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ABSTRACT
In this paper, we describe the integration of a step-by-step inter-
active trace table into an existing practice system for introductory
Java programming. These autogenerated trace problems provide
help and scaffolding for students who have trouble in solving tra-
ditional one-step code tracing problems, accommodating a wider
variety of learners. Findings from classroom deployments suggest
the scaffolding provided by the trace table is a plausible form of
help, most notably increases in performance and persistence and
lower task difficulty. Based on usage data, we propose future impli-
cations for an adaptive version of the interactive trace table based
on learner modeling.
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1 INTRODUCTION
A common, valued attribute of intelligent tutoring systems (ITS)
is their ability to break problems into steps, providing feedback
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and hints throughout the entire process [35]. Practicing problem-
solving skills using this step-by-step approach with ITS support
became highly popular in teaching math and physics over the last
20 years [17, 36]. In contrast, systems and tools created in the same
period of time to support problem-solving skills in areas of com-
puter science (CS) such as Lisp [38], Java [11, 15], or SQL [6] often
expected students to enter the final solution rather than solve the
problem step-by-step. One reason for the difference is computer sci-
ence learning tools of that time predominantly focused on college-
level students that needed less scaffolding. However, step-by-step
problem-solving support has been recognized as highly valuable
for the majority of school-level students. This approach provides
a better learning experience for less-prepared students, allowing
them to catch errors early and providing scaffolding throughout
the process.

Over the last 5 years, the cohort of students taking computer
science classes has changed dramatically. The popularity of the
field has encouraged a much larger variety of college students to
enroll in CS. Programming classes are also becoming more popular
in high and middle schools. The need to provide better support
for the increasing fraction of less-prepared students in CS classes
motivated a number of recent attempts to create ITS supporting
step-by-step problem support for CS classes [16, 28, 30, 37]. The
step-by-step approach, however, does have a few shortcomings, as
having students complete each step can slow down productivity and
make the process boring for better-prepared students. Additionally,
breaking problems into steps can be a time consuming endeavor,
often requiring expertise to decipher how to break down a task and
modify the tutor.

In this paper, we present the design and evaluation of a joint
approach that combines the strong sides of the traditional “final
answer” approachwith ITS-style step-by-step support for practicing
program tracing skills in Java. With the joint approach, students
start with an opportunity to solve a traditional tracing problem in
one step by entering the final solution. However, if a student has
trouble in attempting the problem or fails to solve it correctly, he or
she could switch to a step-by-step approach. The main challenge of
this combined approach is the ability to convert a standard problem
with a final answer, which is relatively easy to create, to a step-
by-step ITS experience, which usually requires a lot of authoring
efforts. To overcome this challenge, we explore an opportunity to
automate the authoring process entirely.
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2 RELATED WORK
2.1 Step Authoring and Automation
While ITS and their step-by-step problem-solving have often been
noted for strong learning gains, a common stumbling block to
deployment is the amount of time needed to construct these systems
[8, 12]. Breaking problems into steps can be a time-consuming
endeavor, often requiring expertise to decipher how to break down a
task and modify the tutor. Systems like CTAT [1] and ASSISTments
[14] have tried to alleviate the need for programming expertise
by providing an interface for content experts to create their own
step-by-step problems. While this is useful, it still requires human
expertise and takes time to craft the problems, thus it is not much
surprise that researchers have sought to automate aspects of the
creation process. In particular, researchers have tried to rely on
particular affordances of a domain to automatically generate steps,
hints, and visualizations. O’Rourke [26, 27] mapped algorithms to
problem-solving processes in the domain of fractions and algebra,
allowing for the automatic generation of not only problems with
steps, but also hints and feedback. In O’Rourke’s case, an expert was
needed to implement an algorithm that maps to solving a type of
mathematical problem, but after was able to consistently generate
steps and hints for similar problems within the same domain. Such
an approach helps reduce the burden of constructing these systems
and provides more varied content.

Code offers many affordances that can make expert mapping un-
necessary, allowing for a system to accommodate a broad range of
problemswithout additional modifications. Two notable approaches
have been applied to create program visualization tools. JSVEE [34]
applied a transpiler based on the static analysis of code which pro-
duced an output that could be utilized by a visualization tool. This
method allows for more detailed evaluation at the expression level
and can handle a wide array of problems, but, similar to O’Rourke’s
approach, requires the manual development of a transpiler to in-
terpret the code. Guo [13] built a visualization tool, the Python
Tutor, but instead relied on execution traces produced by debugging
instruments, often found in programming languages, to generate
line based visualizations. While not as detailed an evaluation, this
approach scales more easily to multiple programming languages,
as Python Tutor 1 now supports five languages.

