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Abstract—We address the problem of multiple local optima
arising due to non-convex objective functions in cooperative
multi-agent optimization problems. To escape such local optima,
we propose a systematic approach based on the concept of
boosting functions. The underlying idea is to temporarily trans-
form the gradient at a local optimum into a boosted gradient
with a non-zero magnitude. We develop a Distributed Boosting
Scheme (DBS) based on a gradient-based optimization algorithm
using a novel optimal variable step size mechanism so as to
guarantee convergence. Even though our motivation is based
on the coverage control problem setting, our analysis applies
to a broad class of multi-agent problems. Simulation results
are provided to compare the performance of different boosting
functions families and to demonstrate the effectiveness of the
boosting function approach in attaining improved (still generally
local) optima.

Index Terms—Multi-Agent Systems, Distributed Optimization,
Non-Convex Optimization, Boosting Functions.

I. INTRODUCTION

A cooperative multi-agent system consists of interacting
agents (subsystems) where each agent is allowed to con-

trol its local state under various constraints so as to collectively
optimize a common global objective which depends on all
the agent states. In this context, the goal of a distributed
optimization scheme is to drive the multi-agent system to a
globally optimal state by employing a controller at each agent
which uses only the locally available information. Cooperative
multi-agent systems can be classified depending on factors
such as: (i) the nature of the agents (e.g., whether they are
sensors, robots, vehicles, supply sources, processor cores, etc.),
(ii) the constraints on their (local) decision space, (iii) the inter-
agent interactions, and, (iv) the form of the global objective
function. As a result, a large number of optimization methods
are found in the literature which have focused on addressing
different classes of multi-agent systems. Specifically, coopera-
tive multi-agent systems play a major role in coverage control
[1], formation control [2], learning [3], resource allocation [4],
monitoring [5], consensus [6], transportation [7] and the smart
grid [8].
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While computationally complex optimization schemes are
gaining interest due to their generality, gradient-based tech-
niques are still widely popular due to their simplicity [9]. In
cases where the objective function of the cooperative multi-
agent system is convex, convergence to the global optimum
can normally be guaranteed. The Alternating Direction Method
of Multipliers (ADMM) [10] and Relaxed-ADMM method
proposed in [11] are such examples. However, when the
objective function is non-convex, a similar guarantee cannot
be achieved [1], [12], [9], [10] without resorting to global opti-
mization approaches. For example, simulated annealing [13],
[14], particle swarm algorithms [15] and genetic algorithms
[16] are some commonly used global optimization methods
which are computationally intensive. The critical underlying
common feature to these methods is the randomness intro-
duced in controlling agents.

Inspired by this idea, the ladybug exploration method pro-
posed in [17] suggests to hover over probable local optima
aiming to find a better optimum. Similarly, randomness is
introduced (or exploited) in the distributed non-convex consen-
sus problems studied in [18] and [19] (which respectively use
stochastic gradient and perturbed push-sum based algorithms)
to converge to a local optimum while assuming the absence of
saddle points. Efficiently escaping saddle points is by itself a
challenging problem which again can be solved by introducing
randomness. For example, [20] and [21] respectively study a
perturbed gradient descent algorithm that can evade saddle
points under a centralized setting. However, as pointed out
before, although such optimization approaches that exploit
some introduced randomness are more generally applicable,
due to their computational complexity, they are infeasible for
many applications.

Due to these reasons, addressing the issue of non-convexity
without compromising simplicity has recently attracted re-
newed attention. In such methods, properties of the objective
function are usually exploited. For example, the work in
[22], [23] has proposed a combined greedy-gradient approach
which utilizes the submodularity property of many non-convex
objective functions. Balanced detection [1] and local optima
smoothing [24] are two other approaches where the structure
of the objective function has been used to trade-off between
local approximation and global exploration in achieving better
local optima. Along the same lines, [12] introduces the concept
of “boosting functions” which can provide an alternative set
of “boosted” gradients for agents to follow so that they can
escape any local optimum (including saddle points, see also
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[25], [26]) and subsequently to explore the search space
systematically for a better local optimum. However, none of
the latter methods have been designed to address distributed
cooperative multi-agent optimization problems and no conver-
gence guarantees have been provided.

Building upon the centralized boosting function approach
introduced specifically for coverage control problems in [12],
we propose a distributed approach to solve general non-convex
optimization problems associated with cooperative multi-agent
systems. The boosting function approach can be thought of
as a process where the local agent objective functions are
temporarily altered by defining a set of auxiliary local objec-
tive functions whenever an equilibrium (i.e., a local optimum)
is reached. Rather than switching the local objective func-
tions, this process is carried out indirectly by systematically
transforming the local gradient into a new boosted gradient.
Hence, a boosting function is formally a transformation of
local gradients into appropriate boosted gradients. Clearly,
such transformations should always result in non-zero boosted
gradients whenever the local gradients are zero so as to
enable escaping the local optima. After the next equilibrium
is reached following the boosted gradients, we switch back
to the original local gradients (also called normal gradients).
Subsequently, the gradient-based algorithm will converge to
a new (potentially better) equilibrium point. Compared to
methods where gradient components are randomly perturbed
to escape local optima [13], the boosting function approach
provides explicitly computed boosted gradients which ensure
both escaping from the local optima and subsequent systematic
exploration of the search space. As will be shown, such
desirable qualities can be achieved by designing boosted gra-
dients taking into account structural properties of the objective
function as well as information such as the nature of the
feasible space where agents can operate.

The contributions of this paper start with a proposed
general-purpose Distributed Boosting Scheme (DBS) where
each agent is allowed to asynchronously switch between a
“boosting” and a “normal” mode independent of other agents
and also without any global communication. Next, we pro-
pose a novel (generally applicable) optimal variable step size
selection technique which ensures that the DBS converges.
Although our motivation for both contributions mentioned
above comes from the coverage control problem setting, they
apply to a broad class of multi-agent systems, beyond cov-
erage or consensus-like problems. As a final contribution, to
illustrate the effectiveness of the DBS we use a class of multi-
agent coverage control problems to provide more intuition by
developing two new boosting function families not previously
used in [12].

The paper is organized as follows. Section II introduces
the general cooperative multi-agent optimization problem and
the key concepts of boosted gradients and boosting schemes.
Then, an optimal variable step size selection mechanism
for gradient-based algorithms is presented along with related
convergence proofs in Section III. In Section IV, we present an
application of the boosting concepts to the class of multi-agent
coverage control problems. Section IV-D presents simulation
results illustrating the effectiveness of the distributed boosting

framework and Section V concludes the paper including some
future research directions.

II. PROBLEM FORMULATION

We consider cooperative multi-agent optimization problems
of the general form (see also [27]),

s∗ = argmax
s

H(s), (1)

where, H : RmN → R is the global objective function and
s= [s1,s2, . . . ,sN ]∈RmN is the global state. Here, si ∈Rm rep-
resents the controllable local state of an agent i∈ {1,2, . . . ,N}.
In this work, the global objective function H(s) is not required
to satisfy any linearity or convexity-related conditions.

To model inter-agent interactions, an undirected graph de-
noted by G = (V ,A ) is used where V = {1,2, . . . ,N} repre-
sent the set of N agents, and, A is the set of available commu-
nication links between those agents. The set of neighbors of an
agent i∈ V is denoted by Bi = { j : j ∈ V , (i, j)∈A } and the
closed neighborhood of an agent i is defined as B̄i = Bi∪{i}.
It is assumed that each agent i shares its local state information
si with its neighbors in Bi. As a result, agent i has knowledge
of its neighborhood state s̄i = {s j : j ∈ B̄i}.

In this problem setting, each agent (say i) is assumed to
have a local objective function Hi(s̄i) where Hi : Rm|B̄i| → R
(| · | is the cardinality operator). Note that Hi(s̄i) only depends
on agent i’s neighborhood state s̄i. The relationship between
local and global objective functions is not restricted to any
specific form except for the condition:

∂Hi(s̄i)

∂ si
= 0, ∀i ∈ V =⇒ ∇H(s) = 0. (2)

This condition clearly holds for any problem with a separable
form [12] H(s) = Hi(s̄i) +Hc

i (s
c
i ) where Hc

i : Rm(N−1) → R
and sc

i = [s1,s2, . . . ,si−1,si+1, . . . ,sN ]. Note that cooperative
multi-agent systems which are inherently distributed (e.g.,
[1]) naturally have separable objective functions. Moreover,
many problems of interest with an additive form [11] H(s) =
∑

N
i=1 Hi(s̄i) also satisfy this condition (see also [28]).
Since H is not constrained to have any specific properties,

complete solution techniques for (1) are limited to global
optimization methods [29], [30]. However, the focus of this
paper is on using a conventional gradient ascent approach so
as to take advantage of its simplicity (in terms of analysis,
computation, and on-line implementations) despite the obvious
limitation of attaining only a local optimum. Moreover, an-
other focus of this work is to develop a distributed optimization
approach. Therefore, to solve (1), we consider the distributed
scheme where each agent i updates its local state si according
to

si,k+1 = si,k +βi,kdi,k. (3)

Here, βi,k ∈ R is a step size and di,k ,
∂Hi(s̄i,k)

∂ si
∈ Rm denotes

the locally available gradient of agent i.
We discuss the constrained case of (1) separately in Section

III-C2 where s is constrained to a feasible space F⊆ RmN .
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A. Escaping local optima using boosting functions

To overcome the problem of (3) converging to a local opti-
mum when H is non-convex, the boosting function approach
first proposed in [12] is adopted here. The attractiveness of
this approach comes from the fact that it enables agents to
systematically escape local optima without compromising the
simplicity of the proposed solution technique. The main idea
of this approach is to temporarily replace the local objective
function Hi(s̄i) whenever an equilibrium is reached with an
auxiliary objective function Ĥi(s̄i). Since this is equivalent
to replacing the normal gradient di by a boosted gradient
d̂i =

∂ Ĥi(s̄i)
∂ si

in (3), we focus instead on constructing d̂i directly.
A boosting function fi can be thought of as a transformation

of an associated normal gradient di which results in a boosted
gradient d̂i = fi(di). In particular, this transformation takes
place at an equilibrium point (where di = 0) and should result
in a non-zero boosted gradient d̂i = fi(0) 6= 0 which, therefore,
forces agent i to move in a direction determined by the
boosting function and to explore the feasible space further.
Subsequently, when a new equilibrium point is reached (i.e.,
when d̂i = 0), the agent reverts to the normal gradient di and
the gradient-based algorithm converges to a new (potentially
better and never worse) equilibrium point.

