
Journal Pre-proof

Update with care: Testing candidate bug fixes and integrating selective

updates through binary rewriting

Anthony Saieva, Gail Kaiser

PII: S0164-1212(22)00105-4

DOI: https://doi.org/10.1016/j.jss.2022.111381

Reference: JSS 111381

To appear in: The Journal of Systems & Software

Received date : 5 March 2021

Revised date : 16 March 2022

Accepted date : 20 May 2022

Please cite this article as: A. Saieva and G. Kaiser, Update with care: Testing candidate bug fixes

and integrating selective updates through binary rewriting. The Journal of Systems & Software

(2022), doi: https://doi.org/10.1016/j.jss.2022.111381.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the

addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive

version of record. This version will undergo additional copyediting, typesetting and review before it

is published in its final form, but we are providing this version to give early visibility of the article.

Please note that, during the production process, errors may be discovered which could affect the

content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2022.111381
https://doi.org/10.1016/j.jss.2022.111381

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Update with Care: Testing Candidate Patches and

Integrating Selective Updates

Anthony Saievaa, Gail Kaiserb

Columbia University
Department of Computer Science

530 W 120th Street, New York, NY 10027

aant@cs.columbia.edu
bkaiser@cs.columbia.edu (Corresponding author)

Preprint submitted to Journal of Systems and Software March 16, 2022

Title page with author details

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Update with Care: Testing Candidate Bug Fixes and1

Integrating Selective Updates through Binary Rewriting2

Anthony Saievaa, Gail Kaiserb3

Columbia University4

Department of Computer Science5

New York, NY 100276

aant@cs.columbia.edu7

bkaiser@cs.columbia.edu8

Abstract9

Enterprise software updates depend on the interaction between user and devel-10

oper organizations. This interaction becomes especially complex when a single11

developer organization writes software that services hundreds of different user12

organizations. Miscommunication during patching and deployment efforts lead13

to insecure or malfunctioning software installations. While developers oversee14

the code, the update process starts and ends outside their control. Since devel-15

oper test suites may fail to capture buggy behavior finding and fixing these bugs16

starts with user generated bug reports and 3rd party disclosures. The process17

ends when the fixed code is deployed in production. Any friction between user,18

and developer results in a delay patching critical bugs.19

Two common causes for friction are a failure to replicate user specific cir-20

cumstances that cause buggy behavior and incompatible software releases that21

break critical functionality. Existing test generation techniques are insufficient.22

They fail to test candidate patches for post-deployment bugs and to test whether23

the new release adversely effects customer workloads. With existing test gener-24

ation and deployment techniques, users can’t choose (nor validate) compatible25

portions of new versions and retain their previous version’s functionality.26

We present two new technologies to alleviate this friction. First, Test Gen-27

eration for Ad Hoc Circumstances transforms buggy executions into test cases.28

Second, Binary Patch Decomposition allows users to select the compatible pieces29

Preprint submitted to Journal of Systems and Software March 16, 2022

Manuscript Click here to view linked References

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

of update releases. By sharing specific context around buggy behavior and devel-30

opers can create specific test cases that demonstrate if their fixes are appropri-31

ate. When fixes are distributed by including extra context users can incorporate32

only updates that guarantee compatibility between buggy and fixed versions.33

We use change analysis in combination with binary rewriting to transform34

the old executable and buggy execution into a test case including the developer’s35

prospective changes that let us generate and run targeted tests for the candidate36

patch. We also provide analogous support to users, to selectively validate and37

patch their production environments with only the desired bug-fixes from new38

version releases.39

This paper presents a new patching workflow that allows developers to val-

idate prospective patches and users to select which updates they would like to

apply, along with two new technologies that make it possible. We demonstrate

our technique constructs tests cases more effectively and more efficiently than

traditional test case generation on a collection of real world bugs compared

to traditional test generation techniques, and provides the ability for flexible

updates in real world scenarios.

Keywords: test generation, change analysis, binary analysis, binary rewriting40

1. Introduction41

Developer testing may not be representative of how software is used in the42

field [1] and many test suites are insufficient [2]. User bug reports [3, 4] and vul-43

nerability disclosures [5, 6] are populated primarily with bugs discovered in the44

field when users or third-party security analysts use the software in ways that45

the developers had not tested before deployment. User bug reports typically46

include some evidence of the bug, such as memory dumps, stack traces, system47

logs, error messages, screenshots, and so on, but are often insufficient for the48

developers to reproduce the bug [7]. Even vulnerability disclosures are some-49

times incomplete, making it difficult for developers to reproduce the reported50

exploits [8]. Thus when a security vulnerability or other critical bug is not51

2

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Figure 1: Ad hoc Test Generation Context

detected by developer testing prior to deployment, but reported by users, devel-52

opers need to construct a new test that both reproduces the bug in the original53

version of the code and verifies the absence of the bug in the patched code. Aside54

from patching, deployment presents another issue since software updates may55

not be compatible with existing infrastructure in some user environments. As56

a result, customer organizations may avoid updating their installations, leaving57

buggy code in production.58

Enterprise software update procedures revolve around an interaction be-59

tween user and development organizations shown in Figure 1. This interaction60

gets increasingly complex as a single software provider services hundreds of61

different user organizations. The developer organization writes code that gets62

checked into a version control system (VCS) and built with continuous deploy-63

ment/continuous integration (CI/CD) which ships the resulting executables to64

user organizations that deploy the software. Software operators (IT staff) within65

3

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

the user or customer organization approve the update and install the new exe-66

cutable on machines.67

Awkward interactions between the user organization and the development68

organization often cause the traditional software update model to fail leading to69

insecure or nonfunctional installations. When users report bugs, developers need70

to reproduce the buggy behavior in the developer environment, update their71

test suites, and develop a prospective patch. The current update paradigm may72

fail to incorporate information from the specific user instance that caused the73

buggy behavior relying solely on bug reports to assist developers. This means74

a developer must manually build a representative test case that reproduces the75

bug in the original code and verifies the absence of the bug in the patched code.76

Every change has the potential to include unwanted side effects and while77

CI and CD provide some protection it only considers the perspective of the78

developer organization. In the event of a problematic update, the operators79

responsible for deployment have no recourse other than to submit new bug80

reports. This interaction gets further complicated by the fact that most bug81

fixes are incorporated as part of more general releases which include changes82

other than the bug fix. These additional changes may in fact break existing83

functionality on any given installation even if they pass tests during CI/CD.84

Interaction during reporting and distribution fail for the same reason: re-85

stricted context. The user organization will not have access to the source code86

producing the software and cannot make tailored modifications, and the devel-87

oper organization must support many different user organizations without access88

to any specific installation. This handshake between parties demands operators89

and developers have intimate knowledge of what the other organization needs90

while also inherently preventing them from sharing information.91

We propose a new update paradigm that exposes precisely the relevant in-92

formation needed by both organizations that supports the interaction between93

these groups while still keeping their roles distinctly separate without imposing94

prohibitive overhead. We give an overview in the next section.95

96

4

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Figure 2: Ad hoc Test Generation Workflow

2. Technical Innovations97

Our new patching workflow relies on two technical innovations, 1) Test Gen-98

eration for Ad Hoc Circumstances which we implement in a prototype called99

ATTUNE (Ad hoc Test generation ThroUgh biNary rEwriting), and 2) Binary100

Patch Decomposition (BPD) which provides granular control over traditional101

software updates which is included as part of ATTUNE.102

Figure 2 shows the gist of our new bug fixing workflow. Let’s consider a103

single bug as an example. First the bug is identified in the production envi-104

ronment. A lightweight system, like [9], records the production software with-105

out introducing significant overhead and produces a log that can be replayed106

later.Lightweight recording techniques may not capture enough information to107

faithfully reproduce some bugs. In that case, we could substitute Zuo et al.’s108

new approach [10], which is very lightweight but requires a series of recordings109

where the same bug reoccurs to eventually capture enough data for faithful re-110

5

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

production. This lightweight recording captures all sources of non-determinism111

required to recreate the buggy execution. Then the log is augmented with addi-112

tional information with an offline heavyweight recording process that includes113

required additional information as outlined in 3.1. The verbose log shares ap-114

propriate context between customer organization software operators (IT staff)115

and developers maintaining the code. With this augmented log the developers116

can re-create the bug from the production environment. Using our novel test117

generation technique for ad hoc circumstances (Ad Hoc Test Generation), out-118

lined in 3.2 and 3.3, developers turn this augmented log into a repeatable test119

case for prospective patches. That test case becomes part of the test suite and120

the developer approved patch gets added to the version control system (VCS)121

along with any other changes as part of standard development. In the event mul-122

tiple users report the same bug, there may be redundant test cases. The VCS123

still integrates with continuous integration and continuous deployment systems124

