
Milstein et al. eLife 2021;10:e73046. DOI: https:// doi. org/ 10. 7554/ eLife. 73046  1 of 29

Bidirectional synaptic plasticity rapidly 

modifies hippocampal representations
Aaron D Milstein1,2, Yiding Li3, Katie C Bittner4, Christine Grienberger3, 
Ivan Soltesz1, Jeffrey C Magee3*, Sandro Romani4*

1Department of Neurosurgery and Stanford Neurosciences Institute, Stanford 
University School of Medicine, Stanford, United States; 2Department of Neuroscience 
and Cell Biology, Robert Wood Johnson Medical School and Center for Advanced 
Biotechnology and Medicine, Rutgers University, Piscataway, United States; 3Howard 
Hughes Medical Institute, Baylor College of Medicine, Houston, United States; 
4Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States

Abstract Learning requires neural adaptations thought to be mediated by activity- dependent 

synaptic plasticity. A relatively non- standard form of synaptic plasticity driven by dendritic calcium 

spikes, or plateau potentials, has been reported to underlie place field formation in rodent hippo-

campal CA1 neurons. Here, we found that this behavioral timescale synaptic plasticity (BTSP) can 

also reshape existing place fields via bidirectional synaptic weight changes that depend on the 

temporal proximity of plateau potentials to pre- existing place fields. When evoked near an existing 

place field, plateau potentials induced less synaptic potentiation and more depression, suggesting 

BTSP might depend inversely on postsynaptic activation. However, manipulations of place cell 

membrane potential and computational modeling indicated that this anti- correlation actually results 

from a dependence on current synaptic weight such that weak inputs potentiate and strong inputs 

depress. A network model implementing this bidirectional synaptic learning rule suggested that 

BTSP enables population activity, rather than pairwise neuronal correlations, to drive neural adapta-

tions to experience.

Editor's evaluation
This manuscript uses a combination of high- quality in vivo electrophysiology and modelling to 

demonstrate that Behavioural Time Scale Plasticity (BTSP) is bidirectional, and the amplitude and 

direction of this plasticity are dictated by the current weight of the inputs and not by the correlated 

activity of pairs of neurons. These findings challenge our current views on synaptic plasticity, which 

are primarily based on Hebb's concept. In addition, the network model used in this study demon-

strates that this type of plasticity can rapidly reshape population activity to respond to environ-

mental clues. This study will be of interest to the broad neuroscience audience and foster new ideas 

on biological and artificial learning.

Introduction
Activity- dependent changes in synaptic strength can flexibly alter the selectivity of neuronal firing, 

providing a cellular substrate for learning and memory. In the hippocampus, synaptic plasticity plays 

an important role in various forms of spatial and episodic learning and memory (Nakazawa et al., 

2004). The spatial firing rates of hippocampal place cells have been shown to be modified by expe-

rience and by changes in environmental context or the locations of salient features (O’Keefe and 

Conway, 1978; Mehta et al., 1997; Lever et al., 2002; Dupret et al., 2010; Zaremba et al., 2017; 
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Turi et al., 2019; Ziv et al., 2013; Muller and Kubie, 1987; Bostock et al., 1991; Fyhn et al., 2007; 

Leutgeb et al., 2005). These modifications can occur rapidly, even within a single trial (Hill, 1978; 

Mehta, 2015; Monaco et al., 2014; Bittner et al., 2015; Bittner et al., 2017; Diamantaki et al., 

2018; Jezek et al., 2011; Geiller et al., 2017; Bourboulou et al., 2019; Zhao et al., 2020). Here, we 

investigate the synaptic plasticity mechanisms underlying such rapid changes in the spatial selectivity 

of hippocampal place cells.

Various forms of Hebbian synaptic plasticity have been considered for decades to be the main, or 

even only, synaptic plasticity mechanisms present within most brain regions of a number of species 

(Magee and Grienberger, 2020). The core feature of such plasticity mechanisms is that they are 

autonomously driven by repeated synchronous activity between synaptically connected neurons, 

which results in either increases or decreases in synaptic strength depending on the exact temporal 

coincidence (Gerstner et al., 2018; Keck et al., 2017; Shouval et al., 2010; Song et al., 2000). This 

includes the so- called ‘three- factor’ plasticity rules that, in addition to pre- and postsynaptic activity, 

depend on a third factor that extends the time course over which plasticity can function (Magee and 

Grienberger, 2020; Gerstner et al., 2018; He et al., 2015; Yagishita et al., 2014). To implement 

these three- factor plasticity rules, it has been proposed that correlated pre- and postsynaptic activity 

drives the formation of a synaptic flag or eligibility trace (ET) that is then converted into changes in 

synaptic weights by the delayed third factor, usually a neuromodulatory signal (Gerstner et al., 2018; 

Sajikumar and Frey, 2004; Frey and Morris, 1997).

Recently, we reported a potent, rapid form of synaptic plasticity in hippocampal CA1 pyramidal 

neurons that enables a de novo place field to be generated in a single trial following a dendritic 

calcium spike (also called a plateau potential) (Bittner et al., 2015; Bittner et al., 2017; Diaman-

taki et  al., 2018). This form of synaptic plasticity, termed behavioral timescale synaptic plasticity 

(BTSP), rapidly modifies synaptic inputs active within a seconds- long time window around the plateau 

potential. This relatively long time course suggests that BTSP may be similar to the above- mentioned 

three- factor forms of plasticity, with synaptic activity generating local signals marking synapses as 

eligible for plasticity (ETs), and plateau potentials acting as the delayed factor that converts synaptic 

ETs into changes in synaptic strength. However, BTSP was shown to strengthen many synaptic inputs 

whose activation did not coincide with any postsynaptic spiking or even subthreshold depolariza-

tion detected at the soma (Bittner et al., 2017), suggesting that changes in synaptic weight might 

be independent of correlated pre- and postsynaptic activity, and that BTSP may be fundamentally 

different than all variants of Hebbian synaptic plasticity (Gerstner et al., 2018; Keck et al., 2017; 

eLife digest A new housing development in a familiar neighborhood, a wrong turn that ends 

up lengthening a Sunday stroll: our internal representation of the world requires constant updating, 

and we need to be able to associate events separated by long intervals of time to finetune future 

outcome. This often requires neural connections to be altered.

A brain region known as the hippocampus is involved in building and maintaining a map of our 

environment. However, signals from other brain areas can activate silent neurons in the hippocampus 

when the body is in a specific location by triggering cellular events called dendritic calcium spikes.

Milstein et al. explored whether dendritic calcium spikes in the hippocampus could also help the 

brain to update its map of the world by enabling neurons to stop being active at one location and 

to start responding at a new position. Experiments in mice showed that calcium spikes could change 

which features of the environment individual neurons respond to by strengthening or weaking connec-

tions between specific cells. Crucially, this mechanism allowed neurons to associate event sequences 

that unfold over a longer timescale that was more relevant to the ones encountered in day- to- day life.

A computational model was then put together, and it demonstrated that dendritic calcium spikes 

in the hippocampus could enable the brain to make better spatial decisions in future. Indeed, these 

spikes are driven by inputs from brain regions involved in complex cognitive processes, potentially 

enabling the delayed outcomes of navigational choices to guide changes in the activity and wiring of 

neurons. Overall, the work by Milstein et al. advances the understanding of learning and memory in 

the brain and may inform the design of better systems for artificial learning.
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Shouval et al., 2010; Mehta, 2004; Golding et al., 2002). Such a non- standard plasticity rule could 

enable learning to be guided by delayed behavioral outcomes, rather than by short timescale associ-

ations of pre- and postsynaptic activity.

In this study, we tested the effect of dendritic plateau potentials on the spatial selectivity of CA1 

neurons that already express pre- existing place fields, and therefore exhibit substantial postsynaptic 

depolarization and spiking prior to plasticity induction. We found that dendritic plateau potentials 

rapidly translocate the place field position of hippocampal place cells, both by strengthening inputs 

active near the plateau position and weakening inputs active within the original place field. In order to 

determine if the increased postsynaptic activity in place cells is causally related to the synaptic depres-

sion observed within the initial place field, we performed a series of voltage perturbation experi-

ments, which indicated that the direction of plasticity induced by plateau potentials is independent 

of postsynaptic depolarization and spiking. Next, we inferred from the data a computational model 

of the synaptic learning rule underlying this bidirectional form of plasticity, which suggested that it 

is instead the current weight of each synaptic input that controls the direction of plasticity such that 

weak inputs potentiate and strong inputs depress. Finally, we implemented this weight- dependent 

learning rule in a network model to explore the capabilities of bidirectional BTSP to adapt network- 

level population representations to changes in the environment.

Results
Plateau potentials translocate existing place fields
We first examined how plasticity induced by dendritic plateau potentials changes the intracellular 

membrane potential (Vm) dynamics in neurons already exhibiting location- specific firing (i.e. place 

cells). Intracellular voltage recordings from CA1 pyramidal neurons were established in head- fixed 

mice trained to run for a water reward on a circular treadmill decorated with visual and tactile cues to 

distinguish spatial positions (~185 cm in length). Brief step currents (700 pA, 300 ms) were injected 

through the intracellular electrode for a small number (Nakazawa et al., 2004; O’Keefe and Conway, 

1978; Mehta et al., 1997; Lever et al., 2002; Dupret et al., 2010; Zaremba et al., 2017; Turi et al., 

2019; Ziv et al., 2013) of consecutive laps to evoke plateau potentials at a second location that was 

between 0 and 150 cm from the initial place field (labeled ‘Induction 2’ in Figure 1A and B; n = 26 

plasticity inductions in 24 neurons). In 8/24 neurons a ‘natural’ pre- existing place field was expressed 

from the start of recording, while in 16/24 the initial place field was first experimentally induced by 

the same procedure (labeled ‘Induction 1’ in Figure 1A and B). In 2/24 neurons the induction proce-

dure was repeated a third time with plateaus evoked at a different location, resulting in a total of 26 

plasticity inductions in cells with pre- existing place fields (see Figure 1—figure supplement 1E and 

Materials and methods).

In most cases the evoked dendritic plateaus shifted the location of the neuron’s pre- existing place 

field toward the position of the second induction site (Figure 1A and B). Place field firing is known to 

be driven by a slow, ramping depolarization of Vm from sub- to supra- threshold levels (Bittner et al., 

2015; Harvey et al., 2009). Isolation of these low- pass filtered Vm ramps (Figure 1—figure supple-

ment 2A- H; Materials and methods) revealed that plateau potentials likewise shifted the neuron’s Vm 

ramp toward the position of the plateau, such that the new Vm ramp peaked near the plateau position 

in most neurons (average distance = 19.5 ± 4.7 cm; n = 26; Figure 1C–E and Figure 1—figure supple-

ment 2; example cells shown in Figure 1C are indicated with matching colored arrows in Figure 1D). 