The key to boosting functions is that they are selected to
exploit the structure of: (i) the objective functions H(s) and
Hi(s̄i), (ii) the gradient expression di, (iii) the feasible space F,
and, (iv) the agent state trajectory history. Unlike various forms
of randomized state perturbations away from their current
equilibrium [13], [14], boosting functions provide a formal
rational systematic transformation process where the boosting
function fi depends on the specific problem type. Details on
boosting functions and their design process are discussed in
Section IV. In what follows, we present a general-purpose
boosting function choice to provide insight into boosting
functions in a generic setting.

In many multi-agent optimization problems, local optima
arise when a cluster of agents provides a reasonably high per-
formance by maintaining their local states in close proximity
while completely ignoring globally dispersed state configu-
rations. In such a case, a boosting function that enhances a
separation among local states is a natural choice, especially
suited for applications like coverage control, formation control,
monitoring, consensus and transportation. In fact, for coverage
control problems, such a boosting function has already been
proven to be effective in [12]. Therefore, in a generic setting,
a candidate boosted gradient d̂i = fi(di) for agent i can be
obtained by letting ψi j = (si−s j) and defining d̂i = ∇ψi j Hi(s̄i)

where its lth component is

d̂l
i =

∂Hi(s̄i)

∂ψ l
i j

=
∂Hi(s̄i)

∂ sl
i︸ ︷︷ ︸

= dl
i

∂ sl
i

∂ψ l
i j
+

∂Hi(s̄i)

∂ sl
j︸ ︷︷ ︸

, dl
ji

∂ sl
j

∂ψ l
i j
. (4)

Now, by replacing ∂ sl
i

∂ψ l
i j

and
∂ sl

j

∂ψ l
i j

with scalar parameters αi j

and ηi j, an entire family of boosting functions can be obtained
as d̂i = fi(di) = αi jdi + ηi jd ji where d ji =

∂Hi(s̄i)
∂ s j

(see also

Fig. 1: A centralized boosting scheme (CBS).

Fig. 2: A distributed boosting scheme (DBS) asynchronously
applied by each agent i = 1, . . . ,N.

(52) and (53)). Note that setting αi j = 1 and ηi j = −1
gives an interesting boosting function choice of the form
d̂i = fi(di) = di−d ji. Since d ji represents the direction towards
which agent j should move to increase Hi, this is clearly an
intuitive general choice for a boosting function at i. Details on
selecting boosting functions along with some guidelines can
be found in [28].

1) Boosting schemes: An agent i is said to be in the
Boosting Mode when it is following the boosted gradient
direction d̂i where its state updates take the form

si,k+1 = si,k +βi,kd̂i,k. (5)

Similarly, when an agent i is following the “normal” gradient
direction di,k as in (3), it is said to be in the Normal Mode.
When developing an optimization scheme to solve (1), we
need a proper mechanism, referred to as a Boosting Scheme,
to switch the agents between normal and boosting modes.

A centralized boosting scheme (CBS) is outlined in Fig.
1, where the boosting mode is denoted by B and the normal
mode is denoted by N. In a CBS, all agents are synchronized
to operate in the same mode. In Fig. 1, H denotes the global
objective function value which is initially stored by all agents
the first time mode B is entered when di = 0 for all i ∈ V .
After d̂i = 0 for all i ∈ V , the agents re-enter mode N and,
when a new equilibrium is reached, the new post-boosting
value of the global objective function H(s) is denoted by HB.
If HB > H, an improved equilibrium point is attained and the
process repeats by re-entering mode B with the new value HB.
The process is complete when this centralized controller fails
to improve H(s), i.e., when HB ≤ H.

This CBS was used in [12] with appropriately defined boost-
ing functions in mode B to obtain improved performance for
a variety of multi-agent coverage control problems. However,
there has been no formal proof to date that this process
converges. Moreover, our goal is to develop a Distributed
Boosting Scheme (DBS) where each agent can independently
switch between modes B and N at any time. Such a scheme
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(i) improves the scalability of the system, (ii) eliminates the
requirement of a centralized controller, (iii) reduces compu-
tational and communication costs, and, (iv) can potentially
improve convergence times. Furthermore, this is a natural
approach in problems such as coverage control [1], where the
original problem is inherently distributed.

A simple DBS version of Fig. 1 is shown in Fig. 2 where
local use of the global objective H is now replaced by a
local estimate of H, denoted by H̄i, which will be formally
introduced later. One can see that convergence of the DBS
is far from obvious since agents may be at different modes
at any time instant and, as their states change, the interaction
among agents could lead to oscillatory behavior. Note that
the notion of convergence involves not only the existence of
equilibria such that di = 0 or d̂i = 0, but also a guarantee that
the condition HB≤H is eventually satisfied. We will show that
a key to guaranteeing convergence is a process for optimally
selecting a variable step size βi,k in (3) and (5).

2) Convergence criteria: When a DBS is considered, the
decentralized nature of agent behavior causes agents to switch
between normal and boosting modes independently and asyn-
chronously from each other (unlike a CBS). As a result,
at a given time instant, a subset of the agents will be in
normal mode (following (3)) while others are in boosting mode
(following (5)). This creates a partition of the complete agent
set V into two agent sets henceforth denoted by N and B
respectively.

Let us define the extended neighborhood of an agent i as
B̃i , ∪ j∈B̄i

B̄ j. For any agent i ∈ V , the following conditions
are defined as the convergence criteria:

lim
k→∞

di,k = 0 when B̃i ⊆N , (6)

lim
k→∞

di,k = 0 when i ∈N , B̃i∩B 6= /0, (7)

lim
k→∞

d̂i,k = 0 when i ∈B, B̃i∩B 6= /0. (8)

These convergence criteria enforce the capability of an agent
i to escape its current mode (normal or boosting) irrespective
of the surrounding neighbor mode partitions B̃i∩N and B̃i∩
B. Since boosting will only continue as long as there is a
gain from the boosting stages (i.e., “H̄B

i > H̄i” in Fig. 2), it is
clear how these criteria can lead all agents to terminate their
boosting stages (i.e., to reach the “End Boosting” state).

Upon this termination, criterion (6) reapplies and guarantees
achieving di,k → 0 for all i ∈ V , which will directly imply
∇H(sk)→ 0 (from (2)). Therefore, convergence to a stationary
solution of (1) is achieved (again, not necessarily a global
optimum). Finally, note that the criterion (6) applies to the
convergence of any gradient-based method where boosting is
not used.

III. CONVERGENCE ANALYSIS THROUGH OPTIMAL
VARIABLE STEP SIZES

This section proposes a variable step size scheme which
guarantees the convergence criteria (6)-(8) required when a
general problem of the form (1) is solved using (3) and (5).
Our main results are Theorem 1 (which guarantees (6)) and
Theorem 2 (which guarantees (7) and (8)). These depend on

some assumptions which are presented first, starting with the
nature of the local objective functions.

Assumption 1: Any local objective function Hi(s̄i), i ∈ V ,
satisfies the following conditions:

1) Hi(·) is continuously differentiable and its gradient
∇Hi(·) is Lipschitz continuous (i.e., ∃K1i such that
∀x,y ∈ Rm|B̄i|, ‖∇Hi(x)−∇Hi(y)‖ ≤ K1i‖x− y‖).

2) Hi(·) is a non-negative function with a finite upper bound
HUB, i.e., Hi(x)< HUB < ∞, x ∈ Rm|B̄i|.

Through the relationship between local and global objec-
tive functions, this assumption will propagate to the global
objective function. However, for this work, Assumption 1 is
sufficient.

A. Convergence for agents i ∈ V such that B̃i ⊆N

We begin by developing an optimal variable step size
scheme for agents i ∈ V such that B̃i ⊆ N , i.e., all agents
in the extended neighborhood are in normal mode - following
(3). The respective convergence criterion for this case is (6).
For notational convenience, let qi = {1,2, . . . ,qi} with qi = |B̄i|
representing an ordered (re-indexed) version of the closed
neighborhood set B̄i. For this situation, agent i’s neighborhood
state update equation can be expressed as s̄i,k+1 = s̄i,k+ β̄i,kd̄i,k
by combining (3) for all j ∈ B̄i. Here, s̄i,k+1, s̄i,k and d̄i,k
are mqi-dimensional column vectors; equivalently, they may
be thought of as qi × 1 block-column matrices with their
jth block (of size Rm×1, and j ∈ qi) being, s j,k+1, s j,k and
d j,k respectively. Accordingly, β̄i,k is a qi×qi block-diagonal
matrix, where its jth block on the diagonal (of size m×m and
j ∈ qi) is β j,kIm; Im is the m×m identity matrix and β j,k ∈ R
is the (scalar) step size of agent j.

The following lemma provides a modified version of the
widely used descent lemma [31] so that it can be applied to
analyze maximization problems such as (1).