(CI/CD), but in order to expose additional context to the operator it interacts125

with our BPD changelog datastore. Should an update received from developers126

break critical functionality and fail manual approval, an operator has the op-127

portunity to leverage the context in the BPD datastore to craft a custom partial128

update for their customer organization.129

By sharing specific context in the verbose trace and the BPD datastore130

between parties the developers automatically have a test case to fix bugs and131

operators deploying software have the flexibility to build updates that meet their132

needs. Developer practices limit the level of granularity in the current prototype133

of the BPD datstore so tangled commits (single commits with multiple unrelated134

or weakly related changes [11]) create some confusion. With additional effort135

from the developing party or minor changes to the BPD datastore prototype of136

course these commits can be untangled.137

The first of the two technologies that make this possible is test generation138

for ad hoc circumstances which we call ad hoc test generation because the gen-139

erated test emulates the ad hoc user context that manifested the bug. The key140

observation that makes ad hoc test generation plausible is analogous to Tucek141

6

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

et al.’s “delta execution” [12], whose large-scale study of patch size found that142

security and other patches solely to fix bugs tend to be modest in size and143

scope, rarely change core program semantics, shared memory layout or pro-144

cess/thread layout. Nonetheless, bug reproduction is difficult. The premise of145

record-replay technology highlights the difficulty in capturing all of the con-146

ditions that led to erroneous behavior and recreating those conditions in the147

developer environment. Standard bug reports often fail to capture all the rele-148

vant state information, and this paper addresses the feasibility of using ad hoc149

test generation in such scenarios. We have developed ATTUNE as a solution150

that combines the buggy executable with the modified version to emulate what151

would have happened had the modified version been deployed during the buggy152

execution.153

Instead of requiring developers to build doubles, mocks or other test scaf-154

folding to fake the user environment for its tests, ATTUNE builds on existing155

record-replay tools. It takes all non-deterministic inputs and replays them as156

they happened when the bug manifested. This eliminates the common com-157

munication failures when a developer tries to recreate the execution from user158

reports. Furthermore, since all non-deterministic inputs are replayed Ad Hoc159

Testing eliminates the possibility of confusing flaky tests [13].160

There are two main challenges to technically implementing Ad Hoc testing.161

1) How do you accurately identify changed portions of the executable once the162

source code level abstractions have been stripped away? and 2) How do you163

replay events after executions have diverged?164

ATTUNE solves these challenges with two key insights: 1) The identifiers165

used in the source code rarely change, and are still represented in the executable.166

Software patches rarely modify function names and global variable names. In the167

event they are changed, a mapping exists between the old and new identifiers so168

these points still provide consistency between the old version and new versions.169

These locations provide landmarks amidst the unstructured binary data to guide170

ATTUNE’s manipulation. 2) The recorded log does not need to be replayed171

verbatim in order. Events in the log can be skipped or swapped, and new events172

7

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Binary Patch
Decomposition

Datastore

Software
Operator

Software
Developer

Saves incremental
builds and

modifications

Developer distributes
incompatible version

update

Operator retrieves
metadata required
for partial updates

Software
Deployment

Operator deploys
compatible partial

update

Figure 3: Ad hoc Test Generation and Partial Updates for Customer Organizations

can be derived from those in the log, to match the patch. Our runtime emulation173

algorithm selects which events to replay and when to support execution after174

divergence.175

In addition to Ad Hoc Test Generation we offer binary patch decomposition176

to support deployment of software that would otherwise be impossible. Cus-177

tomer organizations tend to update software only when necessary for fear of178

updates introducing side effects that disrupt service. Software releases accord-179

ing to a common schedule, often contain many modifications most of which a180

singular user would deem unnecessary. These pose an unnecessary risk and may181

not be able to integrate new versions if relevant interfaces have been replaced182

or wiped away. This leaves many users in an awkward position: they have code183

with known deficiencies and the corresponding updates, but they also can’t184

apply those updates.As an example Equifax’s well known breach in 2017 [14]185

exposed in 145.5 million people even though a bug fix was available186

Figure 3 outlines our solution to this problem. The customer organization187

software operators (IT staff) monitor the deployed software and submits the188

bug report to the developer. While the developer works, the binary patch189

decomposition datastore (detailed in Figure 13) runs incremental builds and190

tracks changes at the binary level. When the developer distributes the new191

release, operators can instead apply partial updates from the BPD datastore192

8

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

if the new release is incompatible with existing infrastructure. Ad hoc test193

generation allows the operators to test the partial updates on recorded workloads194

to verify the partially updated software functions correctly.195

An earlier version of this work [15] introduced ad hoc test generation, and196

briefly discussed our technique for adding developer environment metadata to197

patch releases, enabling operators to validate patched versions with their own198

workloads. In this paper, we build on our previous ad hoc test generation199

workflow to enable a more complete solution. Furthermore, we added new200

functionality to allow for partial updates, e.g.when a full update would break201

mission critical functionality, based on ideas we previously sketched in [16].202

The new contributions of this expanded paper are:203

• A method for decomposing full version updates, with multiple bug-fixes204

(and possibly new features), into its component pieces to enable partial205

updates.206

• A testing framework for determining if a partial update is compatible with207

existing user environment infrastructure.208

• A patching technique that allows users to apply partial updates despite209

not having access to the source code.210

We explain our requirements for verbose execution traces and the techni-211

cal details of our binary rewriting techniques in Section 3. Our evaluation in212

Section 4 describes how a developer would use ATTUNE to test candidate213

patches for a variety of CVE security vulnerabilities and other bugs from well-214

known open-source projects. Section 4 also gives an example where the user215

records their own workload with the original program and replays with the216

modified program to convince themselves that the bug has been fixed and the217

patch does not break other behavior. We also test our partial patching in-218

frastructure applied in the user environment to show partial updates can in219

fact fix the bug. We analyze threats to validity in section 4.4 and compare220

to related work in Section 5, and then summarize this work. Our open-source221

9

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Figure 4: Recording and Preparation for Ad Hoc Test Generation

prototype implementation, portable across Linux distributions, is available at222

https://github.com/Programming-Systems-Lab/ATTUNE.223

3. Implementation224

Our ad hoc test generation workflow has four main components: recording,225

static preprocessing, load-time quilting and the runtime replay decisions. We226

detail support for Ad Hoc Test generation in the customer environment when227

source code is unavailable in section 3.5. Recording and the two preparation228

stages are shown in Figure 4, with runtime depicted in Figure 12. Both prepa-229

ration stages leverage the open-source Egalito recompilation framework [17].230

3.1. Recording231

We assume production recording with the user’s choice of lightweight tool232

and, when warranted by some external mechanism that detects an error or ex-233

ploit, offline replaying that tool’s recording while re-recording with rr’s recorder234

[18] as in Figure 2. Instead of rr, any other recording engine that constructs235

10

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

sufficiently verbose traces would suffice, but we do not know of any actively-236

supported open-source alternatives. Specifically, the trace must provide the237

details needed for ATTUNE to recreate the successive register contents and238

memory layouts leading up to when the bug manifested. Thus the recorded239

sequence of events must include register values before and after system calls,240

files that are mmapped into memory, and points at which thread interleaving and241

signal delivery occur during execution.242

ATTUNE imposes almost no restrictions on the user after constructing the243

verbose trace.ATTUNE’s technical design decisions enable ATTUNE to run244

without privileges in user-space, with conventional hardware, operating system,245

compiler, libraries, build processes etc. and no changes to the application or the246

accompanying libraries. This represents a stark contrast to other test generation247

techniques like symbolic or concolic execution. While the technical details of248

our binary rewriting mechanisms are specific to our implementation ad hoc test249

generation is not, and in principle ATTUNE prototypes could be built with any250

record-replay technology that supports sufficiently detailed execution traces on251

any architecture.252

There are some changes that ATTUNE does not support. While our tech-253

nique will capture concurrency related bugs, it cannot verify patches since it is254

impossible to verify what nondeterministic thread interleavings might do after255

a change. Any significant changes to data structures e.g., changing the size of a256

struct on the stack or in the heap, that would require changes to memory allo-257

cation would not be tolerated. Any changes to preprocessor macros don’t have258

symbols associated with them and so are not supported. Of course any major259

feature addition that fundamentally changes software behavior is not supported.260

We support all other changes that can be associated with symbols in the binary.261

3.2. Static Preprocessing262

Source Code and Binary Preprocessing. Figure 5 shows an abbreviated263

example patch file from a libpng bug-fix [19]. Patch files document which files264

changed, which function in the file changed, and which lines within that function265

11

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

--- a/pngrutil.c // file info

+++ b/pngrutil.c

@@ -3167,10 +3167,13 @@ png_check_chunk_length(...)

{ ...

- (png_ptr->width * png_ptr->channels

...

+ (size_t)png_ptr->width

+ * (size_t)png_ptr->channels

Figure 5: libpng-1 Abbreviated Example Patch file

were inserted and deleted. Patch files are created with a standard format so we266

are not limited to a single diff implementation.267

Dwarf Information & Symbol Table. Patch files don’t provide any268

information about the resulting binary. Since the recorded trace relies on bi-269

nary/OS level information (register values, pointers, file descriptors, thread ids,270

etc.), we need to translate from changes in the source to changes in the binary.271

182: 0000000000003fe0 56 FUNC

GLOBAL DEFAULT 1 png_check_chunk_name

183: 0000000000004020 221 FUNC

GLOBAL DEFAULT 1 png_check_chunk_length

184: 0000000000004100 172 FUNC

GLOBAL DEFAULT 1 png_read_chunk_header

Figure 6: libpng-1 Symbol Table Entries

...