We also observed similar shifts in place field position to be induced by spontaneous, naturally occur-

ring plateau potentials in a separate set of recordings (n = 5; Figure 1—figure supplement 2I- M).

Spatial extent of Vm plasticity
The spatial profile of plateau- induced Vm changes (∆Vm) (Figure 2A) was obtained by subtracting the 

average Vm ramp for trials occurring before plateau initiation (Figure 1C; before) from the average 

Vm ramp for trials occurring after (Figure 1C; after). These data indicate that plateaus induced both 

positive and negative changes to Vm ramp amplitude (Figure 2A and B). In general, the increases in 

Vm depolarization peaked near the position of the plateau, while the negative changes peaked near 

the initial place field (Figure 2A and B, and Figure 2—figure supplement 1A and B). Although these 

changes varied considerably in magnitude across cells, the peak change in the positive direction 
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was greater than the peak change in the negative direction (mean positive change± SEM vs. mean 

negative change± SEM: 6.73 ± 0.73 mV vs. 3.89 ± 0.32 mV, n = 26 inductions; p = 0.0001, paired 

two- way Student’s t- test; Figure 2—figure supplement 1A). Aligning each ∆Vm trace to the position 

of the plateau (Figure 2A and B) demonstrates that the increases in Vm depolarization observed near 

the plateau position decay with distance, eventually becoming hyperpolarizing decreases in Vm. At 

even greater distances from a plateau, ∆Vm decays back to zero (Figure 2B). To summarize the data 

presented thus far, dendritic plateau potentials change the location of place field firing by depolar-

izing Vm around the plateau position and hyperpolarizing Vm at positions within a pre- existing place 

field.

Time dependence of Vm plasticity
Previously we showed that location- specific increases in Vm depolarization induced by plateau poten-

tials are the result of synapse- specific increases in the strength of spatially tuned excitatory inputs 

(Bittner et al., 2017). The above results suggest that, in addition to this synaptic potentiation, BTSP 

is also capable of inducing synaptic depression to cause location- specific decreases in Vm depolar-

ization. In analyzing the spatial extent of the Vm changes induced by plateaus, we observed a strong 

Figure 1. Dendritic plateau potentials translocate hippocampal place fields. (A) Spatial firing of a CA1 pyramidal cell recorded intracellularly from a 

mouse running laps on a circular treadmill. Dendritic plateau potentials evoked by intracellular current injection first induce a place field at ~120 cm 

(Induction 1), then induce a second place field at ~10 cm and suppress the first place field (Induction 2). (B) Intracellular Vm traces from individual laps 

in (A). (C) Spatially binned Vm ramp depolarizations averaged across 10 laps before (gray) and after (black, blue, green, red) the second induction (100 

spatial bins). Dashed lines and red triangles mark the average locations of evoked plateaus, black open triangles mark the location of the initial Vm ramp 

peak, and blue triangles indicate the position of the peak of the new place field. (D) Data from all cells were sorted by position of initial place field. Black 

line indicates location of initial peak, blue triangles indicate the position of the peak of the new place field, and red triangles the position of the plateau. 

Neurons in (C) are indicated by like colored arrows. (E) The distance between the new place field and the initial place field vs. the distance between the 

plateau and the initial place field (p = 0.000015; two- tailed null hypothesis test; explained variance [R2] computed by Pearson’s correlation). Red line is 

unity.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Animal run behavior and behavioral timescale synaptic plasticity (BTSP) induction procedures (related to Figures 1 and 2).

Figure supplement 2. Characterization of behavioral timescale synaptic plasticity (BTSP)- induced changes in Vm (related to Figure 1).
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Figure 2. Spatial and temporal profiles of plateau- induced change in Vm. (A) Difference between spatially binned 

Vm ramp depolarizations averaged across laps after the second induction and those averaged across laps before 

the second induction. Same example traces as shown in Figure 1C. Red triangles and dashed line indicate plateau 

location. Open triangles are locations of initial Vm ramp peaks. Traces have been smoothed using a five point 

boxcar average. (B) All change in Vm traces (∆Vm, not smoothed) from individual neurons (gray) and averaged across 

cells (black). (C) The running profile of the mice during the plateau induction trials plotted as time from plateau 

initiation vs. spatial location (100 bins). This indicates the temporal distance of the mouse from the plateau position 

at any given spatial position and is used as a time base in (E) and (F). (D) Spatial Vm ramp half- width, calculated 

as distance from plateau position to the final decay of ∆Vm in a single direction, vs. the average running speed of 

the mouse during the induction trials calculated from traces shown in (C). Individual symbols for examples shown 

in (A) are correspondingly colored. Gray line is linear fit (p = 1.8e- 06, two- tailed null hypothesis test; explained 

variance (R2) computed by Pearson’s correlation). (E) Change in Vm traces (∆Vm) using the time base shown in 

(C). Traces have been smoothed using a five- point boxcar average. (F) All change in Vm traces (∆Vm, not smoothed) 

from individual neurons (gray) and averaged across cells (red). Black crosses and circles indicate the 10% peak 

amplitude times used to calculate the asymmetry of positive changes (left/right potentiation ratio).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Vm changes in space and time in place cells with pre- existing place fields (related to 

Figure 2).
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linear relationship between the width of the resulting ∆Vm and the running speed of the animal during 

plateau induction laps (Figure 2C and D), which had a slope on the order of seconds. This suggested 

that the run trajectory of the animal (Figure 2C) affected the spatial extent of the plasticity (Figure 2A 

and B) by determining which positions were traversed within a fixed seconds- long temporal window 

for plasticity, as we previously reported (Bittner et  al., 2017). Therefore, we next analyzed the 

temporal relationship between plateau potentials and location- specific potentiation and depression. 

To do this, we used the running trajectory of the mice during plateau induction trials (Figure 2C) as 

a time base for ∆Vm (Figure 2E; see also Figure 1—figure supplement 1, Figure 1—figure supple-

ment 2A- H and Materials and methods). This analysis showed that the positive and negative changes 

to Vm induced in place cells occurred over a timescale of multiple seconds (Figure  2F), with the 

positive changes appearing to be asymmetric with respect to the onset time of the plateaus (ratio of 

potentiation duration before/after plateau onset: 2.2; black circles and crossmarks in Figure 2F mark 

the time points when ∆Vm crosses zero). This asymmetry was similar to that observed for the posi-

tive Vm changes induced by BTSP in silent cells (Bittner et al., 2017). The negative changes (i.e. the 

hyperpolarizations indicative of synaptic depression) occurred within a time window between ±2 and 

±6 s from the plateau in many neurons that expressed pre- existing place fields (Figure 2E and F). 

Notably, this hyperpolarization was greatly reduced, or even absent, in a set of place cells where 

the time delay between plateau onset and the initial place field Vm ramp was greater than 4–5 s (red 

traces in Figures 1C, 2A and E; see also Figure 2—figure supplement 1C- F), further indicating the 

time delimited aspect of the depression component. These data reinforce the idea that BTSP is a 

bidirectional form of synaptic plasticity with a seconds- long timescale that enables dendritic plateau 

potentials to shift the locations of hippocampal place fields by inducing both synaptic potentiation 

and depression.

Plasticity drives Vm towards a target shape with an apparent inverse 
dependence on initial Vm
We next sought to understand why dendritic plateaus induce both Vm depolarization and Vm hyper-

polarization in cells expressing pre- existing place fields (Figures 1 and 2), but induce only Vm depo-

larization in spatially untuned silent cells (Figure  3—figure supplement 1; Bittner et  al., 2017). 

Figure 3A shows that the initial temporal profile of Vm in place cells with pre- existing place fields was 

highly variable across neurons, as plateaus were experimentally induced at different temporal inter-

vals from the existing place field in different neurons. In contrast, the change in Vm (∆Vm) induced by 

plateaus showed a more consistent shape in time that appeared to depend on the initial level of Vm 

depolarization at each time point prior to plasticity (Figure 3B). Large positive changes occurred at 

time points with relatively hyperpolarized initial Vm, while time points with more depolarized initial Vm 

were associated with less positive and more negative ∆Vm. These changes resulted in final Vm profiles 

that were highly similar across neurons, regardless of the initial Vm (Figure 3C). These results indicate 

that BTSP induces variable changes in synaptic strength that reshape the selectivity of neurons toward 

a common target shape – a place field centered near the location of evoked plateau potentials that 

decays toward baseline over many seconds in each direction.

In Figure 3D- F, we examined this further by comparing data from initially hyperpolarized silent cells 

(black; n = 29 inductions, see Figure 3—figure supplement 1 and Materials and methods) to data 

from place cells (dark red; n = 26 inductions). Place cells were on average more depolarized before 

plasticity than silent cells (Figure 3D), and more depression occurred in place cells compared to silent 

cells (Figure 3E). However, each place cell had both spatial positions where it was depolarized within 

its place field, and positions where it was hyperpolarized out- of- field. To determine if spatial positions 

that were initially depolarized were associated with larger depression, we grouped Vm ramp data from 

all place cells, considering only spatial bins where each cell was more depolarized than a threshold of 

–56 mV (light red traces labeled ‘PCs (within- field)’ in Figure 3D- F). Indeed, more depression and less 

potentiation was induced in place cells at those spatial positions that were initially most depolarized 

(Figure 3E). However, the final Vm ramps after plasticity were less sensitive to the initial state of depo-

larization across spatial bins of place cells (Figure 3F). This analysis further supported the findings 

that, while changes in Vm induced by plateaus were highly dependent on initial Vm, these changes 

drove the resulting final Vm ramp toward a common target shape (Figure 3F). Indeed, when all spatial 

bins from all place cells were analyzed, ∆Vm showed a strong inverse correlation with initial Vm (m = 
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Figure 3. Vm ramp plasticity varies with both time delay from plateau onset and initial Vm depolarization. (A) Temporal profile of initial Vm before 

plasticity for inductions in neurons with pre- existing place fields (26 inductions from 24 place cells), aligned to the onset time of evoked plateau 

potentials. (B) Temporal profile of changes in Vm (∆Vm) induced by plasticity in all place cells. Each ∆Vm trace is color- coded by initial Vm. See inset color 

scale in (C). (C) Temporal profile of final Vm after plasticity in all place cells. Each Vm trace is color- coded by initial Vm (color scale inset). (D) The temporal 

profiles of initial Vm before plasticity are averaged across cells and three conditions are compared: silent cells without pre- existing place fields (black), 

place cells (dark red), and a subset of data from each place cell at time points when each cell was more depolarized than –56 mV within its place field 

Figure 3 continued on next page
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–0.91; Figure 3G). In contrast, final Vm showed a very weak positive correlation with initial Vm (m = 

0.04; Figure 3H), which reflects that some spatial bins show no change in Vm during plasticity, either 

because they were traversed outside the temporal window for plasticity or because the Vm at those 

positions had already reached a final Vm target value.

