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In brief

Hadjiabadi et al. reveal a novel functional
cell type, the superhub, that preferentially
emerges in the preseizure brain to
powerfully propagate excitation.
Disconnecting superhubs in simulations
stabilizes epileptic circuits more
effectively than disconnecting traditional
hubs, predicting a new single-cell target
for seizure control.
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SUMMARY

Neurological and psychiatric disorders are associated with pathological neural dynamics. The fundamental
connectivity patterns of cell-cell communication networks that enable pathological dynamics to emerge
remain unknown. Here, we studied epileptic circuits using a newly developed computational pipeline that
leveraged single-cell calcium imaging of larval zebrafish and chronically epileptic mice, biologically con-
strained effective connectivity modeling, and higher-order motif-focused network analysis. We uncovered
a novel functional cell type that preferentially emerged in the preseizure state, the superhub, that was unusu-
ally richly connected to the rest of the network through feedforward motifs, critically enhancing downstream
excitation. Perturbation simulations indicated that disconnecting superhubs was significantly more effective
in stabilizing epileptic circuits than disconnecting hub cells that were defined traditionally by connection
count. In the dentate gyrus of chronically epileptic mice, superhubs were predominately modeled adult-
born granule cells. Collectively, these results predict a new maximally selective and minimally invasive

cellular target for seizure control.

INTRODUCTION

Methods in network science have been instrumental in decipher-
ing neural communication associated with neurological disor-
ders (Bullmore and Sporns, 2009; Fornito et al., 2015). One
such disorder, epilepsy, is characterized by spontaneous and
recurrent seizures that arise from abnormal neural activity and
synchronization across brain regions (Jiruska et al., 2013;
Kramer and Cash, 2012). Epilepsy affects more than 60 million
individuals worldwide, and many of these children and adults
have medically uncontrolled seizures and suffer from debilitating
cognitive and emotional comorbidities. One primary reason for
this is that current anti-epileptic treatments lack spatial, tempo-
ral, and cell type specificity and instead attempt to broadly
restrict excitability that can at best mask symptoms while pro-
ducing various side effects (Loscher and Schmidt, 2011).
Recently, a number of experimental studies demonstrated that
it is possible to control spontaneous chronic seizures and co-
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morbidities through closed-loop interventions. Importantly,
these studies targeted specific cell ensembles in given brain
regions and delivered intervention stimuli selectively only at
particular times, all with minimal side effects (Bui et al., 2018;
Krook-Magnuson and Soltesz, 2015; Krook-Magnuson et al.,
2013, 2015). Although these experiments targeted groups of
cells, the most desirable target for intervention would be single
cells that exert maximal control over epileptic networks. In this
study, we searched for a novel class of potential neuronal targets
that could serve as maximally selective controllers for interven-
tions to stabilize epileptic dynamics. To achieve this ambitious
goal, we sought to uncover new features of cell-cell communica-
tion networks extracted from experimental data that are essen-
tial for pathological seizure dynamics to emerge.

One common feature of complex networks is the presence of
richly connected yet sparse hub neurons (Barabasi and Albert,
1999). It has been shown that these neurons are critical for influ-
encing network dynamics in biological neural circuits (Bocchio
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et al., 2020; Bonifazi et al., 2009; Morgan and Soltesz, 2008).
Specifically, experimental studies have shown that hub neurons
orchestrate network synchrony in the developing brain (Bonifazi
et al., 2009) and maintain their effectiveness in adulthood (Boc-
chio et al., 2020). Simulations in a large-scale data-driven hippo-
campal dentate gyrus (DG) computational model of temporal
lobe epilepsy (TLE) predicted that perturbation of a population
of neurons that included hubs was sufficient to initiate a seizure
(Morgan and Soltesz, 2008). These efforts have sparked signifi-
cant interest in targeting hub neurons for effective seizure control
(Bui et al., 2018; Krook-Magnuson et al., 2015). Although hub
neurons are traditionally identified by considering lower order
connectivity patterns at the level of nodes and edges, there is
current interest in elucidating the higher order organization of
complex networks. Specifically, the higher order organization
of a complex network can be understood by identifying how
small patterns of interconnections called motifs, which are
widely believed to inform network function (Benson et al.,
2016; Sporns and Kotter, 2004), are distributed throughout the
network and causally drive functional dynamics. Therefore, it re-
mains an open question whether a specialized subset of hub
neurons can be leveraged for improved selective seizure control
on the basis of their surrounding higher order network structure.

To address the latter question, we deployed whole-brain
cellular resolution calcium imaging to capture neural dynamics
in larval zebrafish, whose neuronal circuitry shares many
conserved features with mammals (Lovett-Barron et al., 2017)
and thus have been instrumental in basic (Burrows et al., 2020;
Liu and Baraban, 2019) and translational (Baraban et al., 2013;
Burrows et al., 2020) epilepsy research. Imaging was performed
in a well-characterized zebrafish model of acute seizures (Bara-
ban et al., 2005). The underlying cell-cell effective connectivity
(i.e., communication) networks for baseline and preseizure neural
dynamics were extracted (Sompolinsky et al., 1988; Sussillo and
Abbott, 2009) and biologically constrained to the zebrafish neuro-
anatomical connectome for the first time (Kunst et al., 2019).
Simulated perturbation of a single traditional hub neuron signifi-
cantly destabilized preseizure networks compared with baseline
networks. Higher order motif-focused analysis (Yin et al., 2017)
of traditional hubs revealed that network instability in epileptic cir-
cuits is causally linked to a specific subset of hubs, which we call
superhubs, whose surrounding neighborhood is rich in feedfor-
ward motifs, enhancing downstream excitation. Disconnecting
these specialized superhub neurons robustly stabilized networks
to perturbation, even though superhubs did not have the highest
connection count among the broader hub cell class.

Importantly, similar results were also found in the hippocampal
DG of chronically epileptic mice compared with control, indi-
cating that our key findings hold in the mammalian brain and in
a model of chronic TLE. Furthermore, superhubs in mice with
chronic TLE were identified as being predominantly adult-born
granule cells (abGCs), which are thought to play key roles in
driving epileptiform activity in the DG network (Sparks et al.,
2020) following seizure-induced reorganization (Danzer, 2018,
2019) and integration into the circuit (Toni et al., 2007, 2008).
Collectively, these results identify superhubs as representing a
new class of maximally selective potential targets for the control
of epileptic networks.
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RESULTS

Whole-brain calcium imaging of larval zebrafish acute
seizure model at single-cell resolution

Whole-brain larval zebrafish (Tg[elav/3:H2B-GCaMP6s]; N = 3)
imaging was performed with volumetric two-photon micro-
scopy for 25 min at a 2 Hz capture rate (Figure 1A; see
STAR Methods). This imaging approach enabled us to study
intracellular calcium activity, where increases in the measured
calcium signal correspond to an increase in neuronal firing
rate. Five minutes of baseline calcium data were recorded
for each fish, followed by a 15 mM pentylenetetrazol (PTZ)
(Baraban et al., 2005; Liu and Baraban, 2019) bath applica-
tion, which blocks inhibitory GABAA conductance (Huang
et al., 2001). Each fish exhibited at least one seizure prior to
cessation of imaging. Local field potential (LFP) recording
was not included, as previous studies have shown a robust
correlation between calcium signal and field potentials in a
PTZ model (Liu and Baraban, 2019). Anatomical volume
stacks were registered, and neural somata (Figure 1B) were
extracted with methods used by Lovett-Barron et al. (2017).
We extracted fluorescence time series from 5,000-7,000
active neurons per fish across all major brain regions
(Figure 1C).

The start of the preseizure state was defined as 1 min after PTZ
was introduced, to account for transient activity. Seizure initia-
tion was defined as 3 standard deviations above the population
mean calcium signal during baseline (pre-PTZ), and termination
was defined as when the population mean signal dropped below
this threshold. In agreement with prior literature (Liu and Bara-
ban, 2019), calcium dynamics within the detected seizure
periods lasted 35-40 s and displayed significantly higher syn-
chronicity (i.e., hypersynchronous state) compared with baseline
(one-sided paired t test, adjusted p = 0.034) and preseizure (one-
sided paired t test, adjusted p = 0.006) epochs (Figures 1D and
1E; synchronization: in baseline network, 0.28 + 0.024; in presei-
zure network, 0.375 + 0.04; in seizure network, 0.55 + 0.038). For
this work, we will be modeling baseline and preseizure calcium
dynamics (Figure 1F), and we will not be focusing on seizure or
post-seizure periods.

Cellular resolution effective connectivity modeling to
extract cell-cell communication networks

Effective connectivity modeling was performed with chaotic
recurrent neural networks (RNNs) (Sompolinsky et al., 1988; Fig-
ure 2A; see STAR Methods) to extract cell-cell communication
networks. These methods have been previously successful in
fitting cellular resolution calcium dynamics in the zebrafish (An-
dalman et al., 2019). Each neuron imaged experimentally is rep-
resented by a node in the model. The parameters of the model
are the effective connections between nodes, interpreted as
how much causal influence a source has on its target over a
sub-second temporal window, and can vary in sign and magni-
tude. The self-perpetuating chaotic dynamics were controlled
through FORCE learning (Sussillo and Abbott, 2009; STAR
Methods), which uses a recursive least square optimization on
the connectivity parameters to reproduce a specified target
output.
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Figure 1. Whole-brain imaging of larval zebrafish acute seizure model at single-cell resolution

(A) Representative z-plane images acquired from whole-brain cellular resolution two-photon microscopy of larval zebrafish before PTZ application (Baseline; top)
and during PTZ-induced seizure (Seizure; bottom).

(B) Extracted neural somata point cloud. Colors indicate major brain regions. Orange, telencephalon; green, diencephalon; blue, mesencephalon; purple:
rhombencephalon.

(C) (Top) Population mean calcium signal and (bottom) heatmap of single-cell functional calcium dynamics from neurons extracted in (B). PTZ application, seizure
initiation, and seizure termination are demarcated by black arrows at bottom. Imaging was performed for 25 min and PTZ was added 5 min into the imaging session.
(D) Correlation coefficient matrices of single-cell calcium dynamics during baseline, preseizure, and seizure epochs.

(E) Quantification of network synchrony from correlation coefficient matrices in (D) show that single-cell calcium dynamics during seizure epoch are significantly
more synchronized compared with single-cell calcium dynamics in baseline (one-sided paired t test, adjusted p = 0.034) and in preseizure (one-sided paired t test,

adjusted p = 0.006 epochs. Bar graphs represent the mean of the population (N = 3 zebrafish).
(F) Single-cell calcium traces over major anatomical regions plotted during baseline and preseizure epochs. Note the differences in vertical scale bars.