<c> DW_AT_producer: (indirect string, offset:

0x1d90): GNU C11 7.4.0 ...

<10> DW_AT_language 12 (ANSI C99)

<11> DW_AT_name: (indirect string, offset: 0x1c8e):

pngrutil.c

...

0x0000402b [3156, 0] NS

0x0000403a [3166, 0] NS

0x00004046 [3182, 0] NS

Figure 7: libpng-1 Relevant DWARF Line Entries

Two mechanisms enable this translation: The first is the symbol table stan-272

12

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

dard in all ELF files and the 2nd is DWARF information. The key insight is that273

the symbols act as a point of reference between the old and the mod-274

ified binaries. They remain unchanged even if their addresses and references275

change. After processing the patch file we use the symbol tables to find the276

locations of functions and global variables, and we use DWARF information for277

finding changed lines and identifying source files. These two sources combined278

contain all the information in the source level diff at the binary level. Refer to279

Figures 6 and 7 for concrete examples.280

Most real-world builds create multiple binaries and associated libraries, so281

it may be unclear which binary contains the associated change. In order to282

generalize to sophisticated build processes ATTUNE uses DWARF information283

to search through all re-compiled binaries to find the modified file.284

Figure 8: Address Space Detail

3.3. Load Time Quilting285

Pre-Load Steps for Quilting. Once the function and line addresses have286

been resolved, and a prospective patched binary has been compiled, we can gen-287

erate our test code. In order for the newly compiled patched code to remain a288

viable test case, it must maintain the binary context of the original code. While289

most of the binary context remains unchanged, code pointers and data pointers290

that point somewhere inside the modified functions or that point from the mod-291

ified functions to any location outside of the modified binary must be updated292

13

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

accordingly. To create the most accurate test we point to the original binary293

context wherever possible. In order to fully integrate the patched code with the294

recording, references to shared libraries must point to where the shared libraries295

were loaded in the recording, references to places in the modified section of the296

code must point to the appropriate place in the patched code, and references to297

unmodified contents of the patched binary must point to the appropriate place298

in the original binary as in Figure 8.299

In order to prepare for load time quilting resolution (explained shortly),300

static reference identification needs to occur for bookkeeping purposes. The301

patched function is scanned for all symbol references that need to be resolved302

to integrate with the recorded context. Some references like references to lo-303

cations within the modified function (such as jump and conditional jump in-304

structions) can remain unaltered in position independent code. So after all305

references are accounted for, they are trimmed to the subset of references that306

need to be changed during the quilting procedure. This includes references to307

strings, shared library functions, functions that only exist in either the original308

or the modified binary, functions that exist in both, procedure linkage table309

(PLT) entries, and global variables. Since symbols are the points of reference310

between original and patched binaries, because recompilation renders addresses311

meaningless, references to be resolved are defined as a symbol and an offset from312

that symbol.313

Loading Replication & Custom Loading. In modern Linux systems314

the system loader is responsible for parsing the executable’s header, loading it315

into memory, and dynamic linking. Since shared libraries are not always loaded316

at the same positions, references related to the global offset table (GOT), and317

procedure linkage table (PLT) are resolved after loading completes. Even though318

ATTUNE knows pre-load which references need resolution, it can’t actually319

resolve those references until load time. To preserve the integrity of the replay,320

all required shared libraries, executables, and system libraries must be loaded321

into the recorded memory locations. The trace includes shared libraries and322

executables required for replay, and non-recorded libraries loaded during replay323

14

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

are limited to the system loader, which is required at the start of any process.324

In order to replicate the recorded loading activity, ATTUNE begins by load-325

ing a small entry point program (replay hook) that hijacks execution from the326

system loader and begins the replay process. Since some references in the327

patched code can’t be resolved until the original code is loaded into memory,328

so initially loading replicates exactly what was recorded. Once the original329

segments are loaded into memory and GOT/PLT relocations are completed,330

ATTUNE resolves remaining references in the patched code (described below).331

Finally, ATTUNE’s loader loads the quilted code after finding an appropriate332

place to put it. Note quilting has to be repeated on every replay, and the files333

containing the original and patched executables are not modified. The loader334

searches the address space for the lowest slot large enough to accommodate all of335

the patched code, then loads the patch following the Linux loading conventions.336

Figure 8 depicts the address space when loading has completed, and Algorithm337

1 outlines the loading procedure.338

Algorithm 1: Custom Loading Algorithm

Result: Load patched code into the address space

code seg size = 0; char* code buf;

for func in mod funcs do

code seg size += func.size

end

for segment in addr space do

space = next segment.start - segment.end;

if space > code seg size then

start = segment.end;

for func in mod funcs do

patched code = func.gen code;

code buf += patched code;

end

end

end

15

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Figure 9: Pointer Translation Procedure

Address Translation Procedure. A summary of the procedure to trans-339

late pointers from the context of the modified binary to the context of the340

original binary is given in Figure 9, and consists of both pre-load and load-341

time actions. The process starts from the address of the modified function as342

determined from the patch file and DWARF processing. ATTUNE scans the343

modified function for references. If a reference is affected by the quilting process,344

then ATTUNE’s translation procedure corrects the pointer.345

The log messages in Figure 10 explain the process in detail: An instruction346

in the patched binary at 0x1b214 points to 0xaa60. In order to update the347

instruction to point to the same position in the original binary we need to348

identify the correct symbol and offset in the original. First we convert the349

target address 0xaa60 into a symbol and offset in the patched binary. Since this350

instruction is just calling a function, the target symbol is the function name351

and the target offset is 0. Then ATTUNE searches the original binary for the352

same symbol and offset, and in this case the function was generated at the same353

address in original binary. Resolving string references, global variable references,354

and PLT references require slightly different procedures and are described below.355

Finally the patched code is generated with instructions pointing to the correct356

locations at runtime.357

PIC Code, PLT Entries & Trampolines. Position independent code358

compilation has become the standard for security and efficiency reasons, so359

16

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Linking function: png_check_chunk_length

in module pngutil

Updating Instruction Reference

from [0x1b214] to [0xaa60]

//identifying reference point

Target Symbol: png_chunk_error

Offset From Symbol: 0

Symbol Location in original binary:

0xaa60

//target address in the original binary

Target Address: 0xaa60

...

//patch references string

Resolving string reference at: 0x1b2cd

Resolving offset ...

for "chunk data is too large"

//identified string in original binary

Found string: "chunk data is too large"

at 0x320e

... module pngutil code found at 0x000000

... module pngutil data found at 0x200000

... generating quilted code

Figure 10: libpng-1 abbreviated linking example

17

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Figure 11: PLT Transformation

modern binaries can be loaded anywhere in the address space. As a result the360

locations of external functions and symbols are not known until those symbols361

actually exist in the address space. Since most library functions aren’t called,362

they aren’t all resolved at load time and instead are resolved only after they363

are called. The procedure linkage table (PLT) acts as a table of tiny functions364

that perform a function lookup and trampoline to where the code for external365

functions are defined.366

Unfortunately, we can’t rely on a PLT because the system loader that per-367

forms the runtime function resolution doesn’t know about ATTUNE’s special368

memory configuration. Two key differences let us implement static trampolines369

instead of relying on the traditional PLT mechanism. 1) We only need to re-370

solve the PLT entries that are referenced by the modified code, which comprise371

a small fraction of the overall PLT, and 2) we can resolve these beforehand372

without relying on the PLT’s lazy loading mechanism because the shared li-373

braries have already been loaded by the time this code is injected. The x86 64374

architecture only allows call instructions with a 32-bit offset, but we need to call375

functions across the 64-bit address space to reference shared library functions.376

To accomplish this we transform calls to PLT entries into a move instruction377

that loads an address into a register, and then a call instruction to the address378

in the register, as shown in Figure 11.379

Resolving String & Data Sections. The patched code may also reference380

data section variables like global data and strings. The patched code must381

reference the old code where possible and the patched code where required.382

Identical symbols and strings function act as points of reference between the383

modified and the original binary.384

18

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Figure 12: Runtime Architecture

These translations are similar to Figure 9, with a few minor differences:385

String tables don’t have an associated symbol table. The modified code ref-386

erences the string directly, but to lookup the location of a specific string in387

the original, we have to iterate through all of the read-only data. If the string388

exists in the original binary, then we point at it, otherwise ATTUNE points389

to the appropriate location in the new data section. Note the binary normally390

accesses data through a global offset table entry, but cannot use it here because391

the global offset table was compiled for the modified code. Instead, ATTUNE392

transforms the binary to point to the data directly, since it knows where the393

data has been loaded.394

3.4. Runtime Replay Decisions395

The runtime architecture is shown in Figure 12. At runtime we continue to396

leverage developer environment information to aid ATTUNE’s decision making,397

e.g., we know exactly which functions have been modified and perform a strict398

replay until a modified function is called. We break at that point and move399

to the patched code, where we use information about added or deleted lines to400

inform decision making.401

For any non-deterministic event that takes place during replay, we must402

decide whether to use a corresponding event recorded in the log or to actually403

