
Tailored generation of quantum states in an entangled spinor interferometer to
overcome detection noise

Q. Guan,1, 2 G. W. Biedermann,1, 2 A. Schwettmann,1, 2 and R. J. Lewis-Swan1, 2

1Homer L. Dodge Department of Physics and Astronomy,
The University of Oklahoma, Norman, Oklahoma 73019, USA

2Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA
(Dated: May 6, 2022)

We theoretically investigate how entangled atomic states generated via spin-changing collisions in
a spinor Bose-Einstein condensate can be designed and controllably prepared for atom interferometry
that is robust against common technical issues, such as limited detector resolution. We use analytic
and numerical treatments of the spin-changing collision process to demonstrate that triggering
the entangling collisions with a small classical seed rather than vacuum fluctuations leads to a
more robust and superior sensitivity when technical noise is accounted for, despite the generated
atomic state ideally featuring less metrologically useful entanglement. Our results are relevant for
understanding how entangled atomic states are best designed and generated for use in quantum-
enhanced matter-wave interferometry.

I. INTRODUCTION

Entanglement, correlations and coherence have the po-
tential to enable a quantum advantage in many tasks,
including information processing, communications and
metrology [1]. However, due to the inherent fragility of
such quantum phenomena to decoherence and technical
imperfections, real-world examples of quantum-enhanced
devices that outperform their state-of-the-art classical
counterparts in meaningful applications remain rare [2].

The use of cold atoms for quantum-enhanced sensors
are a prominent example [3], as they have long been iden-
tified as a potential quantum platform with promising
applications such as gravimetry [4–6], time-keeping [7],
navigation [8, 9] and resource exploration [10]. While
there has been extensive progress in the generation of
metrologically useful atomic entangled states [11–18], in-
cluding conceptual demonstrations of quantum-enhanced
interferometry [19–23], a myriad of technical challenges
remain to be overcome to realize a quantum-enhanced
device that is competitive with practical state-of-the-art
sensors using separable atomic ensembles [24, 25].

One relatively ubiquitous challenge is detection resolu-
tion, i.e., the ability to accurately resolve or count single
atoms in large ensembles. Fundamentally, this limits the
degree to which quantum states can be distinguished and
thus inherently places bounds on how well small pertur-
bations to a system can be inferred [26]. To compound
matters, one almost invariably finds that the demands
on detection resolution increase in step with the degree
of metrological enhancement that a quantum state can
provide. An excellent example are macroscopic super-
position states such as GHZ or NOON states, which in
principle enable improvements in precision by a factor
of 1/

√
N relative to current classical devices using N

probes, but typically require the ability to count single
particles to enable measurements of parity or distribu-
tion functions [27]. As such a capability is technically
demanding, even in state-of-the-art experiments, and dif-

ficult to scale with particle number [28] there have been
efforts to overcome this limitation by developing novel
methods such as interaction-based readout (IBR) [29–
32]. Despite notable demonstrations [21, 33, 34], IBR
methods require a level of coherent control over the dy-
namics that can be demanding or impractical for many
experimental platforms. Consequently, it is important
to assess the metrological utility of quantum states with
a practical viewpoint, striking a balance between ideal-
ized metrological enhancement and robustness to techni-
cal noise.

In this context, this manuscript presents a systematic
investigation of the robustness and realistic metrologi-
cal potential of a class of atomic entangled states for
SU(2) atom interferometry with spinor BECs. Our study
is targeted towards applications where entangled mat-
ter waves are spatially split and recombined to measure,
e.g., gravitational acceleration, and are thus ill-suited
to the widely studied IBR methods that underpin re-
lated SU(1, 1) atom interferometry [22, 35–37]. We in-
vestigate the use of spin-changing collisions in a spinor
BEC to generate atomic squeezing and entanglement,
and show that entangled states generated by trigger-
ing the collisions with a small classical seed rather than
vacuum fluctuations are more robust to realistic detec-
tion noise when using simple measurement observables.
This is in contrast to the ideal scenario without techni-
cal noise, where seeding the entangling dynamics always
leads to a degradation of the metrological performance
per particle. These results complement other favourable
properties of seeding, such as an accelerated rate of en-
tanglement generation due to bosonic stimulation and
a broader dynamic range of sub-SQL sensitivity. Our
findings are illustrated through an approximate analytic
model of the spin-changing collisions, which enables us to
derive insightful expressions for the sensitivity achievable
with a range of experimentally relevant measurement sig-
nals. Moreover, the analytic predictions elucidate the de-
pendence on initial state properties, such as the size and
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phase coherence of the seed. We also use numerical calcu-
lations of the exact quantum dynamics to verify our pre-
dictions and their relevance for experimentally realistic
parameter regimes. Our results are pertinent for future
demonstrations of quantum-enhanced atom interferome-
try using spin-changing collisions [38], and demonstrate
that judicious choices for initial state preparation can
have important consequences for prospective quantum-
enhancement [39, 40].

The manuscript is organized as follows. Section II in-
troduces the physical model of spin-changing collisions in
spinor BEC and briefly recaps the framework of an SU(2)
atom interferometer. In Secs. III and IV we use a sim-
plified analytic model of the spin-changing collisions to
obtain expressions for the ideal metrological performance
and achievable sensitivity as a function of the quantum
state and choice of measurement signal. We then expand
our analysis to include the effect of deleterious technical
noise and imperfect state preparation in Sec. V. These
predictions are compared to numerical calculations of the
exact quantum dynamics for an experimentally relevant
scenario in Sec. VI, before summarizing our results in
Sec. VII.

II. MODEL SYSTEM

A. Few-mode Hamiltonian

We consider the dynamics of a microwave dressed spin-
1 Bose-Einstein condensate, such as that recently re-
ported in Ref. [41]. The condensate is assumed to be con-
fined in a deep trapping potential, which enables a sim-
plified treatment where the spatial dynamics are frozen
out and only the internal (spin) degrees of freedom need
be considered. In this limit, known as the single-mode
approximation (SMA) [42–44], the spinor dynamics are

well described by the Hamiltonian Ĥ = Ĥinel + Ĥel + ĤZ

[45] with:

Ĥinel = ~g
(
â0â0â

†
1â
†
−1 + h.c.

)
,

Ĥel = ~gn̂0 (n̂1 + n̂−1) +
~g
2

(n̂1 − n̂−1)
2
,

ĤZ = −~p(n̂1 − n̂−1)− ~q(n̂1 + n̂−1).

(1)

Here, ni = â†i âi is the particle number operator for the
i = mF = 0,±1 Zeeman sublevels. The Hamiltonian
Ĥ in this form splits the interactions into two contri-
butions: spin-changing (Ĥinel) and spin-preserving (Ĥel)
collisions. The former describes a process where two
mF = 0 atoms scatter and generate a pair of atoms in
mF = ±1, or vice versa, while the latter describes elas-
tic scattering that preserves the occupation of each mF

mode. The additional term, ĤZ, arises due to an exter-
nal magnetic field of magnitude B and is decomposed
into contributions from the linear and quadratic Zeeman
shifts characterized by p = gµBB/~ and q = p2/ωhf ,

respectively, where g is the Landé hyperfine g-factor,
µB the Bohr magneton and ωhf the hyperfine frequency
splitting. The quadratic term shifts both mF = ±1
states symmetrically with respect to mF = 0, and can
also be manipulated via complementary microwave dress-
ing of the mF = 0 state [22, 41], enabling the rela-
tive strengths of p and q to be tuned independently.
Lastly, the Hamiltonian conserves the population differ-
ence n̂1 − n̂−1. As a consequence, in the analytic calcu-
lations presented in Sec. III and V we ignore the elastic
scattering ∝ (n̂1 − n̂−1)2 as a small irrelevant contribu-
tion (we validate this assumption by explicitly including
it in Sec. VI and present a qualitative justification in
Appendix C). Moreover, we absorb the linear Zeeman
shift by working in a frame rotating with it such that it
falls out of our calculations (although we comment on
the practical consequences of this where appropriate).
Throughout the remainder of the manuscript we will set
~ = 1.

B. Initial state

Typical experiments studying pair production dynam-
ics in a spinor BEC focus on initial conditions where the
majority of the condensate populates the mF = 0 state
and acts as a source for correlated pairs in mF = ±1.
Here, we consider initial states where a BEC of N atoms
is prepared in the mF = 0 mode, before a small number
of atoms, ns, are coherently transferred to either of the
mF = ±1 modes by, e.g., resonant microwaves [19], to
act as a coherent seed that stimulates the spin-changing
collisions [35, 36, 46].

We distinguish two possible initial conditions stem-
ming from such a preparation protocol. The first only
considers a seed in the mF = 1 mode, leading to the
initial state,

|ψs0〉 = |ψs0,−1, ψs0,0, ψs0,1〉 = |0,
√
N − ns,

√
nse

iθs〉. (2)

Here, we have assumed the mF = 0, 1 modes are de-
scribed as coherent states with occupation 〈n̂1(0)〉 =
〈ψ0|n̂1|ψ0〉 = ns and 〈n̂0(0)〉 = N − ns [35], respectively,
while the mF = −1 mode is prepared in the vacuum
state with 〈n̂−1〉 = 0. Without loss of generality we have
taken the mF = 0 coherent state to have a real ampli-
tude, such that any relevant phase relationship between
the mF = 0,±1 modes is encoded in θs.

Secondly, we consider seeding both mF = ±1 modes
(similar to a previous study, Ref. [47]). This initial con-
dition offers a wide range of tunability in terms of, e.g.,
relative particle number and phase between the mF = ±1
modes [35], but we will choose to focus on the specific ini-
tial configuration described by,

|ψd0〉 = |
√
ns/2e

−iθs ,
√
N − ns,

√
ns/2e

iθs〉. (3)

Here, the mF = ±1 states are taken to be coherent
states with identical occupation 〈n̂±1(0)〉 = ns/2 and
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phase ±θs. The latter is chosen so that the phase co-

herence between the mF = ±1 modes (〈ψd0 |â
†
1â−1|ψd0〉 ∼

e−2iθs) can be tuned without impacting the phase coher-
ence with respect to mF = 0 (defined by the correla-

tion 〈ψd0 |â
†
0â
†
0â1â−1|ψd0〉 and related to the spinor phase

[22, 36]). The dynamics of both states will prove to be
qualitatively similar so, for simplicity we will frequently
focus our discussion on the case of a single seeded mode.