Target outputs were the experimentally acquired calcium dy-
namics. We furthermore used a 10% sparsity constraint
( *%’1) total parameters) to match reported connectivity patterns
(Song et al., 2005) and to prevent overfitting. One major issue is
whether local minima visited during optimization lead to param-
eter sets that are realistic given the underlying neuroanatomy. To
mitigate this, we constrained the optimization procedure using
the known zebrafish structural connectome (Kunst et al., 2019;
Figure 2B; STAR Methods). Specifically, weights are adjusted
proportional to how strongly connected the regions in which
the source soma and target soma inhabit (Figure 2C, “Learning
rule”). Preseizure networks were optimized from best-fit baseline
networks in order to untangle cell-cell effective rewiring caused
by PTZ (Figure 2C, “Training pipeline”). For consistency, this
was repeated three times with different initial conditions for
each fish. Models converged for both baseline and preseizure
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state (Figure 2C, “Training pipeline”), and FORCE learning
captured individual and global calcium dynamics (Figure 2D,
note scale bars).

Community detection using the Leiden algorithm (Traag et al.,
2019) on the constrained optimized parameter matrix identified
relevant macroscale anatomical structures that were not
observed in the unconstrained models (Figure S1; see STAR
Methods). Furthermore, model dynamics were driven primarily
by synaptic transmission and not noise (Figures S2A and S2B).
For each modeled zebrafish, the outgoing inhibition per neuron,
calculated as the absolute value of the sum of outgoing negative
effective weights, decreased on average across the population
after PTZ application (Figure S2C). This suggests that the
modeled communication networks capture the primary effect
of PTZ, which is known to be a reduction of inhibitory conduc-
tances (Huang et al., 2001).
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Figure 2. Cellular resolution effective connectivity modeling to extract cell-cell communication networks

(A) Cellular resolution chaotic recurrent neural network (RNN) with 10% sparsity constraint to prevent overfitting. Each neuron imaged in the larval zebrafish is
represented as a node in the RNN. Edges represent parameters of the model and were optimized with FORCE learning to match experimental calcium data.
(B) The zebrafish structural connectome was incorporated as a biological constraint. Left: zebrafish macroscale connectivity matrix (SM2°). Right: zebrafish
microscale connectivity (S™°), which represents the strength of connectivity between the regions in which neurons i and j occupy.

(C) Learning rule: FORCE learning tunes the weight J;; between neuron i (target) and j (source). The update is proportional to the structural connectivity score
S'”i°'°ij, multiplied by the difference between unit activity of node i (black trace) and target Ca®* waveform acquired experimentally (red trace). Training pipeline:
models converged using the weight update that incorporated the structural connectome. The baseline model was trained on baseline calcium dynamics with an
initial random matrix. To map the changes to the underlying microcircuit connectivity resulting from bath wash in of PTZ, the optimized parameters of the baseline
model were then used as the seed for training the preseizure model on preseizure calcium dynamics. See also Figure S1.

(D) Representative examples of mean population Ca?* trace and individual Ca®* traces with modeled fits overlaid for baseline (left) and preseizure (right) dy-
namics. Note the scale bars. Bottom: principal-component analysis (PCA) of experimental (black) and modeled (red) calcium activity. PM, population mean; T,
telencephalon; D, diencephalon; M, mesencephalon; R, rhombencephalon. See also Figure S2.

Identification of outgoing and incoming traditional hubs see below). The cutoff values were independently calculated
Traditional hub neurons were segregated into two classes onthe  for incoming and outgoing hubs and between baseline and pre-
basis of connection count: incoming and outgoing (Figure 3A).  seizure distributions (Figure 3C).

Outgoing hubs project while incoming hubs receive numerous Importantly, the normalized outgoing (baseline, 0.0129 +
strong connections. The optimized parameter matrix was binar-  0.0006; preseizure, 0.0135 + 0.0005) and incoming (baseline,
ized by keeping only the strongest excitatory connections (top  0.0131 + 0.00022; preseizure, 0.0124 + 0.0007) hub cutoff
10%; Figure 3B). The outgoing and incoming degree distribu-  thresholds, reported as the outgoing and incoming cutoff
tions across brain states were quantified and displayed heavy- threshold divided by the number of possible connections a single
tailed properties, as reported experimentally (Bonifazi et al., node can make in a graph with N nodes (i.e., N — 1) was not sig-
2009; Figure 3C). Outgoing hubs were defined as the top 10%  nificant between modeled baseline and modeled preseizure net-
(i.e., 90th percentile and above) of cells with the most outgoing  works (two-sided unpaired t test, p > 0.05) (Figure 3D). Addition-
connections, and incoming hubs were defined as the top 10%  ally, the percentage change of the average outgoing (incoming)
of cells with the most incoming connections (note that changing  degree of outgoing (incoming) hubs in modeled preseizure net-
the cutoff to a different percentile did not alter the key findings;  works relative to modeled baseline networks was not statistically
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Figure 3. ldentification of outgoing and incoming hubs

(A) Hub neurons from modeled networks were separated into incoming (numerous and strong postsynaptic inputs) and outgoing (numerous and strong pre-
synaptic outputs).

(B and C) Algorithm for identifying incoming and outgoing hub neurons in an effective connectivity matrix optimized though constrained FORCE learning. (B) The
learned parameters (top) are binarized into a 0-1 graph (bottom) by keeping the top 10% of excitatory weights. Then, the incoming and outgoing degree for each
neuron is calculated from the binarized graph. (C) Baseline and preseizure network degree distributions for outgoing (top) and incoming (bottom) degree are heavy
tailed, resembling a power law. A 90% cutoff (vertical lines) was used to identify outgoing and incoming hubs in each network.

(D) Ninety percent threshold cutoff normalized by the number of possible connections a single node can make in a graph with N total nodes (i.e., N — 1) and
percentage change of average hub degree as measured from outgoing (top) and incoming (bottom) degree distributions. Neither parameter was statistically
significant between baseline and preseizure networks (two-sided unpaired t test, p > 0.05). Bar graphs represent the mean of the population (N = 3 zebrafish).
(E) Spatial distribution of incoming (top) and outgoing (bottom) hubs for modeled baseline and preseizure networks. Orange, telencephalon; green, diencephalon;
blue, mesencephalon; purple, rhombencephalon.

(F) Fraction of incoming (top) and outgoing (bottom) hubs residing in each macroscale brain region for baseline (open circle) and preseizure (open triangle)
networks. Incoming hubs were consistently localized to telencephalon and mesencephalon. Outgoing hubs were consistently localized to diencephalon. Baseline
and preseizure networks had similar macroscale spatial organization of incoming and outgoing hubs (two-sided unpaired t test, p > 0.05). Bar graphs represent
the mean of the population (N = 3 zebrafish).

different from zero (two-sided unpaired t test, p > 0.05; outgoing
hubs percentage change in outgoing degree, 5.4% =+ 6%;
incoming hubs percentage change in incoming degree,
—5.8% + 7.8%) (Figure 3D). The spatial locations of outgoing
and incoming hub neurons were visualized in the zebrafish anat-
omy for both baseline and preseizure networks (Figure 3E). Out-
going hubs were located primarily in the diencephalon, and
incoming hubs were located primarily in the mesencephalon
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and the telencephalon (Figure 3F). PTZ did not cause significant
changes in the macroscale anatomical locations of outgoing and
incoming hubs (Figure 3F) (two-sided unpaired t test, p > 0.05).

Perturbation of individual outgoing hubs destabilizes
preseizure networks

Chaotic RNNs are a generative model and can therefore create
synthetic calcium traces for each cell. Single-cell perturbation
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simulation studies are of growing importance for studying func-
tional properties of large neural populations and have to date
elucidated how activity is coordinated in recurrent cortical net-
works (Sadeh and Clopath, 2020). With this in mind, we tested
the hypothesis that the modeled preseizure networks are more
sensitive to perturbation of a single hub neuron compared with
baseline networks. Simulated perturbations involved 500 ms de-
polarizing current injection into a single hub neuron after 20% of
epoch duration had elapsed. We quantified the effect of pertur-
bation on global network dynamics by measuring the “trajectory
deviation,” which is the time-normalized Euclidean distance be-
tween the mean population calcium signal of the unperturbed
network and the mean population calcium signal of the per-
turbed network. Intuitively, the trajectory deviation metric cap-
tures how far network dynamics deviate after a user-defined
perturbation, relative to the unperturbed network. The larger
the trajectory deviation, the more effect a perturbation has on
the system. Note that only one neuron was depolarized at a
time during a given perturbation simulation.

Depolarizing a single outgoing hub in the preseizure network
caused significantly higher deviation (one-sided Mann-Whitney
U test, p < 0.001) in global dynamics (Figures 4B and 4C)
compared with equivalent simulations in baseline networks (Fig-
ures 4A and 4C). Depolarizing a single incoming hub and a single
non-hub had significantly less influence in both networks
compared with depolarizing individual outgoing hubs (Figure 4C;
Figures S3A and S3B). Additionally, the effect of perturbation of
single neurons was larger in modeled preseizure networks than
in modeled baseline networks. Importantly, perturbation of a sin-
gle incoming hub affected dynamics to a greater degree (one-
sided Mann-Whitney U test, p < 0.001) in preseizure networks
compared with baseline networks (Figure 4C). We normalized
the trajectory deviation distribution acquired from perturbing in-
dividual outgoing hubs by the median trajectory deviation from
the incoming hub population. The data show that perturbation
of a single outgoing hub in the preseizure state altered global dy-
namics more significantly compared with baseline networks
both within individual fish (one-sided Mann-Whitney U test, p <
0.001) (Figure 4D) and across the population (one-sided paired
t test, p = 0.041) (Figure 4E; percentage deviation: baseline,
170% + 24%; preseizure, 327% + 66%). Taken together, these
results suggest that preseizure networks are more sensitive to
perturbations and that perturbing even a single outgoing hub
neuron can significantly influence global dynamics.