19

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

submit the event for operation by the kernel, i.e., execute live as would be404

required if the inserted code makes a new system call. We emulate kernel state405

and kernel events whenever possible, and only ask the kernel to perform the406

replaying action when necessary, following the greedy approach shown by the407

pseudocode in Algorithm 2. It should be noted that system calls which depend408

on process state, like malloc, and mmap, don’t require emulation since this409

state is actually recreated during replay. All file operations performed during410

replay are based on information available from the recorded trace, essentially411

recreating how the program would have acted at the time of the bug except412

now (for successful patches) without the bug. If there is no further information413

available, the emulation ends.414

System Calls. The simplest event types to replay are system calls that415

don’t involve file IO. We can reuse results from the log if the parameters for416

the syscall match what is in the log. It won’t match the log exactly since the417

log contains checks for all registers including the instruction pointer that is418

obviously different, but we relax these checks once replay has diverged to only419

check registers containing syscall parameters.420

File IO. System calls involving file, network or device IO are harder to421

replay since they require a specific kernel state. We have to recreate the file422

state so we track open, close, stat, read, write, and seek operations for all423

file descriptors during replay. At the point the replay diverges we have a partial424

view of the file system. Of course we can’t recreate any data that doesn’t exist,425

but if a file operation can’t be satisfied during replay we can look forward in the426

recorded trace to see if we have enough information to satisfy the operation. If427

we do then we emulate it, and unfortunately if we don’t we have to die. Another428

approach would be to supply random bytes, but we feel this wouldn’t accurately429

reflect a realistic state if the full file system were available.430

Signal Delivery. If a signal is intercepted by the emulation engine, we431

need to decide if that signal should be delivered to the replaying process. Our432

normal replay mechanism based on rr’s replay mechanism determines signal de-433

livery based on the value of the retired conditional branches (RCB) performance434

20

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

counter standard in Intel chips. For signals that have been recorded, we check if435

we are in an inserted line. If we are then we deliver the signal and assume it is436

created by the patch (such as a segfault from an incorrect memory reference in437

the patch). However, if a recorded signal is delivered and we are not currently438

in the inserted section of the code we can do our best to estimate at what RCB439

count it should be delivered by taking the target RCB count and adding the440

number of RCB’s caused by inserted lines. While this isn’t perfect it does allow441

for a rough idea as to when the signal should be delivered. In the event an442

unrecorded signal fires we allow that signal to be delivered without interference443

since there is no recorded timing information to guide delivery.444

Algorithm 2: Runtime Replay Algorithm

Input : e: an event that stops replay

Output: The next event to replay

Function getResult(e):

if !diverged then

return next recorded result;

if is syscall without file io && exists unused in log then

return recorded result;

if is syscall with file io && supported operatione

exists unused in log then

return recorded result;

if is signal && signal is recorded then

if current pos == inserted code then

return nullptr; // execute live

return DELAY; // delay until RCB count

return nullptr; //execute live

3.5. Binary Patch Decomposition and Partial Updates445

Since all the information for ad hoc testing is at the binary level at runtime,446

ATTUNE supports software operators (customer organization IT staff) who447

don’t have source code but still want test potential updates with their own spe-448

cific workloads before deployment. The only requirement is that the developers449

21

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Figure 13: Binary Patch Decomposition Datastore

are willing to include metadata describing where the changes in the executable450

took place and what they consisted of. To support the developer distributing451

this information we developed a novel technique we call binary patch decompo-452

sition (BPD), which integrates with the existing build process. In simple terms,453

BPD breaks a full update down into its component pieces and their contents. Its454

complexity lies in tracking dependencies between updates such that the version455

of the software in the test has the proper contents.456

Figure 13 outlines the data structure that makes this possible. We integrate457

with the version control system as the software is developed and track which458

modifications are associated with each commit. In detail, since our ad hoc459

testing generation technique depends on symbols in the binary we construct the460

metadata that allows the operator to apply the patch based on the symbols461

that change. We also track the symbols each piece of code depends on and462

the associated versions. Along with the symbols and versions we also store the463

contents of those symbols to apply when the ad hoc test is run.464

Based on the contents of the datastore, the developers can release the binary465

specific metadata which details the changes that comprise the update. The al-466

gorithm for constructing the partial update metadata is described in Algorithm467

22

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

3. The algorithm takes the original and new binaries as inputs, and then for468

every changed symbol it has to do two things. First, if the symbol exists in the469

old binary, it must add the old size and position data so any references to this470

piece can be removed. Second, BPD must search through all the dependencies471

of each changed symbol (a dependency is any nonlocal reference); if the depen-472

dency existed in the old binary (as per the symbol name), then the metadata473

can simply add the new code piece and the location of its own dependencies.474

If the dependency doesn’t exist, it must be added to the metadata as a newly475

changed symbol and its dependencies searched as well.476

The software operator can check the update for compatibility, and in the477

event a full update is incompatible with existing infrastructure they can apply478

a partial update that may still support the old infrastructure. That partial479

update may consist of as many individual patches as they would like to include.480

In the event that selected patches are incompatible (including multiple versions481

of the same symbol) the newest version of the symbol is used.482

Unlike ad hoc test generation in the developer environment the operator483

needs to export the test to a modified executable which can be deployed. This484

distinctly differs from run time quilting as the requirements to keep memory485

layout the same no longer make sense. Leveraging Egalito’s binary rewriting486

capabilities we completely remove the modified symbols, and replace them with487

the correct versions. Since Egalito provides arbitrary rewriting, we do so with-488

out leaving behind any software bloat or extra instructions that would impose489

performance problems. Effectively we are recompiling the binary to some in-490

termediate build between version releases despite not having the source code.491

ATTUNE’s binary rewriting technique avoids the need for recompilation mak-492

ing it more efficient by both saving compute cycles, and eliminating the need to493

store source code changes in the BPD datastore. Furthermore by not recompil-494

ing from selected source code snippets developer practices remain uninterrupted495

without exposing any source code to the operators (customer organization IT496

staff) deploying the software.497

As currently constructed ATTUNE requires the developers to ship the entire498

23

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

BPD datastore to customer organizations, but in a commercial setting this499

datastore would be made available through a shared resource as depicted in500

Figure 3.501

Since our BPD technique integrates with git to perform intermediate builds,502

BPD’s ability to create the minimal update is somewhat limited by developer503

practices. The following circumstances merit further discussion: 1) In the simple504

case when one bug-fix (involving an arbitrary number of functions) corresponds505

with one commit, BPD handles this easily. 2) When multiple bug fixes are506

intertwined in the same commit, git does not provide any way for the developer507

to distinguish which functions/symbols are associated with each bug-fix so BPD508

requires that developers update the datastore appropriately. 3) If the same509

function is updated as part of multiple bug-fixes in different commits, the BPD510

datastore provides operators access to each version of that function. 4) If the511

same function is changed as part of multiple bug-fixes in the same commit then512

the BPD datastore does not support this because there are no intermediate513

builds per bug-fix to extract different versions of the same function. 5) If a514

bug fix involves thread interleavings while ATTUNE’s ad hoc test generation515

provides no guarantees, binary patch decomposition supports apply selected516

patches of this nature.517

4. Evaluation518

We evaluatedATTUNE on a Dell OptiPlex 7040 with Intel core i7-6700 CPU519

at 3.4GHz with 32GB memory, running Ubuntu 18.04 64bit, using gcc/g++520

version 7.4.0 and python 3.4.7. ATTUNE is built using CMake version 3.10.2521

and Make version 4.1.522

Since we want to evaluate ATTUNE on an unbiased selection of patches523

for both security vulnerabilities (CVEs) and other kinds of bugs, and know524

of no benchmark that provides user environment execution traces or scripts525

to set up the user context for recording traces, we recruited (for one semester526

of academic credit) an independent challenge team of three graduate students527

24

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Algorithm 3: Pseudocode: Metadata Construction

Result: Metadata(old info, new info)

Input : parsed original binary OV; parsed new binary NV; BPD

datastore DB

Output: metadata information required to construct patch MD

getMetadata (OV,NV,DB)

original code = DB.get code pieces(OV);

new code = DB.get code pieces(NV);

res.new info ← ∅, res.old info ← ∅;

changed symbols = DB.getChangedSymbols(NV);

foreach symbol ∈ changed symbols do

res.new info.add(symbol);

if symbol ∈ original code then

res.old info.add(symbol);

foreach cp ∈ symbol.dependency list do

if cp ̸∈ original code then

sym = Symbol(cp, newChange=True);

res.new code.add(sym);

end

end

return Metadata(res.new info, res.old info)

25

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

who were not involved in developing ATTUNE nor versed in how it works.528

They were tasked to identify a diverse collection of around 20 bugs in widely529

used C/Linux programs. The bugs had to have been patched during 2016–2019530

and the students had to construct user contexts that demonstrated the buggy531

behavior. For example, in order to recreate the circumstances leading up to532

the redis-1 bug, first one needs to run the server with a specific configuration,533

connect to the server in MONITOR mode, and then send a specific byte stream534

to the server. Note the team could script creation of such contexts given the535

bug and its root cause is already known; record/replay is for capturing and536

reproducing the contexts of previously unknown bugs. The team identified the537

21 bugs listed in Table 4.538

4.1. ATTUNE successfully validates a wide range of patches provided that cor-539

responding metadata is available540

ATTUNE successfully validated the real developer patches in both the devel-541

oper and operator environments for 19 and failed for 2 of the bugs the challenge542

team collected, marked with ✓and ✗ in Table 4 resp. We organize the 19 bugs543

successfully handled into several different types and describe how the developer544

employs ATTUNE in each case, then explain the 2 failures.545

String Parsing bugs are fairly common as there are often many corner546

cases, which can have significant security implications since input strings may547

act as attack vectors. Figure 14 [20] adjusts Curl’s treatment of URLs that end548

in a single colon. In the buggy version, Curl incorrectly throws an error and549

never initiates a valid http request. The patch modifies one file. Since ATTUNE550

replaces the entire modified function instead of individual lines of code, it needs551

to resolve all references in the new version.552

ATTUNE uses the recorded execution to recreate the context that triggered553

the bug, and then jumps to the patched code upon entering the modified func-554

tion. Since the only change was adding an if statement that doesn’t trigger a555

recorded event, the ad hoc test continues past the point where the bug occurred,556

without divergence other than instruction pointer and base pointer. The devel-557

26

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

...