That BTSP induces variable changes in Vm that reshape the Vm ramp toward a particular target 

shape is further evident from a heatmap depicting the relationships of ∆Vm to both initial Vm ramp 

depolarization and time from plateau onset (Figure 3I, positive ∆Vm in red, and negative ∆Vm in blue; 

see Materials and methods). The white regions of this plot trace out a temporal profile of Vm that 

corresponds to the final target place field shapes shown in Figure 3C and F. All initial deviations 

from this equilibrium Vm profile resulted in either positive or negative changes to approach this target 

place field shape (see dashed arrows). It should also be noted that the depression of Vm in place 

cells appeared to be weaker than the potentiation, leaving some residual depolarization at positions 

distant from the peak (Figure 3F). The functional significance of this is unclear, but may suggest that 

BTSP induces synaptic depression at a slower rate than potentiation (Cone and Shouval, 2021). To 

summarize, BTSP induces precise changes in synaptic strength that modify pre- existing place fields 

with any initial shape such that they approach a target shape that peaks near the location where 

dendritic plateaus were evoked.

Dependence on initial Vm vs. initial synaptic weights
Altogether these data revealed that, in general, the magnitude and direction of ∆Vm depended on the 

time from the plateau potential, and correlated inversely with the initial Vm ramp amplitude prior to 

plasticity induction. Does this anti- correlation reflect a causal relationship between postsynaptic depo-

larization and changes in synaptic weight induced by BTSP? This possibility would require that small 

depolarizations induce synaptic potentiation and large depolarizations induce synaptic depression, 

which is actually opposite to what has been observed in CA1 pyramidal cells with a variety of other 

plasticity protocols (Shouval et al., 2010; Yang et al., 1999; Graupner and Brunel, 2012; Clopath 

et al., 2010; Clopath and Gerstner, 2010; Jedlicka et al., 2015). Furthermore, the increased Vm 

depolarization within a cell’s place field also reflects the activation of strongly weighted synaptic 

inputs, which have been potentiated by prior plasticity (Bittner et al., 2015; Bittner et al., 2017; 

Figure 3J). Thus, a causal dependency on either Vm or synaptic weight could explain the data so far.

To discriminate between these two possibilities, we next devised a set of voltage perturbation 

experiments. We reasoned that, if increased depolarization and spiking within a cell’s place field 

causes synaptic depression, then artificially increasing Vm and inducing spiking in otherwise silent 

cells would cause plateau potentials to induce negative ∆Vm. Likewise, artificially decreasing Vm 

and preventing spiking in place cells would prevent plateau potentials from inducing negative ∆Vm 

(Figure 3K). On the contrary, if the direction of plasticity depended instead on the initial strengths 

of synapses prior to plasticity, these voltage manipulations would have no effect on the balance 

between positive and negative ∆Vm (Figure 3K). It is important to note that these somatic voltage 

(light red). Shading indicates SEM across cells. (E) The temporal profiles of changes in Vm (∆Vm) induced by plasticity are averaged across cells and the 

three conditions from (D) are compared. Shading indicates SEM across cells. (F) The temporal profiles of final Vm after plasticity are averaged across 

cells and the three conditions from (D) are compared. Shading indicates SEM across cells. (G) Change in Vm ramp (∆Vm) plotted against initial Vm for all 

inductions in neurons with pre- existing place fields. Black line is linear fit and correlation coefficient shown (p < 0.00001, two- tailed null hypothesis test; 

explained variance (R2) computed by Pearson’s correlation). (H) Final Vm ramp after plasticity plotted against initial Vm before plasticity for all inductions 

in neurons with pre- existing place fields. Black line is linear fit and correlation coefficient shown (p < 0.014, two- tailed null hypothesis test; explained 

variance (R2) computed by Pearson’s correlation). (I) Heatmap of changes in Vm ramp (∆Vm) as a function of both time and initial Vm (see Materials and 

methods). Arrows indicate that the variable direction of plasticity serves to drive Vm toward the target equilibrium region (white). (J) Diagram depicts 

presynaptic spatial firing rates of a population of CA3 inputs to a postsynaptic CA1 neuron (top), the synaptic weights of those inputs before and after 

plasticity (middle), and the resulting postsynaptic Vm ramp, which reflects a weighted summation of the inputs. Traces are shown before (gray) and after 

(black) plasticity induction in a silent cell (Induction 1), and after a subsequent induction of plasticity (Induction 2, cyan) that translocates the position of 

the cell’s place field. (K) Table compares predicted outcomes of voltage perturbation experiments (depolarizing a silent cell, or hyperpolarizing a place 

cell), considering two possible forms of behavioral timescale synaptic plasticity (BTSP) (depends on initial Vm, or depends on initial synaptic weights).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Vm changes in space and time in silent cells without pre- existing place fields (related to Figure 3).

Figure 3 continued
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manipulations are not expected to strictly control or even completely overwhelm Vm at the synaptic 

sites relevant to plasticity induction (Magee and Johnston, 1997; Koester and Sakmann, 1998; 

Froemke et al., 2005) due to attenuation of current and voltage along the dendritic cable (Magee, 

1998; Golding et  al., 2005), and compartmentalization of synaptic voltage in dendritic spines 

(Harnett et  al., 2012). However, by either increasing or decreasing the generation of somatic 

action potentials, this manipulation will unequivocally alter the number of action potentials that 

back- propagate into dendrites, which will in turn influence the activation of voltage- gated chan-

nels in dendrites and spines (e.g. Na+ channels, Ca2+ channels, and NMDA- Rs) (Magee and John-

ston, 1997; Takahashi and Magee, 2009). Expected changes to the mean Vm in active dendritic 

spines were supported by simulations of a biophysically and morphologically detailed CA1 place 

cell model expressing voltage- gated ion channels and receiving rhythmic excitation and inhibition 

to mimic the in vivo recording conditions (Figure 4—figure supplement 1; Grienberger et al., 

2017). Moreover, manipulation of somatic Vm and spike timing is widely used to successfully influ-

ence plasticity induction in vitro and in vivo (Malinow and Miller, 1986; Jacob et al., 2007; Schulz 

et al., 2010).

According to the above scheme, we first recorded from spatially untuned silent cells, and injected 

current (~100 pA) through the intracellular pipette to depolarize the neurons’ Vm by ~10 mV and to 

increase spiking during plasticity induction trials (Figure  4A; baseline trials mean AP rate: 0.26 ± 

0.25 Hz; first induction trial mean AP rate: 4.8 ± 1.4 Hz, n = 8; blue trace in Figure 4B). In all neurons 

tested, we observed plateau potentials to induce large positive ∆Vm at spatial positions surrounding 

the plateau location, and no negative ∆Vm at any spatial positions (Figure 4A; blue trace in Figure 4C). 

This result is inconsistent with a causal dependence on initial Vm (Figure 3K), which predicted a ∆Vm 

profile similar to that of control place cells at their most depolarized positions within their pre- existing 

place fields (red traces, ‘control PCs (within- field)’ in Figure 4B and C repeated from Figure 3D and 

E for comparison).

Next, we performed the inverse manipulation by recording from place cells and injecting current 

(~–150 pA) to hyperpolarize the neurons’ Vm by ~–15 mV and prevent spiking at spatial locations 

surrounding their pre- existing place fields while plasticity was induced at a second location (Figure 4D; 

baseline trials in- field mean AP rate 10.66 ± 0.93 Hz; first induction trial in- field mean AP rate 0.06 ± 

0.06 Hz, n = 5; green trace in Figure 4E). This manipulation did not prevent negative ∆Vm at positions 

within the original place field (Figure 4D; green trace in Figure 4F), again incompatible with synaptic 

depression requiring elevated postsynaptic depolarization and spiking (Figure 3K). In fact, full ampli-

tude synaptic depression was observed at locations within the original place field despite the somatic 

Vm being more hyperpolarized than either the silent cell (black traces in Figure 4E and F) or control 

place cell groups (red traces, ‘control PCs’ in Figure 4E and F).

These data clearly show that the direction of plasticity induced by dendritic plateau potentials 

is not determined by the activation state of the postsynaptic neuron. Instead, the results of these 

voltage perturbation experiments support the alternative hypothesis that it is the initial strength of 

each synapse that controls whether an input will be potentiated or depressed by BTSP (Figure 3K). 

However, the magnitude of potentiation and depression was slightly affected by the voltage perturba-

tions (e.g. potentiation was slightly but significantly increased in silent cells during artificial depolariza-

tion compared to control, Figure 4C). This is consistent with the previously reported finding that BTSP 

induction requires activation of voltage- dependent ion channels, including NMDA- type glutamate 

receptors (NMDA- Rs) and voltage- gated calcium channels (Bittner et al., 2017), which would have 

predicted BTSP to depend on postsynaptic depolarization. To examine this further, we performed an 

additional set of experiments in which silent cells were strongly hyperpolarized by somatic current 

injection (~–50 mV for ~3 s just before plateau initiation) during plasticity induction (Figure 4—figure 

supplement 2). This manipulation decreased synaptic potentiation (Figure 4—figure supplement 2), 

consistent with a requirement for activation of voltage- dependent NMDA- Rs. That such a large, non- 

physiological level of global Vm hyperpolarization was required to alter BTSP reinforces the finding 

that, operationally, the dependence is not on voltage signals associated with neuronal activation state 

(sustained somatodendritic Vm and action potentials), but rather on those associated with synaptic 

input (transient local spine depolarization) (Beaulieu- Laroche and Harnett, 2018). Finally, these 

experiments do not support a role for synaptic depolarization in determining the direction of changes 

in synaptic strengths.
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Figure 4. Experimental perturbation of postsynaptic activation does not change the direction of plasticity induced 

by behavioral timescale synaptic plasticity (BTSP). (A) Intracellular Vm traces from individual laps in which plasticity 

was induced by experimentally evoked plateau potentials in an otherwise silent CA1 cell (top trace). During 

plasticity induction laps (middle trace), the neuron was experimentally depolarized by ~10 mV. Experimentally 

evoked plateau potentials induced a place field (bottom). (B) Initial Vm before plasticity averaged across cells. 