Lemma 1: (Ascent lemma) For a function f : Rn → R, if
the Lipschitz continuity constant of ∇ f is L, then, ∀x,y ∈Rn,

f (x+ y)≥ f (x)+ yT
∇ f (x)− L

2
‖y‖2. (9)

Proof: Consider a function g = − f : Rn → R. Then, the
Lipschitz continuity constant of ∇g will also be L. We can
now apply the usual descent lemma [31] to the function g (to
compare g(x+ y) and g(x)). Then, using g =− f , ∀x,y ∈ Rn,

−g(x+ y)≥−g(x)− yT
∇g(x)− L

2
‖y‖2,

and the result follows. �
Now, under Assumption 1, Lemma 1 can be applied to

any local objective function Hi(s̄i,k) for the aforementioned
neighborhood state update s̄i,k+1 = s̄i,k + β̄i,kd̄i,k as follows:

Hi(s̄i,k+1)≥ Hi(s̄i,k)+(β̄i,kd̄i,k)
T

∇Hi(s̄i,k)−
K1i

2
‖β̄i,kd̄i,k‖2

= Hi(s̄i,k)+ ∑
j∈B̄i

[
β j,kdT

j,kd ji,k−
K1i

2
β

2
j,k‖d j,k‖2

]
= Hi(s̄i,k)+ ∑

j∈B̄i

∆ ji,k, (10)
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with

∆ ji,k , β j,kdT
j,kd ji,k−

K1i

2
β

2
j,k‖d j,k‖2 ∈ R, (11)

d ji,k , ∇ jHi(s̄i,k) =
∂Hi(s̄i,k)

∂ s j
∈ Rm. (12)

The term d ji,k in (12) gives the sensitivity of agent i’s local
objective Hi to the local state s j of agent j∈ B̄i. Also, K1i is the
Lipschitz constant corresponding to ∇Hi. Note that the term
∆ ji,k in (11) depends on the step size β j,k which is selected
by agent j ∈ B̄i.

In (10), each ∆ ji,k term can be thought of as a contribution
from a neighboring agent j to agent i, so as to improve
(increase) Hi. However, in order for any agent i to know
its contribution to agent j ∈ B̄i (i.e., ∆i j,k), the following
assumption is required.

Assumption 2: Any agent i∈ V has knowledge of the cross-
gradient terms di j,k, the local Lipschitz constants K1 j, and the
objective function values H j(s̄ j,k) at the kth update instant.

This assumption is consistent with our concept of neighbor-
hood, where neighbors share information through communi-
cation links. Note that when the form of the local objective
functions Hi is identical and all pairs (Hi,H j), j ∈ Bi, have a
symmetric structure, Assumption 2 holds without any need for
additional communication sessions. In fact, many cooperative
multi-agent optimization problems inherently have this prop-
erty of symmetry including the class of multi-agent coverage
control problems which will be discussed in Section IV (see
Lemma 7).

We now define a neighborhood objective function H̃i(s̃i,k)

for any i ∈ V , where H̃i : Rm|B̃i|→ R and s̃i,k = {s j : j ∈ B̃i},
as follows:

H̃i(s̃i,k) = ∑
j∈B̄i

H j(s̄ j,k). (13)

This neighborhood objective function can be viewed as agent
i’s estimate of the total contribution of agents in B̄i towards the
global objective function. These functions play an important
role in the DBS because a distributed scheme comes at the
cost of each agent losing the global information H(s). Recall
that in the CBS of Fig. 1, H(s) plays a crucial role in the
“HB > H” block. In contrast, in a DBS, each agent i uses
a neighborhood objective function H̃i as a means of locally
estimating the global objective function value (see “H̃B

i > H̃i”
block in Fig. 2). However, as seen in the ensuing analysis, the
form of H̃i is not limited to (13) - it can take any appropriate
form.

Remark 1: In some problems, if the global and local objec-
tive functions are not directly related in an additive manner,
then H̃i(s̃i,k) = ∑ j∈B̄i

wi jH j(s̄ j,k) can be used as a candidate
for the neighborhood objective function. Here, {wi j ∈ R≥0 :
j ∈ B̄i} represents a set of weights (scaling factors). All
results presented in this section can be generalized to such
neighborhood objective functions as well.

Enabled by the fact that B̃i ⊆N = /0, applying (10) to any
agent j∈ B̄i gives H j(s̄ j,k+1)≥H j(s̄ j,k)+∑l∈B̄ j

∆l j,k. Summing
both sides of this relationship over all j ∈ B̄i and using the
definition in (13) yields

H̃i(s̃i,k+1)≥ H̃i(s̃i,k)+(∆̃i,k +Qi,k), (14)

where we define

∆̃i,k , ∑
j∈B̄i

∆i j,k, and, (15)

Qi,k , ∑
j∈Bi

(∆ j j,k +∆ ji,k + ∑
l∈B j−{i}

∆l j,k). (16)

Note that ∆̃i,k in (15) is a function of terms ∆i j,k (and not ∆ ji,k)
which are locally available and controlled by agent i, i.e., via
terms βi,k,di,k and di j,k,∀ j ∈ B̄i. However, agent i does not
have any control over Qi,k in (16), as this strictly depends
(through (11)) on the step sizes of agent i’s neighbors in its
extended neighborhood B̃i (i.e., β j,k,∀ j ∈ B̃i−{i}).

Nonetheless, (14) implies that the neighborhood objective
function H̃i(s̃i,k) can be increased by at least (∆̃i,k +Qi,k) at
any update instant k. Thus, to maximize the gain in H̃i(s̃i,k),
agent i’s step size βi,k is selected according to the following
auxiliary problem:

β
∗
i,k = argmax

βi,k

∆̃i,k

subject to ∆̃i,k > 0.
(17)

Lemma 2: The solution to the auxiliary problem (17) is

β
∗
i,k =

1
∑ j∈B̄i

K1 j

dT
i,k ∑ j∈B̄i

di j,k

‖di,k‖2 . (18)

Proof: Using (11) and (15), ∆̃i,k can be written as

∆̃i,k = βi,kdT
i,k ∑

j∈B̄i

di j,k−β
2
i,k‖di,k‖2 ∑ j∈B̄i

K1 j

2
. (19)

Note the quadratic and concave nature of ∆̃i,k with respect to
agent i’s step size βi,k. Therefore, using the KKT conditions
[31], the optimal βi,k can be directly obtained as (18). Let us
denote the optimal objective function value as ∆̃∗i,k. It is easy
to show that β ∗i,k in (18) is feasible (i.e., ∆̃∗i,k > 0) as long as
β ∗i,k 6= 0. �

Remark 2: The extreme situation where β ∗i,k = 0 occurs when
∑ j∈B̄i

di j,k = 0. However, since this “pathological situation”
can be detected by agent i, the agent can consider two options:
(i) Use a reduced neighborhood B̄1

i ⊂ B̄i to calculate β ∗i,k so that
β ∗i,k 6= 0, hence ∆̃∗i,k > 0, or (ii) Use the weighted form of (13)
(see Remark 1) and manipulate the weight factors {wi j : j∈ B̄i}
so as to get a step size β ∗i,k 6= 0 (e.g., enforcing wi j = 0,∀ j 3
dT

i,kdi j < 0 will give βi,k > 0, hence ∆̃∗i,k > 0). Therefore, in
the following analysis, we omit this pathological situation by
assuming ∑ j∈B̄i

di j,k 6= 0 (which implies β ∗i,k 6= 0).
By substituting (18) in ∆̃i,k given in (19), we can obtain an

explicit expression for ∆̃∗i,k as ∆̃∗i,k =
1
2 β ∗i,kdT

i,k ∑ j∈B̄i
di j,k. From

this result and in view of Remark 2, it is clear that ∆̃∗i,k → 0
if an only if di,k→ 0.

Next, regarding the term Qi,k in (16) over which agent i does
not have any control, the following lemma can be established.

Lemma 3: The term Qi,k can be expressed as

Qi,k = ∑
j∈Bi

(∆̃ j,k + ∑
l∈B j−{i}

[
∆l j,k−∆ jl,k

]
). (20)

Further, if Bi = B̄ j−{i}, then under (18), Qi,k > 0.
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Proof: In (16), let us add and subtract ∑l∈B j−{i}∆ jl,k to the
inner terms of the main summation. Then, using the definition
(15), the expression in (20) is obtained. To prove the second
part, note that the first inner term of the main summation of
(20) (i.e., ∆̃ j,k) is always positive under the optimal step size
given in (18). Let us then consider the net effect of the second
inner term of Qi,k, denoted by Q′i,k, where we have

Q′i,k = Qi,k− ∑
j∈Bi

∆̃ j,k = ∑
j∈Bi

∑
l∈B j−{i}

[
∆l j,k−∆ jl,k

]
.

Using the fact that ∆l j,k−∆ jl,k = 0 when l = j, we can add a
dummy term into the inner summation to get

Q′i,k = ∑
j∈Bi

∑
l∈B̄ j−{i}

[
∆l j,k−∆ jl,k

]
= ∑

j∈Bi

∑
l∈Bi

[
∆l j,k−∆ jl,k

]
,

where the last step follows from the assumption Bi = B̄ j−{i}.
Observing that the two running variables l, j in the summations
above are interchangeable, we get Q′i,k = 0. This implies that
under (18), Qi,k = ∑ j∈Bi ∆̃ j,k > 0. �

We now make the following assumption regarding Qi,k.
Assumption 3: Consider the sum,

Q̃i,k =
k

∑
l=k−Ti

Qi,l , (21)

such that 0≤ Ti ≤ k. Then, ∃Ti < ∞ such that Q̃i,k ≥ 0.
When the graph G (V ,A ) is complete, the condition Bi =

B̄ j −{i} in Lemma 3 is true for all i ∈ V . In such cases,
Assumption 3 is immediately satisfied with Ti = 1,∀i∈ V . On
the other hand, when the graph G (V ,A ) is sparse enough, it
can be considered as a collection of fully connected sub-graphs
(exploiting the partitioned nature of local objective functions
Hi(s̄i)). Then, Assumption 3 also holds with Ti = 1,∀i ∈ V .
More generally, when each agent selects its step size according
to (18), it ensures that ∆̃∗i,k > 0. In addition, ∆ii,k > 0 whenever
the step size βi,k is positive. The assumption is further sup-
ported by the fact that each Qi,k in Q̃i,k is also a summation
of ∆ j j,k, ∆ ji,k and ∆l j,k terms (noting in particular the positive
first terms in (16) as well as in (20)). Moreover, it is locally
verifiable if the agent communicates with its neighbors. In
practice, we have never seen this assumption violated over
extensive simulation examples (see Fig. 5 in Section IV and
accompanying discussion).