The dynamics generated by Ĥ for the initial states (2)
and (3) can be understood very simply in the limit where
the quadratic Zeeman shift, −q(n̂1+n̂−1), is tuned to ap-
proximately cancel the initial mean-field energy shift of
the mF = ±1 generated by the large mF = 0 popula-
tion, n̂0 (n̂1 + n̂−1) ≈ ~g(N − ns) (n̂1 + n̂−1). Setting
q = g(N − ns) eliminates the Zeeman and elastic con-
tributions from the Hamiltonian to a first approximation
and Ĥ ≈ Ĥinel. The initial dynamics is thus dominated
by the resonant conversion of atoms from mF = 0 to
mF = ±1 pairs, in a process analogous to four-wave mix-
ing or parametric down-conversion in quantum optics.
These spin-changing collisions generate strong correla-
tions and entanglement between the mF = ±1 modes,
including squeezed fluctuations of the relative popula-
tion difference, 〈(∆N̂−)2〉 < 〈N̂+〉 for N̂± = n̂1 ± n̂−1
[22, 45], which, as we discuss in Sec. III, can be exploited
for quantum-enhanced metrology.

C. SU(2) atom interferometer

In this manuscript we focus our investigation on the
performance of states dynamically generated by spin-
changing collisions in an SU(2) atom interferometer. A
paradigmatic scheme is the atomic Mach-Zehnder (MZ)
interferometer, an example of which is illustrated in
Fig. 1. The MZ interferometer only actively involves the
mF = ±1 modes and the mF = 0 mode serves only
to mediate the preparation of the input state |ψt〉 =

e−iĤt|ψs,d0 〉 for the interferometer.
The atomic MZ sequence is composed of three key

steps: i) an internal state beam-splitter that coherently
mixes the mF = ±1 modes, ii) the accrual of a relative
phase ϕ between the mF = ±1 modes, and iii) a second
beam-splitter to mix the mF = ±1 modes. The entire
sequence can be equivalently described by the unitary
ÛMZ ≡ ÛBS(π/2)ÛϕÛBS(π/2) such that |ψf 〉 = ÛMZ|ψt〉
is the final state at the output of the MZ interferome-
ter. The beam-splitter operation between the mF = ±1

modes, ÛBS(φ) = eiφ(â
†
1â−1+â

†
−1â1)/2 with φ = π/2 cor-

responding to a balanced 50 − 50 beam-splitter, can be
realized by a series of resonant microwave pulses that
couple internal states in different F manifolds [19]. Such
a sequence can similarly be used for initial prepara-

tion of |ψs,d0 〉 (see Fig. 1). The relative phase shift,

Ûϕ = e−iϕ(n̂1−n̂−1)/2, can be generated by a number
of different sources including the linear Zeeman shift or
gravitational acceleration. The latter case requires ad-

EntangleInitialize

1 2

Beam-splitter

3
1

2

MeasurePrepare

FIG. 1. (a) Interferometric sequence. i) Illustration of a
Mach-Zehnder scheme, where entangled pairs of mF = ±1
atoms are the input state of the upper and lower paths. Beam-
splitters are realized by coherently mixing the mF = ±1
modes [see (b)] and a relative phase-shift ϕ is imprinted. Ac-
cruing a phase-shift due to gravity requires combining state-
dependent momentum kicks imparted by laser pulses (red
curves) with the internal-state beam-splitters. An estimate
of ϕ is obtained by measuring populations n̂±1 at the out-
puts. ii) In an equivalent Ramsey sequence the beam-splitter
and phase shift operations correspond to rotations (axes in-
dicated) of the quantum state on a collective Bloch sphere,
illustrated using the Wigner phase-space distribution of an
example squeezed state (see Sec. III for details). (b) Example
internal state dynamics for F = 1 sodium spinor BEC. (Ini-
tialize) Coherent seeding is implemented via microwave pulses
resonantly tuned to an ancillary F = 2 manifold that trans-
fer a fraction of the total population to the mF = ±1 modes.
Pulse 1 transfers ns atoms from (F,mF ) = (1, 0)→ (2, 0) and
pulse 2 completes the transfer to (1, 1) [split equally to (1,−1)
for dual seeding]. (Entangle) Subsequent spin-changing col-
lisions between mF = 0 atoms produce entangled pairs in
mF = ±1 to realize |ψs,dt 〉. (Beam-splitter) Coherent mix-
ing of the mF = ±1 modes is also implemented via reso-
nant microwaves. Pulse 1 transfers the entire population from
(1,−1) → (2, 0) before pulse 2 implements coherent 50 − 50
mixing of (2, 0)↔ (1, 1). Finally, pulse 3 returns the remain-
ing population from (2, 0)→ (1,−1).

ditional state-selective momentum kicks after (before)
step i) [iii)] of the MZ sequence to map the entangle-
ment and correlations between internal (spin) to exter-
nal (motional) degrees of freedom [38]. A subsequent free
propagation time T between the beam-splitters leads to
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the accrual of a phase shift ϕ ∼ g · kT 2 [48], where g
characterizes the local gravitational acceleration and k
the momentum kick.

Alternatively, the MZ interferometer can be under-
stood as analogous to a Ramsey interferometer for col-
lective spin states [Fig. 1(a)]. Considering only the
mF = ±1 modes that participate in the interferometer,
one can map the bosonic problem to an equivalent col-
lective spin picture using a Schwinger boson mapping,

Ĵx =
1

2
(â†1â−1 + â†1â−1), (4)

Ĵy =
1

2i
(â†1â−1 − â

†
−1â1), (5)

Ĵz =
1

2
(â†1â1 − â

†
−1â−1). (6)

with accompanying raising and lowering operators Ĵ± =

Ĵx ± iĴy. In this picture the beam-splitters of the MZ
interferometer correspond to the pair of π/2 rotations

about Ĵx employed in a Ramsey sequence for an ensemble

of spin-1/2 particles, e.g., ÛBS = e−iπĴx/2 (equally, the
rotations can be about Jy depending on the phase con-
vention chosen for the original beam-splitter operation),

while the phase shift corresponds to a rotation about Ĵz,

Ûϕ ≡ e−iϕĴz . This picture proves particularly useful as
the quantum noise of the two-mode (mF = ±1) bosonic
system can be readily visualized by plotting the Husimi
or Wigner SU(2) phase-space distributions on a collective
Bloch sphere, which enables a simple understanding of
metrological performance of |ψt〉 for a Ramsey sequence
in terms of, e.g., spin-squeezing. We defer a full discus-
sion of this until Sec. III.

At the end of the interferometer the phase-shift ϕ is
estimated by measuring some signal M̂(n̂1, n̂−1) that is a
function of the populations n̂±1 of the internal states [49].
The sensitivity to the phase-shift is characterized by the
uncertainty ∆ϕ in the estimate of ϕ due to quantum
projection noise and can be computed by,

(∆ϕ)2 =
〈(∆M̂)2〉
|∂ϕ〈M̂〉|2

. (7)

This sensitivity is minimized by choosing an optimal sig-
nal M̂ and is fundamentally limited by the quantum
Cramer-Rao bound, (∆ϕ)2 ≥ 1/FQ where FQ is the
quantum Fisher information (QFI). In this manuscript
we restrict our discussion to pure states, for which the
QFI can be computed as the variance of the generator of
the phase-shift [26],

FQ = 〈(∆N̂−)2〉BS, (8)

where the subscript 〈...〉BS indicates that the expectation
value is computed with respect to the quantum state af-
ter the application of the first beam-splitter in the full
MZ sequence. For an uncorrelated input state of N+ =
〈n̂1〉 + 〈n̂−1〉 total atoms in the mF = ±1 modes, the
QCRB collapses to the standard quantum limit (SQL)

(∆ϕ)2 ≥ 1/N+ whereas we will show in the following
discussion that when correlations and entanglement are
allowed between the modes the QCRB leads instead to
the Heisenberg limit (HL) of (∆ϕ)2 ≥ 1/[N+(N+ + 2)]
[50]. Note that here we define the SQL and HL with re-
spect to the occupation of only the mF = ±1 modes and
not the complete system including the (passive) mF = 0
mode. We will discuss comparisons to the SQL with re-
spect to total atom number, (∆ϕ)2 ≥ 1/N , in Sec. VI.

III. DYNAMICS AND QUANTUM FISHER
INFORMATION IN THE UNDEPLETED PUMP

REGIME

In this section we discuss an analytic treatment of the
entangling dynamics that is valid in the limit of large to-
tal particle number and suitably short interaction times.
The tractability of the system in this limit enables us
to derive insightful analytic expressions for the quantum
Fisher information, and we are also able to use the SU(2)
representation of the generated two-mode quantum state
to better understand the metrological performance as a
function of initial condition.

We begin by making the simplifying assumption that
the quadratic Zeeman shift is tuned to cancel the ini-
tial energy shift provided by Ĥel, i.e., q = g(N − ns).
At short times the dynamics of the system is then dom-
inated by resonant spin-changing collisions, e.g., Ĥ ≈
Ĥinel = g(â†0â

†
0â1â−1 + h.c.). If the mF = 0 mode

is macroscopically occupied, N � ns, 1, we can invoke
an undepleted pump approximation wherein we replace

â0, â
†
0 →

√
N throughout Ĥ. Together, these assump-

tions yield a quadratic effective Hamiltonian [45],

ĤUP = gN
(
â1â−1 + â†1â

†
−1

)
. (9)

The undepleted pump approximation (and also the as-
sumption that the Zeeman shift precisely cancels contri-
butions from elastic interactions) is typically valid in the
limit where the total number of atoms scattered into the
mF = ±1 modes does not exceed ∼ 10% of the initial
population of the mF = 0 mode. Beyond this regime,
the full form of Ĥ should be considered as the quantum
nature of the mF = 0 mode and processes described by
Ĥel and ĤZ become relevant.

The dynamics according to the simplified Hamiltonian
(9) can be exactly solved in either the Schrödinger [51]
or Heisenberg [45, 47] pictures using standard methods.
We leave the details of such calculations to Appendix A
and simply present the key results here. First, for both
seeded initial states the spin-changing collisions generate
an exponential growth of the population of the mF = ±1
modes, which is identically given by

N+ ≡ 〈n̂1(τ) + n̂−1(τ)〉 = ns + n̄,

n̄ = 2(ns + 1)sinh2(τ),
(10)
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where τ = gNt is the rescaled duration of spin-changing
collisions. In our expression for N+ we have adopted
notation to emphasize the distinction between: i) the
uncorrelated or classical population ns initially trans-
ferred to the mF = 1 state to act as a coherent seed,
and ii) the n̄ atoms scattered into the mF = ±1 modes
by spin-changing collisions. Despite this separation the
latter implicitly depends on ns as the coherent seed ac-
celerates the pair production process through bosonic
stimulation. For completeness, the population difference
N− ≡ 〈n̂1〉− 〈n̂−1〉 = ns is trivially conserved during the
collision dynamics.