2.2 Code Tracing
While the affordances of code have been used to create visual-
izations, they can also be used to generate problems for a more
interactive user experience. The execution traces produced by de-
buggers contain sufficient information to break a problem into
steps. In contrast to some earlier attempts to implement step-by-
step code tracing [5, 19], our approach is to map these resulting
traces to an existing pedagogical strategy used when teaching pro-
gramming—the trace table. A trace table is a popular strategy to
practice code tracing skills. It involves tracking state changes, such
as variable values, throughout a program’s execution.

Paper-based trace studies can draw their origins from a multi-
national study of student code reading skills conducted by the
Leeds Working Group at ITiCSE 2004. Part of this study involved

1http://pythontutor.com/

analyzing sketches participants made on scratch paper and test
sheets. The analysis revealed sketching traces to be correlated with
higher success on code reading problems involving loops, arrays,
and conditionals. More recently, studies have replicated this finding
[9], noting a higher success rate of students who sketched out traces
or applied an explicit line-by-line tracing strategy [39]. Studies also
noted correlations between code tracing and code writing skills
[18, 19, 21], suggesting transfer to more advanced tasks.

In modern practice, researchers exploring the use of trace ta-
bles in education [9, 10, 39] frequently contrast their work with
interactive visualization tools like JSVEE or Python Tutor [13, 34],
referring to them as passive and lacking active engagement a trace
table provides. In this context, our work attempts to bring together
the best of both approaches: the familiar and efficient format of
trace tables and the automatic trace construction provided by the
visualization tools. Our software version alleviates the burden of
learning or applying tracing on paper, while also allowing integra-
tion into learning systems to collect fine-grained learner data.

2.3 Help and Scaffolding in Tutoring Systems
Help can come in many forms in tutoring systems and paper-based
tracing has often been situated as an aid for solving other coding
problems. Prior research on integrating help in tutoring systems
has reported many challenges, sparking investigations into the ef-
fectiveness of on-demand help, including, but not limited to, how
the help is provided, when it is accessed, and how students utilize
the help [2]. Likewise, there has been significant research in the
automation of this help, such as hints, for each sequential step of
a problem based on prior student data [4, 23, 30]. Recent research
has gone a step further and studied the impact of such automated
hints in the context of block-based programming with mixed re-
sults, either noting performance gains but requiring additional self-
explanations [22] or having no impact on performance or learning
[28]. As demonstrated, the association with help and learning gains
has not always been significant, leading some to conclude thatwhen
and how help occurs plays a significant role in effectiveness [2].

Some studies have questioned the degree to which hints are
useful as a form of help, noting that reattempting a problem, rather
than obtaining a hint, may be better for learning [32]. This bring
to the forefront the question of how a system should offer help.
Researchers have noted the potential of replacing or augmenting
hints with more interactive activities such as self-explanations or
scaffolding [2, 7, 22, 29]. Such an approach was adopted for math
in ASSISTments, which compared manually breaking a single step
problem into either a sequence of hints or a step-by-step problem
[33]. Results noted higher learning gains for the step-by-step con-
dition, encouraging future research using automated methods in
a different domains such as programming. An active scaffolding
strategy like the trace table may be more suitable and easier to
automate than direct help approaches like hints.

3 THE SYSTEM
To combine traditional “final answer” problems with an ITS-style
step-by-step support, we developed a tool that automatically gen-
erates an interactive trace table problem from a given piece of
source code. With this tool, most “final answer” problems could
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be converted into an step-by-step experience. The trace table in-
terface provided by the tool allows students to navigate through
the program’s execution and provides immediate feedback of the
correct change in a given step. Students are actively engaged as
they track and predict the execution of a program, providing au-
tomatically constructed scaffolding for students that helps them
diagnose errors. Our interface (Figure 1) draws inspiration from
paper-based methods described in prior research [9], coming clos-
est in resemblance to a ‘line’ sketch trace table where variables are
represented in columns. At the top, users see the code being traced,
highlighting the current line being executed. Both variables and
output are columns in the table with the Step and Line acting as row
indexes. The software tracks each change of a variable and adds
new columns and rows dynamically as variables are introduced or
values changed. Students are prompted for a variable value at a
given step of execution and asked to enter it into the table. Each task
is provided with up to three attempts, giving the correct answer
only after exhausting all attempts.