To establish the convergence proof in Theorem 1, we need
to make one final assumption.

Assumption 4: For all i∈ V , there exists a function Ψi,k and
a finite positive number ε such that Ψi,k ≥ ε > 0 and{

0≤Ψi,k‖di,k‖2 ≤ ∆̃
∗
i,k + Q̃i,k, when Q̃i,k > 0, ∆̃

∗
i,k > 0,(22)

0≤Ψi,k‖di,k‖2 ≤ ∆̃
∗
i,k, when ∆̃

∗
i,k > 0. (23)

This assumption is trivial because whenever the optimal step
size in (18) is used, 0 < ∆̃∗i,k, hence, for some 1 < K2, Ψi,k =

∆̃∗i,k/(K2‖di,k‖2) is a candidate function for both cases (22)
and (23) that satisfies the requirement Ψi,k ≥ ε > 0 for all k.

Now, the main convergence theorem can be established.
Theorem 1: For all i ∈ V such that B̄i ⊆ N , under As-

sumptions 1-4, the step size selection in (18) guarantees the
convergence criterion (6), i.e., limk→∞ di,k = 0.

Proof: By Assumption 3, a Ti value can be defined for Q̃i,k
at each k. Consider a sequence of consecutive discrete update
instants {k1+1, . . . ,k′1} (for short, we use the notation (k1,k′1]),
where, Ti = k′1− k1 is associated with Q̃i,k′1

and Ti > k− k1

applies to all Q̃i,k, k ∈ (k1,k′1−1]. This means 0<∑
k′1
k=k1+1 Qi,k

and 0≥∑
l
k=k1+1 Qi,k, ∀l ∈ (k1,k′1−1]. In addition, by Lemma

2, 0 < ∆̃∗i,k ∀k ∈ (k1,k′1]. Thus, 0 < ∑
k′1
k=k1+1(∆̃

∗
i,k +Qi,k). By

summing up both sides of (14) over all update steps k∈ (k1,k′1]
yields

H̃i(s̃i,k′1+1)≥ H̃i(s̃i,k1+1)+
k′1

∑
k=k1+1

(∆̃∗i,k +Qi,k). (24)

Similarly, using Assumption 4 and summing both sides of (23)
over all k ∈ (k1,k′1−1] and using (22) for k = k′1 yields

0≤
k′1

∑
k=k1+1

Ψi,k‖di,k‖2 ≤
k′1

∑
k=k1+1

(∆̃∗i,k +Qi,k). (25)

By Assumption 3, the length of the chosen interval (k1,k′1]
is always finite. Therefore, any {1, . . . ,k2} with k2 < ∞ can
be decomposed into a sequence of similar sub-intervals:
{(k11,k′11],(k12,k′12], . . . ,(k1L,k′1L]} where k11 = 0, k′1i = k1(i+1)
∀i ∈ (0,L]. If k2 is such that k′1L < k2 (which happens if
0 > ∑

k2
k=k′1L+1 Qi,k), Assumption 3 implies that there exists

some k′2 such that k2 < k′2 <∞ which satisfies 0<∑
k′2
k=k′1L+1 Qi,k

(i.e., (k′1L,k
′
2] is the new last sub-interval of (0,k′2]). Then, by

writing the respective expressions in (24) and (25) for each
such sub-interval of the complete interval (0,k′2] and summing
both sides over all k yields

H̃i(s̃i,k′2+1)≥ H̃i(s̃i,1)+
k′2

∑
k=1

(∆̃∗i,k +Qi,k), (26)

0≤
k′2

∑
k=1

Ψi,k‖di,k‖2 ≤
k′2

∑
k=1

(∆̃∗i,k +Qi,k), (27)

respectively. Using Assumption 1 in (26) gives |B̄i|HUB ≥
H̃i(s̃i,k′2+1)− H̃i(s̃i,1)≥ ∑

k′2
k=1(∆̃

∗
i,k +Qi,k). Combining this with

(27) yields
k′2

∑
k=1

Ψi,k‖di,k‖2 ≤ |B̄i|HUB. (28)

By Assumption 1, the term |B̄i|HUB in (28) is a finite positive
number. Also, by Assumption 4, Ψi,k ≥ ε > 0, ∀k. Therefore,
taking limits of the above expression as k′2 → ∞ implies the
convergence criterion in (6) as long as the optimal step sizes
given by (18) are used. �

B. Convergence for agents i such that B̃i∩B 6= /0

In this case, at least some of the agents in B̃i are in boosting
mode, following (5). Using the same approach as in Section
III-A, we seek an optimal variable step size selection scheme
similar to (18) so as to ensure the convergence criteria in (7)
and (8).
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Compared to (10), now the ascent lemma relationship for
Hi(s̄i,k) takes the form:

Hi(s̄i,k+1)≥ Hi(s̄i,k)+ ∑
j∈B̄i∩N

∆ ji,k + ∑
j∈B̄i∩B

∆̂ ji,k, (29)

where ∆ ji,k for j ∈N is the same as (11) and we set

∆̂ ji,k = β j,kd̂T
j,kd ji,k−

K1i

2
β

2
j,k‖d̂ j,k‖2 ∈ R. (30)

Then, the ascent lemma for neighborhood objective function
H̃i(s̃i,k) can be expressed as

H̃i(s̃i,k+1)≥ H̃i(s̃i,k)+(∆̃i,k +Qi,k), (31)

with

∆̃i,k , 1{i∈N }[ ∑
j∈B̄i

∆i j(k)]+1{i∈B}[ ∑
j∈B̄i

∆̂i j(k)], (32)

Qi,k , ∑
j∈Bi

(1{ j∈N }[∆ j j,k +∆ ji,k]+1{ j∈B}[∆̂ j j,k + ∆̂ ji,k]

+ ∑
l∈{B j−{i}}

[1{l∈N }∆l j,k +1{l∈B}∆̂l j(k)]),
(33)

where 1{·} is the usual indicator function. Under this new
∆̃i,k in (32), the same auxiliary problem as in (17) is used
to determine the step size β ∗i,k to optimally increase the
neighborhood cost function H̃i(s̃k). The corresponding solution
(i.e., β ∗i,k) is given in the following lemma.

Lemma 4: The solution to the auxiliary problem (17) with
∆̃i,k given in (32) is

β
∗
i,k =


1

∑ j∈B̄i
K1 j

dT
i,k(∑ j∈B̄i

di j,k)

‖di,k‖2
when i ∈N ,

1
∑ j∈B̄i

K1 j

d̂T
i,k(∑ j∈B̄i

di j,k)

‖d̂i,k‖2
when i ∈B.

(34)

Proof: The proof follows the same steps as that of Lemma
2 and is, therefore, omitted. �

Note that the step size selection criterion given in (34)
(for an agent i) does not depend on its neighbors’ modes.
Therefore, it offers a generalization of (18). However, β ∗i,k now
depends on agent i’s own mode. This is due to the fact that the
selection of β ∗i,k allows agent i to maximize the increment in
the neighborhood objective function H̃i(s̃i) which is defined
in (13) independently from the boosting process. Therefore,
the use of β ∗i,k provides a regulation mechanism for the state
update steps (especially during the boosting mode).

To establish the convergence criteria (7) and (8), Assump-
tions 1, 2 and 3 are still required. Note that Assumption
3 should now be considered under the new expression for
Qi,k in (33); its justification is similar as before. Moreover, a
generalized version of Lemma 3 is given as follows.

Lemma 5: The term Qi,k in (33) can be expressed as,

Qi,k = ∑
j∈Bi

(∆̃ j,k+ ∑
l∈B j−{i}

[1{l∈N }∆l j,k−1{ j∈N }∆ jl,k

+1{l∈B}∆̂l j,k−1{ j∈B}∆̂ jl,k]).

(35)

Further, if Bi = B̄ j−{i}, then under (34), Qi,k > 0.
Proof: The proof follows the same steps as that of Lemma

3 and is, therefore, omitted. �

Finally, before proceeding to Theorem 2, the previous
Assumption 4 needs to be modified as follows so that it
incorporates the possibility that i ∈B.

Assumption 5: For all i∈ V , there exists a function Ψi,k and
a finite positive number ε such that Ψi,k ≥ ε > 0 and,
if i ∈N :{

0≤Ψi,k‖di,k‖2 ≤ ∆̃∗i,k + Q̃i,k when ∆̃∗i,k > 0, Q̃i,k > 0,
0≤Ψi,k‖di,k‖2 ≤ ∆̃∗i,k when ∆̃∗i,k > 0,

otherwise, if i ∈B:{
0≤Ψi,k‖d̂i,k‖2 ≤ ∆̃∗i,k + Q̃i,k when ∆̃∗i,k > 0, Q̃i,k > 0,
0≤Ψi,k‖d̂i,k‖2 ≤ ∆̃∗i,k when ∆̃∗i,k > 0.

Here, Q̃i,k is evaluated from (21) using (33) and, ∆̃∗i,k from
(32) using (34).

The following convergence theorem can now be established.
Theorem 2: Under Assumptions 1-3, and 5, the step size

selection in (34) guarantees the convergence conditions stated
in (6)-(8): if i ∈ N , then limk→∞ di,k = 0, and, if i ∈ B,
then limk→∞ d̂i,k = 0.