+ if(!portptr[1]) {

+ *portptr = ’\0’;

+ return CURLUE_OK;

+ }

- if(rest != &portptr[1]) { ...

- ...

+ *portptr++ = ’\0’; /* cut off the name there */

+ *rest = 0;

+ msnprintf(portbuf, sizeof(portbuf), "%ld", port);

+ u->portnum = port;

...

Figure 14: Curl-1 URL Parsing

oper can set a breakpoint at the patched section, watch the if statement process558

the input correctly and verify the string in *portptr. The test then ends since559

the log has no information regarding how the network would have responded to560

the http request had it been sent.561

Figure 15 [21] deals with mishandling URL strings crafted with special char-562

acters, e.g., the ”#@” in http://example.com#@evil.com caused Curl to er-563

roneously send a request to a malicious URL. The patch calls sscanf with a564

different filter string. Since the surrounding function handles all the URL pars-565

ing for the application, it is rather large with lots of references. Unlike the566

above bug, which only requires resolving pointers to old strings, the new filter567

string needs to be loaded into a new data section and referenced appropriately.568

ATTUNE recreates the state that caused the initial behavior and then jumps569

to the modified code. There the developer can verify the patch by checking the570

values in protobuf and slashbuf.571

Mathematical Errors can have security implications when related to pointer572

errors or integer overflows. For example, a malicious PNG image triggers a bad573

calculation of row factor in Figure 16 [19], causing a divide-by-zero error and574

Denial-of-Service (DoS). With traditional bug reports, the user would need to575

send the image as an attachment, but a legitimate user affected by the DoS is576

27

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

static CURLcode parseurlandfillconn(...) {

path[0]=0;

rc = sscanf(data->change.url,

- "%15[^\n:]:%3[/]%[^\n/?]%[^\n]",

+ "%15[^\n:]:%3[/]%[^\n/?#]%[^\n]", /*new data*/

protobuf, slashbuf, conn->host.name, path);

if(2 == rc) {

....

Figure 15: Curl-12 String Parsing

png_check_chunk_length(...) {

...

size_t row_factor =

- (png_ptr->width * png_ptr->channels

- * (png_ptr->bit_depth > 8? 2: 1)

- + 1 + (png_ptr->interlaced? 6: 0));

+ (size_t)png_ptr->width

+ * (size_t)png_ptr->channels

+ * (png_ptr->bit_depth > 8? 2: 1)

+ + 1

+ + (png_ptr->interlaced? 6: 0);

Figure 16: libpng-1 Mathematical Error

28

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

+/* Return non zero if a non breaking space. */

+ static int iswnbspace (wint_t wc) {

+ return ! posixly_correct && (wc == 0x00A0 ...

+ static int isnbspace (int c) {

+ return iswnbspace (btowc (c));

+}

+

wc (args) {

- if (iswspace (wide_char))

+ if (iswspace (wide_char)

|| iswnbspace(wide_char))

goto mb_word_separator;

...

- if (isspace (to_uchar (p[-1])))

+ if (isspace (to_uchar (p[-1]))

+ || isnbspace (to_uchar (p[-1])))

+ goto word_separator;

}

...

Figure 17: wc-1 New Function and Refactoring

unlikely to be aware of the carefully crafted malicious image uploaded by an577

attacker. ATTUNE does not require attachments besides the execution trace,578

since the re-recorded trace includes the image. After the developer writes the579

patch, they use ATTUNE to verify that row factor is no longer 0. The patch580

doesn’t trigger any new events so the function returns gracefully.581

New Functions & Function Parameter Refactoring. Many fixes, es-582

pecially those that pertain to size miscalculations, involve refactoring the buggy583

function to require a new parameter or writing an entirely new function (with584

new DWARF and ELF metadata). While not particularly strenuous for the585

developer, these types of fixes create a challenge for ATTUNE. Since both the586

function that has been refactored or inserted and the functions that call the587

new/refactored function need to be modified, ATTUNE must replace all these588

functions in the executable and properly link them.589

A patch for the wc file processing utility adds special character parsing590

29

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

void addReplyErrorLength

(client *c, const char *s ...)

{

- if (c->flags & (CLIENT_MASTER|CLIENT_SLAVE)) {

+ if (c->flags & (CLIENT_MASTER|CLIENT_SLAVE)

+ && !(c->flags & CLIENT_MONITOR)) {

+ char* to = c->flags &

+ CLIENT_MASTER? "master": "replica";

...

Figure 18: redis-1 Erroneous Conditional

url_parse (const char *url ...) {

...

+ /* check for invalid control characters in host

name */

+ for (p = u->host; *p; p++) {

+ if (c_iscntrl(*p)) {

+ url_free(u);

+ error_code = PE_INVALID_HOST_NAME;

+ goto error;

+ }

+ }

Figure 19: wget-2 New Loop

30

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

functions as shown in Figure 17 [22]. ATTUNE loads patched versions of the591

new function and those functions that call the new function into the address592

space. The new function is loaded to point towards the original libraries and593

executables where appropriate, and the modified calling functions point to the594

new function. There is no need to send a file with the problematic non-standard595

characters in the bug report to the developer, since it is included in the recorded596

log. These types of bugs can be difficult for conventional bug reports as files in597

transit may arrive with modified encoding types and changed contents.598

ATTUNE provides the input from the recorded file and successfully returns599

from the modified functions displaying the patched output. Testing the modi-600

fied wc code doesn’t diverge drastically from the original execution trace. The601

developer can verify the patch by letting the program run to termination and602

inspecting the calculated value.603

Adding Conditionals. Perhaps the most common patch we saw involved604

adding conditionals. Many security-critical patches make one-line changes to605

correct conditional checks. We examined one such example in redis. Such606

services are particularly hard to test and debug using conventional mocks, as607

complex network inputs can be difficult to recreate in mocking frameworks. Re-608

dis allows monitor connections to send logging and status checking commands.609

The buggy version in Figure 18 [23] didn’t check the client flags for the monitor,610

which resulted in a kernel panic. While this was one of the smaller patches, the611

validation process varied substantially from the log. ATTUNE enables the de-612

veloper to step through the program and watch progress through the modified613

control flow past the point of the crash.614

New or Changing Loop Conditions. Bad loop conditionals are also615

common. Reference resolution is performed as before, but these patches vary616

greatly from an ad hoc testing perspective because loop conditionals do not617

necessarily exhibit the bug on the loop’s first iteration. One such example from618

the wget utility demonstrates how ATTUNE handles this sort of change in a619

security-critical situation. The bug allowed attackers to inject arbitrary HTTP620

headers via CRLF sequences into the URL’s host subcomponent. Attackers621

31

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

could insert arbitrary cookies and other header info, perhaps granting access622

to unauthorized resources. The developer modified the url parse functions in623

Figure 19 [24] to check each character in the host name and throw an appropriate624

error. During ad hoc testing the developer verifies the patch works by watching625

the program check each character, and upon entering the if statement freeing626

the URL pointer and proceeding correctly to the error handling code.627

Swapped Code: ATTUNE successfully constructed test cases in scenarios628

that swapped library function calls yes-1 [25] and swapped control flow blocks629

df-1 [26]. The yes-1 patch makes far-reaching changes across the code base to630

address the same bug in multiple places (15 files). Assuming the recorded log631

only manifests one instance of the bug, then the generated ad hoc test case can632

only check for that instance, not changes elsewhere in the code base.633

Failures: ATTUNE successfully generated ad hoc test cases for those chal-634

lenging patches where the compiled binaries included complete metadata. How-635

ever, it failed on functions with no ELF symbol table entry: We were636

initially surprised that a removed break statement in shred-1 [27] caused an637

error, since the change is so small. Upon investigation, we found this behavior638

should be expected, since the function (used only in one place) was inlined by639