While auto-generated trace table problems could have many
pedagogical applications, we investigate its use as a form of help by
integrating it into an existing system, QuizJet [15], as a supplemen-
tary activity to provide learner support (Figure 2). QuizJet offers
traditional “final answer” problems where users must respond with
the final value or output of a program. These problems do not uti-
lize a step-by-step approach and consist of a single observable step.
QuizJet features parameterized problems which are problems that
are instantiated with randomly generated values upon every access.
Upon failure, students are provided the correct answer but the prob-
lem parameters will be altered in future attempts. In essence, this
creates a different version of the problem with a different answer.

In the context of help and scaffolding in tutoring systems, our
attempt-based design actively engages students through the process.
In lieu of giving a hint, the system provides a remedial activity
that breaks down the given task. As QuizJet’s problems are single-
step and not already broken down like some tutors, we can easily
integrate this method into the system. QuizJet’s single-step can offer
a way for students to progress through the system faster and solve
more problems, but, when struggling, students likely need more

Figure 1: The Trace Table interface

Figure 2: Trace table access before (top) or after (bottom)

support that the trace table can provide. Therefore, this form of
help actively scaffolds students in tracing as opposed to providing a
principle-based hint. By using the trace table, students can identify
the specific steps where they have made a wrong assumption and
also better track the execution of the program. Likewise, the broken
down tasks also help the system diagnose areas where a studentmay
be deficient. As shown in Figure 2, students could access the trace
table on-demand after attempting a problem in QuizJet via a button
labeled “Trace this code” which would trace the corresponding
QuizJet problem.

Since this form of help is provided on-demand, and to address the
issue of when students should engage with the tool, we implement
a popup recommendation (Figure 3) in our experiment group based
on a student model. The trace table is recommended after students
fail on newer problems they have less experience with. This is
inferred through the system’s learner model [40] which calculates
student knowledge for each concept associated with a problem. The
system averages the concept knowledge for that problem and if
below a threshold, we trigger the popup after an incorrect attempt.
This is not only an effort to combat help avoidance but also ensure
students are familiar with the help at their disposal.

The trace table interface was implemented using web technolo-
gies, more specifically, a Javascript library for single page web
applications and a server that utilizes execution traces generated
from the Python Tutor backend [13]. To address learner modeling
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Figure 3: A popup recommendation conditionally appearing
to users after failing

needs, knowledge components are mapped to each line automati-
cally using a java parser which utilizes the abstract syntax tree to
parse the code [20]. Similar to JSVEE and Python tutor, the trace
table is designed to be incorporated and embedded into various ex-
isting systems. As the trace table is built with web technologies and
requires only source code as an input, it was easily incorporated
into the existing QuizJet system. The current library only requires
the inclusion of a JavaScript and CSS file and provides an API to
render and configure the trace table on a web page.

4 FIRST-ROUND STUDIES
4.1 Practice System Study
A practice system study of the trace table tool was conducted over
two semesters in IS100, an undergraduate introductory Java pro-
gramming course. Subjects in this study were students enrolled in
either one of two sections in Fall 2019 or one section in Spring 2020.
Students in the course were not required to have prior program-
ming experience. The trace table tool was an optional feature made
available to all students as part of the practice system to use at
their own discretion. The practice system included several types of
interactive learning content, including quizzes via the QuizJet sys-
tem. All problems were accessed through the Mastery Grids system
[20] which provides an interface to navigate through all the avail-
able learning activities and includes an Open Learner Model (OLM)
and social comparison elements. The OLM shows an estimation
of a student’s conceptual knowledge based on their performance,
while the social comparison visualizes how the rest of the class is
progressing on each topic.

Prior to the introduction to the system, students completed a
12 question pretest at the start of the semester consisting of Java
trace problems similar in nature to those in the QuizJet system. Stu-
dents were randomly assigned to a popup or no-popup group that
determined whether the system would recommend the trace table
via a popup or no popup would ever be shown. Study conditions
were the same between Fall and Spring implementations with one
exception. In the Spring, an additional button was added (Figure
2) to QuizJet questions to allow users to trace before submitting
an answer. To incentivize students to use the practice system, up
to a 2% increase of their final grade was offered as extra credit for
solving at least one problem for each of the 19 topics, 12 of which

were supported by the trace table tool. Over 101 unique QuizJet
problems were included in the system, 66 of which included a trace
table option.