Visualizing connections between outgoing and

incoming hubs

PTZ application did not significantly change several parameters
associated with the outgoing and incoming degree distributions
(Figures 3C and 3D) and did not significantly reorganize which
macroscale anatomical regions the hub cells occupied (Figures
3E and 3F). Therefore, we hypothesized that nuanced rewiring
of microcircuit effective connectivity patterns may be critical
for understanding the increased sensitivity of the network to
perturbation in the preseizure state (Figure 4). We visualized
the connectivity patterns between outgoing and incoming hubs
for baseline (Figure 4F) and preseizure (Figure 4G) networks us-
ing force-directed graphs (Barnes and Hut, 1986; STAR
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Methods). Importantly, nodes clustered in the force-directed
graphs are highly connected. We observed an increased number
of outgoing-outgoing hub connections (Figure 4G, note golden
edges forming a “core”; see also Figure S3C) in the preseizure
networks compared with the baseline networks. We next per-
formed rich-club analysis (Smilkov and Kocarev, 2010; Towlson
et al., 2013) to determine if the increase in connections between
outgoing hubs in the preseizure networks led to the emergence
of a “rich-club” phenomenon. Intuitively, a rich-club describes
a highly privileged group of strongly connected nodes that are
very tightly connected with one another. This idea is captured
by measuring the rich-club coefficient, which varies as a function
of degree k and is normalized to random graphs. If the coefficient
is greater than 1 as k approaches k-max, the highest observed
degree in the graph, then this implies the existence of a rich-
club. We observed that both the baseline and preseizure net-
works exhibited a rich-club phenomenon only when considering
the fully directed graph and that the outgoing rich-club coeffi-
cient was higher for the preseizure network (Figure S3D). There-
fore, this further validates the observed increase in effective
connections between outgoing hubs (Figure S3C) in the presei-
zure brain and the existence of the golden “core” in Figure 4G.

To better interrogate how effective connections in the presei-
zure networks are distributed across the outgoing hub popula-
tion, we turned to understanding the distribution of higher order
motifs, which are, as previously mentioned, small patterns of in-
terconnections that are thought to provide insight on the func-
tional properties of complex systems (Benson et al., 2016;
Sporns and Kotter, 2004). In a baseline toy model (Figure 4H,
top), there is a single connection between outgoing hubs and
two feedforward motifs present. On the basis of observations
in Figure 4G, there are more connections between outgoing
hubs. Thus, the preseizure toy model (Figure 4H, bottom) in-
cludes an additional connection between outgoing hubs 2 and
3. As a result of adding a single connection, there are now four
feedforward motifs present in the network. Therefore, we hy-
pothesized that the multiplicative emergence of feedforward mo-
tifs may be a core feature of cell-cell communication networks
that destabilize the preseizure brain.

Preferential emergence of superhubs in the

preseizure brain

Graph clustering is an intuitive method to isolate groups of nodes
in a network that form numerous intra-group connections.
Specifically, we predict the emergence of superhubs —hubs sur-
rounded by higher order motifs—using a higher order motif-
focused local clustering concept. To this effect, we deployed
the Motif-based Approximate Personalized PageRank (MAPPR)
algorithm (Yin et al., 2017), which finds higher order motif-
focused clusters. The inputs to the algorithm were the directed
binarized graph (Figure 3B), a motif M, and an individual outgoing
hub identified in Figure 3C (i.e., the seed). The algorithm finds an
optimal local cluster surrounding the seed that is rich in M with
run time that is invariant of the graph size (Figure 5A, left). Tradi-
tional edge clustering was also performed as a control using the
APPR algorithm (Andersen et al., 2006; Figure 5A, right). Note
that the MAPPR algorithm is a more generalized form of the
APPR algorithm, as the latter considers only simple edges. To
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Figure 4. Perturbation of individual outgoing hubs destabilizes preseizure networks

(A) Modeled control network response to perturbation (black arrow) of a single outgoing hub. Top: population mean calcium signal of experimental data (cyan),
unperturbed model (blue), and perturbed model simulation (red). Bottom: principal-component analysis (PCA) reveals little change in network dynamics in
response to perturbation.

(B) Perturbation of a single outgoing hub in modeled preseizure network showing significant changes to network dynamics compared with (A).

(C) Violin plots show that perturbing individual outgoing hubs (one-sided Mann-Whitney U test, p < 0.001; N = 310 modeled cells) and incoming hubs (one-sided
Mann-Whitney U test, p < 0.001; N = 300 modeled cells) in modeled preseizure networks (purple) had significantly higher influence on network dynamics
compared with similar simulations in baseline networks (gray). See also Figure S3. Center marker of the violin plot represents the median.

(D) Outgoing hub trajectory deviation distributions in modeled baseline (gray) and preseizure networks (purple) normalized by incoming hub median trajectory
deviation score for the respective populations. Perturbation of outgoing hubs in preseizure state has significantly more influence over network dynamics (one-
sided Mann-Whitney U test, p < 0.001; N = 310 modeled cells). Center marker of the violin plot represents the median.

(E) Median values from (D) were extracted for each fish and plotted, revealing that preseizure networks have significantly reduced resiliency to perturbation of a
single outgoing hub (one-sided paired t test, p = 0.041). Bar graphs represent the mean of the population (N = 3 zebrafish).

(F and G) Visual representation of connections between outgoing and incoming hubs for baseline (F) and preseizure (G) network after constrained FORCE
learning. Graphs were generated using the Barnes-Hut algorithm (Barnes and Hut, 1986). Gray edges, outgoing hubs (O.H.) to incoming hubs (I.H.); purple edges,
incoming hubs to incoming hubs; golden edges, outgoing hubs to outgoing hubs. See also Figure S3.

(H) Toy model of connections between outgoing (green) and incoming (blue) hubs for baseline (top) and preseizure (bottom) networks.

find optimal clusters, both algorithms minimize a conductance vidual fish (Figure 5C; edge conductance: one-sided Mann-

metric (edge conductance for APPR, motif conductance for
MAPPR; see STAR Methods), the edge (motif) conductance
metric was furthermore used to capture how much information
or activity propagates from the traditional (motif-focused) cluster
to the rest of the network (Figure 5B) and can be thought of as an
analog to conductance in an electrical circuit.

Edge conductance and feedforward motif conductance were
elevated in the modeled preseizure networks both across indi-
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Whitney U test, p < 0.001; feedforward motif conductance:
one-sided Mann-Whitney U test, p < 0.001) and across the pop-
ulation (Figure 5D; edge conductance: baseline, 0.39 + 0.0068;
preseizure, 0.41 £ 0.005; one-sided paired t test, p=0.011; feed-
forward conductance: baseline, 0.145 + 0.01; preseizure,
0.218 + 0.017; one-sided paired t test, p = 0.033). However,
the increase in feedforward motif conductance relative to base-
line was significantly higher (one-sided paired t test, p = 0.047)
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Figure 5. Preferential emergence of superhubs in the preseizure brain

(A) Higher order motif-focused clustering enables identification of a collection of nodes that form rich feedforward connections with a single hub neuron (left). This
approach contrasts to traditional edge clustering, which considers only simple edges (right). Note that different clusters emerge depending on which method
is used.

(B) Toy model of higher order motif-focused clustering (left) and edge clustering (right) (from Yin et al., 2017). Edge conductance quantifies the cluster quality by
considering the ratio of edges that span between partitions and that reside completely inside the partition. The motif conductance metric measures the same ratio
but with respect to motifs. Intuitively, the higher the conductance, the more easily it is for excitatory activity to propagate downstream.

(C) Violin plots of edge conductance (left) and feedforward motif conductance (right) of outgoing hub neurons, with the center marker representing the median.
Both edge (one-sided Mann-Whitney U test, p < 0.001; N = 310 modeled cells) and feedforward motif conductance (one-sided Mann-Whitney U test, p < 0.001;
baseline N = 103 modeled cells, presz N = 151 modeled cells) are higher in modeled preseizure than modeled baseline networks. However, note the differences in
range. This predicts the emergence of “superhubs” in preseizure networks. See also Figures S4 and S5 and see STAR Methods for exclusionary criteria when
quantifying feedforward motif conductance.

(D) Edge conductance (one-sided paired t test, p = 0.011) and feedforward motif conductance (one-sided paired t test, p = 0.033) are significantly increased in
modeled preseizure networks across the sample population. Medians from (C) are plotted, and bar graphs represent the mean of the population (N = 3 zebrafish).
(E) Percentage change of feedforward motif conductance relative to baseline was significantly greater than edge conductance (one-sided paired t test, p = 0.047).
Bar graphs represent the mean of the population (N = 3 zebrafish).

(F) Scatterplot of feedforward motif conductance versus outgoing degree of hubs in baseline (N = 103 modeled cells) and preseizure (N = 151 modeled cells)
networks reported no significant correlation (baseline Spearman’s rho = —0.005, p > 0.05; preseizure Spearman’s rho = 0.054, p > 0.05) between the two variables
individually or as a group (see inset; bar graph represents the mean of the population, N = 3 zebrafish). See also Figure S6.

than edge conductance (51.8% + 22.7% versus 2.4% + 0.55%;
Figure 5E). We also performed local higher order motif-focused
clustering on additional motifs, such as cycles, but found no ex-
amples of cycle motifs surrounding outgoing hubs. More specif-
ically, motif enumeration using an efficient detection algorithm
(Wernicke, 2006) showed that <10 cycles existed in the full ze-
brafish network for both baseline and preseizure states, whereas

feedforward motifs were extremely dominant (>25,000) (Fig-
ure S4). Therefore, these data suggest that a subset of outgoing
hubs in preseizure networks allows excitation to propagate more
readily to the rest of the network via feedforward motifs, predict-
ing the preferential emergence of “superhubs.” Importantly,
both individually (baseline Spearman’s rho = —0.005, p > 0.05;
preseizure Spearman’s rho = 0.054, p > 0.05) and as a group
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Figure 6. Disconnecting superhubs stabilizes preseizure networks

(A) Edge weights of all outgoing hubs targeting its edge cluster constituents and higher order motif-focused cluster constituents were dampened to explore
relative importance of simple edges versus edges belonging to feedforward motifs on network dynamics.

(B) Left: connections from outgoing hubs projecting to their traditional edge-cluster (open circle) and to their higher order motif-focused cluster (closed triangle)
were progressively dampened for modeled baseline (gray) and preseizure (purple) networks. Dampening higher order motif-focused clusters had greater effect
on network dynamics than dampening traditional edge clusters, as measured by trajectory deviation. Right: trajectory deviation from dampening higher order
motif-focused clusters relative to dampening traditional edge clusters shows a greater effect in the preseizure network than the baseline network.