The fluctuations in both the population difference,
〈(∆N̂−)2〉, and population sum, 〈(∆N̂+)2〉, depend cru-
cially on the introduction of the seed. For both initial
states the dynamics identically preserves the initial fluc-
tuations in the difference,

〈(∆N̂−)2〉 = ns, (11)

which can be said to be suppressed, 〈(∆N̂−)2〉 � N+,
when n̄� ns. On the other hand, the fluctuations in the
total population rapidly grow and for both initial states
we find,

〈(∆N̂+)2〉 = ns +
n̄(1 + 2ns)(n̄+ 2 + 2ns)

(1 + ns)2
. (12)

Initially, or for n̄� ns, these fluctuations are Poissonian,
〈(∆N̂+)2〉 ∼ ns, reflecting the initial seed population. As
more atoms are scattered, such that n̄ � ns, the right
hand term of Eq. (12) dominates and the fluctuations

become super-Poissonian, 〈(∆N̂+)2〉 ∼ n̄2.
Beyond these correlations, an illustrative understand-

ing of the metrological utility of |ψs,dt 〉 as the input to
the MZ interferometer can be provided by the collective
spin basis. For the case of a single seed, the solution of
the time-evolved bosonic state in the Schrödinger picture
can be expressed as [51],

|ψsτ 〉UP =
∞∑
J=0

J∑
mz=−J

csJ,mz (τ)|J,mz〉, (13)

with expansion coefficients,

csJ,mz (τ) = nmzs e−ns/2e2i[(J−mz)
π
4 +mzθs]

√
(J −mz)!

(J +mz)!

× sech1+2mz (τ) [−tanh(τ)]
J−mz

(2mz)!
. (14)

for mz ≥ 0 and csJ,mz (τ) = 0 otherwise. The state is writ-

ten in the collective spin basis defined by Ĵz|J,mz〉 =

mz|J,mz〉 and Ĵ2|J,mz〉 = J(J + 1)|J,mz〉 with Ĵ2 =∑
n=x,y,z Ĵ

2
n. We point out that in this form the quantum

label for total collective spin relates to the total occupa-
tion, J ↔ (n1 + n−1)/2, while the spin-projection corre-
sponds to the occupation difference, mz ↔ (n1−n−1)/2.

The results and discussion in the following are qualita-
tively analogous for the case of dual seeding.

The state |ψsτ 〉UP is visualized by plotting the cor-
responding SU(2) Wigner quasiprobability distribution,
W|ψ〉(J), on a collective Bloch sphere [52, 53]. We illus-
trate a pair of examples in Fig. 2(a) for ns = 0.1 and
ns = 4 with n̄ chosen such that N+ = n̄ + ns = 100
is fixed. For clarity, we only plot the Wigner func-
tion W J

|ψ〉(J) corresponding to the projection of the state

|ψt〉UP into a fixed J subspace. This is because, in gen-
eral, the large fluctuations of the total mF = ±1 pop-
ulation [Eq. (12)] dictate that the quantum state spans
a range of J sectors and thus cannot be illustrated with
a single sphere of fixed radius J . The Wigner distribu-
tions of the two examples showcase how the generated
state |ψst 〉UP can be split into a pair of dominant cases
depending the nature of the quantum fluctuations in the
initial condition: i) a Dicke regime [54] for ns . 1 and ii)
a spin-squeezed state [55] regime for ns & 1.

The Dicke regime is understood by taking the extreme
limit of ns = 0, which corresponds to the previously stud-
ied case of two-mode squeezed vacuum [19, 56]. The

lack of fluctuations in Ĵz ∝ N̂− means that the state
|ψt〉UP corresponds to a superposition of mz = 0 Dicke
states spanning multiple total spin sectors with integer
J = 0, 1, 2, ..., and the Wigner function for a typical J is
dominated by a narrow ring of width ∆Jz ∼ 1 about the
equator [see panel (i) of Fig. 2]. The radial symmetry of
the distribution reflects that no well defined phase coher-
ence is established between the mF = ±1 modes by the
spin-changing collisions or the initial vacuum noise that

triggers them, e.g., 〈Ĵ+〉 ≡ 〈â†1â−1〉 = 0.
For ns & 1 the generated state changes qualitatively to

a spin squeezed state [47, 55]. Rigorously, a spin squeezed

state satisfies ξ2 = N+〈(∆Ĵz)2〉/|〈Ĵ+〉|2 < 1 where ξ2 is
the Wineland squeezing parameter [57]. For |ψst 〉UP it is
straightforward to compute,

ξ2 =
(1 + ns)

2

nsn̄(2 + 2ns + n̄)
(15)

which is less than one for n̄, ns � 1. We understand
the squeezing, in contrast to the Dicke regime, by noting
that introducing a coherent seed generates a well-defined
phase coherence between the mF = ±1 modes,

〈Ĵ+〉 = −ie
−2iθsns

2 + 2ns

√
n̄(2 + 2ns + n̄). (16)

This means that the Wigner distribution is polarized
along a specific direction in the Jx − Jy plane [see panel
(ii) of Fig. 2] but can still remain relatively narrow,

∆Jz ∼
√
ns, such that ∆Jz/|〈Ĵ+〉| . 1/

√
N+ and the

state is squeezed.
In both cases, the Wigner distributions plotted in

Fig. 2 indicate that the quantum states feature reduced
projection noise in the amplitude quadrature (Jz) and are
thus suitable for distinguishing rotations (phase shifts) in
a Ramsey (MZ) sequence. We can make this statement
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FIG. 2. (a) SU(2) Wigner distributions W J
|ψ〉(J) for |ψst 〉 pro-

jected into the J = 10 sector for: i) ns = 0.1 and ii) ns = 4
and fixed N+ = 102. The distributions are renormalized to
account for the projection onto the J = 10 sector. (b) QFI,
FQ, as a function of: i) collision duration τ and ii) total pop-
ulation N+ in mF = ±1 modes. In panel ii) we plot the
normalized QFI per particle, where FQ/N+ > 1 indicates
sub-SQL sensitivity when only the mF = ±1 populations are
considered. Predictions are from the undepleted pump ap-
proximation, Eq. (17), with initial seed ocupation: ns = 0
(blue solid lines), ns = 10 (red dashed lines) and ns = 100
(green dot-dashed lines).

precise by computing the quantum Fisher information 8,
FQ = 〈(∆N̂−)2〉BS ≡ 4〈(∆Ĵz)2〉BS,

FQ =
1 + 2ns

2
cosh(4τ)− 1

2
,

= ns +
n̄(1 + 2ns)(n̄+ 2 + 2ns)

(1 + ns)2
. (17)

An identical expression for the QFI is obtained for the
case of dual seeds. The independence of Eq. (17) with
respect to θs might be surprising given the simplistic col-
lective spin interpretation we have presented so far. For
the Dicke regime, ns . 1, it is trivial that the QFI does
not depend on θs as the Wigner distribution becomes an
increasingly symmetric ring about the equator as ns → 0
[Fig. 2(a)i)]. On the other hand, for the squeezed regime
[Fig. 2(a)ii)], ns & 1, one could expect that θs must be
chosen to align the orientation of the collective spin (de-

fined by 〈Ĵ+〉) with the axis of rotation corresponding
to the first beam-splitter, such that the squeezed pro-
jection noise optimally matches the subsequent rotation

about Ĵz. However, this intuition is incorrect as it ne-
glects that the state |ψsτ 〉UP spans multiple J sectors and
thus does not live on a single Bloch sphere.

Some further important remarks should be made about
the two equivalent formulations of the QFI presented in
Eq. (17). First, the second line indicates the QFI always
predicts sub-SQL sensitivity, e.g., 1/FQ ≤ 1/N+, for any
n̄ > 0. Similarly, the HL is only explicitly saturated when
a vacuum state is used as the initial condition, ns = 0,
leading to 1/FQ = 1/[n̄(n̄ + 2)]. The latter condition
demonstrates that in principle the introduction of any
arbitrarily small coherent seed degrades the ideal sensi-
tivity.

Second, and despite the former observations, we point
out that one must carefully offset any apparent loss in
relative sensitivity against the accelerated rate at which
pairs are produced due to the bosonic stimulation pro-
vided by a coherent seed [see Eq. (10)]. In Fig. 2(a), we
illustrate that within the undepleted pump regime the
QFI with a coherent seed (ns 6= 0) is always superior to
the unseeded (ns = 0) case as a function of τ . In fact,
inspection of the first line of Eq. (17) demonstrates that
FQ ≡ FQ|ns=0 + nscosh(4τ). Nevertheless, it is simi-
larly important to recognize that the undepleted pump
regime specifically ignores that in real experimental sys-
tems there is always a finite total number of particles
available from the initial mF = 0 BEC that can be con-
verted into pairs, e.g., N+ ≤ N . Thus, the relative QFI
per particle, FQ/N+ shown in Fig. 2(b), is also an im-
portant metric.

While Dicke and spin-squeezed states are relatively
well understood in terms of their broad metrological util-
ity, the analysis of the QFI already makes clear that in
the spinor BEC system we must carefully understand how
the initial seed ns tunes us between these regimes. This is
not only true in terms of the achievable metrological sen-
sitivity given, e.g., a fixed particle resource N+ or time
τ , but also in terms of robustness to sources of techni-
cal noise. In the following sections we investigate this
more systematically by considering a range of measure-
ment strategies for the MZ interferometer and the impact
of technical noise.

IV. OPTIMAL MEASUREMENTS AND
ATTAINABLE SENSITIVITY

The understanding of |ψsτ 〉UP provided by the collec-
tive spin picture also enables us to readily identify mea-
surements that should allow for an optimal estimate of
ϕ. Specifically, in the squeezed regime a rotation can
be inferred by simply monitoring the change in the spin
projection Jz [47], while in the Dicke regime one needs
to track J2

z due to the symmetry of the Wigner distri-
bution about the Bloch sphere [19]. These observables
are readily accessible in a spinor BEC experiment from
measurements of the mF = ±1 occupations.

The ideal sensitivity attainable with either measure-
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ment of Ĵz or Ĵ2
z is straightforward, albeit sometimes

cumbersome, within the undepleted pump approxima-
tion. For brevity and simplicity, we only present analytic
expressions for the former measurement but show exam-
ple calculations and analysis for both in Fig. 3. Further
details of the calculations and more extensive expressions

can be found in Appendix A.
The mean and variance of Ĵz at the end of the MZ

sequence can be computed for either single or dual initial
seeds and expressed entirely in terms of the phase-shift
ϕ, initial seed ns and scattered population n̄. For a single
seed we obtain,

〈Ĵz(ϕ)〉s = −ns
2

cos(ϕ) +
ns cos(2θs)

√
n̄ (n̄+ 2ns + 2)

2(ns + 1)
sin(ϕ),

〈[∆Ĵz(ϕ)]2〉s =
(2ns + 1)n̄

2(ns + 1)
sin2(ϕ) +

(2ns + 1)n̄2

4(ns + 1)2
sin2(ϕ) +

ns

[
1 + ns − cos(2θs) sin(2ϕ)

√
n̄ (n̄+ 2ns + 2)

]
4(ns + 1)

,

(18)

and for dual seeds (see also Ref. [47]),

〈Ĵz(ϕ)〉d = −ns(1 + ns + n̄)sin(2θs)

2(1 + ns)
sin(ϕ),

〈[∆Ĵz(ϕ)]2〉d =
n̄(1 + 2ns)(2 + 2ns + n̄)

4(1 + ns)2
sin2(ϕ) +

ns

[
1 + ns − cos(2θs) sin(2ϕ)

√
n̄ (n̄+ 2ns + 2)

]
4(1 + ns)

.