Enrollment from the first round as well as all other deployments
is listed in Table 1. The first round consisted of 77 students enrolled
in the three sections of IS100. Of the 50 users that accessed the
system, 26 were part of the popup group and 24 were part of the
no-popup group. Across all 3 sections, a total of 297 trace tables
were attempted, 256 of which completed, for 61 unique problems,
generating a total of 2440 line attempts. There were a total of 4980
QuizJet submissions to 66 unique problems that supported trace
tables, and, as questions were parameterized, the same problem
could be reattempted multiple times by a user. For spring, the new
option to trace before an attempt was used for 24.6% of trace tables.
Our research questions for this practice system study were:

• Would automatically breaking a single-step trace problem
into multiple steps improve performance and serve as an
adequate form of help?

• Does use of the trace table impact other behavior in the
system, such as increased persistence or overall usage?

• Would a popup recommendation based on the student model
successfully combat help avoidance and promote use of the
trace table?

4.2 Recitation Study
In addition to the practice system study that investigated long-term
use of the trace table tool, we conducted another study during
Fall 2019 to look at short-term effects and the impact of tracing
more advanced problems. This study was performed as a part of a
recitation lab in a CS100, a similar introductory Java course, during
the last two weeks of the semester. The recitation was focused on
code tracing skills and was supported by the QuizJet system. During
the recitation, students were expected to solve 8 QuizJet problems.
In contrast to the practice system context, the lab version of QuizJet
did not show a correct answer upon incorrect attempts. Optional
access to the trace table was also provided before an attempt to a
QuizJet problemwhich was used for 30.6% of attempts. The students
could complete the whole set either in a lab setting or at students’
leisure at home. The recitation was offered as a way to prepare for
the upcoming course final, however, participation was optional. A
total of 90 users participated in the recitation study with 80 making
use of the trace table. A total of 1682 attempts were made of 8
unique QuizJet problems and 447 trace tables were accessed, 301
of which completed, to create a total of 5093 line attempts. For
this single session application, we were interested in the additional
question:

• Would the trace table tool provide adequate help and support
in a short-term application with more advanced problems?

5 FIRST-ROUND RESULTS
We performed a variety of analyses using log data collected in both
practice and recitation settings. We incorporated the recitation data
in our analysis of Improving Performance (5.1), Help After Failing
(5.2) and Other Observed Usage Behavior (5.5), while the remaining
analysis comes only from practice system data.



Stepwise Help and Scaffolding Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

Table 1: Study Enrollment and System Usage Stats

Course Semester Total Used Used QuizJet Trace
Name Students System Trace Attempts Attempts

IS100 A Fall ’19 14 8 6 704 58
IS100 B Fall ’19 30 16 15 1910 109
IS100 Spring ’20 33 26 14 2366 130
CS100* Fall ’19 146 90 80 1682 447
ISCS400 A Fall ’20 39 15 15 449 72
ISCS400 B Fall ’20 66 38 20 839 84
Total - 328 193 150 7950 900

*CS100 was a short term recitation deployment rather than a practice system deployment

5.1 Improving Performance
Our analysis began by investigating the trace table tool’s ability to
improve performance of students which could decrease frustration
and provide more opportunities to reinforce knowledge. Initially
we compared difficulty which was inferred by student error rate
(any incorrect response to a QuizJet problem or trace table step).
To eliminate some of the noise in the data from easy problems,
we looked at the tougher half of problems based on difficulty, i.e.,
the mean error rate. The mean error rate of completed trace table
problems was lower at 18.1% with over 47.2% of the tables reporting
100% accuracy as opposed to QuizJet with 35.9% mean error rate
and only 39.7% with no errors (Figure 4). To better understand
engagement, we calculated the average time students spent on each
step of a traced table. Each trace table contains multiple steps and
some steps are fairly simple (e.g. variable initialization). To account
for disengagement, we considered the 95th percentile of data based
on total duration of the problem. Users in the practice system spent
an average of 7.6 seconds (SD = 5.3) on a step.

In the recitation context, students displayed lower levels of ac-
curacy. As opposed to the practice system context, the recitation
took place in a condensed time frame and used more challenging
problems. In comparison with the practice system study, the mean
error rate increased for the trace table (35.7%) and QuizJet (48.9%).
Instances of no errors were rarer for the trace table (15.9%) and
QuizJet (30.4%). Users in the recitation study spent an average of
12.6 seconds (SD = 8.2) on a step (again using 95th percentile based
on total problem duration). While the trace table reported lower
levels of error, the different structure of activities makes direct
comparison less reliable.