Shading indicates SEM. Three conditions are compared: manipulated silent cells (silent + depolarization; blue), 

data from place cells at time points within their initial place fields (control PCs [within- field]; red), and control cells 

without pre- existing place fields (silent; black). (C) Changes in Vm ramp (∆Vm) for the same groups as in (B). Colored 

bars indicate statistical significance in specific time bins (p < 0.05; Student’s two- tailed t- test). Black compares 

manipulated silent cells to control silent cells, and red compares manipulated silent cells to control place cells 

(within- field). See Materials and methods for number of inductions in each time bin. (D) Intracellular Vm traces from 

individual laps in which plasticity was induced by experimentally evoked plateau potentials in a place cell with 

a pre- existing place field (top). During plasticity induction laps, the neuron was experimentally hyperpolarized 

by ~25 mV at spatial positions surrounding the initial place field (middle). Experimentally evoked plateau potentials 

translocated the place field (bottom). (E) Initial Vm before plasticity averaged across cells. Shading indicates SEM. 

Three conditions are compared: control place cells with pre- existing place fields (control PCs; red), control silent 

cells without pre- existing place fields (silent; black), and manipulated place cells with pre- existing place fields (PCs 

+ hyperpolarization; green). (F) Changes in Vm ramp (∆Vm) for the same groups as in (E). Colored bars indicate 

statistical significance in specific time bins (p < 0.05; Student’s two- tailed t- test). Black compares manipulated place 

Figure 4 continued on next page
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Weight-dependent model of bidirectional BTSP
The above voltage perturbation experiments suggested that the form of synaptic plasticity under-

lying BTSP does not depend on the activation state of the postsynaptic neuron (Figure  4). This 

contrasts with Hebbian plasticity rules that typically depend on either the firing rate or depolarization 

of the postsynaptic cell to determine the amplitude and direction of changes in synaptic weight. 

Another difference is that BTSP appears to be inherently stable, converting synaptic potentiation 

into depression when input strengths exceed a particular range, whereas most models of Hebbian 

learning require additional homeostatic mechanisms to counteract synaptic potentiation in highly 

active neurons (Oja, 1982; Bienenstock et al., 1982; Abbott and Nelson, 2000; Zenke et al., 2013; 

Turrigiano and Nelson, 2004). To better understand the synaptic learning rule underlying BTSP and 

its functional consequences, we next sought a mathematical description of BTSP to account for the 

following features of the in vivo recording data:

1. BTSP induces bidirectional changes in synaptic weight at inputs activated up to ~6 s before or 
after a dendritic plateau potential.

2. The direction and magnitude of changes in synaptic weight depend on the initial state of each 
synapse such that weak inputs potentiate, and strong inputs depress.

3. BTSP modifies synaptic weights such that the temporal profile of Vm in place cells approaches 
a stable target shape that peaks close in time to the plateau location and decays with distance.

As mentioned previously, ‘three- factor’ plasticity models propose a mechanism for the strengths of 

activated synapses to be modified after a time delay – a biochemical intermediate signal downstream 

of synaptic activation marks each recently activated synapse as ‘eligible’ to undergo a plastic change 

in synaptic weight. This ‘ET’ decays over a longer timescale than synaptic activation, and while it does 

not induce plasticity by itself, it enables plasticity to be induced upon the arrival of an additional 

modulatory biochemical signal. While ‘three- factor’ models consider synaptic ETs to be generated 

by a coincidence of presynaptic spikes (factor 1) and postsynaptic spikes or sustained depolarization 

(factor 2), the results of the above voltage perturbation experiments suggest that if BTSP involves the 

generation of synaptic ETs, these signals depend only on a single factor – local synaptic activation. 

In the context of BTSP, the modulatory or ‘instructive signal’ (IS) could be instantiated by a dendritic 

plateau potential. To model this, we assumed that the large magnitude dendritic depolarization asso-

ciated with a plateau potential (~60 mV) effectively propagates to all synapses (Xu et al., 2012), acti-

vating an IS at each synapse and allowing a spatially and temporally local interaction between ET and 

IS to drive plasticity independently at each individual synapse (Figure 5A). To account for plasticity 

that occurs at inputs activated up to multiple seconds after a plateau, this IS would have to decay 

slowly enough to overlap in time with ETs generated after the end of the plateau (Figure 5A).

Accordingly, we modeled changes in synaptic weights as a function of the time- varying amplitudes 

of these two biochemical intermediate signals, ET and IS. For simplicity, we first considered how BTSP 

would change the weight  8   of a single synapse activated by a single presynaptic spike with precise 

timing relative to the onset of a plateau potential (Figure 5A). We modeled the synaptic ET as a 

signal that increases upon synaptic activation at time  UT  and decays exponentially with time course  τ&5   

(see Figure 5A and Materials and methods). The IS was modeled as a signal that increases during a 

plateau potential with onset at time  UQ  and duration  E  and decays exponentially with time course  τ*4  

(see Figure 5A and Materials and methods).

Next, we modeled bidirectional changes in synaptic weight  
E8
EU   as a function of the temporal 

overlap or product of these two signals,  &5 ∗ *4 . To account for the observation that BTSP favors 

synaptic potentiation at weak synapses and synaptic depression at strong synapses, we expressed  
E8
EU   

cells to control silent cells, and red compares manipulated place cells to control place cells. See Materials and 

methods for number of inductions in each time bin.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Biophysically detailed simulations of depolarizing and hyperpolarizing somatic Vm 

perturbation experiments (related to Figure 4).

Figure supplement 2. Hyperpolarization of silent cells during plasticity induction reduces synaptic potentiation 

(related to Figure 4).

Figure 4 continued
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in terms of two separate plasticity processes  R
�
  and  R

−

  with opposite dependencies on the current 

synaptic weight  8  :

 
E8
EU �

(

8NBY − 8
)

∗ L�
∗ R�

(

&5 ∗ *4
)

− 8 ∗ L− ∗ R−	&5 ∗ *4
  (1)

where  8   is saturable up to a maximum weight of  8NBY  , and k+ and k− are learning rate constants that 

control the magnitudes of synaptic potentiation and depression per plateau potential. This formula 

can be obtained from a two- state model of finite synaptic resources (see Materials and methods). 

Figure 5. Weight- dependent model of behavioral timescale synaptic plasticity (BTSP) captures essential features of plateau- induced plasticity. (A – B) 

Traces schematize a model of bidirectional BTSP that depends on (1) presynaptic spike timing, (2) plateau potential timing and duration, and (3) the 

current synaptic weight of an input before an evoked plateau. (A) Presynaptic spikes (first row, black) result in local Vm depolarization of a postsynaptic 

spine (second row, gray), which generates a long duration plasticity ‘eligibility trace’ (ET) (third row, green) that marks the synapse as eligible for 

later synaptic potentiation or depression. The large Vm depolarization associated with the dendritic plateau potential (first row, brown) is assumed to 

effectively propagate to all synaptic sites (second row, gray), which generates a separate long duration ‘instructive signal’ (IS) (third row, yellow) that is 

also required for plasticity. Both potentiation and depression are saturable processes that depend on the temporal overlap (product) of ET and IS (fourth 

row, purple). (B) Equation defines the rate of change in synaptic weight  
E8
EU   in terms of a potentiation process  R

�
  that decreases with increasing initial 

weight  8  , and a depression process  R
−

  that increases with increasing initial weight  8  . Plot shows the relationship between  
E8
EU   and the signal overlap 

 &5 ∗ *4  under conditions of low (red), intermediate (purple), or high (blue) initial weight. (C – E) Heatmaps of changes in synaptic weight in terms of 

time delay between presynaptic spike and postsynaptic plateau, and initial synaptic weight for three variants of the weight- dependent model of BTSP. 

Dashed traces mark the equilibrium initial synaptic weight at each time delay where potentiation and depression are balanced and additional pairings 

of presynaptic spikes and postsynaptic plateaus result in zero further change in synaptic weight. (C) Model in which potentiation ( R
�

 ) and depression 

( R
−

 ) processes are nonlinear (sigmoidal) functions of signal overlap ( &5 ∗ *4 ). (D) Model in which are potentiation ( R
�

 ) and depression ( R
−

 ) processes 

are linear functions of signal overlap ( &5 ∗ *4 ). (E) Model in which the durations of the  &5   and instructive signal ( *4 ) are constrained to a short (100 ms) 

timescale, similar to intracellular calcium.
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When the current synaptic weight  8   is near  8NBY  , the potentiation rate becomes zero, and when  8   is 

near zero, the depression rate becomes zero. To calculate the net change in synaptic weight  8   after 

plasticity induction,  
E8
EU   was integrated in time for the duration of plasticity induction laps.

Experimental evidence suggests that synaptic potentiation and depression processes involve 

biochemical interactions between enzymes (e.g. phosphokinases- like CaMKII and phosphatases- 

like calcineurin) and synaptic protein substrates (e.g. AMPA- type glutamate receptors) (Herring 

and Nicoll, 2016; Mansuy, 2003). Such concentration- limited reactions are typically saturable and 

nonlinear (Graupner and Brunel, 2012). Accordingly, we defined the plasticity processes  R
�
  and  R

−

  

as saturable (sigmoidal) functions of the signal overlap  &5 ∗ *4  (see Materials and methods). If the 

depression process  R
−

  has a lower threshold for activation than the potentiation process  R
�
  (Graupner 

and Brunel, 2007; Inglebert et al., 2020), the resulting change in synaptic weight  
E8
EU   is positive and 

increases monotonically when initial weights are low, but is negative and non- monotonic when initial 

weights are high (Figure 5B). At intermediate weights,  
E8
EU   transitions from negative (depression) to 

positive (potentiation) for values of signal overlap  &5 ∗ *4  that are beyond a threshold (Figure 5B). 

Thus, the largest negative changes in synaptic weight occur when inputs are initially large in weight 

and signal overlap  &5 ∗ *4  is intermediate in amplitude. This is consistent with the in vivo data, which 

showed that negative changes in place field ramp Vm were largest at intermediate delays from a 

plateau (Figure 3B and I).

We tested this weight- dependent model of bidirectional BTSP by varying both the timing of a 

single presynaptic spike relative to a plateau (Figure 5A) and the initial weight of the activated synapse 

(Figure 5B). Model parameters were calibrated (see Materials and methods) such that synapses with 

an initial weight less than a baseline weight of 1 undergo only potentiation, while synapses with higher 

weight undergo either potentiation or depression, depending on the timing of their activation relative 

to the plateau (Figure 5C). This produced a profile of changes in synaptic weight similar to the profile 

of changes in intracellular Vm measured in vivo (Figure 3I). This model also recapitulated the finding 

that the positive and negative changes in weight induced by BTSP appear to drive synaptic inputs 

toward a stable target weight, after which additional plateaus do not induce any further changes in 

strength (indicated in white, compare Figures 3I and 5C).