(C) Schematic for testing the effect of disconnecting outgoing hubs with the highest feedforward motif conductance versus lowest feedforward motif
conductance on modeled preseizure network dynamics.

(D) Top: trajectory deviation versus fraction of higher order motif-focused clusters disconnected in the high feedforward motif conductance (blue) and low
feedforward motif conductance (green) partitions show that disconnecting higher conductance clusters has greater effect on network dynamics. The black
arrowhead is located at the 27.5% cutoff for superhubs (N = 41 modeled cells), which is where blue trace exhibits a stable plateau in the trajectory deviation.
Bottom: number of edges disconnected for each group shows that the high conductance partition (blue) contains fewer edges than the low conductance
partition (green).

(E) Mean calcium signal of outgoing hubs with the highest feedforward motif conductance values (i.e., superhubs) and the traditional outgoing hub population.
Note the numbers identifying an increase in the mean calcium signal of superhubs preceding and between high-calcium events.

(F) Outgoing degree cumulative distribution for superhubs (N = 41 modeled cells) versus traditional outgoing hubs (N = 269 modeled cells). Importantly, superhubs
are not biased toward the highest outgoing degrees (one-sided KS-test, p = 0.23).

(G) Left: mean population calcium signal spectrograms generated from unchanged/connected preseizure network (top), preseizure network with superhubs
disconnected (middle), and difference. Right: power spectral density (PSD) of mean population calcium signal for baseline (gray), connected preseizure (violet),
and preseizure network with superhubs disconnected (green). Disconnecting superhubs reduces power over the measured frequency ranges.

(H) Left: the variance (i.e., total power) of the mean population calcium signal is measured before and after perturbation of a single outgoing hub, and the
percentage change is quantified. The percentage change in total power is elevated when perturbing individual outgoing hubs in the fully connected preseizure
network (purple) compared with baseline network (gray) (one-sided Mann-Whitney U test, adjusted p < 0.001), indicating that the preseizure network is more
unstable. The percentage change in total power is significantly lower in the preseizure network with superhubs disconnected (green) compared with the fully
connected preseizure network (purple) (one-sided Wilcoxon signed-rank test, adjusted p < 0.001). Furthermore, the percentage change in total power after
perturbing individual hubs is significantly lower between the preseizure network with superhubs disconnected (green) and the baseline network (gray) (one-sided
Mann-Whitney U test, adjusted p < 0.001), altogether providing evidence that disconnecting superhubs very robustly stabilizes preseizure networks. N = 310
modeled cells for all groups. Center marker of violin plots represents the median. Right: percentage change of the network trajectory deviation is significantly

(legend continued on next page)
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(unpaired two-sided t test, p > 0.05), feedforward motif conduc-
tance was not correlated to outgoing degree of the outgoing hub
(Figure 5F). These findings were not dependent on the sparsity
constraint used (Figure S5). Additionally, feedforward motif
conductance was not correlated to other widely used network
measures that leverage traditional edge information, such as
local clustering coefficient (Watts and Strogatz, 1998; Figure
S6A) and betweenness centrality (Freeman, 1977; Figure S6B).

Disconnecting superhubs stabilizes preseizure
networks

Our evidence so far suggests a correlation between two findings:
(1) perturbation of a single outgoing hub in preseizure networks
has significant influence on global network dynamics, and (2)
emergence of superhubs in the preseizure state, defined as out-
going hub neurons with elevated feedforward motif conduc-
tance, may play a critical role in propagating excitatory activity
to the rest of the network. To establish a causal link, we per-
formed several computational experiments. These simulations
involved targeted attacks on hub neurons. The motivation for
this is that complex networks in nature are vulnerable to attacks
on hub neurons (Albert et al., 2000), which has been validated in
neural circuits through closed-loop optogenetic studies (Bui
et al., 2018; Krook-Magnuson et al., 2013).

We first compared the role of feedforward motifs versus sim-
ple edges on network function. Edges that projected from outgo-
ing hubs and targeted neurons in its local motif-focused cluster
or its local edge cluster were damped by a factor ranging
from 0 (disconnect) to 1 (no change) (Figure 6A). Dampening
the outputs of outgoing hubs to their respective motif-focused
cluster had a greater effect on network activity in both baseline
and preseizure networks than dampening the output of outgoing
hubs to their respective traditional edge cluster (Figure 6B, left).
However, this effect was more pronounced for the preseizure
state (Figure 6B, right).

Second, we validated that outgoing hubs with the highest
feedforward motif conductance (i.e., could propagate activity
downrange more easily) have greater influence over network dy-
namics than outgoing hubs with low feedforward motif conduc-
tance. Outgoing hubs in preseizure networks were ranked on the
basis of their feedforward motif conductance score and split into
either top half or bottom half. Within each half, an equivalent frac-
tion of motif-focused clusters was disconnected from the
network (Figure 6C; dampening factor = 0.0) in decreasing order.
Simulations confirmed that disconnecting outgoing hubs in the
high feedforward motif conductance partition was more effective
in changing global network activity (Figure 6D, top). Interestingly,
this effect was observed despite more edges being removed in
the bottom half group (Figure 6D, bottom) and in total repre-
sented less than 0.1% of all edges in the network. We addition-
ally verified that disconnecting hubs with the highest outgoing
degree did not significantly alter network dynamics (Figure 6D,

¢? CellPress

top, red trace), further suggesting that the higher order organiza-
tion of preseizure networks gives critical insight into network
function. On the basis of Figure 6D (top, blue trace), the trajectory
deviation reached a plateau when approximately one-quarter of
the outgoing hubs, ordered by decreasing feedforward motif
conductance values, was disconnected from the network.
Therefore, we considered the outgoing hubs with the top
27.5% feedforward motif conductance value (i.e., just after a sta-
ble plateau was reached with the trajectory deviation following
the progressive disconnection of the outgoing hubs with the
highest feedforward conductance values, indicated by the black
arrowhead in Figure 6D) as superhubs, and outgoing hubs that
scored below this were deemed traditional outgoing hubs (note
that increasing this percentile cutoff further to 30% or 35% did
not change the key results). Superhubs displayed increased ac-
tivity preceding and in between high calcium events compared
with the traditional outgoing hub population (Figure 6E, note pe-
riods indicated by numbers 1-3) and were not biased toward
having the highest outgoing degree values (one-sided Kolmo-
gorov-Smirnov [KS] test, p > 0.05) (Figure 6F). Therefore, feed-
forward motif conductance gives important insight into network
function and that this insight could not have been revealed
through mining the network for simple edges. As an additional
validation, disconnecting individual superhubs had greater effect
on network dynamics than disconnecting individual traditional
outgoing hubs (Figure SE6C).

Third, we tested the hypothesis that disconnecting superhubs
rendered the network more stable to perturbation. Disconnect-
ing all superhubs in the preseizure network at the same time
dampened oscillatory power over all frequency bands for most
measured time periods (Figure 6G). Next, we perturbed a single
outgoing hub and recorded the percentage change in signal vari-
ance (i.e., total power) of the mean population calcium signal
before and after perturbation. This perturbation experiment
was repeated for all outgoing hubs. As expected, the percentage
change in signal variance in response to single outgoing hub
perturbation in the fully connected preseizure network was
significantly higher than in the baseline network (39.8% to
69.1%; one-sided Mann-Whitney U test, adjusted p < 0.001)
(Figure 6H, left, baseline versus presz connected), indicating
that the preseizure network is more unstable. Importantly, dis-
connecting all superhubs from the preseizure network simulta-
neously significantly reduced the percentage change in signal
variance in response to single outgoing hub perturbation from
69.1% to 19.2% (one-sided Wilcoxon signed-rank test, adjusted
p < 0.001) (Figure 6H, left, presz connected versus presz super-
hubs disconnected) and this percentage change was further-
more lower than baseline networks (one-sided Mann-Whitney
U test, adjusted p < 0.001). Collectively, these data provide
evidence that disconnecting superhubs robustly stabilized
preseizure networks. Disconnecting superhubs significantly
decreased the trajectory deviation of global network activity in

reduced after disconnecting superhubs (one-sided Wilcoxon signed-rank test, p < 0.001; N = 310 modeled cells). This was quantified by measuring trajectory
deviation before and after perturbation of a single outgoing hub in the fully connected preseizure network and the preseizure network with superhubs discon-

nected. See also Figure S6.

(I) Top: mean population calcium signal of a disconnected preseizure network before (blue) and after (red) perturbation of a single outgoing hub. Bottom: principal-

component analysis (PCA) before (blue) and after (red) perturbation.

Neuron 709, 2556-2572, August 18, 2021 2565




- ¢ CellPress Neuron

A E Model - unperturbed .
GCaMPS! o | Control Model - single hub perturbation Chronic TLE
S~ 010
4 04 population mean calcium signal
o] GCaMPef . * w
ok cannula 2 : O oo

GCaMPGfF 2-photon ML P
GoL
Yo~ — N = - . o 50 100 150 200 250 300
r Treadmill Y hius - time (s)
granule cells

Ne—e——— ¢

X el
DF/F
S

—~0.05 t population mean calcium signal

B F outgoing hub G H
granule cell DF/F granule cell DF/F perturbation °
control chronic TLE s 3 1}
= 1072 < &
e PUVYRUVR VUV, 'V PP ¥ FY U S o £ B
3 S <0.001 =1
A A IS AR A ] p<0.001 2 % P k! 8
5 qQ
et MV s R e AR g 38 o 5
ko = k=] =
Pesidanssscscsmmmn AL Npsnsion honzic \ \ fuldok 8 1072 5 02 3 =
© £ £ 8
PSP A RN Y Y S AW = s =
AN A A AR A KA control chronic TLE control chronic TLE
AR bbb s P TV W ey e T
e w I J Outgoing hubs w highest ff motif
BT AP SRR TNITEIY Il AN w
- 3 conductance (superhubs)
PETITEIE T PIR WOPPT = | b L
e g ] g
N > 055
% o - é o ©
s S os0 )
20s e o o  1=0.10 2
T . =0.39 2
C D < p=0. ° =
control o 040 " g
£ o
" 200 S 03 @9 6 o ©
Data Population mean outgoing 399 incoming g 9, 0000 © o . 0
Icium signal hubs hubs °
Model calcium signal E ﬁ 150 i 030 S ° o oo o
WA, 5 5 P ki
& £100 © EY ) )
3 i .
08 ° 8 s0 . outgoing degrees outgoing degrees
H*
. 0 , K L
50 160 o= ]
outgoing incoming 3 25 ™ p<0.001
r degree degree 2 o4 i)
. I
F chronic TLE B g0 [ g 100
M ; g 22
\ 200 loutgoing incoming 'g =
hubs 400 hubs qQ o035 86
Individual fits £ 150 o c c
: = 23
S 100 200 D 030 58,
£ o3 £ g
5 § % = 02 B
\ g %, o 10° .
° 50 100 mGC abGC chronic TLE chronic TLE
158 outgoing incoming connected superhubs
degree degree

disconnected

Figure 7. Superhubs in the intrahippocampal kainic acid mouse model of chronical temporal lobe epilepsy

(A) Experimental setup. Control and chronically epileptic mice were virally injected with GCaMP in dentate gyrus (DG) and imaged with two-photon (2p) mi-
croscope.