For a more reliable alternative, we analyzed how students per-
formed with each respective activity over time as they practiced
and their number of learning opportunities (i.e., attempts of activity
type) increased. Our analysis focused on the practice system study
which spanned an entire semester. For analyzing performance over
time, we used a mixed effects logistic regression using the binary
outcome of the attempt (correct or incorrect) as our dependent
variable. For our independent variables, we used the opportunity
number of each activity (QuizJet or trace table) as a fixed indepen-
dent variable, and the student and problem as random independent
variables. A mixed effects model was selected to handle uneven
repeated measures of users and problems in our data. Additionally,
a log transformation was used on opportunity number in order to

fit the model so it converges and to capture relative change. For
QuizJet, opportunity number was not found to be a significant pre-
dictor of outcome β = −0.10, z(4979) = −1.4, p = .157. However,
for the trace table, opportunity number was a significant predictor
of outcome β = 0.43, z(2439) = 5.4, p < .001. These results suggest
that while increased practice and familiarity had little effect for
QuizJet performance, they did significantly increase the success of
students for the trace table.

5.2 Help After Failing
We also wanted to investigate whether the trace table aided stu-
dents in solving QuizJet problems they had previously failed on.
As explained above, QuizJet problems were parameterized so stu-
dents could try the same problem again and again. A sequence of
incorrect answers could lead to frustration or shallow learning. For
the practice system study, the only other form of help was feed-
back of the correct answer to an incorrect attempt. The recitation
study only provided feedback of whether an attempt was correct
or incorrect. We looked at instances when users failed and reat-
tempted the problem without tracing compared to instances when
users failed, completed a trace table, then reattempted the problem.

Figure 4: Comparing QuizJet and Trace Table error rate in
practice system and recitation studies
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A mixed logistic regression was used again to examine the effect
between a user completing a trace table and answering correctly on
the reattempt. For the practice system study, results indicated no
significant effect between completing a trace table and answering
correctly β = 0.27, z(670) = 0.9, p = .385. However, we conducted
the same analysis for the recitation with a significant, and strong
effect β = 1.36, z(1061) = 5.2, p =< .001,OR = 3.91. Students were
3.91 times more likely to answer the problem correctly after tracing,
suggesting the trace table was an adequate form of help even in this
single session. However the practice system did not yield the same
results, suggesting that other factors might limit the effectiveness
of the tool.

5.3 Persistence in the System
Since students now had a helpful resource to use when failing a
QuizJet problem, we wanted to examine persistence, conceptualized
as instances where a problem was first attempted incorrectly but
later solved. If after a sequence of attempts the student can finally
solve the problem correctly, it becomes a valuable learning opportu-
nity. However, if a sequence of attempts ends with a wrong answer,
the chance to learn will be low. Abandonment, failure to solve an
attempted problem, was infrequent, occurring only 30 times total
in the practice system study. Due to the rarity of the event, we
looked at just the QuizJet problems abandoned by users and calcu-
lated abandonment rates for those that were traced and those not
traced. Users had significantly lower abandonment rates (M = 0.02,
SD = 0.1) for problems where they traced the code than those in
which they didn’t (M = 0.12, SD = 0.3), t(46) = 2.18,p < .05. While
abandonment was rare, this finding suggests the trace table, when
used, could impact behavior and contributed to students persisting
and solving the problem. However, we did not find any evidence
suggesting that using the trace table was associated with using the
system more (i.e. solving more QuizJet problems).

5.4 Usage and Recommendations
Not all students made use of the trace table with 35 of 50 completing
at least one problem, and 15 of those 35 completing 4 or more tables.
Prior research has noted help avoidance and worked to remedy it
[3, 31] and, more recently, reluctance to trace on paper [10]. To
account for this, we attempted to promote the use of the trace table
for struggling students. Students randomly assigned to the pop-up
group would have a popup triggered after failing a problem. The
popup was dependent on the student model and appeared only
if a student lacked a mean 50% probability of knowing concepts
associated with the problem. In the practice system study, the mean
conversion rate (percentage tracing upon recommendation) of users
was 65%, indicating that the recommendation to trace was fairly
successful based on the model. Roughly the same number of users
made use of the tool in each condition, 69.2% in the popup rec-
ommendation group and 62.3% in the no-popup group. We looked
further at the 35 students that made use of the tool, comparing the
number completed between each group. A Mann-Whitney U test
comparing the trace tables completed by the popup recommenda-
tion group (Mdn = 8) with the no-popup group (Mdn = 3) was
marginally significantU (50) = 187, n1 = 19,n2 = 16, p = .06. This

evidence could suggest the recommendation promoted higher use
of help, but not necessarily whether help was ever used.

