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Abstract: ~ We utilize dissipatively coupled, time-multiplexed photonic resonator net-
works to demonstrate topologically nontrivial behaviors in the dissipation of one- and two-
dimensional lattices. We present edge state and band structure measurements of the these

networks. ¢ 2021 The Author(s)

For over a decade, topological photonics has focused on nontrivial topology in
optical systems with conservatively coupled elements [1]. However, driven dissipa- Band Structure
tive systems also possess intruiging behaviors and potential applications in both the '\/—
quantum and classical regimes [2, 3]. With regards to topology, dissipative systems
enable time-reversal symmetry breaking interactions and provide new methods of
achieving nonzero topological invariants [4].

Here we introduce the notion of photonic topological dissipation: By coupling
the nodes of a time-multiplexed resonator network through Lindbladian, system- Quasimomentum (k)
reservoir interactions, we induce nonzero topological invariants in the dissipation
spectra (state-dependent dissipation) of our network. Fig. 1 illustrates the differ- Fig. 1: Conservative and
ences between our open, dissipative system and the more familiar closed, Hamilto- Dissipative Coupling Dissi-
nian systems, which can exhibit topologically nontrivial frequency spectra. patively coupled systems are

We demonstrate photonic topological dissipation by experimentally realizing the ~characterized by a dissipation
SSH and Harper-Hofstadter models with the dissipative time-multiplexed resonator spectrum, while conservatively

. . . . coupled systems are character-
network shown in Fig. 2(a). The delay lines of this network can implement nearest- ized by a frequency spectrum.
neighbor hopping along a 1D chain or along both directions of a synthetic square
lattice. The delay line intensity modulators, IM 1, introduce the staggered coupling
strengths of the SSH model, while the delay line phase modulators, PM_ 4, emulate the gauge field of the Harper-
Hofstadter model. Furthermore, IM4; and IM¢ enable us to impose both periodic boundary conditions (PBCs)
and open boundary conditions (OBCs) on our lattices.

We probe the topological behaviors of these models by using IM(y and PMj [Fig. 2(a)] to inject their eigenstates
into the network. When the couplings of the network correspond to those of the model, the eigenstates resonate in
the network. Otherwise, they do not. We use this procedure to extract the SSH band structure at different parameter
regimes [Fig. 2(b)-(c)] and to observe a dynamical phase transition between the model’s trivial and topological
states [Fig. 2(d)-(f)]. We then measure a topological edge state of the Harper-Hofstadter model [Fig. 3(a)-(c)].

In summary, we have shown that a dissipatively coupled network of resonators can exhibit topologically non-
trivial behaviors in its state-dependent dissipation. We have experimentally demonstrated some of these behaviors
in 1D and 2D lattices in the same time-multiplexed network. The results can open new opportunities for optical
driven dissipative systems in the classical and quantum regimes.
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Fig. 2: SSH Band Structure and Phase Transition (a) We realize the SSH model and the Harper-Hofstadter model in
a dissipatively coupled, time-multiplexed resonator network with four delay lines. To study the SSH model, we block the
+4Tg delay lines, and we program the intensity modulators, IM1 to implement the staggered couplings of the SSH model

(H =Y vdjlxlsnx + wdj;vﬁnxﬂ + h‘c.). We inject the Bloch wave eigenstates of the SSH model into the network and measure

their resonant amplitudes to construct the dissipation spectra of the SSH network (b) at the phase transition point (w/v = 1)
and (c) in the topological phase (w/v = v/2).(e) We observe a dynamical phase transition by injecting the SSH edge state
corresponding to w/v = 2 into the network. (d) With the network couplings in the trivial phase (w/v = 1/2), we observe that
the edge state does not remain localized. (f) When we switch the network couplings to the topological phase (w/v = 2), we
observe the localized edge state.
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Fig. 3: Harper-Hofstadter Edge State (a) We program the couplings of the network to simulate the Harper-Hofstadter model
(H =JYnm, aA:L_ 1, dnn, —5—&;‘% HaAnx‘nye"z”a”X +h.c.) with an effective magnetic field of ¢ = 1/3 and OBCs. The edge
state remains localized in the injected state. (b) With no gauge field (o0 = 0), the network implements a trivial tight-binding
model. In this case, and the state diffuses into the bulk. (¢) The bulk occupation of the resonant states in the topological and

trivial lattices confirms the localization of the topological edge state. (Note: the color bars in (a) and (b) are saturated to
emphasize the bulk sites.)