Proof: The proof uses the same steps as in that of Theorem
1. The only difference lies in the use of new terms for ∆̃i,k,
∆̃∗i,k and Qi,k, given by (32), (34) and (33). Then, the final step
of the proof is

k′2

∑
k=1

Ψi,k[1{i∈N }‖di,k‖2 +1{i∈B}‖d̂i,k‖2]≤ |B̄i|HUB. (36)

By Assumption 1, the R.H.S. of the above expression is
finite and positive. Taking limits when k′2 → ∞ yields the
convergence criteria given in (7) and (8). Further, noting that
Theorem 2 is a generalization of Theorem 1 with the step size
selection scheme (34) replacing (18), it follows that (6) is also
satisfied. �

C. Discussion

1) Extensions to time-varying graphs: Both the main prob-
lem (1) and the variable step size method (34) assume that
agents are interconnected (i.e., inter agent communications
occur) according to a fixed graph topology G . As pointed out
earlier, the nature of G can affect Assumption 3 (specifically
through the Ti value) of the convergence proof. Nevertheless,
due to the nature of the convergence proof we have used,
it is reasonable to expect that the variable step size method
(i.e., Theorem 2) is extendable to cases where the graph G
varies sufficiently slower than the convergence rate and when
it asymptotically converges to a fixed graph configuration. In
fact, the class of coverage control problems which will be used
to demonstrate the proposed DBS in Section IV belongs to the
latter case. Moreover, since the variable step sizes in (34) lead
each agent to maximize the improvement of its neighborhood
objective function, we can expect convergence even when
the graph G varies rapidly (however without showing any
oscillatory behavior).
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2) Feasible space constraint: When the main problem in
(1) includes a feasible space constraint s ∈ F ⊂ RmN , we use
the standard gradient projections [31] for (3) and (5). For
such a situation, the following lemma presents an additional
condition which needs to be satisfied in order to guarantee the
convergence of the proposed variable step size method (34).

Lemma 6: If feasible space F is convex, and if an agent i’s
local and cross gradients satisfy the conditions,

|dT
i,k ∑

j∈Bi

di j,k|< ‖di,k‖2 when i ∈N ,

|d̂T
i,k( ∑

j∈Bi

di j,k +(di,k− d̂i,k))|< ‖d̂i,k‖2 when i ∈B,
(37)

the step sizes βi,k = β ∗i,k given by (34) when used in (3) or (5)
with standard gradient projections (onto F), will lead the state
si,k to a stationary point (i.e., convergence).

Proof: Consider the problem where the neighborhood
objective function H̃i(s̃i,k) is maximized using the projected
state updates of si,k on the convex feasible space F. Following
[31] in this situation, the convergence condition on the step
sizes βi,k is 0 < βi,k <

2
Ki

, where Ki is the Lipschitz constant
of ∇H̃i. Note that we can write Ki = ∑ j∈B̄i

K1 j due to (13).
Also, for i ∈N , the expression for β ∗i,k given in (34) can be
modified into the form

β
∗
i,k =

1
Ki

[
1+

dT
i,k ∑ j∈Bi di j,k

‖di,k‖2

]
. (38)

Now, enforcing the convergence condition 0 < β ∗i,k <
2
Ki

yields
the first condition in (37). Similarly the second condition in
(37) can be obtained when the expression for β ∗i,k, i ∈B, in
(34) is considered. �

From a practical standpoint, if the conditions in Lemma
6 are being violated during the gradient ascent process, the
neighborhood reduction and/or weight factor manipulation
techniques mentioned in Remark 2 can be used to change Bi
and/or H̃i respectively so that these conditions are satisfied.
We also note that knowledge of the feasible space constraint
s ∈ F in (1) can play an important role in designing boosting
functions d̂i = fi(di,F), as further discussed in Section IV.

3) Variable step sizes compared to fixed step sizes: In a
centralized setting, using a fixed step size for the gradient
ascent is typically computationally inexpensive, and, if prop-
erly executed, can deliver a higher convergence rate compared
to variable step size methods. However, in a distributed
setting where agents independently and asynchronously al-
ter the gradient direction ((3) and (5)), using a fixed step
size (typically βi,k = 1

Ki
) might not lead to good overall

convergence properties. Further, establishing convergence in
this case generally requires additional restrictive assumptions.
In contrast, the proposed variable step size method has the
following advantages: (i) It is designed so as to account for the
distributed and cooperative nature of the underlying problem,
(ii) Its convergence has been established by making only a few
locally verifiable assumptions, (iii) It is not computationally
heavy compared to line search methods, and, (iv) During
different modes (boosting/normal) the step sizes are automat-
ically adjusted. As a result, the variable step size method in

applications has shown better convergence results compared
to fixed step size methods (see Sections III-D and IV).

4) Termination conditions for modes: In practice, the equi-
librium conditions di = 0 and d̂i = 0 used in boosting schemes
should be replaced with appropriate termination conditions
[31] such as ‖di‖≤ ε1 and ‖d̂i‖≤ ε2 (respectively) where ε1,ε2
are two preselected small positive scalars.

5) Escaping and converging to saddle points: Due to the
non-convexity of the objective function, saddle points may
exist in the feasible space. However, as shown in [25], [26],
first-order methods (3) almost always avoid a large class of
saddle points (called strict saddle points) inherently. Neverthe-
less, if boosting functions are deployed through (5), clearly,
saddle points are easier to escape from compared to local
minima. Moreover, even if the convergence criteria (6) - (8)
lead to a saddle point, it will have a higher cost compared to
initially attained local minima (or saddle points) as a result
of the comparison stage used in boosting schemes (e.g., see
“HB > H” block in Fig. 1).

D. An example for the variable step size method

In this section, a simple example is provided to illustrate
the operation and convergence (i.e., validity) of the proposed
variable step size method. In this example, the local objective
functions are restricted to take a quadratic form:

Hi(s̄i) =−
∥∥∥ ∑

j∈B̄i

Ai js j−bi

∥∥∥2

Ci
=−‖gi(s̄i)‖2

Ci
, (39)

where Ai j ∈Rr×m,bi ∈Rr and Ci ∈Rr×r for any i ∈ V , j ∈ B̄i.
The weight matrix Ci is symmetric and positive definite. The
weighted norm is defined as ‖v‖2

C = vTCv with v ∈ Rr and
C ∈ Rr×r. The parameter r represents the dimension of the
local cost function. Assuming the parameters Ai j,bi,Ci, ∀i ∈
V , ∀ j ∈ B̄i and the graph G = (V ,E ) are predefined (for a
given N,m and r value combination), the optimization problem
we consider is

s∗ = [s∗1,s
∗
2, . . . ,s

∗
N ] = argmax

s
H(s) =

N

∑
i=1

Hi(s̄i). (40)

Due to the quadratic nature of the associated objective func-
tions, a closed form expression can be obtained for the global
optimum s∗. Moreover, as a result of convexity, there is no
need for any boosting function to escape an equilibrium point.
Therefore, we use this example to compare the performance
of the proposed variable step size method (when used in a
distributed gradient ascent) to that of a fixed step size method
(when used in a centralized gradient ascent).

For the (distributed) variable step size computation (at agent
i using (18)), the local gradient di is

di =
∂Hi(s̄i)

∂ si
=−2AT

iiCigi(s̄i), (41)

the cross gradients di j, ∀ j ∈ B̄i, are

di j =

[
∂H j(s̄ j)

∂ si

]
i↔ j

=−2AT
jiC j( ∑

l∈B̄ j

A jlsl−b j), (42)
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(a) Graph G = (V ,E ). (b) Agent Local Derivatives.

(c) Global Objective Value.

Fig. 3: Numerical Example.

and, the local Lipschitz constants K1 j, j ∈ B̄i,

K1 j = 2‖AT
j C jA j‖∞, A j = [{A jl}l∈B̄ j

] ∈ Rr×m|B̄ j |, (43)

are used. In contrast, in centralized gradient ascent, the global
gradient component of agent i:

dG
i =

∂H(s)
∂ si

=−2 ∑
j∈B̄i

AT
jiC jg j(s̄ j), (44)

is used as a replacement for di,k in (3). In this case, the step
size is kept fixed at 1

Ki
where Ki = ∑ j∈B̄i

K1 j (see [31]).
In simulations, fixed dimensional parameters N = 10 and

m = r = 2 are used. Note that m = r is required here to
guarantee the existence of a solution where di = 0,∀i∈ V . It it
is easy to show that the optimal global objective function value
is H(s∗) = 0. To generate the inter-agent connections (i.e.,
the graph G ) a random geometric graph generation is used
taking 0.4 as the communication range parameter [11]. The
remaining problem parameters Ai j,bi,Ci,si,0 ∀i ∈ V , ∀ j ∈ B̄i
are generated randomly (keeping the graph G fixed).

The experimental results shown in Fig. 3 confirm our
theoretical convergence results. The H(sk) profiles in Fig. 3(c)
show that the proposed distributed variable step size method
provides a slightly faster convergence than the centralized
fixed step size method for k ≤ 1483 where at k = 1483, the
H(sk) value is 99.95% closer to the optimal than the initial
value H(s0) = 26.1432; for k ≥ 1484, the centralized fixed
step method is slightly faster. This cross-over behavior can be
understood as a result of local gradients di,k becoming smaller
as k increases and adapting step sizes βi,k in (3) when di,k

is very small is less effective. Our general observation over
extensive similar examples is that the result of such a compar-
ison (between distributed variable step and centralized fixed
step methods) depends on the network topology (additional
results are provided in [28]).

IV. APPLICATION TO COVERAGE CONTROL PROBLEMS

In this section, we apply the theory developed in the
previous sections to construct a convergence-guaranteed DBS
based on two new boosting function families created for the
class of multi-agent coverage control problems. As mentioned
in the Introduction, the work in [12] has extended the so-
lution proposed in [1] for this class of problems by adding
the capability to escape local optima through a centralized
boosting scheme (albeit, without any convergence guarantees).
In contrast, we will develop a distributed gradient ascent based
scheme which is guaranteed to converge based on Theorem 2
and demonstrate the use of boosting functions designed for
this problem setting.

The coverage control problem aims to find an optimal
arrangement for a given set of sensor nodes (agents) inside
a given mission space so as to maximize the probability of
detecting randomly occurring events. It is assumed that the
agent sensing capabilities, characteristics of the mission space,
and any a priori information on the spacial likelihood of
random event occurrences (in the mission space) are fixed and
known.