(B) DG granule cell DF/F for control and chronically epileptic mouse.

(C) Model fits of experimentally recorded granule cells from chronically epileptic granule mouse using FORCE learning.

(D) Outgoing and incoming degree distributions for modeled control dentate and chronically epileptic dentate networks showing heavy-tailed distributions.
(E) Network response to perturbation (black arrows) of a single outgoing hub neuron in a modeled control (left) and modeled chronically epileptic (right) network.
(F) Trajectory deviation in response to perturbation of individual outgoing hubs is significantly higher (one-sided Mann-Whitney U test, p < 0.001) in modeled
chronically epileptic dentate network (purple, N = 28 modeled cells) than in modeled control network (gray; N = 59 modeled cells). Center marker of the violin plot
represents the median.

(G) Feedforward motif conductance of individual outgoing hubs is significantly higher (one-sided Mann-Whitney U test, p < 0.001) in modeled chronically epileptic
dentate network (purple, N = 27 modeled cells) than in modeled control network (gray; N = 49 modeled cells). Center marker of the violin plot represents the median.
(H) Feedforward motif conductance is significantly increased in modeled chronically epileptic networks across the sample population (one-sided unpaired t test,
p = 0.0034). Bar graphs represents the mean of the population (N = 3 mice).

(I) Outgoing degrees and feedforward motif conductance are not significantly correlated (Spearman’s rho = 0.10, p = 0.39; N = 49 modeled neurons).

(J) Outgoing degree cumulative distribution for superhubs (N = 8 modeled cells) versus traditional outgoing hubs (N = 19 modeled cells). Superhubs did not have
the highest outgoing degrees (one-sided KS-test, p = 0.71).

(K) Feedforward motif conductance of adult-born granule cells (red; N = 6 modeled cells) is significantly greater than mature granule cells (green; N = 21 modeled
cells) (one-sided Mann-Whitney U test, p = 0.012). Dashed line represents cutoff for superhub status. Center marker of the violin plot represents the median.
(L) Disconnecting all superhubs simultaneously significantly reduced the response of a modeled chronically epileptic dentate network to single outgoing hub
perturbation, as measured by the percentage change in global signal variance (one-sided Wilcoxon signed-rank test, p < 0.001; N = 27 modeled cells). Center
marker of the violin plot represents the median. See also Figure S7.

response to single outgoing hub perturbation compared with the  significantly lower percentage change in signal variance (i.e.,
fully connected preseizure network (one-sided Wilcoxon signed-  more effectively stabilized the network) in response to perturba-
rank test, p < 0.001) (Figures 6H and 6l). In addition, control sim-  tion than either disconnecting the same number of traditional
ulations showed that disconnecting superhubs resulted in a outgoing hubs randomly (19.2% versus 57.1%; one-sided
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Wilcoxon signed-rank test, p < 0.001) or the same number of
traditional outgoing hubs with the lowest feedforward motif
conductance values (19.2% versus 77.4%; one-sided Wilcoxon
signed-rank test, p < 0.001) (Figures S6D and S6E).

Therefore, the network is more resilient to perturbation when
superhubs are disconnected. Taken together, these three
computational experiments reveal that the higher order microcir-
cuit connectivity architecture surrounding hub neurons is a crit-
ical novel feature of stability in epileptic networks.

Superhubs in a mouse model of chronic TLE

Next, we tested the hypothesis that superhubs may also play a
role in the pathological activity dynamics of a chronically
epileptic mammalian brain circuit. Specifically, we sought to
determine whether our key findings from the zebrafish acute
seizure model also held in chronically epileptic mice. Therefore,
we applied the same computational pipeline as above on two-
photon single-cell resolution calcium imaging data obtained
from the DG of healthy control (N = 3) and epileptic mice (N =
3) using the intrahippocampal kainic acid (KA) model of chronic
TLE, the most prevalent form of epilepsy in adults. Mice ex-
pressed GCaMP6f in dorsal DG and the epileptic group had
KA injected unilaterally into the ipsilateral ventral hippocampus.
Two-photon calcium imaging of DG granule cells (GCs) was per-
formed in healthy and in chronically epileptic mice (Figures 7A
and 7B, note differences in vertical axis of the scale bars). GC
calcium dynamics were modeled for both groups of mice using
FORCE optimization (600-800 neurons/mouse, 3-5 min window;
Figure 7C), and incoming and outgoing hubs were identified (Fig-
ure 7D) with similar methods as used in zebrafish.

Importantly, our results showed that the modeled control net-
works were more resilient to single outgoing hub perturbation
than modeled chronically epileptic dentate networks (Figures 7E
and 7F). In addition, global network dynamics were significantly
less affected (one-sided Mann-Whitney U test, p < 0.001) when
perturbing incoming hubs compared with outgoing hubs for
both networks (Figures S7A and S7B). Similar to zebrafish, feed-
forward motif conductance of local higher order motif-focused
clusters seeded on outgoing hubs was significantly higher (one-
sided unpaired t test, p = 0.0034) in chronically epileptic dentate
networks compared with control dentate networks (Figures 7G
and 7H; feedforward conductance: control, 0.21 + 0.014; TLE,
0.31 + 0.024). Feedforward motif conductance was not correlated
to outgoing degree (Spearman’s rho = 0.10, p > 0.05) (Figure 71),
and hubs with the top motif conductance scores were not biased
toward the highest outgoing degree values (one-sided KS test, p
> 0.05) (Figure 7J). For the studies below, outgoing hubs with the
top 20% feedforward motif conductance value were considered
superhubs, on the basis of an analysis protocol similar to the
one applied to the zebrafish data above in relation to Figure 6D
(Figure S7C). More specifically, as for the zebrafish, the particular
20% cutoff value was chosen for the mouse superhubs because it
was just above the feedforward motif conductance value where a
plateau was reached with the trajectory deviation (indicated by a
black arrowhead in Figure S7C) after progressively disconnecting
the outgoing hubs with the highest feedforward conductance
values (note that increasing the cutoff percentile further to 25%
did not change the key results).
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Is there a potential biological correlate of the superhubs iden-
tified by our computational pipeline from the mouse DG cellular
resolution functional imaging data? A particularly intriguing pos-
sibility in this regard are the epilepsy-related abGCs (Althaus
et al.,, 2016; Danzer, 2018; Varma et al., 2019), which have
been suggested to be crucial in driving epileptiform activity in
the mouse DG (Sparks et al., 2020). In order to test this possibil-
ity, we identified the abGCs among the broader imaged GC pop-
ulation using previously published methods (Sparks et al., 2020;
Figure S7D; STAR Methods). Critically, effective connectivity
optimization and higher order network analysis revealed that
75% of superhubs were indeed the modeled abGCs, despite
abGCs representing <18% of the total imaged GC population.
In addition, abGCs in the computational model had significantly
higher feedforward motif conductance scores compared with
their more mature GC counterparts (one-sided Mann-Whitney
U test, p = 0.012) (Figure 7K; feedforward conductance: mature
GCs, 0.26 + 0.048; abGCs, 0.431 + 0.017). These data demon-
strate that superhubs identified through our computational pipe-
line applied to two-photon imaging data obtained from the DG of
epileptic mice represent a specific biological cell population
thought to be involved in seizures (Sparks et al., 2020), indepen-
dently validating our approach.

Next, in order to investigate the role of the mouse superhubs
further, we disconnected superhubs in the modeled chronically
epileptic dentate networks. Single outgoing hub perturbation
simulations showed significant reduction in both the change in
global network trajectory deviation (one-sided Wilcoxon
signed-rank test, p < 0.001; Figure S7E) and in the change in
global network signal variance after superhubs were discon-
nected (one-sided Wilcoxon signed-rank test, p < 0.001; Fig-
ure 7L). These data indicate that disconnecting superhubs effec-
tively stabilized modeled chronically epileptic dentate networks.
Furthermore, the percentage change in signal variance in
response to single outgoing hub perturbation was significantly
lower when disconnecting superhubs compared with discon-
necting the same number of traditional outgoing hubs randomly
(one-sided Wilcoxon signed-rank test, p = 0.0077) or traditional
outgoing hubs with the lowest feedforward motif conductance
values (one-sided Wilcoxon signed-rank test, p = 0.0024) (Fig-
ures S7F and S7G). Last, we modeled GC dynamics over multi-
ple non-overlapping frames within a 1 himaging window to test if
superhub identities were stable. Although superhubs repre-
sented 2% of the total cell population, we observed that 54%
of identified superhubs in one frame were superhubs in a subse-
quent frame whose start time was 15 min later.

These similar findings across both an acute seizure model in
zebrafish and in chronically epileptic mice suggest that the emer-
gence of superhubs is a core principle of network reorganization
that may be a key feature contributing to the destabilization of
the epileptic brain. Targeting these superhubs may be more
effective in the cellular scale control of epileptic circuits than
hubs defined traditionally on the basis of connection count.

DISCUSSION

Here, we sought to characterize the connectivity patterns of cell-
cell communication networks in epileptic circuits. Our findings
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reveal that superhubs, defined through analysis of the higher or-
der organization of modeled networks extracted from functional
calcium imaging data, emerge as key cellular controllers that can
powerfully destabilize epileptic circuits. Disconnecting these
superhubs was effective in stabilizing modeled networks in larval
zebrafish, and importantly, these results also held true in the
modeled DG of chronically epileptic mice. Critically, in the
modeled DG of mice with chronic TLE, superhubs were predom-
inately abGCs. Therefore, these results predict the existence of
fundamentally novel single-cell targets for maximally selective,
minimally invasive seizure control in epilepsy.