5.5 Other Observed Usage Behavior
There was little evidence of “gaming” the system, like the “bottom-
ing out” of hints, which might be attributed to the parameterized
nature of the problems making gaming less effective. The few in-
stances of gaming observed were actually due to problems with an
excessive number of steps. One such case involved a nested loop
which generated over 150 steps for the student to complete. Other
similar idiosyncrasies were observed, such as input errors over the
specificity of data types (e.g., including a decimal and trailing zero
for floats and doubles). In one such instance, a student expressed
anger at the trace table in their entry for not accepting their answer
as correct. Overall, such frustrations seemed rarer in the practice
system study where usage occurred over a period of time and error
rates were lower.

Our analysis also sought to account for the time investment of
the trace table. If the trace table significantly increased the time
needed to solve problems, it could be a less efficient form of help.
For our analysis, we selected instances where users opened and
first solved a QuizJet problem, calculating the total time elapsed.
After, instances were separated based on whether or not a trace was
completed within that span of time. To account for excessive times
from disengagement, we took the 95th percentile of data based on
total duration. We grouped the data by the 29 users that traced
prior to their first correct answer of a problem and calculated the
mean duration for traced and non-traced instances. A Wilcoxon
signed-rank test found that mean duration of users’ traced instances
(M = 47.7, SD = 39.8) was not significantly different from non-
traced instances (M = 37.9, SD = 10.8) Z = 192, p = .58. This
suggests that when not tracing, students still consumed comparable
amounts of time due to other factors (e.g. additional errors or time
thinking).

6 SECOND-ROUND STUDY
While our pilot study suggested the trace table was helpful for
performance and provided better learning opportunities, it also
revealed a lower than expected engagement with many users who
opted to simply reattempt problems rather than trace. Likewise, we
believed the tool might have less value to better-prepared students.
Our subsequent work sought to increase the value and appeal of
the trace table technology to a more diverse range of users.

6.1 Study Design
Our study followed a similar design to the first-round practice sys-
tem study, although only a single condition was used as all users
received popup recommendations based on the student model. As
the previous course IS100 was discontinued, the system was de-
ployed in the replacement intermediate course ISCS 400, which
contained similar curriculum with some additional content on al-
gorithmic complexity and added emphasis on recursion. The more
notable difference was that both computer science and information
science majors could enroll. There exists approximately 3 times as
many CS students in the department and they are required to have
a prior course in programming as opposed to information science
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Figure 5: A trace table in worked example mode (left) and various options for users after failing (right)

majors. Exact distribution of major was difficult to determine as
many students were undeclared freshmen. There is no evidence
to suggest the sample student proportions differed from the pop-
ulation with regard to major. The change in course prompted an
analysis of pretest scores to determine if the population charac-
teristics had changed. Pretest scores (Figure 6) of the 105 students
in the second-round practice system study (M = 6.86, SD = 2.81)
compared to the 75 students in the first-round practice system study
(M = 3.57, SD = 2.58) were significantly higher, t(178) = 8.0, p < .001.
Similarly, we compared pretest scores for only those that accessed
the practice system. The 52 students in the second-round study (M
= 7.37, SD = 2.59) compared to the 51 of the first-round study (M =
3.57, SD = 2.33) were still significantly higher, t(101) = 7.8, p < .001.
These observed differences presented a new opportunity to engage
a more diverse set of users. In addition, subjects in our first-round
study did not differ dramatically in skill, but combined with our
second deployment we ensured the trace table was tested on a wide
range of prior knowledge and preparation.

For increasing the trace table’s appeal to users, including those
better prepared, we developed two additional trace modes. These
twomodes introduce a new form of interaction, allowing students to
click next through the trace, rather than requiring an input (Figure
5). The entire set of help options were as follows:

• Trace All Code: A trace table where users are prompted to
input all variable changes.

• View & Trace Code: A trace table where only some steps
require user input.

• View Code Trace: A complete worked example where no
user input is required.

• View Answer: Show the answer to the problem.

Our new modes served as forms of worked-examples, allowing
users to see the code trace demonstrated step by step. To promote
the trace table and encourage more deliberate use of help for users
after failing (shown in Figure 2), we removed the default behavior
of showing the correct answer after failing. Users could still see the
answer but were required to click the corresponding button. Our
research questions were:

Figure 6: Histogram plot comparing pretest scores of first-
round (top) and second-round (bottom) studies

• Would adding additional modes to the trace table increase
its appeal to better-prepared students?

• How would the three trace modes differ in appeal and usage
by students in the practice system?

Between two sections, 105 students participated in the pretest
and 53 of which accessed the practice system (Table 1). Of these 53,
35 used a trace-basedmethod of help, the lower number likely due to
limited system use. There were a total of 1288 QuizJet submissions
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to 51 unique problems that were supported by the trace table. This
resulted in a mean of 24.3 QuizJet submissions per user, in contrast
with 99.6 in the first-round practice system study.