We next exploited the mathematical formulation of the model to analyze these equilibrium condi-

tions in more detail. We defined  8FR  as the stable equilibrium value of W where potentiation and 

depression processes are exactly balanced, and the change in weight  8   is zero over the course of a 

trial from times  U�  to  U�  :

 
∆8 � � �

(

8NBY − 8FR

)

∗ L
�
∗

ˆ U�

U�

R
�

	&5 ∗ *4
 EU − 8FR ∗ L
−

∗

ˆ U�

U�

R
−

(

&5 ∗ *4
)

EU
  

(2)

If we abbreviate the integrated potentiation and depression terms as:

 
∆2

�
�

ˆ U�

U�

R
�

	&5 ∗ *4
EU
  

(3)

 
∆2

−

�

ˆ U�

U�

R
−

	&5 ∗ *4
EU
  

(4)

then  8FR  can be expressed as:

 
8FR � 8NBY ∗

,�
∗∆2�

,�
∗∆2��L−∗∆2−   (5)

Note that the quantities  ∆2�
  and  ∆2−

  , and therefore the value of  8FR  , will vary with the activation 

time of the input ( UT ), and the onset time ( UQ ) and duration ( E ) of a plateau. For a plateau with fixed 

onset time and duration, this produces a distribution of target equilibrium weights that varies only 

with the timing of synaptic activation relative to plateau onset (dashed line in Figure 5C), and matches 

the asymmetric shape of place fields induced by BTSP. In contrast, an alternative version of the model 

in which the potentiation and depression processes were defined to be linear instead of sigmoidal, 

predicted a single value for  8FR  regardless of the timing of synaptic activation (Figure 5D), thus failing 

to account for the data. Finally, we verified that the model requires long timescales for  &5   and  *4  by 

testing the model with shorter values (100 ms) for the decay time constants  τ&5   and  τ*4  (Figure 5E). 
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This was unable to explain changes in synaptic weight at inputs activated at seconds- long time delays 

to a plateau.

Having demonstrated that this weight- dependent model of plasticity at single synapses captures 

the essential features of BTSP, we next tested if the model can account quantitatively for the in vivo 

place field translocation data (Figures 1–3). For this purpose, we assumed that the Vm ramp depo-

larization measured in a CA1 pyramidal cell during locomotion on the circular treadmill reflects a 

weighted sum of presynaptic inputs that are themselves place cells with firing rates that vary with 

spatial position (see Figure 3J and Materials and methods). As a population, the place fields of these 

inputs uniformly tiled the track, and the firing rate of an individual input depended on the recorded 

run trajectory of the animal (Figure  6A, first and second rows). In this case, presynaptic activity 

patterns were modeled as continuous firing rates rather than discrete spike times. For each cell in the 

experimental dataset (n = 26 inductions from 24 neurons, Figures 1–3), the initial weight  8J  of each 

presynaptic input    was inferred from the recorded initial Vm, and the changes in weight  8J  during 

Figure 6. Weight- dependent model of behavioral timescale synaptic plasticity (BTSP) accounts for experimentally measured bidirectional changes in 

Vm. (A) The weight- dependent model of BTSP shown in Figure 5 was used to reproduce plateau- induced changes in Vm in an experimentally recorded 

CA1 neuron given (1) the measured run trajectory of the animal during plateau induction trials (example lap shown in first row, animal position in gray), 

(2) the measured timing and duration of evoked plateau potentials (first row, example plateau onset marked in brown), and (3) the measured initial 

Vm before plasticity (shown in (C), gray). A population of 200 presynaptic CA3 place cells provided input to the model CA1 neuron. The firing rates of 

the presynaptic inputs were assumed to vary with spatial position and run velocity (second row, all presynaptic inputs are shown sorted by place field 

peak location, black). Synaptic activity at each input generated a distinct local eligibility trace (ET) (third row, green). The dendritic plateau potential 

generated a global instructive signal broadcast to all synapses (fourth row, yellow). The overlap between ET and IS varied at each input depending on 

the timing of presynaptic activity (fifth row, purple). The weight- dependent model predicted increases in synaptic weight (positive rate of change, red) 

at some synapses with low initial weight, and decreases in synaptic weight (negative rate of change, blue) at other synapses with high initial weight. 

(B) Synaptic weights of the 200 synaptic inputs shown in (A) before (gray) and after (black) plateau- induced plasticity. (C) Spatially binned Vm ramp before 

(gray) and after (black) plasticity was computed as a weighted sum of the input activity. (D) Changes in Vm ramp amplitude (∆Vm) at each spatial bin 

predicted by the weight- dependent model are compared to the experimental data (n = 26 inductions from 24 neurons with pre- existing place fields). 

Explained variance (R2) and statistical significance (p < 0.05) reflect Pearson’s correlation and two- tailed null hypothesis tests. (E) Heatmap of changes in 

Vm ramp (∆Vm) predicted by the model as a function of both time and initial Vm. Compare to experimental data in Figure 3I.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Sensitivity of induced place field Vm ramps to repeated plateau potentials and run velocity in the weight- dependent model of 

behavioral timescale synaptic plasticity (BTSP) (related to Figures 2 and 6).

Figure supplement 2. Comparison of alternative models of behavioral timescale synaptic plasticity (BTSP) (related to Figures 5 and 6).

Figure supplement 3. Bidirectional behavioral timescale synaptic plasticity (BTSP) schematic (related to Figures 3, 5 and 6).
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plasticity induction laps containing evoked plateau potentials were computed as above (Equation 1; 

see Materials and methods). The relevant signals modeled for an example lap from a representative 

cell from the dataset are shown in Figure 6A. Note that, at inputs activated before the onset time 

of the plateau, changes in synaptic weight (bottom row) do not begin until after plateau onset when 

the instructive signal  *4  and the signal overlap  &5 ∗ *4  are nonzero. The parameters of the model 

were optimized to predict the final synaptic weights (Figure 6B) and reproduce the final Vm ramp 

(Figure 6C) after multiple plasticity induction laps (Figure 6—figure supplement 1, Materials and 

methods). Across all cells, these predictions quantitatively matched the corresponding experimental 

data (Figure 6D). Finally, the sensitivity of changes in Vm to initial Vm and time to plateau predicted 

by the model recapitulated that measured from the in vivo intracellular recordings (Figure 6E and 

Figure 6—figure supplement 2).

The above modeling results help to clarify the differences between BTSP and previously charac-

terized forms of associative synaptic plasticity based on input- output correlations over short times-

cales (Gerstner et al., 2018; He et al., 2015; Brzosko et al., 2015; Brzosko et al., 2017). First, the 

model supports the hypothesis that a dependence on initial synaptic weight is the actual source of 

the observed inverse relationship between initial Vm and plasticity- induced changes in Vm (Figure 3). 

Second, the scaling of both potentiation and depression by synaptic weight produces a balanced 

form of plasticity that rapidly stabilizes during repeated inductions (Figure 1, and Figure 6—figure 

supplement 1A and B; Shouval et  al., 2010; Jedlicka et  al., 2015; Bienenstock et  al., 1982; 

Abraham, 2008; Cooper and Bear, 2012). Third, the time course of BTSP is determined by temporal 

overlap between slow eligibility signals associated with synaptic activity and slow IS associated with 

plateau potentials. This selects a subpopulation of synaptic inputs activated with appropriate timing 

to undergo a change in synaptic strength (Figure 6—figure supplement 3). Finally, IS are internal 

signals activated by dendritic plateau potentials, rather than by spiking output, arguing that BTSP 

is not simply a variant of Hebbian plasticity that depends on input- output correlations over a longer 

timescale.

Functional capabilities of BTSP
The above observations imply that BTSP could enable spatial representations to be shaped non- 

autonomously by delayed behavioral outcomes, if dendritic inputs carrying information about those 

outcomes are able to evoke plateau potentials (Muller et al., 2019). To evaluate the feasibility and 

implications of this theory, we next considered the conditions that are required for dendritic plateau 

potentials to be generated in the context of the hippocampal neural circuit. Previous work has shown 

that (1) plateau potentials are positively regulated by excitatory inputs from entorhinal cortex (Bittner 

et al., 2015; Takahashi and Magee, 2009; Milstein et al., 2015), (2) they are negatively regulated by 

dendrite- targeting inhibition (Grienberger et al., 2017; Milstein et al., 2015; Lovett- Barron et al., 

2012; Royer et  al., 2012; Palmer et  al., 2012), (3) they occur more frequently in novel environ-

ments (Cohen et al., 2017) and precede the emergence of new place fields (Sheffield et al., 2017), 

and (4) introduction of a fixed reward site induces large shifts in the place field locations of many 

place cells in a population, as assayed by calcium imaging (Turi et al., 2019). In order to explore the 

consequences of these regulatory mechanisms on memory storage by BTSP at the network level, we 

next constructed a network model of the CA1 microcircuit that incorporates these critical elements 

to regulate plateau initiation (Figure 7A) and implements the above- described weight- dependent 

model of BTSP (Figures 5 and 6) at each input to the network.

In a population of 500 firing rate model CA1 pyramidal neurons, plateaus were positively regulated 

by a long- range feedback input from entorhinal cortex and negatively regulated by local feedback 

inhibition (Figure  7A and B; Stefanelli et  al., 2016). Generation of plateau potentials within the 

population of CA1 neurons in the model was stochastic, which would result from fluctuations in inputs 

from entorhinal cortex that occasionally cross a threshold for the generation of a plateau potential in 

different cells at different times. The presence of reward delivered at a fixed goal location was imple-

mented as an increase in input from entorhinal cortex (Boccara et al., 2019; Butler et al., 2019), 

although an equivalent increase in plateau generation could result instead from neuromodulatory 

input that directly increased dendritic excitability or reduced dendritic inhibition (Sjöström et  al., 

2008; Pi et al., 2013; Tyan et al., 2014; Guerguiev et al., 2017).
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During goal- directed navigation, hippocampal neurons have been shown to preferentially acquire 

new place fields near behaviorally relevant locations, and to translocate existing place fields toward 

those locations (Dupret et al., 2010; Zaremba et al., 2017; Turi et al., 2019; Hollup et al., 2001; 

Gauthier and Tank, 2018; Lee et al., 2020). We modeled this situation by simulating a virtual animal 

running on a circular treadmill for three separate phases of exploration (Figure 7C). At each time step 

(10 ms), instantaneous plateau probabilities were computed for each cell (Figure 7B), determining 

which neurons would initiate a dendritic plateau and undergo plasticity. During the first few laps of 

simulated exploration, CA1 pyramidal neurons rapidly acquired place fields that, as a population, 

Figure 7. Bidirectional behavioral timescale synaptic plasticity (BTSP) enables rapid adaptation of population representations in a network model. 