The mission space Ω ⊂ R2 is modeled as a non-
self-intersecting polygon [1], and it may contain a finite
set of non-self-intersecting polygonal obstacles denoted by
{M1,M2, . . . ,Mh}, where Mi ⊂R2 represents the interior space
of the ith obstacle. Therefore, agent motion and deployment are
constrained to a non-convex feasible space F = Ω\(∪h

i=1Mi).
Note that “\”denotes the set subtraction operator. The spacial
likelihood of random event occurrence over the mission space
is quantified by the event density function R : Ω→ R, where,
R(x) ≥ 0,∀x ∈ Ω; R(x) = 0, ∀x 6∈ F , and

∫
Ω

R(x)dx < ∞ are
assumed. If no a priori information related to R(x) is available,
then R(x) = 1,∀x ∈Ω is used.

The mission space is considered to have N agents. Following
the same notation used in Section II and III, at a given discrete
update instant k, the position of agent i (i.e., the controllable
local state) is denoted by si,k ∈ F ⊂ R2 and the global state
of the multi-agent system is sk = [s1,k,s2,k, . . . ,sN,k]∈R2N . We
write sk ∈ F to denote si,k ∈ F ∀i. For notational convenience,
the update instant index k is omitted unless it is important.

The sensing capabilities of agent i depend on: (i) A finite
sensing radius δi ∈ R beyond which it cannot detect any
events, (ii) The presence of obstacles which hinder its sensing
capability. Considering these two factors, a visibility region for
agent i is defined as Vi = {x : ‖x− si‖ ≤ δi,∀λ ∈ (0,1],(λx+
(1−λ )si) ∈ F}. Fig. 4 is provided to identify all associated
geometric parameters in this model.

A sensing function p̂i(x,si) is used to quantify the prob-
ability that “agent i detects an event occurring at x ∈ F .”
Due to the physical limitations mentioned above, p̂i(x,si) =
1{x∈Vi}pi(x,si) where 1{·} is the usual indicator function and
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Fig. 4: Mission space with one agent.

pi(x,si) is defined so that pi : R2×R2 → R and is differen-
tiable and monotonically decreasing in Di(x) ≡ ‖x− si‖. For
example, pi(x,si) = p0ie−λiDi(x) is a typical choice. However,
note that p̂i(x,si) is strictly discontinuous w.r.t. x, si or Di(x).
Assuming independently detecting agents, the joint detection
probability P(x,s), i.e., the probability of “detecting an event
occurring at x ∈ F by at least one agent,” is given by

P(x,s) = 1−
N

∏
i=1

[1− p̂i(x,si)]. (45)

Combining the event density and joint detection probability,
the objective function H(s) of the coverage control problem
given in [1] is

H(s) =
∫

F
R(x)P(x,s)dx, (46)

and the multi-agent optimization problem is

s∗ = argmax
s∈F

H(s). (47)

where s∗ represents the optimal agent placement. Note that
the objective function in (46) is non-linear and non-convex,
while the feasible space F is also non-convex. Therefore, the
coverage control problem posed in (47) has the same structure
as the general cooperative multi-agent optimization problem
in (1). Thus, (47) can have multiple locally optimal solutions
(even in the simplest configurations). Therefore, the use of the
DBS with appropriate boosting functions can aid the agents
to escape local optima while solving (47).

A. Distributed optimization solution

If two agents have an overlap in their visibility regions, they
are considered as neighbors [12]. Therefore, the neighborhood
Bi and the closed neighborhood B̄i of an agent i are the
sets defined as Bi = { j : Vj ∩Vi 6= /0, i 6= j} and B̄i = Bi ∪{i}
respectively. It is assumed that agents share their local state
information si with their neighbors, so that each agent has
knowledge of its neighborhood state s̄i ≡ {s j : j ∈ B̄i}. We
use an undirected graph G = (V ,A ) to model inter-agent
interactions, where V = {1,2, . . . ,N} and A = {(i, j) : i, j ∈
V , i 6= j, j ∈ Bi}.

In [12], it is shown that the coverage global objective H(s)
in (46) can be expressed as H(s) = Hi(s̄i)+Hc

i (s
c
i ), where

Hi(s̄i) =
∫

Vi

R(x) ∏
j∈Bi

[1− p̂ j(x,s j)] pi(x,si)dx, (48)

and Hc
i (s

c
i ) =

∫
F R(x)(1−∏ j∈V −{i} [1− p̂ j(x,s j)])dx with sc

i =
{s j : j ∈ V −{i}}. Thus, the Hi(s̄i) term only depends on the
neighborhood state and is called the local objective function,
while Hc

i (s
c
i ) is independent of si. As a result of this property,

the local gradient of agent i, defined as di =
∂Hi(s̄i)

∂ si
∈ R2,

is always equal to the global gradient component ∂H(s)
∂ si

.
Therefore, each agent i can evaluate its global gradient com-
ponent using only its own local objective function Hi(·) and
the neighborhood state s̄i and the distributed gradient ascent
scheme in (3) (i.e., si,k+1 = si,k +βi,kdi,k) can be used to solve
the problem in (47) in a distributed manner. In order to execute
(3), each agent must evaluate its local gradient di,k and select
its step size βi,k appropriately. Section IV-A1 provides the
derivation of di,k and analyzes its structure which is pivotal
in effectively designing boosting functions.

1) Derivation of the gradient di,k: Observing that the gra-
dient di is a two-dimensional vector, we write di = [diX ,diY ]

T

and use the Leibniz rule [32] in (46) to express diX as

diX =
∂Hi(s̄i)

∂ siX
=
∫

Vi

R(x)Φi(x)
∂ pi(x,si)

∂ siX
dx

+
∫

∂Vi

R(x)Φi(x)pi(x,si)Vx ·nxdl,
(49)

where,
Φi(x) = ∏

j∈Bi

[1− p̂ j(x,s j)] . (50)

The second term in (49) is a line integral over the boundary
of the sensing region ∂Vi. The terms Vx and nx respectively
represents the rate of change and the unit normal vector of ∂Vi
at x due to an infinitesimal change in siX , where si = [siX ,siY ]

T .
From Fig. 4, notice that the shape of a boundary ∂Vi is

formed by: (i) mission space boundaries, (ii) obstacle edges,
(iii) obstacle vertices, and, (iv) sensing range. However, when
siX (or siY ) is perturbed infinitesimally, Vx 6= 0 only when x
lies on ∂Vi components formed due to the latter two factors.
Therefore, we label the linear segments of ∂Vi formed due
to obstacle vertices as Γi = {Γi1,Γi2, . . .} and the circularly
shaped curves formed due to a finite sensing range as Θi =
{Θi1,Θi2, . . .}.

The first term in (49) can be simplified using the relationship
between the sensing function pi(x,si) and Di(x). Further,
considering the behavior of Vx ·nx on the segments in Γi and
Θi sets, the line integral part of (49) can also be simplified to
get two additional terms. The resulting complete expression
for diX is

diX =
∫

Vi

wi1(x, s̄i)
(x− si)X

‖x− si‖
dx

+ ∑
Γi j∈Γi

sgn(ni jX )
sinθi j

‖vi j− si‖

∫ Zi j

0
wi2(ρir(r), s̄i)rdr

+ ∑
Θi j∈Θi

δi cosθ

∫
θi j2

θi j1

wi3(ρiθ (θ), s̄i)dθ ,

(51)
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where, sgn(·) is the signum function, and we define:

wi1(x, s̄i) =−R(x)Φi(x)
d pi(x,si)

dDi(x)
,

wi2(x, s̄i) = wi3(x, s̄i) =R(x)Φi(x)pi(x,si),

with ρir(r) =
vi j−si
||vi j−si|| r+vi j and ρiθ (θ) = si +δi[cosθ sinθ ]T .

As seen in Fig. 4, a line segment Γi j ∈ Γi is characterized
by its geometric parameters: end point Zi j, angle θi j, obstacle
vertex vi j, and direction ni j = [ni jX ,ni jY ]

T . Thus, each Γi j is
a 4-tuple (Zi j,θi j,vi j,ni j). Similarly, a circular arc segment
Θi j ∈Θi is quantified by starting angle θi j1 and ending angle
θi j2. Therefore, each Θi j term is 2-tuple (θi j1,θi j2).

The complete expression in (51) can be thought of as a sum
of forces acting on agent i, generated by different points x∈Vi.
In (51), the weight function wi1(x, s̄i) represents the magnitude
of the force pulling agent i towards point x ∈ Vi. Similarly,
wi2(x, s̄i) describes the force generated by a point x ∈ Γi j in
the lateral direction to the line Γi j (inwards the region Vi).
Finally, wi3(x, s̄i) represents the magnitude of the attraction
force generated by (and towards) a point x ∈ Θi j. From this
interpretation, the gradient component diX can be viewed as
a function of three weight functions: diX = diX (wi1,wi2,wi3).
This representation is instrumental for the construction of
boosting functions.

The same procedure can be followed in deriving diY (details
in [28]). Therefore, each agent can execute (3) as it can locally
evaluate its normal gradient di,k at each update instant k.

B. Designing boosting functions

We now focus on constructing an appropriate expression
for the boosted gradient d̂i,k to be used in (5) for the class of
coverage control problems. In deriving (51), the relationship
di = di(wi1,wi2,wi3) was identified where each weight function
wi j = wi j(x, s̄i) represents the magnitude component of each
of three infinitesimal forces, j = 1,2,3, acting on agent i
generated at a point x∈Vi. Note that di,k = 0 only occurs when
all the aforementioned infinitesimal forces add up to a resul-
tant force with zero magnitude. Therefore, by appropriately
transforming the weight functions {wi j(x, s̄i) : j = 1,2,3}, a
valid expression for d̂i,k can be constructed which avoids such
equilibrium configurations. Specifically, we consider weight
function transformations given by

ŵi j(x, s̄i) = αi j(x, s̄i)wi j(x, s̄i)+ηi j(x, s̄i), j = 1,2,3. (52)

Here, both αi j,ηi j : R2×R2|B̄i|→R are known as transforma-
tion functions. The resulting boosted gradient d̂i,k expression
takes the form

d̂i,k = di,k(ŵi1, ŵi2, ŵi3). (53)

Compared to heuristic methods where the gradient is ran-
domly perturbed (to escape local optima), the use of boosted
gradient direction d̂i,k given in (53) is a far more “intelligent”
choice as long as each agent i chooses its transformation
functions αi j,ηi j, j = 1,2,3, so as to trigger a systematic
exploration of the mission space. This is discussed next.