Search for new interventional targets guided by large-
scale cellular resolution functional imaging

Current clinical assessment and treatment of epilepsy is to a
large extent based on analysis of networks constructed from
population recordings such as LFPs (Jiruska et al., 2013) or func-
tional magnetic resonance imaging (fMRI) (Gotman and Pittau,
2011). However, recent studies have shown that single-cell ac-
tivity can diverge significantly from what population recordings
would predict. For example, apparently self-repeating, macro-
scopically recurrent epileptiform LFP activity (inter-ictal spikes)
indicating network synchrony have been shown to emerge
from non-recurrent microscopic single-cell activity. In other
words, each inter-ictal event is generated by a different combi-
nation of participating cells (Liu and Baraban, 2019; Feldt Mul-
doon et al., 2013; Sparks et al., 2020). This “macro-micro”
disconnect (Farrell et al., 2019) is a significant challenge for the
field and indicates that a more nuanced understanding of path-
ways at the level of microcircuits is needed to treat the underlying
disease (Soltesz and Losonczy, 2018). Therefore, in an effort to
search for novel forms of maximally selective, ideally single
cell-level targets for interventions for seizure control, we per-
formed large-scale calcium imaging at cellular scale and used
this as our primary data source for the subsequent modeling
and analysis.

Computational pipeline to study superhubs in cell-cell
communication networks

Our computational methodology for uncovering the role of
superhubs in destabilizing epileptic circuits was performed using
three distinct yet integrated modules: effective connectivity
modeling, higher order motif-focused network analysis, and sin-
gle-cell perturbation simulations.

Effective connectivity modeling is a widely used technique for
gaining insights on interactions between pairs of connected no-
des under a network model of causal dynamics (Friston, 2011).
Methods to perform effective connectivity modeling have been
deployed to study the brain under various pathological condi-
tions (Huang et al., 2011; Nejad et al., 2012; Rosch et al., 2018)
and have also been used to elucidate macroscopic brain interac-
tions responsible for seizure propagation in the larval zebrafish
(Rosch et al., 2018). Here, we interrogated changes to cell-cell
effective connectivity networks as a result of PTZ induced reduc-
tion of inhibition (Huang et al., 2001) in the larval zebrafish acute
seizure model, and as a result of various epilepsy-related persis-
tent alterations such as mossy fiber sprouting (Sutula et al., 1989)
and hilar cell loss (Kobayashi and Buckmaster, 2003) in the DG of
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chronically epileptic mice. We used chaotic RNNs (Sompolinsky
et al., 1988) and FORCE optimization (Sussillo and Abbott, 2009)
techniques, which have been shown to be effective for modeling
neural dynamics related to hippocampal sequence generation
(Rajan et al., 2016), motor planning (Li et al., 2016), and coping
(Andalman et al., 2019). Using this approach on calcium imaging
data acquired from the larval zebrafish at whole-brain single-cell
resolution, we present for the first time biologically constrained
effective connectivity models of control and preseizure net-
works, where the biological constraint was incorporated by the
inclusion of the zebrafish structural connectome (Kunst et al.,
2019) in the weight-update step. As a result, macroscale subnet-
works that resembled major anatomical subregions emerged
(Figure S1). These specific partitions agree with converging evi-
dence that suggest a functional (Ahrens et al., 2013; Betzel,
2020; Liu and Baraban, 2019) separation between the various
front and mid-/hindbrain structures.

The parameters of the model form a directed weighted graph,
which allowed us to quantify chemoconvulsant- or chronic epi-
lepsy-induced changes to the underlying graph structure using
novel methods in network science (Yin et al., 2017). We first
found heavy-tailed degree distributions of strong excitatory con-
nections for both zebrafish and mouse models (Figures 3C and
7D; Bonifazi et al., 2009), a feature that is common in large com-
plex networks. This enabled us to identify both incoming and
outgoing traditional hub neurons on the basis of incoming and
outgoing connection counts. To further analyze the connectivity
structure surrounding traditional hubs, we deployed novel local
motif-focused clustering techniques and quantified motif
conductance (Figures 5A and 5B). Importantly, the MAPPR algo-
rithm (Yin et al., 2017) identified optimal clusters, which allowed
us to directly compare motif conductance between baseline and
preseizure networks. Although we reported a non-significant in-
crease (~5%) in average outgoing degrees in preseizure net-
works (Figures 3C and 3D), feedforward motif conductance of
higher order clusters surrounding outgoing hubs increased
significantly by 50% on average (Figure 5E).

Single-cell perturbation simulations are important tools for
generating predictions of how individual cells influence network
dynamics (Sadeh and Clopath, 2020). Measures were taken in
the modeling step to prevent overfitting, such as including a
sparsity constraint on the number of model parameters, which
allowed us to perform controlled perturbation simulations. We
first interrogated network stability in modeled control and path-
ological circuits. Results revealed that perturbation of just a sin-
gle outgoing hub neuron can significantly influence epileptic
global network dynamics compared with similar computational
experiment in baseline networks (Figures 4 and 7). One reason
for this may be due to compromised inhibition in epileptic circuits
(Huang et al., 2001; Kobayashi and Buckmaster, 2003; Korn
et al., 1987), which normally functions to stabilize network activ-
ity (Isaacson and Scanziani, 2011; Murphy and Miller, 2009; Sa-
deh and Clopath, 2020). Taken together, these results highlight
that preseizure networks are unstable (Chang et al., 2018; Sadeh
and Clopath, 2020). Additionally, we showed that targeted-
attack simulations of identified superhubs (i.e., outgoing
hubs with high feedforward motif conductance) can stabilize net-
works to perturbation. These causality-establishing simulations
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(Figures 6 and 7) predict that superhubs can more readily prop-
agate sustained excitatory activity downstream in epilepsy
compared with control, baseline networks.

Superhubs in the epileptic brain

The primary conceptual advance in this work was brought to light
from mining large-scale cellular resolution networks extracted
from experimental neural data for higher order connectivity pat-
terns called motifs. Highly connected but rare hub neurons have
been of great interest for studies working toward the goal of
advancing seizure control with minimal side effects (Bui et al.,
2018; Krook-Magnuson and Soltesz, 2015; Krook-Magnuson
et al., 2015). This has been motivated by experimental work
showing that hub neurons orchestrate network synchrony (Boc-
chio et al., 2020; Bonifazi et al., 2009) and by computational work
predicting their role in the transition from inter-ictal to ictal
discharge (Morgan and Soltesz, 2008).

However, hub neurons are traditionally defined by simple
connection counts, a definition that does not consider the rich
higher order motif patterns that are often found in complex net-
works (Benson et al., 2016; Sporns and Kotter, 2004). As these
motifs are thought to influence network function in biological
neural circuits (Sporns and Kotter, 2004), we deployed our
computational pipeline toward the goal of identifying potential
new targets for control of pathological circuits. The key results
presented in this paper could not have been uncovered with
traditional lower order graph mining techniques, as the primary
metric to extract superhubs, motif conductance, was not corre-
lated to connection count (Figures 5F, 6F, and 7J), local clus-
tering coefficient score, or betweenness centrality (Figures S6A
and S6B). Furthermore, because disconnecting superhubs sta-
bilized networks, these findings suggest that complex networks
can be susceptible to targeted attacks of nodes when consid-
ering rich higher order motif features rather than simple connec-
tion count. This shift in perspective—specifically looking at the
patterns of connectivity surrounding hubs as opposed to con-
nections from hubs —may also be important for how we interpret
the underlying microscale dynamics from macroscale record-
ings (Farrell et al., 2019), evaluate the efficacy of anti-epileptic
drugs (AEDs) (Baraban et al., 2013), and develop more strategic
closed-loop interventions (Bui et al., 2018; Krook-Magnuson and
Soltesz, 2015; Krook-Magnuson et al., 2013, 2015).

Motifs are a critical feature of the structural and functional con-
nectomes (Sadeh and Clopath, 2020; Song et al., 2005; Sporns
and Kotter, 2004), and it has been hypothesized that the brain
maximizes the diversity of functional motifs (Sporns and Kotter,
2004). This diversity may be related to the phenomenon of criti-
cality (sometimes called “edge of chaos”), a state marked by
scale-invariant neural avalanches that has been reported in con-
trol zebrafish (Ponce-Alvarez et al., 2018). Prior research showed
chemoconvulsant-induced disruption of excitation/inhibition
(E/l) balance in cortical neural networks caused deviation away
from criticality (one neuron activates one neuron) and into thesu-
percritical regime (one neuron activates more than one neuron)
(Shew et al., 2009). Indeed, hypersynchronous neuronal ava-
lanches, evidence of a supercritical state, were recently reported
in a zebrafish model of genetic epilepsy using in vivo calcium
imaging (Liu et al., 2021). Here, we specifically observed that
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preseizure networks contain elevated counts of two motif pat-
terns that suggest the emergence of a supercritical regime: (1)
the “push-out” motif (Figure S4C), in which the mother neuron
activates two daughter neurons, and (2) the feedforward motif
(Figure S4D), in which the mother neuron activates two daughter
neurons and one of the daughter neurons activates its sibling.
Therefore, our discovery of superhubs dense with feedforward
connections simultaneously brings to the forefront a potential
new network-level biomarker that may be able to capture a sys-
tem’s divergence from criticality.

Our findings in the zebrafish brain in an acute seizure model
were remarkably similar to the results from the hippocampal
DG of chronically epileptic mice. Although zebrafish brains
contain generally similar circuits compared with mice (Lovett-
Barron et al., 2017), there are also important differences, for
example, concerning cortical structures prevalent in mammals
that are often sites of epileptic foci. Furthermore, acute seizure
models lack persistent alterations to the underlying genes, ion
channels, synapses, and morphological properties that are pre-
sent in patients with epilepsy. We addressed both of these is-
sues by modeling DG GC dynamics in mice with chronic TLE.
Through our computational analysis pipeline, we were able to
show that higher order motif interactions that predict the emer-
gence of superhubs held in distinct experimental epilepsy
models and in organisms far removed in evolutionary time.
Furthermore, we identified a biological correlate to the superhub
in the epileptic DG, specifically the abGCs (Figure 7K), effectively
validating our computational methods. This finding also corrob-
orates previous efforts using a separate modeling approach
(Sparks et al., 2020) suggesting that abGCs are key drivers of
epileptiform activity in a chronic model of TLE.