the compiler – thus no symbol table entry for cross-referencing the function.640

ATTUNE also failed due to DWARF omissions: Applying ATTUNE to pa-641

rameter changes in curl-8 [28] was unsuccessful. We expected to be able to locate642

the modified function in the loaded binaries to link the patch, but the DWARF643

metadata generated by the compiler did not include the filename for the file644

containing that function. ATTUNE depends on the compiler’s compliance with645

the DWARF specification.646

4.2. ATTUNE’s wait time and memory overhead is small647

To get some perspective of ATTUNE’s overhead, we compared ATTUNE648

with KLEE [29, 30], a state of the art test suite generation tool. We used649

KLEE version 2.1 [31] compiled with LLVM 9.0.1. We limited this comparison650

to those bugs in Table 2 from CoreUtils, since KLEE supports CoreUtils eas-651

32

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

ily. The other bugs we studied have more external libraries, aside from libc, so652

would require additional engineering effort for KLEE to accommodate. KLEE’s653

test generation time was budgeted to timeout after 60 minutes, as in [29]. We654

omitted a comparison to other testing tools that only detect crashing and per-655

formance bugs, like typical AFL-based fuzzers, since most of the bugs we studied656

were not crashing bugs and we did not consider performance bugs. We consider657

this type of testing to be a completely different testing methodology that is not658

comparable.659

Ad Hoc Test Construction TimeATTUNE’s quilting occurs at load time660

so runs when each candidate patch is tested. However, since recording allows661

for targeted test construction, almost all the overhead introduced by symbolic662

execution searching the program space is removed. As shown in Table 2, our663

worst case was just under 4 seconds.664

Memory Footprint: ATTUNE inserts patched code prior to each test ex-665

ecution, so it incurs some memory overhead at test time, as shown in Table 2.666

need more here Symbolic execution, on the other hand, requires significant re-667

sources to maintain the intermediate program states required to develop test668

cases. We found on the studied bugs that ATTUNE reduced memory over-669

head over 90% in all cases and could reduce memory usage by as much as 97%670

compared to KLEE.671

4.3. Operators validate released patches with their own workloads and apply par-672

tial updates if necessary673

In the last (optional) stage of the patching workflow, the operator validates674

the patch in their own environment to verify no needed functionality has bro-675

ken. We integrated our binary patch decomposition datastore so ATTUNE676

produces correctly formatted metadata enables operators to select individual677

bug-fix patches from new releases containing other unrelated changes. Since678

ATTUNE operates entirely in user-space, without the support of hardware,679

operating system, and so on, it can run in both developer and operator envi-680

ronments. ATTUNE summarizes the “diffs” in source and binary code, and681

33

Journal Pre-proof

J
o
u
rn

a
lP

re
-p
ro

o
f

Bug ATTUNE KLEE ATTUNE

Time

KLEE Time Speedup ATTUNE

Mem

KLEE

Mem

Overhead

Reduction

wc-1 [22] ✓ ✓ 1.37s 300.046s

(5m)

99.5% 5.9 KB 108.388

KB

94.5%

wc-2 [32] ✓ ✗ 1.277s na na 2.8 KB 107.7 KB 97.4%

yes-1 [25] ✓ ✓ 3.4s 8.569s 60.3% 10.6 KB 107.09 KB 90.1%

shred-1 [27] ✗ ✗ na na na na na na

ls-1 [33] ✓ ✓ 1.6s 19.57s 91.82% 7.4 KB 132.9 KB 94.4%

mv-1 [34] ✓ ✓ 3.6s 58.4s 93.84% 4.3 KB 208.2 KB 97%

df-1 [26] ✓ ✓ 1.48s 18.869s 92.15% 5.97 KB 151 KB 96.05%

bs-1 [35] ✓ ✗ 1.2s na na 5.6 KB 113.37 KB 95.06%

Table 2: Comparison to KLEE Test Generation

34

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

inserted line addresses:

0x6b

0x6e

deleted line addresses:

0x495AD

0x495B7

patched code:

...

69: jne 0xb9

6b: and 0x2,%eax

6e: lea -0x58090939(%rip),%rdx

75: mov 0x58(%rbx),%rax

...

Figure 20: redis-bug-1 Metadata for User Validation

exports metadata allowing for operator validation and partial updates.682

For sample user environment workloads, we used the redis benchmark [36],683

which simulates thousands of different requests to the server, and the httperf684

benchmarking tool [37] making thousands of connections. Similar to the re-685

dis discussion above, ATTUNE’s validation procedure for the redis patch [36]686

utilizes only the metadata it added to the released patch, shown in Figure 20.687

ATTUNE needs inserted and deleted line addresses for its runtime deci-688

sion algorithm. The metadata’s ”inserted line addresses” and ”deleted line689

addresses” are offsets into the relevant files while deleted lines from the original690

binary are offsets into the original executable. Inserted lines only appear in the691

patch release so their addresses are offsets into the patched codefile that gets692

mmapped into memory.693

4.4. Threats to Validity694

To test our ability to both export and apply partial updates, for each bug695

we inspected we exported metadata describing each individual change in the696

complete version update. Then we quilted the singular change that fixed the697

patch as an operator would apply a single change at a time. Unlike ad hoc test698

generation in the developer environment, when the modified executable exists699

statically, in the operator environment we provide the ability to export the in700

35

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

memory ad hoc test to a static file. For every bug in the table the partially701

updated patched version successfully fixed the bug.702

It’s important to note that the size and scope of the change is not accurately703

measured only by the lines of code changed, but also how many references need704

to be resolved in the quilting procedure. Table 4 describes the extent of the705

changes at the binary level, by tracking how many data reference and code706

reference resolutions need to be performed to successfully quilt the patch in.707

Table 4 also shows how many individual changes are in each version update.708

For each partial update that was applied, the exported version of the binary709

successfully fixed the buggy behavior.710

Internal. As far as we know, no execution traces were recorded when any711

of the studied bugs were discovered, so we needed bug-triggering user contexts712

that could be recorded. We recorded directly with rr, rather than first using a713

lightweight recorder and then re-recording the lightweight replay using rr. Ar-714

guably, these user contexts could have been designed to facilitate ATTUNE’s715

test generation. This threat is partially mitigated since the carefully crafted716

scenarios were developed by three grad students who were not ATTUNE de-717

velopers and did not know how ATTUNE operates. We did, however, instruct718

them on how to use rr. Further, we describe how we imagine a developer would719

verify their candidate patches using ATTUNE, but we are not developers on720

these projects and lack the developers’ knowledge. This is mitigated to some721

extent since ATTUNE generated ad hoc tests for the real developer patches.722

Ideally, we would also use ATTUNE to generate ad hoc tests for candidate723

patches discarded by the developers, to illustrate how we envision a developer724

would leverage ATTUNE to determine that their attempted patch fails to fix725

the bug, but we could not find any such commits in the version repositories.726

Lastly, since do not have access to production users for any of the programs in727

our dataset, we simulated a production workload using a standard redis bench-728

mark, which may not be representative of the workloads that production users729

would construct to validate the redis patch in their own environment.730

External. We demonstrate thatATTUNE supports a wide variety of single-731

36

Journal Pre-proof

J
o
u
rn

a
lP

re
-p
ro

o
f

Bug Data Resolutions Code Resolutions Buggy Version Tag Patch Version Tag Distinct Changes Between

Versions

Partial Up-

date Success

curl-1 [20] 4 31 curl 7 63 0 curl 7 64 0 128 ✓

curl-2 [38] 69 318 curl 7 63 0 curl 7 64 0 128 ✓

curl-5 [39] 6 53 curl 7 33 0 curl 7 34 0 246 ✓

curl-6 [40] 6 71 curl 7 63 0 curl 7 64 0 128 ✓

curl-8 [28] n/a n/a curl 7 61 0 curl 7 60 0 223 ✗

curl-9 [41] 8 26 curl 7 62 0 curl 7 63 0 122 ✓

curl-10 [42] 3 21 curl 7 62 0 curl 7 63 0 122 ✓

curl-11 [43] 273 1012 curl 7 62 0 curl 7 63 0 122 ✓

curl-12 [21] 37 103 curl 7 50 0 curl 7 51 0 333 ✓

libpng-1 [19] 1 6 v1.6.34 v1.6.35 53 ✓

libpng-2 [44] 1 6 v1.6.32beta02 v1.6.33beta02 97 ✓

wc-1 [22] 109 298 v8.30 v8.31 90 ✓

wc-2 [32] 79 155 v8.26 v8.27 69 ✓

yes-1 [25] 234 399 v8.30 v8.31 90 ✓

shred-1 [27] n/a n/a v8.27 v8.28 72 ✗

ls-1 [33] 380 387 v8.29 v8.30 68 ✓

mv-1 [34] 89 204 v8.29 v8.30 68 ✓

df-1 [26] 164 348 v8.28 v8.29 65 ✓

bs-1 [35] 140 296 v8.28 v8.29 65 ✓

wget-1 [45] 8 16 5.0.6 5.0.7 30 ✓

redis-1 [23] 3 10 v1.19.5 v1.20 51 ✓

Table 4: Partial Update Tests – Partial updates applying a single commit that fixes a patch but each individual change from a version

update is available.