1) Boosting function families: A boosting function family
is characterized by the form of the transformation functions
αi j(x, s̄i), ηi j(x, s̄i), j = 1,2,3, in (52). As a result, different
boosting function families exhibit different properties. Here,
we briefly review three boosting function families proposed in
[12], and introduce two new ones.

The underlying rationale behind constructing a boosting
function family lies in answering the question: “Once an agent
converges under the normal gradient-based mode, how can
the agent escape the current equilibrium towards a direction
giving a high priority to points likely to achieve a higher
objective function value?” Towards this goal, to define appro-
priate αi j(x, s̄i), ηi j(x, s̄i), j = 1,2,3, in (52), the information
available to agent i consists of: (i) The neighborhood state s̄i,
(ii) The local objective function Hi(·), (iii) The neighboring
mission space topological information contained in Γi and Θi
(see Fig. 4), (iv) Past state trajectory information {si,k : k <
k1}. The three boosting function families proposed in [12] use
s̄i and Hi(·), whereas the two new ones make use of Γi,Θi and
{si,k : k < k1} in addition to the information of s̄i and Hi(·).

In the following discussion, for notational convenience, we
refer to the setting where αi j(x, s̄i) = 1, ηi j(x, s̄i) = 0, j =
1,2,3, as the default configuration in (52). Also, note that κ

and γ used in defining boosting function families always act
as two positive gain parameters.

Φ-Boosting [12]: This method uses αi1(x, s̄i) = κΦi(x)γ

and ηi1(x, s̄i) = 0, where Φi(x) in (50) indicates the extent to
which point x ∈ Vi is not covered by neighbors in Bi. Thus,
the effect of Φ-Boosting is to force agent i to move towards
regions of Vi which are less covered by its neighbors in Bi.

P-Boosting [12]: In this method, αi1(x, s̄i) = κ[P(x,s)]−γ

and ηi1(x, s̄i) = 0 are used, where P(x,s) in (45) indicates the
extent to which point x ∈Ω is covered by all the agents in V .
However, when evaluating the boosted gradient (53), x ∈Vi ⊆
Ω. Therefore, this approach assigns higher weights to points
x ∈Vi which are less covered by the closed neighborhood B̄i.

Neighbor-Boosting [12]: This boosting function family

uses αi1(x, s̄i) = 1 and ηi1(x, s̄i) = ∑ j∈Bi 1{x=s j} ·
κ ·1{s j∈Vi}
‖si−x‖γ . As

a result, agent i gets repelled from the neighbors who are in
its visibility region Vi.

Note that these boosting methods are limited to transforming
the first integral term of the gradient expression in (51),
i.e., only the weight wi1(x, s̄i) through αi1(x, s̄i), ηi1(x, s̄i)
is transformed. Next, we present two new boosting function
families.

V-Boosting: The V-Boosting function uses the informa-
tion of obstacle vertices vi j ∈ Γi j ∈ Γi which lie inside Vi so
as to navigate an agent i around surrounding obstacles. This
method is inspired by the second integral term in (51) which
represents the effect of obstacles through Γi in Vi on agent
i. Therefore, in V-Boosting, the weight function wi2(x, s̄i) is
transformed via the ηi2(x, s̄i) term so that the second integral
term in (51) is modified. Specifically,

αi1(x, s̄i) = κ1Φi(x)γ1(1− pi(x,si)), (54)
ηi2(x, s̄i) = 1{x=Zi j} ·κ2‖x− si‖γ2 . (55)

Moreover, note that wi1(x, s̄i) is also transformed via the
αi1(x, s̄i) term as in both Φ-Boosting and P-Boosting. In all,
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the transformation in (54) forces agent i to move toward less
covered areas while the transformation in (55) acts as an
attraction force directed towards Zi j ∈ Γi j (same as in the
direction of obstacle vertex vi j). The combination of these two
influences enables agent i to navigate around obstacles aiming
to expand the mission space exploration.

Arc-Boosting: The Arc-Boosting method uses the infor-
mation in Θi to transform the weight function wi3(x, s̄i). This
involves the third term in (51) which was not previously in-
cluded in prior work [1], [12]. Note that {θi j1,θi j2}=Θi j ∈Θi
represents a circular arc formed due to the finite sensing range
and obstacles. Based on the an agent’s location in the mission
space relative to the surrounding obstacles, it can have multiple
arcs in its boundary ∂Vi. For example, the agent in Fig. 4 has
three such arcs. Under the Arc-Boosting method, first, each
arc segment Θi j ∈ Θi is classified into one of three disjoint
sets: (i) Attractive Arcs Θ

+
i , (ii) Repulsive Arcs Θ

−
i , and (iii)

Neutral Arcs Θ0
i . This classification is based on the metric

A(Θi j):

A(Θi j) =
1

(θi j2−θi j1)

∫
θi j2

θi j1

(1−∏
k∈B̄i

(1− p̂k(ρiθ (θ),sk)))dθ ,

which measures the mean coverage level on the arc segment
Θi j by the agents in the closed neighborhood B̄i. Specifically,
the arc with the maximum A(Θi j) value is assigned to be
a repulsive arc (i.e., in the set Θ

+
i ), while the arc with the

minimum A(Θi j) value is assigned to be an attractive arc (i.e.,
in the set Θ

−
i ). The remaining arcs are labeled as neutral (i.e.,

in the set Θ0
i ). However, it is possible that an equilibrium

occurs (i.e., A(Θi j) are identical for all j), which may happen
when Bi = /0. In this case, we use a recent state si,k−K , where
K ≥ 1 as a parameter of the Arc-Boosting method, selected
from the agent’s own past state trajectory. Specifically, the arc
which is in the direction of si,k−K (from point si) is regarded
as a repulsive arc while all other arcs are labeled as attractive.

Based on the arc partition given by Θ
+
i ,Θ

−
i and Θ0

i , the Arc-
Boosting function family is formally defined by the weight
function wi3(x, s̄i) transformation given by

αi3(x, s̄i) =1{Θi j∈Θ0
i }
, (56)

ηi3(x, s̄i) =[1{Θi j∈Θ
+
i }
−1{Θi j∈Θ

−
i }
] ·Fc(κ,γ). (57)

In (57), the value of the term in brackets is either 1,−1
or 0 depending on whether Θi j belongs to Θ

+
i ,Θ

−
i or Θ0

i
respectively. The term Fc(κ,γ) is a gain factor where a typical
choice would be of the form Fc(κ,γ) = κeγ .

The motivation behind the Arc-Boosting method is to
encourage agent i to: (i) Move away from highly covered
regions (i.e., from repulsive arcs), (ii) Move towards less
covered regions (i.e., towards attractive arcs), and, (iii) Move
continuously towards unexplored regions (i.e., towards an
opposing direction to the already visited point si,k−K). As will
be seen in Section IV-D, the Arc-Boosting family has been
found to be the most effective in handling the presence of
multiple obstacles/constraints within Vi.

TABLE I: Boosting function parameters used in simulations.

Boosting Method Associated Default Parameters
P-Boosting κ = 1, γ = 1
Neighbor-Boosting κ = 10000, γ = 1
Φ-Boosting κ = 4, γ = 2
V-Boosting κ1 = 10, κ2 = 5, γ1 = 1, and, γ2 = 1
Arc-Boosting κ = 1, γ = 1, K = 50, TD = 5

C. DBS for coverage control

We are now ready to apply the DBS in Fig. 2 to the class of
coverage control problems (complete implementation details
are given in [28] including some refinements of the scheme
and improvements enabled by using an alternative function
H̄i(s̄i) compared to the one in (13)). Convergence is guaranteed
through Theorem 2 by checking that Assumptions 1-3 and 5
are all satisfied. Assumption 1 holds for the coverage control
problem due to two reasons: (i) The Lipshitz constant K1i
of ∇Hi(s̄i) can be locally evaluated and, as shown in [28],
whenever the sensing capabilities are smooth (i.e. pi(x,si) is
differentiable w.r.t. Di(x)) the computed K1i value are always
finite. (ii) HUB =

∫
Vi

R(x)dx is a typical upper bound for Hi(s̄i)
as
∫

Ω
R(x)dx < ∞ is already enforced in the coverage control

problem formulation. Assumption 2 holds for coverage control
problem because information sharing capability is already
assumed in the basic coverage control problem framework [1],
[12]. However, the following lemma is useful in asserting that
no additional communication bandwidth is required to satisfy
this assumption.

Lemma 7: For the class of coverage control problems, any
agent i ∈ V can locally compute di j =

∂H j(s̄ j)

∂ si
value ∀ j ∈ B̄i.

Proof: By taking the partial derivative of (48) (written for
agent j) w.r.t. the local state si yields

di j =−
∫

V j

R(x)p j(x,s j) ∏
l∈B j−{i}

(1− pl(x,sl))
d pi(x,si)

dsi
dx.

Now, note that ∀x 6∈ Vi,
−d pi(x,si)

dsi
= 0, and, ∀l 6∈ Bi∩B j,∀x ∈

Vi∩Vj, pl(x,sl) = 0. By incorporating these relationships into
the obtained expression for di j gives a locally computable (at
agent i) expression for di j as

di j =−
∫

Vi∩V j

R(x)p j(x,s j) ∏
l∈Bi∩B j

(1− pl(x,sl))
d pi(x,si)

dsi
dx.�

Assumption 3 has been previously justified for the general
setting in Section III using Lemmas 3 and 5. However, to
ensure this assumption is satisfied in coverage control prob-
lems, the parameter Ti was observed during all simulations
presented in Section IV-D for all agents. In all occasions, Ti
was found to be a finite value consistent with Assumption
3. One such observed Ti value distribution is given in Fig.
5, where 99.1% of the time Ti ≤ 10. Finally, as pointed out
in Section III, Assumption 5 is trivial and will hold for any
general cooperative multi-agent problem including coverage
control problems.