The investigations described in this paper, apart from the
actual recording of the functional calcium dynamics, were per-
formed in silico, so in vivo experimental studies will be needed
to validate the major predictions of this work. Specifically,
these results analyzing the higher order interactions of control
and epileptic networks predict a new single-cell target, the
superhub, for maximally selective, minimally invasive control
of epileptic circuits. On the basis of our observations in
epileptic mice that superhubs are temporally stable over the
hour-long timescale and that modeling and mining effective
connectivity networks can be done quickly (<20 min), closed-
loop interventions that target individual superhubs (which, in
the specific case of the DG in TLE, largely overlap with the
genetically accessible abGCs) can be designed in the future
to test the predictions of this study concerning the roles of
superhubs in the epilepsies.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAV1.Syn.GCaMP6f.WPRE.SV40 Penn Vector Core N/A

ROSA26-CAG-stopflox-tdTomato Ai9 JAX 007909

Chemicals, peptides, and recombinant proteins

Pentylenetetrazol (PTZ) Sigma-Aldrich PubChem ID: 24278643

Kainic Acid (KA) Sigma-Aldrich PubChem ID: 24277985

Deposited data

Functional calcium imaging data This paper Mendeley Data: https://dx.doi.org/10.17632/9936ryd5h7.2
Effective connectivity models This paper Mendeley Data: https://dx.doi.org/10.17632/dghdz45rfd.2

Experimental models: organisms/strains

Zebrafish Tg(elavi3:H2B-GCaMP6s) Vladimirov et al., 2014 if5

Mouse Nestrin-CreERT2 JAX 016261

Software and algorithms

Python Python.org v3.6

SNAP http://snap.stanford.edu/ v6

Networkx https://networkx.org/ v2.5

Scipy https://www.scipy.org/ v1.20

Leidenalg Traag, 2021 v0.8.40

Igraph Nepusz, 2021 v0.9.4
FlJI/ImageJ NIH v1.52p

CalmAn Giovannucci et al., 2019 PMID: 30652683
Computational Morphometry Toolkit (CMTK) NITRC v3.3

FORCE Sussillo and Abbott, 2009 PMID: 19709635
MAPPR Yin et al., 2017 PMID: 28344853
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Darian Hadjiabadi

(dhh@stanford.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Zebrafish and mouse functional calcium imaging data (Mendeley Data: https://dx.doi.org/10.17632/9936ryd5h7.2) and effective
connectivity networks (Mendeley Data: https://dx.doi.org/10.17632/dghdz45rfd.2) are publically available. All code to perform
modeling and analyze effective connectivity models were written in python3 and is available at https://github.com/dhadjial/
soltesz-lab-epilepsy-modeling.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the Institutional Animal Care and Use Committee for both Stanford University and Columbia
University.
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Zebrafish acute seizure model

Tg(elavi3:H2B-GCaMPé6s) (Freeman et al., 2014) fish (7 dpf) bred on a Nacre or Casper background were used for imaging and registra-
tion. Zebrafish were mounted dorsal side up in a thin layer of 2.5% low-melting point agarose (Invitrogen) in the lid of a 3 mm Petri dish
(Fisher), using a sewing needle to position the fish under a stereomicroscope (Leica M80). Fish were group-housed under a 14:10 light:-
dark cycle until the day of experiments, and were fed with paramecia (Parameciavap) twice daily from 5-6 days post fertilization onward.
All testing occurred during the late morning and afternoon. 15 mM bath application of the chemoconvulsant pentylenetetrazol (PTZ) was
performed to induce spontaneous seizures (Baraban et al., 2005), serving as the acute seizure model. Zebrafish were randomly chosen
and all fish that received PTZ developed seizures and were included forimaging. Note that each fish served as its own control before the
chemoconvulsant treatment, making blinding not applicable. No power analysis was done to determine sample size.

Intrahippocampal kainic acid mouse model of chronical temporal lobe epilepsy

Male transgenic mice were obtained from The Jackson Laboratory (Nestin-CreER™:016261; ROSA26-CAG-stop”®*-tdTomato
Ai9:007909) to establish a local breeding colony on a C57BL/6J background. The Nestrin-Cre line was crossed with the Ai9 reporter
line to express tdTomato in adult-born granule cell populations (Sparks et al., 2020). Mice were housed in the vivarium on a 12h light/
dark cycle, were housed 3-5 mice per cage, and had access food and water ad libitum. Mice were randomly chosen for epilepsy
induction (see Inducing chronic epilepsy in Method details). Mice were housed individually during video-EEG monitoring following
kainic acid injection. Mature male and female mice (> 8 weeks of age) were used for all experiments and mice were included if spon-
taneous behavioral seizures were detected. Experimenters were not blinded to control versus epileptic group during recording and
no power analysis was performed to determine sample size.

METHOD DETAILS

In vivo two-photon imaging in zebrafish acute seizure model
Two-photon volumetric imaging was performed using an Olympus FVMPE multiphoton microscope (Olympus Corporation), with a reso-
nant scanner, in either unidirectional or bidirectional scanning mode. We used a 16x objective (0.8 NA; Nikon). Functional brain imaging
was performed at 1.2x zoom (1.44 um/pix) in 15 z-planes (15 um spacing) at 0.59 s/vol (2500 volumes). Baseline control imaging was
performed for 5 minutes followed by 15 mM bath application of PTZ to induce spontaneous seizures (Baraban et al., 2005). Functional
imaging continued for an additional 20 minutes. All zebrafish exhibited at least one putative seizure prior to cessation of imaging.
After functional brain imaging, a structural stack was obtained at 1 um spacing, starting 15 mm above the first z-plane, ending
15 mm below the last z-plane. Images were registered to Z-brain atlas Tg(elavi3:H2B-RFP) volume using the Computational
Morphometry Toolkit (CMTK; https://www.nitrc.org/projects/cmtk/) and single-cell functional calcium dynamics were extracted
and denoised with non-negative matrix factorization (NMF) based statistical approaches found in the CalMan library (Giovannucci
etal., 2019). This preprocessing step is fully discussed in Lovett-Barron et al. (2017). All zebrafish calcium imaging data can be found
in Hadjiabadi et al. (2021).

In vivo two-photon imaging of intrahippocampal kainic acid mouse model of chronical temporal lobe epilepsy

Virus injections

Two weeks prior to kainic acid (KA) injection, 3mg tamoxifen (TMX) (2mg/mL in corn oil/10% ethanol) was injected |.P/day for 5 consec-
utive days. abGCs were indelibly labeled with tdTomato following injections of TMX that drove expression of Cre in Nestin+ cells.
Inducing chronic epilepsy

Kainic Acid (KA) was injected into the ventral hippocampus to induce the epilepsy model and rAAV(Syn-GCaMP6f) was injected into
the dorsal dentate gyrus ipsilateral to KA injection. Shortly after, a chronic imaging window was implanted over dorsal dentate and an
LFP electrode was inserted adjacent to site of KA injection. Following recovery from injection of KA, mice were placed in video-EEG
enabled housing where LFP and behavioral activity were continuously recorded to monitor ictogenesis. Three weeks post-KA injec-
tion, the video-EEG verified TLE mice were habituated to being head fixed under the two-photon microscope and concurrent Ca®*
imaging and LFP recording was performed. Detailed surgical procedures are reported in Sparks et al. (2020).

Two-photon imaging

Two-photon imaging of dentate gyrus granule cells was performed using the same set up as Danielson et al. (2016), at 4 images/sec-
ond. Approximately 50-100 mW of laser power under the objective was used for excitation (Ti:Sapphire laser, (Chameleon Ultra I,
Coherent) tuned to 920 nm), with adjustments in power levels to accommodate varying window clarity. To optimize light transmission,
the angle of the mouse’s head was adjusted using two goniometers (Edmund Optics, +/— 10-degree range) such that the imaging
window was parallel to the objective. A piezoelectric crystal was coupled to the objective (Nikon 40X NIR water-immersion, 0.8 NA,
3.5mm WD), allowing for rapid displacement of the imaging plane in the z-dimension. Red (tdTomato) and green (GCaMP6f) channels
were separated by an emission cube set (green, HQ525/70 m-2p; red, HQ607/45 m-2p) at 512 x 512 pixels covering 225 um x
225 pm. OASIS (Friedrich et al., 2017) was used for denoising. While not being imaged, mice were routinely monitored for interictal
and seizure events using a custom continuous video-EEG system previously described (Krook-Magnuson et al., 2013). Healthy
control mouse data was obtained from Danielson et al. (2016), included two-photon recording of granule cells from approximately
the same location in dentate gyrus as in epileptic mice. All mouse calcium imaging data can be found in Hadjiabadi et al. (2021).
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Modeling neural dynamics in healthy and pathological brains

Zebrafish

The start of the preseizure state was defined as one minute after PTZ bath application. Seizure initiation was defined as three
standard deviations above population mean calcium signal during baseline (pre-PTZ) and termination was defined as when the
population mean signal dropped below this threshold. Correlation matrix analysis (Li et al., 2007) was deployed to quantify network
synchronization. Modeling in zebrafish was performed on baseline control dynamics first, and the best fit model was used as the
initial parameter matrix for learning preseizure dynamics. Community detection using the Leiden algorithm (Traag et al., 2019) on
learned parameter matrix was used to identify communities with numerous intra-group connections. To account for potential abnor-
malities during the registration process, neurons were removed from modeling if their respective post-registration [DF/F| > 10 or if |
DF/F(t+1) - DF/F(t) | > 10 at any point in the signal.

Mice

For both control and chronically epileptic mice, calcium dynamics were acquired during a 60-minute epoch. Calcium recordings
included artifacts from running and grooming that resulted in prolonged hyper-synchronous events. Therefore, a continuous 3-5 min-
ute time window lacking such events was identified for each mouse and used to model calcium dynamics.

Chaotic recurrent neural networks

Models of cell-cell effective communication were built using chaotic recurrent neural networks (RNN) (Sompolinsky et al., 1988). Each
neuron experimentally imaged was represented as a node in the network and edges represent the effective (causal) influence be-
tween pairs of nodes. The governing dynamics of the chaotic RNN are:

dX,'(t)
at

T

= —x(t)+9)_ Jie(x(t)+ hi(t)
=1

Zi(t) = ZJij(ﬂ(X/(t))

o(-) = tanh(-)

x;(t) is the inferred intracellular current of node i. ¢(x;(t)) represents firing rate. z;(t) is the estimated calcium signal. 7 is the time con-
stant of the system (zebrafish: 1.5 s; mouse: 0.625 s). h;(t) is uncorrelated white noise sampled from a normal distribution with mean
0 and standard deviation 0.05 (zebrafish) / 0.005 (mouse). g is the gain parameter that determines whether there will be chaos in the
system (g < 1: stable equilibrium; g > 1: chaos). We used g = 1.25 for both zebrafish and mouse (Andalman et al., 2019; Rajan et al.,
2016). Lastly, J is the effective connectivity matrix that represents the parameters of the model. At initiation of learning baseline con-
trol dynamics in zebrafish and learning both control and preseizure dynamics in mice, the values of J that were not removed after
applying a sparsity mask (zebrafish: p = 0.10; mouse: p = 0.40) were sampled from a normal distribution with mean 0 and standard
deviation ——. N is the number of nodes and p is the sparsity. The models contain p x N x (N —1) parameters. Dynamics were solved

N
using Euler’s method (dt = 0.25 s).