37

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

line and multi-line patches for security vulnerabilities and other bugs in real732

programs. ATTUNE resolved references between modified and original exe-733

cutables and program state with binary transformations, but we cannot claim734

that ATTUNE’s set of transformations will resolve all types of references sup-735

ported by the expansive x86-64 instruction set. We have not yet studied C++736

or other non-C programs and we have not yet investigated ARM or other ar-737

chitectures. The bugs we studied may not be representative of real-world bugs;738

notably we have not yet studied GUI bugs.739

Construct. The overhead measurements comparing ATTUNE to Klee are740

arguably unfair, since the symbolic execution explores ”from scratch” even741

though, in principle, Klee’s symbolic execution engine could be modified to742

leverage rr’s verbose execution traces. We considered integrating Klee with743

record/replay to be a major research effort, outside the scope of this work. Zuo744

et al. [10] recently completed such an effort, going even further by skipping745

ATTUNE’s verbose re-recording entirely, and integrating Klee with lightweight746

hardware-assisted control and data tracing. Zuo et al. present what they747

call shepherded symbolic execution, where a new production release cycle is in-748

curred whenever constraint solving bogs down while trying to match the lightly749

recorded trace. In each new production build, instrumentation is added to cap-750

ture key data values involved in complex constraint dependencies (long chains751

of symbolic writes and accesses to large symbolic memory objects). Assum-752

ing the bug reoccurs sufficiently often in production, after several release cycles753

the shepherded symbolic execution will eventually find inputs that reproduce754

the bug (not necessarily the same inputs that triggered the bug when it was755

originally discovered). Of the thirteen bugs in Zuo et al.’s dataset, two were re-756

produced from the initial lightweight recording, while the other eleven required757

from 2 to 10 re-occurrences in production. Their paper did not specify the real-758

world calendar time involved, but we think it is safe to assume it was longer759

than the 60 minutes we allowed for Klee timeout.760

38

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

4.5. Limitations761

Our ATTUNE prototype extending rr inherits rr’s design decision to replay762

multi-threaded recordings on a single thread and simulate thread interleaving763

by interrupting that single thread’s execution [46, 47]. Although ATTUNE ac-764

commodates thread synchronization and faithfully emulates the error state, rr’s765

approach makes it impossible for ATTUNE to accurately verify patches for con-766

currency bugs that manifest due to the true parallelism of multi-core execution.767

There is nothing in ATTUNE itself that inherently prevents it from addressing768

concurrency bugs, but we would need to find a faithfully multi-threading re-769

placement for rr, ATTUNE also relies on rr to re-record the execution trace in770

the user environment and to replay that recording in the developer environment771

with the original version of the program [46, 47, 18]. Since rr was designed to772

be used during developer testing, with too high overhead for production [46],773

we adopt the re-recording model shown in Figure 4. In theory, lightweight pro-774

duction recorders could fail to capture sufficient detail to faithfully replay some775

behaviors even in the same user environment, in which case the re-recording776

might not manifest the bug, but Mashtizadeh et al. [9] explain this limitation777

is generally unimportant in practice.778

A few ATTUNE limitations are orthogonal to the rr recorder. ATTUNE779

does not currently verify patches to preprocessor macros, since it compares the780

source file versions rather than the results of preprocessing the source files.781

ATTUNE also does not currently support generating tests for patches that782

change the size of a data structure on the stack or in the heap. We allow new783

values to be put on the stack and heap, but don’t adjust memory allocation784

when replaying logged values.785

Ideally, ATTUNE would address the privacy concerns inherent in all bug786

report systems that send information gathered in the user environment to the787

developer. This might be achieved by adding an anonymization phase during788

or after re-recording with rr, prior to sending to the developer. For example, we789

could use path conditions and a constraint solver to generate new anonymous790

data forcing the same execution paths, as was done in [48, 49]. Something791

39

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

like trace wringing [50] might also be an option. We see anonymizing user792

environment recordings as a major engineering effort that is outside the scope793

of our research. However, we note that unlike third-party website session script794

recordings [51], ATTUNE does not run surreptitiously: the user has to select795

lightweight recordings to re-record and submit to the developer.796

5. Related Work797

iFixR [3] automatically generates candidate patches from bug reports, but798

relies on conventional regression testing even though those tests initially failed799

to detect the bug. In future work, we plan to investigate integrating ATTUNE800

with automatic program repair (APR) technology. Differential unit tests [52]801

construct unit tests using in-memory program state immediately prior to invok-802

ing the target method, but cannot reproduce bugs not detected by the original803

developer tests. [53] similarly extracts unit tests from developer execution804

traces. In future work, we will investigate constructing unit tests from the ad805

hoc tests generated by ATTUNE.806

KATCH [54] combines symbolic execution with heuristics to generate test807

cases that cover the patched part of the code, while shadow symbol execu-808

tion [55] symbolically explores divergences between original and patched ver-809

sions. Neither leverages execution traces recorded in the user environment, nor810

fully models system calls, so the generated test cases may not reflect the bug-811

triggering circumstances. However, symbolic execution enables reaching parts812

of the program not exercised by the recording, complementing ATTUNE.813

Parallel retro-logging [56] allows developers to change their logging instru-814

mentation so previous executions produce augmented logs, but the program is815

not modified. Network-level traffic cloning tools can relay or replay the net-816

work inputs for service-oriented and microservices architectures. For example,817

in Parikshan [57] the traffic is fed to a forked copy of an architectural compo-818

nent in a sandbox, for debugging, or to a modified version of a component, for819

testing patches. But the replay is not necessarily faithful when there are other820

40

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

sources of non-determinism besides network traffic821

Kuchta et al. [55] generates tests for software patches using ”shadow sym-822

bolic execution”. The old program shadows the new version as the two are823

symbolically executed in tandem. Whenever new and old diverge, their Shadow824

tool generates a test exercising the divergence, to comprehensively test new825

behaviors. Shadow’s symbolic execution time budget might permit reaching826

parts of the program not exercised by available user execution, complement-827

ing ATTUNE. Shadow does not leverage user execution traces and may not828

model all system calls, so its tests may not reflect known bug-triggering user829

environments. It only considers control-flow divergences, not data-only diver-830

gences, whereas ATTUNE relies on the program and environment state (data)831

from the verbose re-recording. Further, as explained by Kuchta et al., Shadow832

suffers from the incompleteness of symbolic execution, the impact of the initial833

set of inputs, multi-hunk patches (several of our studied patches cross multi-834

ple files), and the technical limitations of building on top of KLEE and LLVM835

bitcode — external calls to native code, such as library and system calls, are836

challenging. ATTUNE assumes the faithful recording of these calls.837

Elbaum et al. [52] introduced ”differential unit tests” generated from the838

execution traces of developer system tests. Their CR (Carving and Replaying)839

tool extracts and combines the trace segments that construct in-memory pro-840

gram state as it was just prior to invoking the target Java method, which then841

serves as a unit test. CR also complements ATTUNE, since its system tests842

would likely exercise the program more broadly than available user execution843

traces. Since CR does not leverage user execution traces and its system traces844

support only in-memory events, its tests may not reflect known bug-triggering845

user environments. Other work similarly extracts unit tests from developer exe-846

cution traces, e.g., [53], with analogous advantages and disadvantages. CR does847

not attempt to continue replay through the execution of the method under test,848

the method’s return to its caller in the full system execution, and beyond. In849

contrast, ATTUNE’s ad hoc tests are generated from system recordings made850

in user rather than developer environments, and the primary goal is indeed to851

41

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

continue replay of the full system through the execution of every changed func-852

tion until its clear the bug no longer manifests — a more challenging problem.853

ATTUNE requires faithful replay as a baseline, including emulation of interac-854

tions with files, databases and other resources in the user environment, whereas855

CR replays only in-memory program state. Tiwari et al. [2] take a similar ap-856

proach to Elbaum et al., but cull their unit tests from production executions857

rather than from developer system tests. Their focus is on devising test ora-858

cles for pseudo-tested methods, where the test suite exercises the methods but859

no test oracle specifies their expected behavior. As in our user environment860

validation, Tiwari et al. assume that previous executions in the production861

environment produced the desired results.862

A problem posed by Kravets and Tsafrir [58] is more similar to ad hoc test863

generation. They proposed ”mutable replay”, where a record-replay engine tries864

to execute a modified program by closely matching a recorded execution trace865

from a previous program version. They sketched a hypothetical design based866

on a then-recent record-replay system, Scribe [59].867

The Kravets and Tsafrir paper motivated the Scribe developers to implement868

”mutable replay” themselves [60]. They leveraged checkpoint/restart [61] in869

a backtracking search algorithm that sought to minimize adds/deletes to the870

recorded event log. Although successful on many bug-fix examples in the sense871

that the ”mutable replay” continued through the modified portion of the code,872

the constructed execution was not necessarily the same execution that would873

have occurred had the modified code been in place in the user environment874

at the time the original code encountered the bug, which is what ATTUNE875

aims. Scribe’s implementation centered on a special Linux kernel module that876

intercepted system calls and other non-deterministic events within the operating877

system kernel, granting complete control over how the kernel responded to the878

events, whereas ATTUNE runs without privileges in user-space with no changes879

to the operating system. Scribe required a shared file system (copy on write)880

between the recording and replaying environments, so was impractical for the881

post-deployment scenarios we envision, where no files, databases, etc. are shared882