6.2 Second-Round Study Results
There was notably less overall system usage by students; however,
the trace tool usage seemed to proportionately increase. To clarify,
the initial practice system study, there were 4980 QuizJet attempts
and 297 trace tables for a ratio around 17:1. However, the second-
round study had only 1288 QuizJet and 156 trace table attempts for
a ratio around 8:1. Despite having nearly one-fourth of the QuizJet
submissions, the second-round study produced proportionately
twice as many trace attempts. While popup recommendation was
enabled for all of the second-round study but half of the first, we
still see a similar ratio when removing those accessed via a popup.
However, completion rates did differ as the first-round trace tables
were completed 86.2% of the time which dropped to 55% in the
second round. For the second round, we further looked at partial
completion (over half steps completed) which was higher at 68.6%
and could indicate obtaining partial knowledge from the exercise.
While the additional trace modes seemed to increase the appeal of
the tool, they were not always sufficient for sustaining engagement.

Although overall usage of the trace table increased, many users
still chose other options after failing. Despite no longer providing a
correct answer, the majority of users elected to immediately retry
the problem. The average among users for retrying after failure
was 54.3% of the time. The next highest choice was to show the
answer at 27.5% of the time, followed by tracing (any of the three
options) at 18.3%. In an effort to account for prior knowledge, we
tried to correlate user choices with pretest scores but were unable
to find any significant results. Still, these rates suggest a degree of
avoidance evident in the high percentage of students reattempting
problems or just seeking the correct answer.

With regards to the specific trace options, students tended to
select those that required less effort and cognitive load. Among

Figure 7: Comparing mean step duration among all three
trace modes

all users that traced, the worked example was the most commonly
selected option with a mean of 43.8% followed by 28.6% for worked-
example with partial tracing, and 27.6% for a full trace. These find-
ings, along with the higher rates of choosing to show the answer,
suggest a preference for easier and quicker forms of help. To fur-
ther analyze the impact of time, we calculated the mean duration
per step of each traced table and grouped it by each of the three
different modes (Figure 7). We took the 95th percentile of duration
to account for excessive times from disengaged users. As expected,
the worked-example mode was much faster, but the low mean of
2.47 seconds could indicate a shallow engagement with the activ-
ity. Unfortunately, we did not collect sufficient data to analyze the
differing impacts on performance among modes.

7 DISCUSSION
7.1 Evaluating Help Efficacy
We expected that breaking problems down using the trace table
would improve performance and serve as adequate help, yet our
results were not always consistent. In the practice system study,
student accuracy improved over time with more use of the tracing
tool (as opposed to QuizJet). This was a positive finding, as the
trace table tool created more opportunities to reinforce knowledge
and helped reduce difficulty, which could lead to better learning
opportunities for students. Likewise, there was some evidence that
the trace table helped students persist on challenging problems.
However, when looking at the tool’s ability to help after failure,
there was no observed difference when using the tool in the practice
system study. This finding differed in the recitation study where
learners did show improvement after tracing, providing evidence
that the trace table was indeed helpful for students in solving prob-
lems they had failed on. This result even occurred despite the tool
being used in a short-term application. These conflicting findings
between deployments imply that other factors might affect the
tool’s ability to serve as an adequate form of help. For instance,
the recitation used more advanced problems and was aimed at
preparing for a final, suggesting that the complexity of a problem
or motivation of students could impact the tools efficacy. Addi-
tionally, other forms of help may have already been sufficient for
simpler problems, as students were provided feedback of a correct
answer in the practice system context. Last, another factor could be
the level of engagement, as students spent more time on average
tracing in the recitation. Overall, trace table’s ability to serve as an
adequate form of help seemed to depends on a number of factors
like motivation, engagement, or problem complexity.