(19)

We use the subscript 〈...〉s,d to differentiate expectation

values computed for the initial conditions |ψs,d0 〉.

Unlike the prior result for the QFI, the form of
〈Ĵz(ϕ)〉s,d confirms the important role played by the seed
phase θs. For the case of a single seed we observe that
for θs = 0, π/2, π, ... the interferometric signal 〈Ĵz(ϕ)〉s
is maximally boosted by the spin-changing collisions –
the contrast scales as n̄ for n̄ � ns, 1) – whereas for

θs = π/4, 3π/4, 5π/4... the signal depends only on ns.
Similar analysis is true for the case of dual seeds, albeit
with the corresponding values of θs interchanged.

The attainable sensitivity from a measurement of Ĵz
is calculated by directly substituting Eqs. (18) and (19)
into Eq. (7). We focus on the optimal cases of: i) θs = 0
(single seed) and ii) θs = π/4 (dual seed), corresponding

to the phases which maximize the contrast of 〈Ĵz(ϕ)〉s,d,
while results for arbitrary θs can be found in Appendix
A. For a single seed we obtain,

(∆ϕ)2
Ĵz,s

=
ns(ns + 1)

[
1 + ns − sin(2ϕ)

√
n̄ (n̄+ 2ns + 2)

]
+ (2ns + 1)n̄2 sin2(ϕ) + 2(ns + 1)(2ns + 1)n̄ sin2(ϕ)

n2s

[
cos(ϕ)

√
n̄ (n̄+ 2ns + 2) + (ns + 1) sin(ϕ)

]2 ,

(20)
and for dual seeds we obtain [47],

(∆ϕ)2
Ĵz,d

=
(2ns + 1)n̄ tan2(ϕ) (n̄+ 2ns + 2) + ns(ns + 1)2 sec2(ϕ)

n2s (n̄+ ns + 1)
2 . (21)

Although the expressions are lengthy, a few simple
statements can be made. First, for ns → 0 both sen-
sitivities (20) and (21) diverge for arbitrary ϕ. This is
consistent with the fact that the amplitude of the in-
terferometric signal rapidly vanishes with decreasing ns,
〈Ĵz(ϕ)〉s,d ∝ ns → 0. Conversely, when the coherent
seed dominates, ns � n̄, both Eqs. (20) and (21) limit
to the archetypal example of a coherent spin state of
ns atoms (e.g., squeezing parameter ξ2 = 1) input to

a Ramsey interferometer: (∆ϕ)2
Ĵz,s
' [sin2(ϕ)ns]

−1 and

(∆ϕ)2
Ĵz,d
' [cos2(ϕ)ns]

−1. These expressions have a min-

imum at the optimal points ϕopt = π/2 and ϕopt = 0,
respectively, where the sensitivity reaches the associated
SQL, (∆ϕ)2

Ĵz,s,d
' 1/ns.

The sensitivity for intermediate values of n̄ and ns is
more complex, but we show representative examples in
Fig. 3(a) for ns = 0.1 [panel i)] and ns = 4 [panel ii)]
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FIG. 3. (a) Example interferometric sensitivities as a function
of phase-shift ϕ for different initial conditions: i) ns = 0.1 and
ii) ns = 4. The sensitivities are computed from measurements

of Ĵz (green lines) and Ĵ2
z (blue lines) as labelled. Line style

indicates single (solid) and dual seed (dotted) initial condi-

tions. We also plot the case of ns = 0 with a Ĵ2
z measurement

(red dot-dashed line), which saturates the HL, as a reference
in both panels. For all data θs is optimally chosen (see main
text) and N+ = 102 is fixed. (b) Optimal sensitivity as a
function of initial seed occupation ns and N+ = 102. We in-
dicate with arrows the results of measurements of Ĵz (green

lines) and Ĵ2
z (blue lines) against the CFI F−1

C [Eq. (27), nar-
row magenta line] that also saturates the QCRB [Eq. (17),
thick black line underlying CFI]. The line styles indicate single
(solid) and dual seed (dotted) initial conditions. For clarity,
we also indicate the Heisenberg (HL) and standard quantum
limits (SQL) for N+ = 102 in all panels.

with N+ = ns + n̄ = 100. For dual seeding we always
observe a minimum sensitivity at ϕ = 0, while in the case
of a single seed the location of the minimum shifts with
ns but remains close to ϕ = 0. Moreover, the achievable
sensitivity appears to be superior for a single seed in the
squeezed regime, ns = 4.

We make these representative observations more rig-
orous by computing the optimal (minimum) sensitivity
in the limit n̄ � ns, 1. In this case the expressions (20)
and (21) can be expanded in powers of ϕ about the point
ϕ = 0 (Appendix A), and we obtain:

(∆ϕ)2
Ĵz,s

∣∣
ϕopt

=
(1 + ns)

3

ns(1 + 2ns)

1

n̄2
, (22)

and

(∆ϕ)2
Ĵz,d

∣∣
ϕopt

=
(1 + ns)

2

ns(1 + ns + n̄)2
, (23)

which occur at ϕopt = [ns(1+ns)]/[n̄(1+2ns)] and ϕopt =
0, respectively.

The results (22) and (23) indicate optimal choices of

initial seed population, nopts ' (1 +
√

3)/2 for a single
seed and nopts ' 1 for dual seeds (for n̄ � ns, 1), that
minimize the sensitivity:

minns

[
(∆ϕ)2

Ĵz,s

∣∣
ϕopt

]
' 3
√

3

2n̄2
,

minns

[
(∆ϕ)2

Ĵz,d

∣∣
ϕopt

]
' 4

n̄2
.

(24)

As previously observed in Ref. [47] for the latter case, this

demonstrates that a measurement of Ĵz can in principle
lead to a sensitivity that is within a O(1) prefactor of the
HL, ∼ 1/n̄2, for a fixed ns without any fine tuning as the
total population N+ is varied.

The optimal value of ns ∼ 1 is equivalent to the defini-
tional separation between the regime of squeezed states,
identifiable by the Wineland squeezing parameter ξ2 < 1,
as opposed to Dicke-like oversqueezed states where the
Wigner distribution begins to wrap around the Bloch
sphere and 〈Ĵz(ϕ)〉 → 0 due to symmetry. Moreover,
the insensitivity of the optimal ns to total particle num-
ber N+ = n̄ + ns arises because the state |ψst 〉UP can
be crudely approximated by considering a representa-
tive Wigner distribution on a single Bloch sphere of ra-

dius J̄ =

√
〈Ĵ2〉 ∼ N+/2. For a minimum uncertainty

state we will have that ∆J⊥∆Jz ∼ N+ where ∆J⊥ is
the rms width of the state in the Jx − Jy equatorial
plane. Substituting ∆Jz ∼

√
ns we rearrange to obtain

ns ∼ N2
+/(∆J⊥)2, for which a maximally squeezed state,

∆J⊥ ∼ J̄ , yields ns ∼ 1 independent of N+.

The sensitivity obtained with a measurement of Ĵ2
z can

also be obtained for arbitrary ns. The resulting expres-
sions are lengthy and not insightful so we refer the in-
terested reader to Appendix A. However, it is useful to
reproduce the well understood limiting case of ns = 0 as
a reference [19, 58],

(∆ϕ)2
Ĵ2
z

=
1 + [2n̄(n̄+ 2) + 1]tan2(ϕ)

n̄(n̄+ 2)
, (25)

which has the optimal sensitivity

(∆ϕ)2
Ĵ2
z

∣∣
ϕopt

=
1

n̄(n̄+ 2)
, (26)
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at ϕopt = 0.

In Fig. 3(a) we plot representative examples of (∆ϕ)2
Ĵ2
z

to compare against the prior expressions for (∆ϕ)2
Ĵz

. As

previously discussed, we always choose θs = 0 (single-
sided seed) and θs = π/4 (dual seed) to optimize the
achievable sensitivity. For the case of ns = 0.1 in the
Dicke regime, the sensitivity achievable with Ĵ2

z is similar
for either seed configuration and is predictably superior
to that attainable via measurement of only Ĵz. We note
that a divergence develops that is located around the
idealized ns = 0 working point of ϕ = 0 (understood by
the fact that for ns = 0 it corresponds to a limit where
both ∂ϕ〈Ĵ2

z (ϕ)〉 and 〈(∆Ĵ2
z )2〉 vanish). In the squeezed

regime, ns = 4, we observe that the sensitivity achievable
with Ĵz and Ĵ2

z is similar and the shift of the optimal
working point is approximately the same.

In Fig. 3 we validate Eqs. (22) and (23) by exactly
computing the minimum sensitivity, optimized over ϕ,
for measurements of both Ĵz and Ĵ2

z . We show results
as a function of ns with fixed N+ = 100, although the
behaviour of (∆ϕ)2

Ĵz
and (∆ϕ)2

Ĵ2
z

are qualitatively un-

changed as N+ is increased. The predicted minima of
(∆ϕ)2

Ĵz
for either initial seed configuration are clearly ob-

servable near ns ∼ 1, in agreement with Eq. (24). In the
squeezed regime, ns & 1, we observe that while (∆ϕ)2

Ĵz,s

and (∆ϕ)2
Ĵ2
z ,s

collapse together for the single seed and

approach the QCRB, (∆ϕ)2
Ĵz,d

and (∆ϕ)2
Ĵ2
z ,d

are visibly

worse (until ns approaches N+). On the other hand, in
the Dicke regime, ns . 1, the sensitivity attained with

Ĵ2
z quickly becomes optimal, and the difference between

the choices of initial state vanish. Of note is that for
trace amounts of seeding ns � 1 the sensitivity achiev-
able with Ĵ2

z does not saturate the QCRB (in fact it only
strictly saturates the bound for ns = 0).

For completeness, we also compute the classical Fisher
information (CFI) FC , which bounds the attainable sen-
sitivity in the case that one has access to the complete
distribution function Pn1,n−1

(ϕ) of the populations at the
end of the MZ sequence (equivalently, access to all pos-

sible moments of N̂− and N̂+). The CFI is defined as

FC(ϕ) =
∑

n1,n−1

1

Pn1,n−1
(ϕ)

[
∂Pn1,n−1(ϕ)

∂ϕ

]2
(27)

and is related to the sensitivity through (∆ϕ)2 = 1/FC ≥
1/FQ. The CFI can be analytically computed in the
limit of ns = 0 [19, 59], but for generic ns 6= 0 we nu-
merically evaluate FC by efficiently simulating the full
MZ sequence with |ψsUP(τ)〉 as the input state (see Ap-
pendix B for details). The CFI is independent of ϕ and
so we only include it in Fig. 3(b) as a function of ns. We
find it saturates the QCRB for all ns. While the CFI
is a demanding quantity to extract in an experiment, it
serves here to confirm that for ns . 1 measurements
of the mF = ±1 populations remain an optimal signal,

although the phase-shift is encoded in higher-order mo-
ments than we consider (e.g., Ĵz and Ĵ2

z ).