D. Simulation results

For the class of coverage control problems, the proposed
DBS (with all boosting function families) and the
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Fig. 5: Percentage occurrence of different Ti values (Regarding
Assumption 3 for the simulation which produced the result
shown in Fig. 6f).

methods proposed in [1], [12] were implemented in an
interactive JavaScript-based simulator which is available at
http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/
and may be used by the reader to reproduce the reported
results. The boosting function parameters used in generating
the results reported next (i.e., the gain parameters κ,γ) are
given in Table I.

Based on the obstacle arrangement, four different mission
space configurations named ‘General’,‘Room’,‘Maze’, and
‘Narrow’ are considered in the simulations. In Figs. 6, 8, 9,
and, 7 obstacles are shown as green-colored blocks and agent
locations are shown in red-colored dots. In all experiments,
agents have been initialized at the top left corner of the mission
space. Further, light green-colored areas indicate higher cov-
erage levels while yellow-colored areas indicate the opposite.

As the first step, a set of experiments was conducted with
N = 10 agents and three different algorithms were tested: (i)
The conventional distributed gradient ascent method proposed
in [1] (labelled ”GA”), (ii) The centralized boosting scheme
(CBS) proposed in [12], and, (iii) The distributed boosting
scheme (DBS) proposed in this paper.

Results obtained from the GA method are shown in Figs.
6a, 6c, 6e, and, 6g. The corresponding objective function
values are listed in Table II under the column: ‘Reference
Level H(s1)’. Similarly, results obtained from the CBS and
DBS methods (under different boosting function families) are
listed in the remaining columns of Table II - as the increment
achieved in the coverage objective value with respect to the
reference level H(s1). Also note that, as another baseline for
the proposed boosting methods, a random gradient perturba-
tion method is also implemented which uses d̂i,k = di,k +κζi,k
during the boosting sessions. Here, κ = 5 and ζi,k ∈ R2 is a
two-dimensional random vector, independently generated from
a standard uniform distribution at each time step.

The cases with the highest coverage objective value incre-
ments are shown in bold letters and they are illustrated in
Figs. 6b, 6d, 6f and 6h. The results in Table II show that
the distributed Arc-Boosting (labeled ”AB”) and distributed
V-Boosting (labeled ”VB”) schemes outperform all other
methods for all tested obstacle configurations when N = 10.

Moreover, to further investigate the performance of the
distributed V-Boosting and Arc-Boosting methods, simulation

(a)
GA: 158,821

(b) +2.354%
AB: 162,560

(c)
GA: 143,583

(d) +1.928%
AB: 146,351

(e)
GA: 120,343

(f) +22.55%
AB: 147,485

(g)
GA: 169,793

(h) +9.003%
VB: 185,079

Fig. 6: Maximum coverage improvement achieved due to
boosting for N = 10 (See Tab. II).

(a)
GA: 93,637

(b) +3.820%
VB: 97,214

(c)
GA: 86,638

(d) +2.828%
AB: 89,088

(e)
GA: 90,953

(f) +3.829%
AB: 94,436

(g)
GA: 101,976

(h) +26.97%
AB: 129,476

Fig. 7: Maximum coverage improvement achieved due to
boosting for N = 5,6 (See Tab. III).

results were generated with moderate N values such as N =
5,6. The corresponding results are shown in Table III and Fig.
7. For comparison purposes, some results obtained with the
distributed Φ-Boosting (labeled “ΦB”, with N = 5,6,10) are
also shown in Fig. 8. Finally, extreme situations (i.e., more
prone to local optima) where very few agents are deployed
(i.e., N = 1,2) were also investigated and simulation results
obtained are shown in Table IV and Fig. 9. Note that these
additional experimental results also highlight the impact of the
distributed Arc-Boosting and V-Boosting schemes.

In summary, these simulation results show that the boosting
function approach can successfully escape local optima which
limit the conventional gradient ascent based method. Further,
the systematic gradient transformation process achieved by the
specifically designed boosting function families, along with the
introduced DBS, delivers superior objective function values
compared to conventional gradient ascent based methods,
as well as compared to random gradient perturbation based
techniques. Additional implementation details such as the
selection of gain parameters in the boosting functions and
terminal conditions for the algorithms used are provided in
[28].

http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/
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TABLE II: Coverage objective value increment (+/-) achieved by different boosting schemes (See Fig. 6).

Reference
Level H(s1)

Coverage objective value increment occurred with respect to the ‘Reference Level H(s1)’

Configuration Gradient
Ascent (GA)

Random Pert. P-Boosting Neighbor Boo. Φ-Boosting (ΦB) V-Boosting (VB) Arc-Boosting (AB)
Obstacles N Centr. Decen. Centr. Decen. Centr. Decen. Centr. Decen. Centr. Decen. Centr. Decen.
General 10 158,821 +233 +409 +235 +3684 +235 +3676 +243 +3674 +2453 +3621 +3553 +3739
Room 10 143,583 +1366 +484 +1578 +2680 +2374 +968 +1578 +2626 +1739 +2455 +1578 +2768
Maze 10 120,343 +20037 +19409 +25937 +25897 +19443 +25895 +26952 +23868 +19970 +25702 +25945 +27142
Narrow 10 169,793 +150 +8781 +9204 +8835 +15258 +9391 +15008 +9376 +14969 +15286 +15238 +15120

TABLE III: Coverage objective value for cases with N = 5,6
with decentralized boosting (See Fig. 7).

Configuration Gradient
Ascent (GA)

Decentralized
V-Boosting

Decentralized
Arc-BoostingObstacles N

General 5 93,637 97,214 96,832
Maze 6 90,953 94,026 94,436
Room 5 86,638 89,078 89,088
Narrow 6 101,976 116,481 129,476

(a)
GA: 158,821

(b) +2.31%
ΦB: 162,495

(c)
GA: 86,638

(d) +2.89%
ΦB: 89,146

(e)
GA: 120,343

(f) +19.8%
ΦB: 144,211

(g)
GA: 101,976

(h) +27.0%
ΦB: 129,542

Fig. 8: Coverage improvement due to distributed Φ-Boosting
for N = 10,5,6 situations.

It should be emphasized that whenever the DBS was used,
the variable step size method involved in Theorem 2 was used
to guarantee convergence. As an example, Fig. 10 illustrates
the observed step size sequence and the associated gradient
sequence of a typical agent (i= 4) during the simulation which

(a)
GA: 20,494

(b) +13.17%
AB: 23,193

(c)
GA: 14,759

(d) +15.79%
AB: 17,090

(e)
GA: 13,669

(f) +121.4%
VB: 30,259

(g)
GA: 26,258

(h) +123.5%
VB: 58,693

Fig. 9: Maximum coverage improvement achieved due to
boosting for N = 1,2 (See Tab. IV).

TABLE IV: Coverage objective value for cases with N = 1,2
with decentralized boosting (See Fig. 9).

Configuration Gradient
Ascent (GA)

Decentralized
V-Boosting

Decentralized
Arc-BoostingObstacles N

General 1 20,494 20,404 23,193
Maze 1 14,759 14,774 17,090
Narrow 1 13,669 30,259 30,178
Narrow 2 26,258 58,693 58,681

TABLE V: Comparison of coverage objective and convergence
time values observed for the DBS with fixed and variable steps.

Boosting
Method

(N = 8) H(s∗) Convergence Time

Configuration Fixed
steps

Variable
steps

Fixed
steps

Variable
steps

V
-

B
oo

st
in

g General 140,592 140,649 550.7 91.3
Room 127,557 127,517 613.5 140.3
Maze 120,832 121,231 302.2 134.1
Narrow 163,478 155,528 415.7 161.8

A
rc

-
B

oo
st

in
g General 140,615 140,542 80.3 104.9

Room 127,647 127,455 390.0 158.1
Maze 119,967 121,231 151.7 125.0
Narrow 155,641 155,485 127.3 88.1

Average: 137,041 136,205 328.9 125.4

leads to the result shown in 6h. Moreover, Table V provides a
comparison of coverage objective and convergence time values
observed for the DBS when fixed and variable step sizes are
used. Note that the use of variable step sizes has improved
(i.e., reduced) the convergence time by 61.9% (i.e., by 203.5s).
These convergence times were observed on an Intel R© CoreTM

i7-8700 CPU @3.20 GHz Processor with a 32 GB RAM.
We complete this section by briefly addressing the effects of

decentralization which in our simulation results show the DBS
outperforming the CBS in every aspect. When all simulations
carried out for N = 10 were considered (given in table II),
on average (per simulation), the convergence time to the
final optimal solution was improved (i.e., reduced) by 39.97%

0 100 200 300 400
Update instant - k

0

50

100

0 100 200 300 400
Update intant - k

0

10

20

Fig. 10: Variation of gradient magnitude and the step size for
agent i = 4 during the simulation which yielded Fig. 6h.



xv

(approximately 165.2 s) due to the distributed nature of the
DBS relative to a centralized approach. Further, due to de-
centralization, on average (per simulation), the final coverage
cost achieved was increased by 0.381% (approximately 451
units). Finally, decentralization has the inherent advantages of
reducing communication and implementation costs compared
to a centralized solution.

V. CONCLUSIONS AND FUTURE WORK

The concept of boosting functions provides a systematic
approach to overcome the problem of multiple local optima
arising in cooperative multi-agent optimization problems with
non-convex objective functions. An optimal step size selection
scheme was developed to guarantee the convergence of a dis-
tributed boosting scheme (DBS) for such general multi-agent
optimization problems. The use of boosting functions in this
DBS was demonstrated using the class of cooperative multi-
agent coverage control problems, including two novel boosting
function families. Simulation results are used to illustrate the
effectiveness of the proposed boosting function families and
the DBS. Ongoing research aims to explore the applicability
of boosting functions in overcoming local optima in dynamic
multi-agent optimization problems. Also, concerning coverage
control applications, current research aims to explore how the
constructed boosting function families should be modified if
the objective function includes a cost term penalizing an agent
team size.
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