Reproducing experimental calcium data using FORCE learning

The effective connectivity parameter matrix was optimized to reproduce the experimental calcium data through FORCE learning
(Sussillo and Abbott, 2009). This was done through recursive least-squares optimization where at each time point an error signal
ei(t)= z(t) — fi(t) is calculated between node output z;(t) and experimental calcium trace fi(t). Given this error, the traditional
learning rule is as follows:

Ay = cx g(t) Zij¢(Xk(t))
k=1

1

c= ——————
1+ o(t) P(t)o(t)

P(t) = P(t—1) — cP(t—1)o(t)e) Pt —1)
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Where c is the effective learning rate used for stability and P(t) is updated in a recursive fashion at every time point. At initiation, P(0)
was set to the identify matrix. Learning was performed for 500 epochs for all zebrafish and mouse models, where one epoch is
defined as one run of the optimization routine for the duration of the experimental trial. Convergence was assessed by tracking
the mean squared reconstruction error between unit activity and experimental data. All zebrafish and mouse models can be found
in Hadjiabadi and Soltesz (2021). To ensure replication, modeling was repeated three times with different initial conditions for each
zebrafish and mouse.

Biologically constrained FORCE using zebrafish structural connectome

The zebrafish structural connectome (Kunst et al., 2019) was incorporated into zebrafish FORCE learning as a biological constraint.
The structural connectome is a weighted undirected graph between 30 distinct subregions occupying the telencephalon, dienceph-
alon, mesencephalon, and rhombencephalon. The modified weight-update step is:

AJi?onstrained — SR(I‘),R(]‘) * AJ,']'

where i,j are individual nodes (neurons) and Sg;) g is the structural connectivity between subregions R(i) and R().

Identifying modeled traditional hub neurons

The optimized effective connectivity parameter matrix was binarized by converting the top 10% of edges to a 1 and converting the
remaining edges to a 0. The outgoing and incoming degree was calculated for each neuron. Neurons above the 90" percentile out-
going (incoming) degree score were marked as outgoing (incoming) hubs.

Identifying modeled superhubs

Identified traditional outgoing hubs (see Identifying modeled traditional hub neurons) were used as the seed for local higher-order
clustering on feedforward motifs and the feedforward motif conductance was quantified (see Quantifying motif conductance using
higher-order network analysis; note only seed neurons with at least 5 neighbors in the local higher-order cluster were considered for
further analysis). Modeled neurons were ranked based on the feedforward motif conductance score in descending order. The top x%
of hub neurons was “disconnected” by removing all edges from the hub neuron to its identified local higher-order cluster. The discon-
nected network was then simulated, and trajectory deviation quantified (see Trajectory deviation) for the fully connected network rela-
tive to the disconnected network. Superhubs were identified when a stable plateau in the trajectory deviation was reached as a func-
tion of the number of neurons disconnected (see Figure 6D; Figure S7C).

Identifying modeled adult-born granule cells

Preprocessing steps were undertaken to match granule cell calcium dynamics with genetic identity as performed in Sparks et al.
(2020). The individual performing analysis was blind to the identity of all abGCs until modeling was complete for all mice and
higher-order analysis was performed for each modeled network.

Perturbation simulations

To simulate the effect of perturbation on network dynamics, a single hub neuron was ‘current clamped’ to achieve maximum firing
rate (500ms step current). The current clamp perturbation was initiated at 0.2 normalized time, consistent for all zebrafish and mouse
models. Synthetic calcium traces were then generated for each neuron before and after perturbation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Community detection

Community detection is used to understand the structure of complex networks by identifying nodes clusters that form relatively
dense groups. We used the leidenalg python package (Traag, 2021) which leverages the recently developed Leiden algorithm (Traag
et al., 2019) to guarantee well-connected communities. Communities were identified by calling the function leidenalg.find_parti-
tion(G, leidenalg. RBConfigurationVertexPartition, resolution_parameter = 1.0). Here, G is an igraph object (Nepusz, 2021). More spe-
cifically, G is a directed graph that has been binarized to exclude inhibitory edges and to include the remaining excitatory edges
whose weights are in the top 50%.

Force-directed graphs

The effective connectivity matrix was visualized using the Barnes-Hut N-body simulation algorithm (Barnes and Hut, 1986). Here,
each node can be thought of as a repelling particle and the edges between nodes are modeled as attractive springs. The objective
of the algorithm is to find an optimal force-directed spatial configuration such that (i.e., net force = 0). The Barnes-Hut algorithm was
applied to the binarized parameter matrix after thresholding for strongest connections (see Identifying modeled traditional hub neu-
rons) and used to visualize incoming and outgoing hubs connections in zebrafish.
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Rich-club analysis

The rich-club coefficient on the full baseline and preseizure binarized graphs were performed to identify if highly connected neurons
are themselves connected to one another. We discuss the lesser known implementation of rich-club analysis on directed graphs us-
ing solutions provided in Smilkov and Kocarev (2010). Specifically, given a directed graph G = (V,E), the outgoing rich club coefficient

can be calculated as:
EDU(
out k _ >k >k
oK) = ~—i

®fana (K)

Here, ¢°“! (k) is the rich-club coefficient as a function of outgoing degree k and is normalized by the rich-club-coefficient over a
random graph. E% represents the number of outgoing edges between pairs of neurons whose outgoing degree is greater than k.
N°Ut represents the number of nodes whose outgoing degree is greater than k. The analytic solution to g2, (k), the rich-club coef-
ficient for a random graph, is the following:

ana (K) = N S 1K Pout (K') Sy <KE K" > Pour(K")
rand <Kout > N2gt N2yt — 1)

Here, N is the total number of nodes in the network (i.e., |V|). Pou: (k') is the probability of a node having outgoing degree k’. < k};,"”’:k" >
is the mean incoming degree for nodes with outgoing degree k™. < ko > is the mean outgoing degree in the network. N%! represents
the number of nodes whose outgoing degree is greater than k. If ¢°“!(k)>1 as k approaches the highest outgoing degree in the
network (kmax), then it can be deduced that the graph exhibits a rich-club.

Quantifying motif conductance using higher-order network analysis
Motif-based approximate Personalized PageRank (MAPPR) algorithm (Yin et al., 2017) was used to identify an optimal higher-order
motif-focused cluster (i.e., minimum motif conductance) surrounding a hub neuron. Given a motif M, MAPPR has three key steps.

Constructing motif weighted graph W
The input graph, taken to be the binarized parameter matrix after thresholding for strongest connections (see Identifying modeled
traditional hub neurons), is transformed into a weighted graph W where the weight depends on M. Specifically, W is the number
of instances of M containing nodes i and j.

Compute the approximate personalized PageRank vector

The personalized PageRank (PPR) vector represents the stationary distribution of a modified random walk seeded on a hub node u.
At each step of the random walk, the random walker is ‘teleported’ back to the specified seed node with probability 1 - a,, where o. was
set to 0.98. The stationary distribution of this process for a seed node u (the PPR vector p,), will have larger values for nodes “close”
to u. The stationary distribution is the solution to the following system of equations:

(I— oAD" )p, = (1 —a)ey

Where | is the identify matrix, A is the adjacency matrix, D is the diagonal degree matrix, and e, is the vector of all 0’s except fora 1 in
position u. The PPR vector p, can be approximated via p, with accuracy e = 0.0001 such that

0 <D 'p,— D 'p < ¢

Identify higher-order motif-focused cluster as a set with minimal motif conductance
A sweep procedure is used given approximated APPR vector g,. Nodes are sorted by descending value of the vector D~"g,, and are
incorporated one at a time into a growing set X. After a node added to the set, the motif conductance is calculated.

cuty(X)

@) = min(voly(X), voly(X"))

where voly (X) is the number of motif endpoints in X, , volu (X’) is the number of motif endpoints for nodes not in X, and cuty(X) is the
number of instances of M that have at least one end point in X. The set with the smallest motif conductance is deemed optimal and
returned. For traditional edge-based clustering, step one is skipped, and the edge conductance score is quantified as above but re-
placing motif instance M with simple edges. Only clusters with at least 5 nodes were considered for analysis. The MAPPR algorithm
was run using Stanford Network Analysis Platform (SNAP) (Leskovec and Sosic, 2016).

Trajectory deviation
The Euclidean distance d between the mean calcium signals of two networks X and X’ was calculated.
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Here, x(t) is the mean calcium signal for network X and x’(t) is the mean calcium signal for network X'. In this work, X’ is a network that
underwent single-neuron perturbation (see Perturbation simulations) or had neurons “disconnected.” To compare simulations
across control and epileptic networks, trajectory deviation TD was calculated as the Euclidean distance normalized by remaining
time points left after start of perturbation t,.

Change in total power
To determine network response to perturbation (see Perturbation simulations), the variance of the mean calcium signal before and
after perturbation was calculated. The percent change in the variance was measured:

% change signal power (x,x ) = %W

Here, x represents the mean calcium signal of the unperturbed network and x’ represents the mean calcium signal of the perturbed
network. Note that signal variance is equal to the total power of the signal. Greater values indicate the network is less stable and is
tightly correlated to trajectory deviation.

Statistical analysis

Values reported as x + y represent mean + standard deviation. Statistical analysis was performed using python scipy.stats (Virtanen
et al., 2020) package. Parametric tests used: unpaired t test, paired t test. Non-parametric tests used: unpaired Mann-Whitney U-
test, paired Wilcoxon signed-rank test, Kolmogorov-Smirnov test. Statistical details can be found in the results and figure legends.
The Shapiro-Wilk test was used to determine if data met assumptions of normality. p values were corrected (“adjusted p”) using Bon-
ferroni’s method for multiple comparisons. p values are reported in all figure subpanels except when p < 0.001. Statistical signifi-
cance was set at 0.05.
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