V. ROBUSTNESS TO EXPERIMENTAL
IMPERFECTIONS

The results of the previous sections indicate that trig-
gering the spin-changing collisions with vacuum noise will
generically lead to the optimal generation of metrologi-
cally useful entanglement. Adding a coherent seed alters
the nature of the state but nevertheless always fundamen-
tally leads to a degradation of the achievable sensitivity
per particle. However, even in current state-of-the-art
experimental systems this perspective is too simplistic as
it discounts a myriad of technical imperfections and limi-
tations. In particular, it is accepted that Dicke states are
typically more susceptible to, e.g., detection noise, than
spin-squeezed states [39]. In the following discussion we
demonstrate that when detection noise is incorporated it
becomes favourable to use a coherent seed to generate
squeezed states that offer less ideal metrological poten-
tial but are nevertheless more robust and thus provide
a meaningful practical advantage in metrological perfor-
mance. We give estimates for the optimal seed ns in this
scenario, and also discuss other favourable features of
seeded initial states such as an increased dynamic range.

A. Detection noise

In ultracold atomic gases imperfect detection limits the
ability to precisely count atoms and thus measure, e.g.,
moments of Ĵz. We assume this can be modeled as ran-
dom noise on population measurements in each shot, e.g.,
Jz → Jz + ζdn where ζdn is Gaussian noise with variance
σ and zero mean. For our theoretical calculations this is
equivalent to making the substitution,

〈Ĵz〉σ = 〈Ĵz〉σ=0,

〈(∆Ĵz)2〉σ = 〈(∆Ĵz)2〉σ=0 + σ2,

〈(∆Ĵ2
z )2〉σ = 〈(∆Ĵ2

z )2〉σ=0 + 4σ2〈Ĵ2
z 〉σ=0 + 2σ4,

(28)

where the subscript 〈....〉σ indicates the expectation value
includes averaging over the detection noise characterized
by σ.

It is most illuminating to first examine the case where
there is no seed, for which a measurement of Ĵ2

z is min-
imally required and a useful analytic expression can be
given. The ideal (σ = 0) working point ϕopt = 0 corre-

sponds to a case where both the variance 〈(∆Ĵ2
z )2〉 and

slope of the signal ∂ϕ〈Ĵ2
z (ϕ)〉 vanish. Thus, the introduc-

tion of detection noise leads to a divergent sensitivity at
ϕ = 0 and we instead compute the shifted optimal work-
ing point to be ϕopt,σ ' 2σ2/n̄2, for which the sensitivity
is

(∆ϕ)2
Ĵ2
z ,σ

∣∣
ϕopt
' 1 + 12σ2

n̄(n̄+ 2)
. (29)



10

The top line of Eq. (29) clearly illustrates that to achieve
the true HL one must satisfy the highly restrictive re-
quirement σ � 1/

√
12 or, in simpler language, possess

the ability to precisely count the number of atoms in
the ensemble at the single particle level. While there
has been notable progress in this direction for spinor
BECs [28], this is so far limited to ensembles equivalent
to N+ . 103 atoms.

For the case of seeded initial states, ns 6= 0, it is rela-
tively straightforward to obtain analytic expressions for
the sensitivity attainable from both Ĵz and Ĵ2

z measure-
ments. However, we again find that only the former ex-
pressions have an insightful form. For weak detection
noise, σ �

√
N+, the working point ϕopt is approxi-

mately unmoved from the ideal (σ = 0) scenario regard-
less of the initial seed configuration, and we obtain the
optimal sensitivities,

(∆ϕ)2
Ĵz,s,σ

|ϕopt
' (1 + ns)

3

ns(1 + 2ns)

1

n̄2
+

4σ2

n2s

(1 + ns)
2

n̄2
, (30)

and

(∆ϕ)2
Ĵz,d,σ

|ϕopt
' (1 + ns)

2

ns(1 + ns + n̄)2
+

4σ2

n2s

(1 + ns)
2

(1 + ns + n̄)2
,

(31)
for n̄ � 1. Both equations, particularly the latter
Eq. (31), are of a form that suggests choosing a suitable
seed, e.g., ns ∼ σ, might suppress the effects of modest
detection noise.

We explore this prediction by plotting the optimal sen-
sitivity as a function of seed occupation ns for fixed
N+ = 1000 and realistic σ = 8 in Fig. 4(a). We compare

the sensitivity attainable with both Ĵz and Ĵ2
z where the

results are obtained by numerical optimization of the ex-
act analytic expressions for (∆ϕ)Ĵz,σ and (∆ϕ)Ĵ2

z ,σ
in the

undepleted pump regime with no approximations. For
this case, our calculations clearly demonstrate introduc-
ing a coherent seed provides a marked advantage over the
unseeded case. In fact, for this value of σ we highlight
that the sensitivity attainable without seeding is limited
to a negligible ∼ 1 dB below the SQL, whereas for a
broad regime around ns ≈ 4σ2 we comparatively observe
∼ 5− 6 dB below the SQL.

We also compute the CFI as a function of ns for the
same parameters, to better probe the distinction between
seeded and unseeded states in the presence of detection
noise. Detection noise can be included by convolving
the true distribution function Pn1,n−1(ϕ) with a Gaussian
function of width ∼ σ (see Appendix B for details). Also
note that, unlike our previous calculations for FC , when
detection noise is included the CFI depends on the phase-
shift ϕ and so we plot the minimum value of 1/FC(ϕ) in
panel (a). The optimal sensitivity obtained with the CFI
follows the same trend as simpler measurement signals,
with a clear improvement in sensitivity when a small seed
is included albeit at a slightly smaller value of ns ≈ σ.
However, the improvement between the seeded and un-
seeded states is comparatively reduced to only ∼ 2 dB.

FIG. 4. (a) Optimal sensitivity as a function of seed occupa-
tion ns with fixed detection noise σ = 8. We label results for
measurements of Ĵz (green lines) (green solid and dashed lines

for single and dual seeds), Ĵ2
z (blue lines) and the CFI F−1

C

[Eq. (27), magenta line]. Line style indicates single (solid line)
and dual (dashed line) seed initial conditions. For reference,
we also indicate the sensitivity achievable with a coherent spin
state (CSS) including identical detection noise (faded gray
line). Inset: Corresponding dynamic range (DNR) depending
on seed occupation and measurement signal (same line styles
as main panel). Results are indistinguishable for single or
dual seed initial conditions. We compare to the ideal (σ = 0)
result (33) (black line). (b) Best sensitivity (optimized over
both ϕ and ns) as a function of detection noise σ. Line styles
are the same as (a) with the additional comparison to the ref-
erence case of ns = 0 (red dot-dashed line) and measurement

of Ĵ2
z (other signals are labelled in plot). Inset: Optimal seed

occupation nopt
s as a function of detection noise. The shaded

grey region in (a) and (b) indicates sensitivity below the SQL,
(∆ϕ)2SQL = 1/N+.

This latter observation suggests that the improvement we
observe in (∆ϕ)Ĵz,σ and (∆ϕ)Ĵ2

z ,σ
when a seed is included

should not entirely be attributed to an enhanced robust-
ness of the state for arbitrary measurements of popula-
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tions. Rather, the benefit of seeding is driven by the fact
that squeezed states encode the phase rotation ϕ in sim-
ple (e.g., low-order) moments of the populations in a very
robust way.

In panel (b) we compare the best attainable sensitiv-

ity without a seed (using a Ĵ2
z measurement) and with

coherent seeding (either Ĵz or Ĵ2
z is measured) as a func-

tion of detection noise σ. In the latter case we optimize
the chosen value of ns to provide the largest gain (cor-
responding values are plotted inset). Again, we observe
that seeding provides a robust enhancement to detection
noise. Comparing to the SQL we find that seeded states
can tolerate up to 50% larger detection noise (σ ≈ 9 for
ns = 0 compared to σ ≈ 15 for ns 6= 0) for N+ = 103

while still retaining a pure quantum advantage. A fairer
comparison is to define a practical classical limit in terms
of the sensitivity achievable with a coherent spin state
(which is typically used to define the SQL) and subject
to equivalent detection noise. With respect to this stan-
dard we observe that unseeded initial states lead to an
entanglement-enhanced sensitivity up to σ ≈ 11, whereas
seeding retains a quantum advantage up to σ ≈ 35 [60],
or a > 300% improvement in acceptable detection noise.

The inset of panel (b) shows the optimal seed popula-

tion ns. For the Ĵz measurement we approximately find
that ns ∼ 4σ (single seed) and ns ∼ 3σ (dual seed) are
optimal for weak σ, consistent with the cursory inspec-
tion of Eqs. (30) and (31). As the particular example
of panel (a) illustrates, this choice is not fine tuned and
in fact as σ increases we find the minimum of (∆ϕ)Ĵz,σ
becomes increasingly broad and less sensitive to the pre-
cise value of ns. In contrast, it is interesting to observe
that the optimal ns for the Ĵ2

z measurement appears to
be quite different and favours larger seeds, even though
the optimal sensitivity is almost indistinguishable. In-
sight into this difference is unfortunately constrained by
the complexity of the analytic expression for (∆ϕ)Ĵ2

z ,σ
.

Finally, it is worth commenting on the apparent para-
dox of suggesting that detection noise can be offset by
using a small seed ns ∼ σ that itself could be barely re-
solved by standard imaging due to detection noise. This
is in fact not a contradiction, for two key reasons. Firstly,
the microwave pulse sequence used to transfer atoms out
of the condensate into the mF = ±1 modes [Fig. 1] can be
well calibrated at large values of ns before extrapolating
to low power such that small ns can be reliably prepared.
Secondly, the small seed population can be inferred indi-
rectly by analysis of the population dynamics as a result
of spin-changing collisions rather than by direct imaging
after the initial state is prepared. Specifically, the sum
population N+ has a well defined and strong dependence
on ns, as established in Eq. (10), that can be used to es-
timate the seed population to a degree much better than
the direct imaging may allow, i.e., ns � σ is resolvable.