(A) Diagram depicts components of a hippocampal network model. A population of CA1 pyramidal neurons receives spatially tuned excitatory input 

from a population of CA3 place cells and a long- range feedback input from entorhinal cortex (EC) that signals the presence of a behavioral goal. The 

output of CA1 pyramidal neurons recruits local feedback inhibition from a population of interneurons. (B) The probability that model CA1 neurons 

emit plateau potentials and induce bidirectional plasticity is negatively modulated by feedback inhibition. As the total number of active CA1 neurons 

increases (labeled ‘normalized population activity’), feedback inhibition increases, and plateau probability decreases until a target level of population 

activity is reached, after which no further plasticity can be induced (black). A long- range feedback input signaling the presence of a goal increases 

plateau probability, resulting in a higher target level of population activity inside the goal region (red). (C) Each row depicts the summed activity of the 

population of model CA1 pyramidal neurons across spatial positions during a lap of simulated running. Laps 1–10 reflect exploration of a previously 

unexplored circular track. During laps 11–20, a goal is added to the environment at a fixed location (90 cm). During laps 21–25, the goal is removed for 

additional exploration of the now familiar environment. (D – E) Activity of individual model CA1 pyramidal neurons during simulated exploration as 

described in (C). (D) The firing rates of model neurons are sorted by the peak location of their spatial activity following 10 laps of novel exploration. ~250 

neurons have acquired place fields. A fraction of the population remains inactive and untuned. (E) Left: changes in firing rate of model neurons after 

10 laps of goal- directed search shows place field acquisition and translocation. Right: the firing rates of model neurons are re- sorted by their new peak 

locations. An increased fraction of neurons express place fields near the goal position. The remaining silent ~200/500 neurons that did not acquire a 

place field are not shown.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. New place field acquisition and pre- existing place field translocation in a network model of goal- directed navigation (related to 

Figure 7).
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uniformly tiled the track (Figure 7C and D). As neurons increased their activity over time, feedback 

inhibition increased proportionally and prevented further plasticity (Figure 7A–C). During the next 

phase a goal was presented at a fixed location, resulting in both acquisition of new place fields nearby 

the goal location in a population of initially silent neurons, and translocation of place fields toward the 

goal location in a separate population of cells with pre- existing fields (Figure 7E, left; Figure 7—figure 

supplement 1). Overall, this resulted in an increased proportion of place cells with fields near the 

goal position (Figure 7E, right), recapitulating experimentally observed modifications in CA1 network 

activity during goal- directed behavior (Zaremba et al., 2017). The asymmetric time course of BTSP 

caused the population representation of the goal in the model to peak before the goal location itself, 

producing a predictive memory representation of the path leading to the goal (Mehta et al., 1997; 

Stachenfeld et al., 2017). Simulated place cell activity remained stable in a final phase of exploration 

without reward (Figure 7C and Figure 7—figure supplement 1). These network modeling results 

demonstrate that plasticity regulated by local network activity and long- range feedback, rather than 

by pairwise correlations, can enable populations of place cells to rapidly adapt their spatial represen-

tations to changes in the environment without any compromise in selectivity.

Discussion
In summary, we observed translocation of hippocampal place fields by dendritic plateau potentials 

and characterized the underlying synaptic learning rule. We found that BTSP is bidirectional, inducing 

both synaptic potentiation and synaptic depression in neurons expressing pre- existing place fields. 

The direction of plasticity is determined by the synaptic weight of each excitatory input prior to a 

plateau potential, and the time interval between synaptic activity and a plateau. The large magnitude 

of synaptic weight changes enables BTSP to rapidly reshape place field activity in a small number of 

trials. These results corroborate recent work showing that changes in place field firing in CA1 could be 

induced by juxtacellular current injection, which was correlated with the occurrence of long duration 

complex spikes (Diamantaki et al., 2018). Here, we used intracellular stimulation and recording to 

reliably evoke dendritic calcium spikes with precise timing and duration, and to monitor subthreshold 

changes in Vm dynamics, which enabled inference of the underlying synaptic learning rule.

The time and synaptic weight dependence of BTSP suggests that it is driven by an input- specific 

process rather than nonselective heterosynaptic (Lynch et al., 1977) or homeostatic plasticity (Mendez 

et al., 2018; Hengen et al., 2016), or modulation of cellular excitability (Chandra and Barkai, 2018; 

Titley et al., 2017). A significant role for changes in inhibitory synaptic weights is unlikely given that 

(1) inhibitory neurons in CA1 exhibit low levels of spatial selectivity (Grienberger et al., 2017), (2) 

homosynaptic potentiation of excitatory inputs by dendritic plateau potentials can be induced with 

GABAergic inhibition blocked (Bittner et al., 2017), and (3) inhibitory input to CA1 neurons does not 

change following induction of synaptic potentiation by BTSP (Grienberger et al., 2017).

The voltage perturbation experiments we performed (Figure  4) showed that BTSP does not 

depend on the activation state of the postsynaptic neuron. These results point to a fundamental differ-

ence between BTSP and existing Hebbian models of plasticity. In most previous models, including 

the aforementioned ‘three- factor’ plasticity models, the firing rate (He et al., 2015; Brzosko et al., 

2015; Markram et al., 1997; Bi and Poo, 1998), or sustained level of global depolarization (Clopath 

et al., 2010; Artola et al., 1990; Brandalise and Gerber, 2014) at the time of presynaptic spiking 

primarily determines whether a synaptic weight increases or decreases (Gerstner et al., 2018; Abbott 

and Nelson, 2000; Caporale and Dan, 2008). Our voltage perturbation experiments (Figure 4 and 

Figure 4—figure supplement 2) show that the direction of plasticity is not determined by either 

global depolarization or spiking.

This lack of dependence on the postsynaptic activity or output could enable plasticity to be 

robust to fluctuations in postsynaptic state due to noise or network oscillations (e.g. theta or gamma) 

(Buzsáki and Moser, 2013), and may allow the postsynaptic state to subserve other functions, such as 

temporal coding, without interfering with ongoing synaptic weight modifications. Furthermore, while 

in traditional Hebbian models of plasticity, short timescale synchrony between pre- and postsynaptic 

activity modifies weights to reinforce pre- existing correlations, BTSP instead provides a mechanism to 

either create new pairwise activity correlations ‘from scratch’, or remove pre- existing ones based on 

delayed outcomes. Our network model (Figure 7) highlights how this fundamental element of BTSP 

could shape spatial memory storage at the network level, allowing neuronal circuits to rapidly acquire 
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population- level representations of previously unencountered environmental features, and to modify 

outdated representations. This model also demonstrated that, if plateau potentials are generated by 

a mismatch between local circuit output and target information relayed by long- range feedback, BTSP 

can implement objective- based learning (Richards et al., 2019b; Sacramento, 2018; Payeur et al., 

2020).

Together our experimental and modeling results establish BTSP as a potent mechanism for rapid 

and reversible learning. In addition to providing insight into the fundamental mechanisms of spatial 

memory formation in the hippocampus, these findings suggest new directions for general theories of 

biological learning and the development of artificial learning systems (Guerguiev et al., 2017; Payeur 

et al., 2020; Bono and Clopath, 2017; Richards and Lillicrap, 2019a; Lillicrap et al., 2020).

Materials and methods
Animals and procedures
All experimental methods were approved by the Janelia or Baylor College of Medicine Institutional 

Animal Care and Use Committees (Protocols 12–84 and 15–126). All experimental procedures in this 

study, including animal surgeries, behavioral training, treadmill and rig configuration, and intracellular 

recordings, were performed identically to a previous detailed report (Bittner et al., 2017) in an over-

lapping set of experiments, and are briefly summarized here.

In vivo experiments were performed in 6- to 12- week- old mice of either sex. Craniotomies above 

the dorsal hippocampus for simultaneous whole- cell patch clamp and local field potential (LFP) record-

ings, as well as affixation of head bar implants were performed under deep anesthesia. Following a 

week of recovery, animals were prepared for behavioral training with water restriction, handling by the 

experimenter, and addition of running wheels to their home cages. Mice were trained to run on the 

cue- enriched linear treadmill for a dilute sucrose reward delivered through a licking port once per lap 

(~187 cm). A MATLAB GUI interfaced with a custom microprocessor- controlled system for position- 

dependent reward delivery and intracellular current injection. Animal- run velocity was measured by an 

encoder attached to one of the wheel axles.

Plasticity was induced in vivo by injecting current (700 pA, 300 ms) intracellularly into recorded 

CA1 neurons to evoke dendritic plateau potentials at the same position on the circular treadmill for 

multiple consecutive laps. In most cases, plateaus were evoked on five consecutive laps (Figure 1—

figure supplement 1E, left). However, during some experiments, large changes in the spatial Vm ramp 

depolarization could be observed to develop after as few as one plateau (consistent with the obser-

vation that plasticity could be induced by a single spontaneously- occurring plateau), and so fewer 

induction laps were used. In other experiments, plateaus were induced on more than five consecutive 

laps if place field expression remained weak after the first five trials (Figure 1—figure supplement 1E, 

left). The source of this variability across cells/animals is not yet clear, and requires future investigation. 

Overall, this procedure induced changes in spatial Vm ramp depolarization in 100% of cells in which 

it was attempted by three investigators. In some cells, the initial place field was first induced by this 

procedure, and then the procedure was repeated a second or third time in the same cell with plateaus 

induced at different locations. In those cases, there was no systematic difference in the number of 

plateaus required to induce the first place field compared to subsequent fields (Figure 1—figure 

supplement 1E, right).