7.2 Help Avoidance and Appealing to Users
Our concerns regarding help avoidance seemed justified based on
usage in our deployments. Results of the initial effort to limit help
avoidance using a popup recommendation based on a student model
suggested that such an approach could increase usage. However,
there was little difference for whether users tried the tool or not.
Overall, a popup recommendation might help, but was not a suffi-
cient solution on its own. Similarly, help avoidance was a concern
for our second-round study. Adding in additional modes of tracing
resulted in a higher ratio of usage, producing proportionately twice
as many trace attempts. These additional modes seemed to increase
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the appeal of the trace table, even with a more prepared population,
however most users still elected to retry a problem or view the
correct answer when struggling. Students favored similarly quicker
options for the trace table, such as the worked-example mode. This
usage could reflect a tendency to select options that require less
effort or time, rather than those more beneficial for learning. Such
observations could also be explained by high pretest scores of stu-
dents in the second-round study who may have found the higher
level of scaffolding unnecessary. Beyond the reason for avoidance,
these findings bring forefront the need to maintain engagement
of learners. Our second-round study also observed a notable aban-
donment of traces or partial completions. This lack of engagement
could be related to students not requiring all the information pro-
vided in a trace or growing bored by the activity. For example, some
types of problems result in a time-consuming intervention that
could impede learning. Loops in general produce repetitive tasks
in tracing which are sometimes useful but often unnecessary. Frus-
trating or tedious experiences could result in users avoiding the
form of help for future issues, highlighting the need to customize
aid and minimize unnecessary burdens.

7.3 Intelligent and Adaptive Recommendations
These issues related to help efficacy, engagement, and avoidance all
call for more intelligent and adaptive solutions that can preserve
the autonomous nature of the trace table yet tailor it to each learner.
Automatically identifying what code is most suitable for applying
this strategy could increase efficacy. Likewise, the tool could track
users’ behavior, such as accuracy and time spent, to ensure learners
are using the tool effectively. Additionally, the observed preferences
for faster solutions in our deployment calls for adaptations that
shorten the task by eliminating easier or repetitive steps based on
the model of the student’s knowledge. Simple steps like variable
initialization are likely not pertinent in more advanced problems
and could be skipped to reduce time on task. Similarly, loops could
be traced only at crucial moments such as the start and end. Such
changes could improve engagement, not only aiding the efficacy
but also increasing appeal.

Identifying the optimal moments for recommendation could fur-
ther reduce avoidance. Modeling user motivation and knowledge
could identify when this form of help will make an impact. Ad-
ditionally, an adaptive trace table could specify when to offer or
recommend specific modes of help based on the student’s knowl-
edge and prior behavior. Adaptively offering tracing before an
attempt could aid students that need more initial support. Likewise,
selecting a mode like worked-example could lower cognitive load
for less experienced students. Such an adaptive design would be
similar to step-based help recently proposed in program construc-
tion tasks [37]. Additionally, interleaving worked examples and
problems might make students more efficient and decrease student
frustration as observed in prior research [24, 25]. Overall, these
modifications would ensure the trace table is introduced when
needed most and help balance the extra investment of time. An
intelligent approach could foster trust with learners that the help
provided will match their needs.

7.4 Limitations
Our second-round study noted a decrease in participation from that
observed in the first-round study. While potentially explained by
differences in pretest scores, there also might be alternative expla-
nations, such as digital burnout from remote education ushered in
by COVID-19. Students may have found additional screen time in
the practice system beyond their online courses tedious.

Additionally, participants in this study were provided both the
practice system and trace table as optional learning aids. This dy-
namic introduces self-selection bias as learners can choose whether
or not to participate in using these tools. This limitation means
that the recruited sample might differ from the target population in
characteristics like motivation. Therefore, some conclusions from
this study might not generalize to all groups of learners.

While this study noted some improvements in student perfor-
mance, further analysis needs to be conducted to investigate the
trace table’s relationship with learning gains of students. Unfor-
tunately due to the disorder from COVID-19, we were unable to
consistently collect and conduct the posttest for a reliable analysis
of learning gains. Similarly, the trace table was only compared with
a simple form of help (providing the correct answer to incorrect re-
sponses). Therefore, we cannot conclude the tool would outperform
other automatically generated forms of help.

8 CONCLUSION
This study investigated the use of an automatically generated trace
table as a help mechanism for students. Analysis of log data sug-
gests that automatically breaking down the task into steps reduced
error and produced a better learning opportunity for students. Data
suggested students’ accuracy did not change with repeated use
of QuizJet, but more practice with the trace table did have a pos-
itive effect on accuracy. Additionally, there was strong evidence
the trace table aided in the recitation study by improving the ac-
curacy of students on failed problems. Both these findings build
on prior recommendations and results in support of more interac-
tive methods of help like step-by-step scaffolding. Similarly, our
analysis suggested that the trace table provided enough support to
help students persist through difficult problems despite the active,
attempt-based nature of the exercise. Additional modes of the trace
table that converted the activity to a worked-example increased its
appeal to better-prepared learners while also reducing time on task.
Adaptions based on learner modeling could increase engagement
and efficacy by recommending appropriate modes and optimizing
the amount of work of the trace table.
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