B. Dynamic range

Another important but often overlooked consideration
for quantum sensing is the dynamical range (DNR), i.e.,
the range of ϕ over which each state provides a quantum
advantage compared to the SQL, (∆ϕ) < 1/N+. Again,
this quantity can be analytically computed in the limit
of ns = 0 for Ĵ2

z and generic ns & 1 for Ĵz, both in the
absence of detection noise. For the former case we use
Eq. (25) to directly obtain

DNRĴ2
z

=

√
2

n̄
, (32)

for n̄ � 1, while in the case of ns & 1 manipulation of
Eqs. (20) and (21),

DNRĴz
=

√
2n2s

1 + 2ns

√
2

n̄
, (33)

independent of the choice of initial single or dual seeds
but we have assumed n̄ � ns, 1. Thus, in principle the
dynamic range increases by a factor ∼ √ns when an ap-
preciable seed ns & 1 is introduced. While this is not
necessarily a meaningful advantage in the absence of de-
tection noise, as the optimal sensitivity is for ns ∼ 1, it
suggests that for σ 6= 0 then we might predict an en-
hanced DNR by a factor ∼

√
σ (given the optimal seed

is ns ∼ σ).
This speculation is validated by explicit computation

of the DNR in the inset of panel (a) including detection
noise of σ = 8 (other parameters are identical to the main
plot). We observe that the DNR grows with ns regardless
of measurement choice (discounting the redundant region

of divergent sensitivity for ns . 1 using Ĵz) and for this
case the optimal sensitivity at ns ∼ 30 is accompanied by
an approximately tenfold improvement in the DNR. This
indicates that not only do we generically expect improved
optimal sensitivity with seeded states but also a broader
range of ϕ for which the sensitivity is sub-SQL.

C. Errors in state preparation

Following the spirit of the previous section we present a
brief analysis demonstrating that our conclusions are not
sensitive to small errors in preparation of the initial seed.
We separately consider the impact of number fluctuations
and phase fluctuations and, for simplicity, focus only on
results for the sensitivity (∆ϕ)2

Ĵz
obtained for single-sided

seeding.
Spurious fluctuations of the seed phase θs can be

caused by, e.g., imprecise characterization of Zeeman
shifts in either the dynamics or state preparation and
noise in the phase of applied microwaves that realize the
internal-state beam-splitter operations. To understand
the former, recall that the results of the previous sections
are calculated in a frame rotating with the linear Zeeman



12

shift, which in the original frame of Ĥ [Eq. (1) manifests
as a shift θs → θs + pt. This is easily accounted for and
removed by experimental calibration, but unwanted fluc-
tuations of the magnetic field or imprecise experimental
timing could lead to shot-to-shot variations in θs. We
qualitatively account for these effects in our calculations
by a simple model wherein θs is taken to be a Gaus-
sian random variable with mean θs,0 and variance δθ2s . It
is straightforward to substitute this definition of θs into
the previously derived results for 〈Ĵz(ϕ)〉 and 〈Ĵ2

z (ϕ)〉
[see Eq. (18)] and analytically compute the average over
θs. Considering small fluctuations δθs � 1 and choosing
θ0,s = 0, the best attainable sensitivity is found to be

(∆ϕ)2
Ĵz
|ϕopt

' (1 + ns)
3

ns(1 + 2ns)

1

n̄2

(
1 +

4 + 8ns
4 + 4ns

δθ2s

)
, (34)

at

ϕopt =
ns(1 + ns)

n̄(1 + 2ns)
(1− 2δθ2s). (35)

Both expressions are only perturbed weakly by phase
fluctuations at second-order, with an O(1) prefactor de-
pending on ns. This indicates that our findings are ro-
bust to spurious variations of θs.

Fluctuations in the number of seed atoms can also arise
due to, e.g., shot-to-shot variations in the applied mi-
crowave power or duration during the transfer of atoms
from mF = 0 to mF = ±1 initially. The effect of this
can be investigated with a crude model where ns fluc-
tuates shot-to-shot as a Gaussian variable with variance
δn2

s � n2s. This is sufficient to demonstrate the robust-
ness of our results, although in practice a more quanti-
tative treatment could be designed based on the precise
technical source of the fluctuations (i.e., one should for-
mally model the source of the fluctuations, such as the
microwave power, instead of the output atom number
ns). Moreover, the condition on δns (enforced to ensure
contributions from unphysical ns < 0 do not skew the
result) is not overly restrictive when realistic values of σ
are taken into account. Substituting this model into the
results for 〈Ĵz(ϕ)〉 and 〈Ĵ2

z (ϕ)〉 [see Eq. (18)] the same as
previous leads to an optimal attainable sensitivity,

(∆ϕ)2
Ĵz
|ϕopt

' (1 + ns)
3

ns(1 + 2ns)

1

n̄2

(
1 +

1 + ns
1 + 2ns

δn2
s

ns

)
,

(36)
at

ϕopt '
ns(1 + ns)

n̄(1 + 2ns)

(
1 +

1 + ns
1 + 2ns

δn2
s

)
, (37)

for δns � ns. The former result for (∆ϕ)2
Ĵz
|ϕopt indi-

cates that one should have δn2
s . ns, e.g., small noise

compared to the Poissonian quantum fluctuations of the
initial coherent seed, to retain good sensitivity.

VI. NUMERICAL ANALYSIS OF REALISTIC
SYSTEM

The results and analysis of the previous section is in-
sightful but it is ultimately limited by the validity of the
undepleted pump approximation. Here, we extend our
investigation by simulating the full quantum dynamics
of large, experimentally relevant systems and including
the effects of depletion on the pair production process.

We numerically integrate the quantum dynamics of a
system of N ∼ 104 particles that evolves according to
the full Hamiltonian Ĥ = Ĥinel + Ĥel + ĤZ as given in
Eq. (1). While this still assumes the spatial dynamics
are frozen, our treatment now properly treats depletion
of the mF = 0 mode and the interplay of the quadratic
Zeeman shift with the elastic collisions. Moreover, we
explicitly include the term ∝ g(n̂1 − n̂−1)2, although we
only find it is not quantitatively relevant (see also Ap-
pendix C). Our calculations solve for the time-evolved

state |ψst 〉 = e−iĤt|ψs0〉 expanded in the Fock basis, based
on an efficient Chebyshev scheme [61] (see Appendix B
for further details).

We assume a condensate of N = 104 atoms is prepared
in the mF = 0 mode before a small number of atoms is
coherently transferred to seed the mF = 1 mode. We
model this transfer process formally such that the to-
tal number of atoms N is fixed in our calculations and
we do not truncate our Fock basis [35]. For this large
particle number our initial state very well approximates
|ψs0〉 = |0,

√
N − ns,

√
nse

iθs〉 considered in previous sec-
tions. Spin-changing collisions are abruptly commenced
by quenching the quadratic Zeeman shift to resonance,
q = g(N −ns). After a time t the generated state |ψst 〉 is
then input to a MZ sequence before the relevant expec-
tation values are computed.

We compute the optimal sensitivities (∆ϕ)2
Ĵz
|ϕopt

and

(∆ϕ)2
Ĵ2
z

|ϕopt as a function of both seed size ns and inter-

action time τ = gNt and plot the results in Fig. 5(a).
For best comparison to prior results (e.g., Fig. 3) the
calculated sensitivities include detection noise of σ = 8.
Both (∆ϕ)2

Ĵz
and (∆ϕ)2

Ĵ2
z

show similar behaviour, in-

cluding a pronounced minimum in the sensitivity as a
function of time that approximately corresponds to the
point where the maximum occupation of the mF = ±1
modes is first reached (before the collision process dy-
namically reverses and atoms re-populate the mF = 0
mode). This minimum occurs faster as ns is increased,
reflecting the bosonic stimulation of the scattering pro-
cess provided by an initial coherent seed. Moreover, the
minimum is clearly enhanced for ns ∼ 102, consistent
with our prior analysis of Fig. 3.

Figure 5(b) shows the best attainable sensitivity as
a function of ns with τ chosen for each ns such that
the total population of the mF = ±1 modes is fixed to
N+ = 1000 or 2000, corresponding to 10% and 20% de-
pletion, respectively. In both cases we compare the re-
sults of the full numerical calculations to the analytic
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FIG. 5. (a) Normalized sensitivity N+(∆φ)2 obtained from

full quantum dynamics [governed by Ĥ, Eq. (1)] of an initial
BEC of N = 104 atoms as a function of initial seed occupation
ns and interaction time τ . Measurement signals are indicated
on panels. Note that the plotted data saturates the colorscale
in lower left corner of panels (i.e., N+(∆φ)2 > 10 dB). (b)
Optimal sensitivity as a function of seed ns, with τ chosen
such that N+ = 1000 or 2000 (indicated by arrows). Markers
indicate results of full numerical simulations for a measure-
ment of Ĵz (circles) or Ĵ2

z (squares), while the tracking solid
lines are equivalent analytic predictions from the undepleted
pump approximation [e.g., Eq. (20)] with n̄ and ns chosen to
match numerical results. In all the panels of (a) and (b) we
include fixed detection noise σ = 8.

expressions Eqs. (20) and (21) (we use the exact ana-
lytic expressions and optimize numerically over ϕ) and
find superb agreement despite the large depletion. We
comment that comparing the full numerical results with
these analytic expressions of course does not actually as-
sess their validity with respect to the simplest effects of
pump depletion, such as the slowdown in scattering to
the mF = ±1 modes [as clearly we are neglecting the
analytic prediction linking n̄ and τ , Eq. (10)]. Rather, it
simply makes clear that the connection established by the
analytic model between various correlation functions and
the number of scattered atoms n̄ can still give tremendous
insight into the structure of correlations and associated
robustness of the generated states.

In Fig. 6 we go even further beyond our prior analytic
analysis and compute the best attainable sensitivity as
a function of ns after optimising over interaction time
τ . For simplicity, we restrict the optimization to times
τ ≤ τmax where τmax corresponds to the time at which
the first maximum in the population of the mF = ±1
modes is reached. This is reasonable as it is typically
challenging for experiments to reliably probe correlations
beyond this timescale without including quantitative cor-
rections due to the spatial dynamics, although there has
been notable recent progress in this direction [46, 62].

FIG. 6. Best achievable sensitivity as a function of seed ns
after optimization over interaction time τ . The sensitivity is
rescaled relative to the absolute SQL (∆ϕ)2SQL = 1/N . We
compare results of full numerical simulations for a measure-
ment of Ĵz (green circles) or Ĵ2

z (blue squares) with analytic
expressions (corresponding blue and green lines overlaying the
markers) derived from the undepleted pump approximation
[e.g., optimization of Eq. (20)] with n̄ matched to numerical
simulations. We include fixed detection noise σ = 8. Inset:
Sensitivity as a function of σ obtained from numerical calcu-
lations with optimally chosen initial seed ns (green squares)
compared to ns = 0 prediction (red data). Lines (red dashed
for ns = 0 and green solid for ns 6= 0) are analytic predictions
from undepleted pump approximation with matching N+.