Since the time window for plasticity induction by BTSP extends for seconds around each plateau, 

and plateaus were typically evoked on multiple consecutive laps, the changes in synaptic weights 

induced by BTSP depended on the run behavior of the animals across all induction laps. We showed 

in Figure 3D that the spatial width of place fields induced by BTSP varied with the average velocity 

of animals across all plasticity induction laps. Another factor that contributed to the spatial width of 

induced fields is the proximity of the evoked plateaus to the reward site, as animals tended to stop 

running briefly to lick near the fixed reward site. Variability across laps in either the run velocity or 

the duration of pauses could pose a challenge in trying to relate spatial changes in Vm ramp depolar-

ization to the time delay to the plateau (see below). Figure 1—figure supplement 1 shows the full 

run trajectories of animals during all plasticity induction laps for the five representative example cells 

shown in Figure 1. While some variability across induction laps was observed, each animal tended to 

run consistently at similar velocities across laps.
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In vivo intracellular electrophysiology
To establish whole- cell recordings from CA1 pyramidal neurons, an extracellular LFP electrode was 

lowered into the dorsal hippocampus using a micromanipulator until prominent theta- modulated 

spiking and increased ripple amplitude was detected. Then a glass intracellular recording pipette was 

lowered to the same depth while applying positive pressure. The intracellular solution contained (in 

mM): 134 K- gluconate, 6 KCl, 10 HEPES, 4 NaCl, 0.3 MgGTP, 4 MgATP, 14 Tris- phosphocreatine, and 

in some recordings, 0.2% biocytin. Current- clamp recordings of intracellular membrane potential (Vm) 

were amplified and digitized at 20 kHz, without correction for liquid junction potential. The silent- 

cell population of neurons (n = 29) contained recordings from 17 neurons that have been previously 

reported (Bittner et al., 2017).

In a subset of experiments (Figure 4 and Figure 4—figure supplement 2), in addition to position- 

dependent step current to evoke plateau potentials, additional current was injected either to depo-

larize neurons beyond spike threshold or to hyperpolarize neurons below spike threshold, during 

plasticity induction laps. While these perturbations to Vm at the soma are expected to attenuate along 

the path to distal dendrites (Golding et al., 2005), the pairing of back- propagating action potentials 

with synaptic inputs has been shown to significantly amplify dendritic depolarization (Jarsky et al., 

2005; Stuart and Häusser, 2001; Migliore et al., 1999; Schiller and Schiller, 2001). Simulations of a 

biophysically detailed CA1 place cell model with realistic morphology and distributions of dendritic ion 

channels (Grienberger et al., 2017) suggest that somatic depolarization of a silent CA1 cell increases 

distal dendritic depolarization, and that somatic hyperpolarization of a place cell substantially reduces 

distal dendritic depolarization at the peak of its place field (Figure 4—figure supplement 1).

Place field analysis
To analyze subthreshold Vm ramps, action potentials were first removed from raw Vm traces and linearly 

interpolated, then the resulting traces were low- pass filtered (<3 Hz). For each of 100 equally sized 

spatial bins (~1.85 cm), Vm ramp amplitudes were computed by averaging across 10 laps of running 

on the treadmill both before and after plasticity induction. The spatially binned ramp traces were 

then smoothed with a Savitzky- Golay filter with wrap- around. Ramp amplitude was quantified as the 

difference between the peak and the baseline (average of the 10% most hyperpolarized bins). For 

cells with a second place field induced, the same baseline Vm value determined from the period before 

the second induction was also used to quantify ramp amplitude after the second induction. Plateau 

duration was estimated as the duration of intracellular step current injections, or as the full width at 

half maximum Vm in the case of spontaneous naturally occurring plateaus.

Vm ramp half- width (Figure 2D and Figure 6—figure supplement 1C) was calculated from the ∆Vm 

traces as the time (s) or distance (cm) between the plateau and the final return of ∆Vm to zero (or at 

least to 25% of min; see Figure 2—figure supplement 1G). In most cases this only occurred on one 

side of the plateau, during either the running period before or after the plateau. In 5/26 inductions, 

the mouse ran so quickly that the ∆Vm did not have time to reach 25% of min on either side of the 

plateau (Figure 2—figure supplement 1G), resulting in an underestimation of the ramp half- width. 

The average velocity was calculated as the mean velocity of the mouse from the plateau to the end of 

the plasticity (Figure 2—figure supplement 1).

In order to relate spatial changes in Vm ramp depolarization to the time delay to a plateau (e.g. 

Figures 2E, F, 3A–F, I, 4B, C, E, F and 6E), we assigned to each spatial position the shortest time 

delay to plateau that occurred across multiple induction laps (Figure  1—figure supplement 1). 

This is a conservative estimate, as the shortest delay between presynaptic activity and postsynaptic 

plateau will generate the largest overlap between ET and IS, and will result in the largest changes in 

synaptic weight. While this method is imperfect and did discard variability in running behavior across 

laps, it enabled direct comparison of the time course of BTSP across neurons. We also note that, 

to generate the modeling results shown in Figure 6, the full run trajectory of each animal during 

all induction laps, including pauses, was provided as input to the model (see details below). This 

resulted in good quantitative agreement between experimentally recorded and modeled spatial 

Vm ramps (Figure 6D). Since not all possible pairs of initial ramp amplitude and time delay relative 

to plateau onset were sampled in the experimental dataset, expected changes in ramp amplitude 

(e.g. Figure  3I) were predicted from the sampled experimental or model data points by a two- 

dimensional Gaussian process regression and interpolation procedure using a rational quadratic 
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covariance function, implemented in the open- source Python package sklearn (Abraham et  al., 

2014; Rasmussen and Williams, 2006).

To statistically compare ∆Vm vs. time plots among groups each individual induction trace was 

binned in time (average of values in 80, 100 ms, bins from –4 to +4 s). The number of points in each 

bin for each group is as follows: silent cells (−4, + 4 s): n = 19, 19, 19, 0, 20, 20, 21, 21, 25, 26, 26, 27, 

27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 

29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 27, 25, 25, 25, 24, 21, 20, 19, 17, 16, 14, 14, 10, 

9, 9, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6. Silent + depolarization (−4, + 4 s): n = 2, 2, 4, 5, 5, 6, 6, 6, 6, 6, 6, 

7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 6, 6, 6, 6, 5, 5, 5, 

5, 3, 3. Depolarized PCs (–4 to +4 s): n = 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 5, 6, 6, 6, 7, 7, 6, 6, 6, 7, 7, 8, 7, 7, 

7, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 8, 8, 8, 9, 10, 14, 14, 15, 15, 15, 15, 

15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 12, 12, 10, 9, 9. All PCs (–1 to +4 s): n = 26, 

26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 

26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 25, 24, 24. PCs + hyperpolarization 

(–1 to +4 s): n = 5, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 

8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 

8, 8, 8, 8, 8, 8, 8, 8, 8, 8. Silent+ large hyperpolarization (–4 to +4): n = 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 

6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 

6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2.

Quantification and statistical analysis
Statistical details of experiments can be found in the figure legends. Unless otherwise specified, 

measured values and ranges reflect mean ± SEM. Significance was defined as p < 0.05. Sample sizes 

were not determined by statistical methods, but efforts were made to collect as many samples as was 

technically feasible. No data or subjects were excluded from any analysis.

Computational modeling
Weight-dependent BTSP model
In Figures 5 and 6, we provide a mathematical model of the synaptic learning rule underlying bidirec-

tional BTSP. In this ‘weight- dependent’ model, the direction and magnitude of plasticity at excitatory 

synapses from spatially tuned CA3 place cell inputs onto a CA1 pyramidal cell are determined by (1) 

the timing of presynaptic spiking relative to postsynaptic plateau potentials and (2) the current weight 

of each synapse just prior to a plateau. While in Figure 5, discrete spikes were provided as presynaptic 

inputs to the model, in Figure 6, presynaptic inputs were provided as continuous firing rates. This 

model contained nine free parameters (described in detail below), which were fit to the experimental 

data using an iterative, bounded, stochastic search procedure based on the simulated annealing 

algorithm (Milstein, 2021a; Milstein, 2021b). This optimization sought to minimize the difference 

between the experimentally recorded place cell Vm ramp depolarizations (Figures 1–3) and those 

predicted by the model (Figure 6D and E). Parameter optimization was considered to converge after 

sampling 30,000 distinct model configurations. Below we describe the model formulation in detail.

A CA1 place cell was modeled as receiving excitatory input from a population of 200 CA3 place 

cells with spatially tuned firing fields spaced uniformly across an ~185 cm circular track (Figure 3J). 

The firing rate  3J  of an individual input    with place field at position  ZJ  depended on the recorded run 

trajectory of the animal  Y
(

U
)

  (Figure 6A, first and second rows):

 3J

(

U
)

� 3NBY ∗ F
−

�
�

(

ZJ−Y
(

U
)

σ

)�

  
(6)

where  3NBY  is a maximum firing rate of 40 Hz at the peak of a place field, and  σ  determines the width 

of the place field.  σ  was set such that CA3 place field inputs had a full floor width ( � ∗ σ ) of 90 cm (half- 

width of ~34 cm) (Mizuseki et al., 2012), though models tuned with alternative values of  σ  gener-

ated quantitatively similar predictions (‘60  cm input field widths’ in Figure 6—figure supplement 

2). The complete run trajectory of each animal during consecutive plasticity induction laps, including 

pauses in running between laps, was provided as a continuous input to the model. In accordance with 
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experimental data (Bittner et al., 2015; Grienberger et al., 2017), the firing rates of model place cell 

inputs were set to zero during periods when the animal stopped running.

The Vm ramp depolarization of a CA1 place cell as a function of position,  7
(

Y
)

 , was modeled as a 

weighted sum of the spatial firing rates of the CA3 place cell inputs. We assumed that in silent cells 

prior to plasticity induction, all inputs had an initial synaptic weight of 1. This produced a background 

level of depolarization,  7C  , which was subtracted from the total weighted sum to calculate the ramp 

amplitude (Figure 6C–E):

 7
(

Y
)

� D ∗
∑

J 8J ∗ 3J

(

Y
)

− 7C  (7)

The scaling factor  D  was calibrated such that if the synaptic weights of CA3 place cell inputs varied 

between 1 and 2.5 as a Gaussian function of their place field locations, the postsynaptic CA1 cell 

would express a Vm ramp with 108  cm width and 6  mV peak amplitude, consistent with previous 

measurements of place field properties and the degree of synaptic potentiation by BTSP (Bittner 

et al., 2017). For CA1 place cells already expressing a place field before plateaus were evoked at a 

second location, the initial synaptic weights were estimated by using least squares approximation to 

fit the experimentally recorded initial Vm ramp.

At each input   , a postsynaptic eligibility trace  &5J  was activated by presynaptic firing  3J  and 

decayed with a seconds- long time course  τ&5   (Figure 6A, third row):

 τ&5 ∗
E&5J

EU � −&5J � λ&5 ∗ 3J  (8)

The scaling factor  λ&5   was chosen such that the maximum amplitude of  &5   does not exceed 1. For 

single spike inputs, as shown in Figure 5, the firing rate  3J  was replaced with a delta function  δ
(

U − UT
)

  

where  UT  is the time of the spike.

