behavior of students who decided
to use the system. The design of the practice system adds another
limitation to our findings, where students had freedom to choose
topics and content on which to work freely. In addition, we
collected the data from similar student cohorts attending the
same graduate-level course at a large North American university.
The results presented in this paper might not be transferable to
other cohorts or cultures. Similar studies and analyses should
be conducted in other courses and in other cultures in different
settings to assess the generality of the study results. Finally, in our
results, we are not claiming any causality. In our future work, we
plan to apply this modeling approach to a newer version of the
practice system that has more types of learning content, explore
cultural differences, incorporate other self-reported measures,
and check the differences among practice behaviors in the
presence of different engagement manipulations.
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