We find excellent qualitative agreement with our previ-
ous conclusions: In the presence of detection noise the
addition of a coherent seed improves the achievable sen-
sitivity. Moreover, while our results are clearly beyond
the validity of the undepleted pump regime [typical de-
pletion of mF = 0 for the data in panel (b) is ∼ 50%]
we nevertheless find substantial quantitative agreement
by substitution of ns and n̄ obtained from the numerical
calculations directly into Eq. (20) and optimizing over
ϕ. This demonstrates that the analytic insight provided
by the undepleted pump regime can remain relevant for
realistic experimental conditions.

Quantitatively, we highlight that the calculation of the
full dynamics predicts a ∼ 7 dB improvement in sensitiv-
ity by adding a suitable seed, to be compared to & 4.5 dB
in Fig. 3 based on undepleted pump calculations. This
improvement can be attributed to another favourable fea-
ture of seeded initial states – they tend to support a larger
total depletion of the mF = 0 mode and thus better uti-
lize the total available particle resource for metrology.

VII. DISCUSSION AND OUTLOOK

Our results can be contrasted with recent studies of
seeded spin-exchange dynamics both in the limit of the
undepleted pump approximation and longer timescales
[35, 36]. These works focused on the metrological poten-
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tial of the generated states for SU(1, 1) interferometry,
which is a well-known example of interaction based read-
out [22, 63]. In this case, the main benefit of seeding is
taken to be the acceleration of the dynamics and thus
naive protection against sources of technical noise and
decoherence such as particle loss. On the other hand,
other work has shown that the interaction-based read-
out intrinsically provides robustness to detection noise
σ ∼ O(

√
N) [64, 65], so introducing a seed simply de-

grades the metrologically useful entanglement (per par-
ticle) within the undepleted pump regime.

In summary, we have investigated how the initial quan-
tum fluctuations that trigger spin-changing collisions in a
spinor BEC can influence their practical utility for gen-
erating metrologically useful states for matter-wave in-
terferometry. Particularly, introducing a coherent seed
allows one to tune controllably between regimes of Dicke-
like states and spin-squeezed states [47]. The former
states are inherently superior in an idealized setting, as
they posses an optimal distribution of quantum projec-
tion noise that enables saturation of the Heisenberg limit
in an SU(2) atom interferometer [54], but the latter are
more robust to ever present detection noise [39]. A care-
ful analysis demonstrates that while introducing a weak
seed does inevitably reduce the ideal per-particle inter-

ferometric performance of the state generated by spin-
changing collisions, superior practical performance with
a coherent seed is robustly obtained for any reasonable
value of σ.

Our results can be directly relevant for current efforts
to realize entanglement-enhanced interferometry using
the dynamics of spinor BECs [28, 36, 38, 66], although the
conclusions are broad. In particular, our work demon-
strates the importance of tailoring the generation of en-
tanglement to survive technical noise and imperfections
in realistic quantum systems, rather than for idealized
properties and promised metrological potential.
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zbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt,
L. Santos, A. Smerzi, and C. Klempt, Twin matter waves
for interferometry beyond the classical limit, Science 334,
773 (2011).

[20] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K.
Oberthaler, Nonlinear atom interferometer surpasses
classical precision limit, Nature 464, 1165 (2010).

[21] O. Hosten, R. Krishnakumar, N. J. Engelsen, and M. A.
Kasevich, Quantum phase magnification, Science 352,
1552 (2016).

[22] D. Linnemann, H. Strobel, W. Muessel, J. Schulz, R. J.
Lewis-Swan, K. V. Kheruntsyan, and M. K. Oberthaler,
Quantum-enhanced sensing based on time reversal of
nonlinear dynamics, Phys. Rev. Lett. 117, 013001 (2016).
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[32] F. Anders, L. Pezzè, A. Smerzi, and C. Klempt, Phase
magnification by two-axis countertwisting for detection-
noise robust interferometry, Phys. Rev. A 97, 043813
(2018).
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Appendix A: Analytic treatment in the undepleted
pump regime

The results of Secs. III-V in the main text follow from
an analytic solution of the dynamics generated by,

ĤUP = gN
(
â1â−1 + â†1â

†
−1

)
, (A1)

which is quadratic in bosonic creation/annihilation oper-
ators and thus exactly solvable. In the following subsec-
tions we present the relevant solutions of the dynamics
in both the Schrödinger and Heisenberg pictures, and
present details of key expressions presented in the main
text.

1. Entangled input state

Evolution under ĤUP is equivalent to bosonic two-
mode squeezing that is studied in quantum optics. As
a consequence, it is straightforward to adopt known
results from the quantum optics literature to analyt-
ically solve the dynamics of the time-evolved state

|ψs,dt 〉UP = e−iĤUPt|ψs,d0 〉 [51]. The combination of ini-
tial seeding and subsequent squeezing evolution means
that the generated state within the undepleted pump
regime can be identified as the well understood two-
mode squeezed coherent state (TMSC) [67]. Specifically,

|ψs,dt 〉UP = Ŝ(r(t), π/4)D̂(α1, α−1)|0, 0〉 where Ŝ(r, φ) =

er(â1â−1e
−2iφ+â†1â

†
−1e

2iφ) is the two-mode squeezing oper-

ator and r(t) = gNt, D̂(α, β) = eαâ
†
1−α

∗â1eβâ
†
−1−β

∗â1 is
the two-mode coherent displacement operator with α±1
the initial coherent amplitude of the mF = ±1 modes,
and |0, 0〉 is the bosonic vacuum state for the mF = ±1
modes.

For a single initial seed, the time-evolved state
in the Fock basis can be written as |ψst 〉UP =∑∞
n,m=0 cn,m(t)|n,m〉 with expansion coefficients [51],

cn,m(t) = e−ns/2ei(m+n)π/4

√
m!

n!

× sech(gNt)
[√

nse
i(θs−π/4)sech(gNt)

]n−m
× [−tanh(gNt)]

m
Ln−mm (0), (A2)

for m ≥ n and zero otherwise. The state can be equiv-
alently written in the collective spin basis, e.g., Eq. (13)
of the main text, by making the correspondence J =
(n + m)/2 and mz = (m − n)/2. We use the latter to
plot the Wigner function [52] of the generated state on a
collective Bloch sphere, as in Fig. 2.
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2. Expectation values

Expectation values for the population dynamics, QFI
and metrological sensitivity are instead most easily com-
puted by treating the dynamics in the Heisenberg picture.
The two-mode squeezing generated by the Hamiltonian
ĤUP has the solution [45],

â±1(τ) = cosh(τ )â±1(0)− isinh(τ )â†∓1(0) (A3)

where τ = gNt. It is straightforward to use Eq. (A3)
in combination with the given initial states to compute
all relevant correlation functions of the system after the
period of spin-changing collisions, such as Eqs. (10)-(12)
in the main text. These expressions will naturally involve
the interaction time τ , but this can be replaced with the

number of scattered atoms n̄ by using,

τ =
1

2
log

[
1 + ns + n̄+

√
n̄(2 + 2ns + n̄)

1 + ns

]
, (A4)

which follows from the definition N+ = 〈n̂1(τ) +
n̂−1(τ)〉 = n̄+ ns.

3. MZ sensitivity

Relevant correlations at the output of the MZ interfer-
ometer can also be obtained by apply a series of linear
transformations on Eq. (A3) corresponding to the beam-

splitter and mirror elements. Specifically, denoting b̂±1
as the bosonic annihilation operator of the mF = ±1
modes after the full MZ sequence we have the relation,

b̂±1 = cos
(ϕ

2

)
â±1(τ)− i sin

(ϕ
2

)
â∓1(τ). (A5)

With Eq. (A5) we then obtain the following required
correlation functions. For a single initial seed,

〈Ĵz(ϕ)〉s = −ns
2

cos(ϕ) +
ns cos(2θs)

√
n̄ (n̄+ 2ns + 2)

2(ns + 1)
sin(ϕ),

〈Ĵ2
z (ϕ)〉s =

n̄ sin2(ϕ) (n̄+ 2ns + 2)
(
n2s cos(4θs) + (ns + 4)ns + 2

)
8(ns + 1)2

−
ns cos(2θs) sin(2ϕ)

√
n̄ (n̄+ 2ns + 2)

4

+
ns(ns cos(2ϕ) + ns + 2)

8
,

〈Ĵ4
z (ϕ)〉s = − 3

32
− 5

4
〈Ĵ2
z (ϕ)〉s +

1

32

4∑
j=0

Csj cos4−j(ϕ) sinj(ϕ)

(A6)

where

Cs0 =
(
2n4s + 12n3

s + 24n2
s + 12ns + 3

)
,

Cs1 = −
ns(ns + 3)

(
2n2s + 6ns + 3

)√
n̄ (n̄+ 2ns + 2)

(ns + 1)
,

Cs2 =

(
2n4

s + 14n3
s + 25n2

s + 12ns + 3
)
n̄ (n̄+ 2ns + 2) + (2ns + 1)(ns + 1)4

(ns + 1)2
,

Cs3 = −
ns(ns + 3)

√
n̄ (n̄+ 2ns + 2)

{
2[ns(ns + 6) + 3]n̄ (n̄+ 2ns + 2) + 3(2ns + 1)(ns + 1)2

}
(ns + 1)3

,

Cs4 =
2n̄ (n̄+ 2ns + 2)

{
[ns(ns + 6) + 3]n̄+ 3(ns + 1)2

}
{[ns(ns + 6) + 3]n̄+ (ns + 1)[ns(2ns + 9) + 3]}

(ns + 1)4
+ 6ns(ns + 2) + 3.

(A7)
For an initial state with dual seeds,

〈Ĵz(ϕ)〉d = −ns(1 + ns + n̄)sin(2θs)

2(1 + ns)
sin(ϕ),

〈Ĵ2
z (ϕ)〉d =

ns(2 + ns)

8
+
n̄ sin2(ϕ) (n̄+ 2ns + 2)

4
− n2s

8
cos(2ϕ),

〈Ĵ4
z (ϕ)〉d = − 3

32
− 5

4
〈Ĵ2
z (ϕ)〉d +

1

32

4∑
j=0

Cdj cos4−j(ϕ) sinj(ϕ)

(A8)



18

where

Cd0 = 3
(
2n2s + 4ns + 1

)
,

Cd1 = 0,

Cd2 =
{ns[ns(2ns + 7) + 12] + 3} n̄ (n̄+ 2ns + 2) + (2ns + 1)(ns + 1)4

(ns + 1)2
,

Cd3 = 0,

Cd4 =
2n̄ (n̄+ 2ns + 2)

(1 + ns)4

{
2
(
n2s + 6ns + 3

)2
(ns + 1)n̄+

(
n2s + 6ns + 3

)2
n̄2 +

(
2n4s + 18n3

s + 51n2
s + 36ns + 9

)
(ns + 1)2

}
+2ns(6 + 12ns + 6n2

s + n3s) + 3.
(A9)

In all expressions we have again replaced the natural de-
pendence on τ with n̄.