Postsynaptic dendritic plateau potentials during each induction lap µ with onset at time  UQ  and 

duration  E  activated an instructive signal  *4  that was broadcast to all synapses and decayed exponen-

tially with time course  τ*4  (Figure 6A, fourth row):

 τ*4 ∗
E*4
EU � −*4 � λ*4 ∗ 1

(

UQ
 E
)

  (9)

where  1  is a binary function that takes a value of 1 during a plateau and 0 otherwise. The scaling 

factor  λ*4  was chosen such that the maximum amplitude of  *4  does not exceed 1. The duration of 

experimentally induced plateaus were typically 300 ms, but spontaneous plateaus were recorded with 

duration up to ~800 ms.

Next, temporal overlap of eligibility traces  &5J  and instructive signals  *4  (Figure 6A, fifth row) were 

considered to drive saturable potentiation and depression processes independently at each synapse. 

The sensitivity of these two processes  R
�
  and  R

−

  to the amplitude of plasticity signal overlap was 

defined by generalized sigmoid functions  T
(

Y
α
β
)

  with a scale and offset to meet the following edge 

constraints:  T � �  when  Y � � ,  T � �  when  Y � � :

 
T̂
(

Y
α
β
)

� �

��F
(

−β
(
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  (10)
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 R−
(

&5J ∗ *4
)

� T	&5J ∗ *4
α−
β−
  (13)

where  α±  and  β
±

  control the threshold and slope of the sigmoidal gain functions for potentiation and 

depression.

Finally, to capture the dependency of changes in synaptic weight  
E8J

(

U
)

EU   on the current value of 

synaptic weight  8J  at each input    during plasticity induction, we chose a two- state non- stationary 

kinetic model of the following form:

 

*OBDUJWF

*

L�
∗ R�	&5J ∗ *4


−−−−−−−−−−−→
←−−−−−−−−−−−−

L− ∗ R−	&5J ∗ *4


"DUJWF

"

  (14)
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According to this formulation, independent and finite synaptic resources at each synapse occupied 

either an inactive state I or an active state A, and transitioned between states with rates controlled by 

the constants  L±  and the gain functions  R
±

  described above. The synaptic weight of each input  8J  was 

defined as proportional to the occupancy of the active state A:

 8J � " ∗ 8NBY  (15)

where  � ≤ " ≤ � , and  8NBY  is a free parameter controlling the maximum value of synaptic weight. 

Since the occupancy of each state in a kinetic model constrains the flow of finite resources between 

states, the net change in synaptic weight  
E8J

EU   at each input    naturally depended on the current value 

of synaptic weight  8J  :

 
E8J

EU �
(

8NBY − 8J

)

∗ L�
∗ R�

(

&5J ∗ *4
)

− 8J ∗ L�
∗ R−

(

&5J ∗ *4
)

  (16)

Changes in synaptic weight  8J  were calculated by integrating the net rate of change of synaptic 

weight  
E8J

EU   over the duration of plasticity induction. In practice, for simplicity and efficiency of compu-

tation during parameter optimization, we numerically approximated  8J  by holding the value of  8J  

constant for the duration of each induction lap, and updating  8J  once at the end of each induction 

lap (Figure 6). Equivalent results were obtained by updating  8J  continuously in 10 ms steps without 

requiring any change in parameters.

The weight- dependent model of the BTSP rule contained nine free parameters. The range of 

parameter values that fit the experimental data (n = 26 plasticity inductions in 24 neurons with pre- 

existing place fields) were as follows (mean ± SEM): (1)  τ&5  : 863.91 ± 113.93 ms, (2)  τ*4 : 542.76 ± 

95.47 ms, (3)  α� : 0.24 ± 0.05, (4)  β
�
 : 30.32 ± 6.50, (5)  α− : 0.09 ± 0.04, (6)  β

−

 : 2260.61 ± 1529.97, (7) 

 L� : 2.27 ± 0.49/ s, (8)  L−  : 0.33 ± 0.11/ s, (9)  8NBY : 4.02 ± 0.17. The results of the model in response 

to simpler single- spike inputs in Figure 5A–C were obtained with the following parameter values: (1) 

 τ&5  : 2500 ms, (2)  τ*4 : 1500 ms, (3)  α� : 0.5, (4)  β
�
 : 4, (5)  α− : 0.01, (6)  β

−

 : 44.44, (7)  L� : 1.7/ s, (8)  L− : 

0.204/s, (9)  8NBY : 5.

Alternative formulations of the weight-dependent BTSP model
Given the complexity of the above model, we also tested a number of alternative formulations to 

determine if the experimental data could be accounted for by a simpler model. First, we tested 

whether the filter time constants  &5   and  *4  that control the duration of the  &5   and  *4  could be shorter 

by constraining their values during parameter optimization to be less than 50 ms. This model variant 

performed poorly in predicting the depression component of BTSP (‘short timescale ET and IS’ in 

Figure 5E and Figure 6—figure supplement 2A and B). This supports the notion that intermediate 

signals with durations longer than either voltage or calcium are required for the long timescale of 

BTSP. This also demonstrates that the nonlinear gain functions  R
±

  are not able to compensate for 

shorter duration  &5   or  *4 .

Next, we determined whether the nonlinear gain functions  R
±

  could instead be linear by replacing 

both the sigmoidal  R
�
  and  R

−

  with the identity function:

 R�
(

&5J ∗ *4
)

� &5J ∗ *4  (17)

 R−
(

&5J ∗ *4
)

� &5J ∗ *4  (18)

This model variant also failed to account for synaptic depression by BTSP (‘linear q+ and q−’ in 

Figure 5D and Figure 6—figure supplement 2A and B), suggesting that nonlinearity of bidirectional 

plasticity is an important feature of the weight- dependent BTSP model.

Goal-directed spatial learning model
To investigate the implications of bidirectional BTSP for spatial learning by a population of CA1 

place cells (Figure 7), we constructed a network model comprised of 500 CA1 pyramidal cells each 

receiving input from a population of 200 CA3 place cells with place fields spaced at regular intervals 

spanning the ~185 cm circular track. The synaptic weights at inputs from model CA3 place cells to 

model CA1 cells were controlled by the weight- dependent model described above (Figures 5 and 

6). For this purpose, the nine free parameters of the model were calibrated to match synthetic target 
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Vm ramp data as follows: (1) lap running was simulated at a constant run velocity of 25 cm/s, (2) in an 

initially silent cell, plasticity was induced by three consecutive laps with one 300 ms long plateau per 

lap evoked at a fixed location, (3) after plasticity, the induced place field Vm ramp had an asymmetric 

shape (~75 cm rise, ~ 35 cm decay) and a peak amplitude of 8 mV, (4) three additional plasticity 

induction laps with plateaus evoked at a location 3 s behind the peak location of the initial place field 

resulted in a 5 mV decrease in ramp amplitude at the initial peak location, and an 8 mV peak ramp 

amplitude at the new translocated peak position.

Before simulated exploration, all synaptic weights were initialized to a value of 1, which resulted 

in zero ramp depolarization in all model CA1 cells. Under these baseline conditions, each model CA1 

neuron  L  had a probability  QL

(

U
)

� QCBTBM � ������  of emitting a single dendritic plateau potential in 

1 s of running. During each 10 ms time step, this instantaneous probability  QL

(

U
)

  was used to weight 

biased coin flips to determine which cells would emit a plateau. This stochasticity can be thought of 

as reflecting fluctuations in the synaptic input arriving to each cell from the long- range cortical input 

pathway that occasionally drives the neuron to cross a threshold for generation of a dendritic calcium 

spike. If a cell emitted a plateau, it persisted for a fixed duration of 300 ms and was followed by a 500 

ms refractory period during which  QL

(

U
)

  was transiently set to zero.

After the first lap, CA1 neurons that had emitted at least one plateau and had induced synaptic 

potentiation produced nonzero ramp depolarizations (Figure 7C). The output firing rates  3
$"�
µ
L   of each 

CA1 neuron  L  on lap µ were considered to be proportional to their ramp depolarizations  7µ
L

(

U
)

  after 

subtracting a threshold depolarization of 2 mV. The activity  3
*/)
µ

(

U
)

  of a single inhibitory feedback 

element was set to be a normalized sum of the activity of the entire population of CA1 pyramidal 

neurons:

 3*/)
µ

(

U
)

� λ ∗

∑

L 3$"�
µ
L

(

U
)

  (19)

where the normalization constant  λ  was chosen such that the activity of the inhibitory feedback neuron 

would be one if every CA1 pyramidal neuron expressed a single place field and as a population their 

place field peak locations uniformly tiled the track. Then, the probability that any CA1 neuron k would 

emit a plateau  QL

(

U
)

  was negatively regulated by the inhibitory feedback term  3
*/)
µ

(

U
)

  :

 

QL

(

U
)

�











T
(

3*/)
µ

(

U
)


αCBTBM
βCBTBM
)

3*/)
µ

(

U
)

� αCBTBM

� 3*/)
µ

(

U
)

≥ αCBTBM

  

(20)

where  αCBTBM  defined a target normalized population activity (set to 0.5) and  β
CBTBM

  defined the slope 

of a descending sigmoid function with a maximum value of 0.0075 (Figure 7B).

In some laps, a specific location was assigned as the target of a goal- directed search. To mimic an 

increase in the activity of the long- range input from entorhinal cortex signaling the presence of the 

goal, the probability that a CA1 neuron would emit a plateau potential  QL

(

U
)

  was transiently increased 

when the simulated animal crossed the goal location for a period of 500 ms. Within the goal region, 

the relationship between  QL

(

U
)

  and  3
*/)
µ

(

U
)

  was instead:

 

QL

(

U
)

�











T
(

3*/)
µ

(

U
)


αHPBM
βHPBM
)

3*/)
µ

(

U
)

� αHPBM

� 3*/)
µ

(

U
)

≥ αHPBM

  

(21)

where  αHPBM  is an elevated target normalized population activity (set to 1.0) and  β
HPBM

  defines the slope 

of a descending sigmoid function with a maximum value of 0.035, corresponding to an elevated peak 

plateau probability (Figure 7B).

Data and code availability
The complete dataset and Python code for data analysis and model simulation is avail-

able at https://github.com/neurosutras/BTSP (Milstein, 2021c copy archived at 

swh:1:rev:952cbb453ae80b2efe52f2936baa03e3a4689dc5).
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