The sensitivity of the MZ interferometer with mea-
surement signals Ĵz or Ĵ2

z can be constructed using the

results of Eqs. (A6) and (A8). In the main text we pre-
sented the results for the former under the simplification
that θs = 0, π/4, but in full generality we obtain:

(∆ϕ)2
Ĵz,s

=
ns(ns + 1)

[
ns + 1− cos(2θs) sin(2ϕ)

√
n̄ (n̄+ 2ns + 2)

]
+ (2ns + 1)n̄2 sin2(ϕ) + 2(ns + 1)(2ns + 1)n̄ sin2(ϕ)

n2s

[
cos(2θs) cos(ϕ)

√
n̄ (n̄+ 2ns + 2) + (ns + 1) sin(ϕ)

]2 ,

(A10)
and

(∆ϕ)2
Ĵz,d

=
csc2(2θs) sec2(ϕ)

n2s (n̄+ ns + 1)
2

{
(2ns + 1)n̄ sin2(ϕ) (n̄+ 2ns + 2)

+ ns(ns + 1)
[
ns + 1− cos(2θ) sin(2ϕ)

√
n̄ (n̄+ 2ns + 2)

]}
. (A11)

The expressions for the sensitivity obtained with Ĵ2
z are much more involved and not useful to reproduce.

We use Eqs. (A10) and (A11) to analytically compute
the optimal sensitivity as a function of ϕ, ns and θs. The
results of this are quoted in Sec. IV, but we briefly discuss
our procedure here.

First, it is straightforward to determine that θs = 0
and θs = π/4 are optimal seed phases for the single
and dual seed initial states, respectively, as they max-
imize the amplitude of the signal 〈Ĵz(ϕ)〉. The optimal
working point ϕopt is then obtained from Eq. (A11) by
minimizing the numerator. We find ϕopt = 0 and thus
(∆ϕ)2

Ĵz,d
|ϕopt

= (1+ns)
2/[ns(1+ns+ n̄)] as per Eq. (23)

of the main text. Moreover, this sensitivity is minimized
for nopts ' 1 in the limit of large n̄� ns, 1.

On the other hand, optimizing Eq. (A10) is more in-
volved. First, we empirically identify that in the limit of
ns & 1 (i.e., when the sensitivity is meaningfully useful)
the sensitivity is minimized in the neighbourhood of ϕ ≈
0. This motivates an expansion of (∆ϕ)2

Ĵz,s
as a Maclau-

rin series in ϕ, e.g., (∆ϕ)2
Ĵz,s
≈ a0 + a1ϕ+ a2ϕ

2 +O(ϕ3)

where a0, a1, a2, ... can be computed from derivatives of

Eq. (A10). Retaining only terms to quadratic order, it is
straightforward to obtain the minimum of the sensitivity
as (∆ϕ)2

Ĵz,d
|ϕopt

= a0−a21/4a2 = (1+ns)
3/[n̄2ns(1+2ns)]

at ϕopt = a1/(2a2) = [ns(1 + ns)]/[n̄(1 + 2ns)]. Sub-
sequent minimization with respect to ns gives nopts '
(1 +

√
3)/2 in the limit of large n̄ � ns, 1. For com-

pleteness, we follow a similar recipe to obtain the results
(34) and (36) where θs or ns are allowed to randomly
fluctuate due to imperfect state preparation.

The results for (∆ϕ)2
Ĵz

given above can be readily ex-

tended to include detection noise σ, characterized by the
relations (28) of the main text. As the ideal (σ = 0) work-
ing point coincides with the maximum magnitude of the
slope ∂ϕ〈Ĵz〉 we can assume that to a good approxima-
tion ϕopt is unchanged for modest detection noise. Under
this assumption, the optimal sensitivity for σ 6= 0 can be
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estimated as

(∆ϕ)2
Ĵz,s,σ

|ϕopt
'

[
(∆ϕ)2

Ĵz,s,σ=0

+
σ2

|∂ϕ〈Ĵz〉σ=0|2

]∣∣∣∣∣
ϕ=ϕopt

. (A12)

Substitution of relevant expressions into this formula
leads directly to Eqs. (30) and (31) of the main text.

Finally, the DNR for (∆ϕ)2
Ĵz

can also be computed

in the absence of detection noise [Eq. (33) of the main
text]. For an initial state with two seeds this can be
accomplished exactly by finding values of ϕ that solve
(∆ϕ)2

Ĵz,d
= 1/

√
N+ using Eq. (A11) in the limit of large

n̄� 1, ns. For a single seed we again use the Maclaurin
series expansion of (∆ϕ)2

Ĵz,s
and solve the same equality

to obtain an identical result.

Appendix B: Efficient numerical calculation of
dynamics and classical Fisher information

1. Quantum Dynamics

Figures 5 and 6 of the main text present results based
on the full quantum dynamics within the single-mode ap-
proximation. To be concrete, we use an efficient Cheby-
shev expansion approach [61] to numerically solve the dy-
namics of the system in the Schrödinger picture. Calcu-
lations are implemented using OpenMP on a HPC node
and a simulation involving N ∼ 104 particles typically
takes ∼ 1− 5hrs using ∼ 20 CPU cores.

Our numerical calculations assume the initial mF = 0
BEC is prepared in a Fock state of N atoms before the
ns seed atoms are coherently transferred into the mF =
+1 state. This approach becomes formally equivalent
to the initial coherent seeds we consider in our analytic
calculations in the limit of N →∞ [35], but is primarily
useful to reduce computational overhead by working in a
regime of fixed total particle number N̂ = n̂0 + n̂1 + n̂−1.

Our calculations use the full Hamiltonian

Ĥsim = g
(
â0â0â

†
1â
†
−1 + h.c.

)
+ gn̂0 (n̂1 + n̂−1)

− q(n̂1 + n̂−1) +
g

2
(n̂1 − n̂−1)

2 − gns (n̂1 − n̂−1) ,

(B1)

which includes all terms of Ĥ [Eq. (1)] in the main text
except for the irrelevant linear Zeeman shift. The last
term −gns (n̂1 − n̂−1) of Ĥsim is added to cancel off
the mean-field contribution of the spin-precession gen-
erated by g

2 (n̂1 − n̂−1)
2

(discussed in more detail in Ap-
pendix C). This mimics the experimental calibration of
the relationship between initial seeding phase and the
beam-splitter phase.

2. CFI

The CFI can be evaluated according to Eq. (27) of the
main text. However, in practice we find it is simpler to
compute the CFI in the equivalent form

FC(ϕ) =
∑
J,mz

1

PJ,mz (ϕ)

[
∂PJ,mz (ϕ)

∂ϕ

]2
, (B2)

where PJ,mz (ϕ) ≡ |cϕJ,mz is the joint distribution function
for the total spin and mean projection along z obtained
in terms of the expansion coefficients of the collective
spin state after the phase-shift is imprinted, e.g., |ψϕBS〉 =

ÛBSÛϕ|ψsτ 〉.
We obtain |ψϕBS〉 and the associated cϕJ,mz using a

Chebyshev expansion approach, i.e., by treating the rota-

tion operator exp
(
−iŜ · nϕ

)
as a time propagation op-

erator where the angle ϕ plays the role of time and Ŝ · n
is the effective Hamiltonian. This approach enables us
to avoid the compatutationally expensive evaluation of
Wigner-D matrices in a very high angular momentum
space [68, 69].

To account for detection noise we compute the con-
volved distribution |P̃J,mz |2 using,

|P̃J,mz |2 =
1

2πσ2

∑
J′,m′z

|PJ′,m′z |
2e−

(J−J′)2+(mz−m′z)
2

2σ2 .

(B3)
In our numerical calculation we truncate the double sum
so that it only includes the relevant region |J ′−J |, |m′z−
mz| ∈ [0, 10σ]. A brute force calculation of the convo-
lution is not appropriate as the evaluation of the sum
scales as O(100σ2N ) where N is the size of the Hilbert
space, which becomes slow for large σ or N . Instead, we
decouple the expression (B3) into a pair of sums,

|PJ,m′z |
2 =

1√
2πσ2

∑
J′

|PJ′,m′z |
2e−

(J−J′)2

2σ2 , (B4)

|P̃J,mz |2 =
1√

2πσ2

∑
m′z

|PJ,m′z |
2e−

(mz−m′z)
2

2σ2 ,

which only scales as 2×O(10σN ).

Appendix C: Role of terms ∝ (n̂1 − n̂−1)2 in the
dynamics

In the analytic treatment of Secs. III-V it was assumed
that elastic collisions ∝ (n̂1 − n̂−1)2 in Ĥ could be ig-
nored. This was justified by noting that: i) the term
commutes with the Hamiltonian and can be treated in-
dependently, and ii) it should be negligibly small com-
pared to other contributions to the dynamics given that
we typically assume ns � N . The former point means
that we can understand the influence of the additional
term as simply a subsequent transformation of the state
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we generate, e.g., |ψt〉 → e−igt(n̂1−n̂−1)
2 |ψt〉, and input

to the MZ interferometer. We use this to better justify
point ii) in the following.

The transformation, e−igt(n̂1−n̂−1)
2

, is equivalent a
one-axis twisting (OAT) term in the collective spin pic-

ture – (n̂1 − n̂−1)2 ∝ Ĵ2
z – and this provides a use-

ful way to quantify its impact on the physics we pre-
dict. In particular, the OAT evolution can be broken
into two independent effects: 1) a mean-field rotation

∝ gt〈Ĵz〉Ĵz ∼ gnstĴz of the state |ψst 〉 about the Bloch
sphere that deterministically shifts the seed phase, sim-
ilar to the linear Zeeman shift, θs → θs + gnst (this is
absent for states with dual seeding), and 2) a nonlinear
shearing of the fluctuations of the state at a rate ∼ g√ns
(corresponding to the size of the quantum fluctuations in
Jz of the squeezed states we prepare).

Both effects must be considered with respect to the rel-
evant time-scale of the pair production process, e.g., t ∼

O(1/gN). For example, the precession generates a drift
of the optimal seed phase on the order of gnst ∼ ns/N .
In principle, this drift is negligibly small for most cases we
consider (ns � N). However, it is also easily removed
by appropriate calibration of the ensuing beam-splitter
operations/spin rotations (identically to the linear Zee-
man shift). For this reason we artificially remove this
contribution in Fig. 5 of the main text, to better match
a real experiment (see prior discussion in Appendix B).
On the other hand, the shearing contribution leads to
an irreversible reduction in contrast, e.g., decrease in ef-
fective |〈Ĵ+〉| of the squeezed state, that degrades the
performance of the interferometer [55, 70]. Fortunately,
the much slower rate of this effect means that it can be
easily neglected on the relevant time-scale of pair produc-
tion, e.g., g

√
nst ∼

√
ns/N0 � 1 for all cases we consider

in Sec. VI. We have checked this claim by constructing
Fig. 5(b) with and without the (n̂1 − n̂−1)2 contribution
and observed that the relevant results change negligibly
for ns . 0.1N .
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