42

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

between user and developer environment other than the contents accessed during883

verbose re-recording and thus included in the log sent to developers.884

There are numerous other record-replay tools in the literature, e.g., [62, 63,885

64, 65]. Some versions of gdb build-in recording and replaying debugging ses-886

sions [66], as does Microsoft’s IntelliTrace [67]. Some work trades off faithful887

replay guarantees to better address long-lived latent bugs for time-travel debug-888

ging [68, 69]. In some record-replay papers the recorded log is referred to as a889

test case, but most replays only reproduce the buggy execution of the recorded890

version of the program, and cannot be used to test patched versions.891

Many record-replay tools focus on reproducing concurrency bugs, e.g., [70,892

71, 72]. tsan11rec [73] combines a custom scheduler for detecting data races893

with a sparse approach to record/replay: it records only those sources of non-894

determinism configured per application. tsan11rec can record and replay I/O-895

intensive software like video games, but cannot faithfully replay applications896

where memory layout non-determinism significantly affects application behav-897

ior. rr faithfully reproduces memory layout, but is not sufficiently perfor-898

mant for I/O-bound applications – thus our re-recording architecture. While899

ATTUNE supports ad hoc test generation for multi-threaded programs, our900

prototype built on rr cannot generate tests for patches aimed specifically at901

concurrency bugs due to how the rr implements multi-threading (it simulates902

multiple threads within a single thread).903

Much research focuses on reducing recording overhead, trading off lower904

production overhead (thus better production performance) for faithful replay905

guarantees, e.g., [74, 75, 76]. REPT [77] combines hardware tracing and binary906

analysis to try to reconstruct execution traces, which can then be replayed with907

the same program version. Castor [9] records multi-core applications by leverag-908

ing hardware-optimized logging, transactional memory, and a custom compiler.909

Its successful replays allow for slightly modified binaries that do not impact910

program state. Zuo et al.’s approach outlined in Section 4.4, called Execution911

Reconstruction (ER) [10], begins with hardware tracing of control and data flow.912

After a failure, ER uses symbolic execution to find an input that is consistent913

43

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

with the trace, i.e., reproduces the bug. When constraint solving bogs down, ER914

releases a production patch that records selected data values chosen to shepherd915

the symbolic execution further. This process iterates. If the failure occurs often916

enough, eventually sufficient production data will be accumulated to allow the917

symbolic execution to complete. Thus ER trades off lower production overhead918

for potentially quite long calendar-time delays in bug reproduction, and there-919

fore bug repair. We assume some lightweight record/replay system for pervasive920

recording during production, even though none of them are guaranteed to repro-921

duce every bug the first time it is encountered. ATTUNE’s re-recording with rr922

in the user environment kicks in only when the lightweight recorder succeeds in923

reproducing the bug, so could be quite prompt with REPT or Caster but would924

inherit ER’s wait time.925

Although some papers about record-replay systems refer to capture-replay,926

e.g., [78], record-replay as discussed in this paper is different from most capture-927

playback tools. These record or script user actions to repeat for GUI com-928

patibility testing across multiple operating system versions, browsers, or de-929

vices [79, 80, 81, 82, 83]. Capture-playback is conceptually similar to ad hoc930

test generation, but these tools focus on externally visible behavior and are not931

intended for faithful bug reproduction or testing patches.932

Multi-Version Execution (MVE) provides an alternative approach to user933

validation. In MVE, the patched and original versions run simultaneously on934

production user workloads, adding runtime overhead but enabling immediate935

detection of undesirable divergences [84, 85, 86, 87]. In contrast, we envision936

that the user records production workloads with the old version and re-records937

offline as in Figure 2, but skips the developer stage and uses ATTUNE locally938

to generate ad hoc tests that replay the workloads with the patch. If all is939

satisfactory, production switches to the new version via some mechanism outside940

ATTUNE, e.g., live-update. Live-update tools deploy software updates without941

restarting running programs, e.g., by enabling the new version to resume a942

checkpoint from the old version similar to a fresh initialization [88, 89]. Dynamic943

software updating [90] combines multi-version execution with live-update, where944

44

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

the update is applied to a forked copy while the original system continues to945

operate. The new version shadows the original for a warmup period, and if946

there are no problems production execution switches over. Unlike MVE systems947

running different code versions, as in ATTUNE, LDX [91] runs two instances of948

the same code to infer causality between events. The slave changes one event949

from the master execution to find divergent impacts, orthogonal to our work.950

Fuzzing seeks inputs that induce crashes and other problems [92, 93, 94, 95].951

Other approaches also strive to induce bad behaviors, e.g., [96, 97]. Soltani952

et al. [98] builds on EvoSuite’s search-based testing [99] to reproduce crashes.953

Symbolic execution [54], fuzzing [100] and other approaches generate test suites954

to achieve coverage goals. There is a rich literature concerned with generat-955

ing inputs intended to trigger or reproduce bugs. Generally, the same gener-956

ated tests could be applied to multiple program versions — unless those tests957

are ”flaky”. There has also been much work towards making tests repeatable,958

which is sometimes difficult even in the developer environment on the exact959

same system build [101]. These tools, as well as regression testing, complement960

ATTUNE by providing generic testing methodologies, but ATTUNE’s targeted961

approach based on the specific buggy execution provides a more efficient alter-962

native. Compared to fuzzing, symbolic execution, and coverage based testing963

ATTUNE targets the specific buggy execution without relying on approximate964

heuristics like symbolic conditions and code coverage that cannot guarantee bug965

reproduction.966

Research in continuous integration and deployment techniques like those out-967

lined by Shahin et al. in [102] provide a different functionality than ATTUNE.968

Some deployment production environments even have test monitoring tools969

built-in [103]. While they do incremental builds that test software during de-970

velopment, they do not provide the deploying users a chance to make changes971

outside of what the developer has distributed.972

Test case prioritization techniques like the one described by Srivastava et973

al. [104] and those described by Bajaj et al. [105] look to improve efficiency974

in regression testing by looking to reduce the total number of tests when re-975

45

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

gression bugs are introduced. While customer organizations could employ such976

techniques to determine which commits they would like to introduce to their977

distribution, we leave such discussions to future work. Other code analysis tech-978

niques like software slicing [106, 107] and branch coverage [108, 109] that are979

used to augment testing techniques provide a different function than ATTUNE.980

Slicing identifies groups of statements that are most effected by a given change981

to inform testing strategies. ATTUNE’s specialized tests remove the need for982

software slicing as the log guarantees only the critical program paths are un-983

der test. The popular branch coverage testing techniques are orthogonal to984

ATTUNE as branch coverage is not a metric that is used by ATTUNE. Of985

course ATTUNE’s test would cover specific branches of code, but maintaining986

adequate coverage across the entire suite is still left to developer practices.987

It should be noted that this technology is significantly different than auto-988

mated program repair outlined by Le Goues et al. in [110] since we still rely on989

the human developer to actually write the repair. It also differs from regression990

testing techniques like those reviewed in [111] by Khatibsyarbini et al.991

Binary rewriting has been used for many reasons including implementing de-992

fenses, automatic program repair, hot patching, and optimization. Hot patching993

is an interesting example since it requires conserving dynamic program state at994

the time the repair is applied, similar to binary quilting. Katana [112] has highly995

sophisticated mechanisms for handling this problem, many of which would aug-996

ment our current quilting procedure, but relies on trampolines to apply the997

patches that could incur significant overhead the same as [113]. Other binary998

rewriting mechanisms like Zipr [114, 115] raise the binary to a higher level IR999

that allows for increased efficiency in the reassembly process similar to Egal-1000

ito [17], but have demonstrated generic binary level defense transformations1001

instead of semantically complex bug specific patching.1002

46

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

6. Conclusion1003

ATTUNE (Ad hoc Test generation ThroUgh biNary rEwriting) leverages1004

record-replay and binary rewriting technologies to automate test generation1005

for security vulnerabilities and other critical bugs discovered post-deployment,1006

when there are no existing tests for testing candidate patches, and little time for1007

constructing and vetting new tests. ATTUNE first quilts the modified functions1008

(the patch) into the original binary and then interprets the recorded execution1009

trace from the original binary, as it executed in the user environment, to “replay”1010

on the patched binary in the developer environment. The developer monitors1011

the progress of the ad hoc test to check that the bug no longer manifests, but1012

does not intervene in test generation and does not need to build test scaffolding.1013

We have augmented our original implementation of ATTUNE with binary patch1014

decomposition, which integrates with the build process to give software oper-1015

ators (user organization IT staff) the ability to test and apply partial updates1016

in the event the developer’s full release breaks functionality, e.g., because of1017

incompatibilities with user environment infrastructure. Our BPD datastore lets1018

operators selectively apply patches leaving most of the production version un-1019

touched. We showed that ATTUNE successfully generates tests for a wide range1020

of known security vulnerabilities and other bugs in recent versions of open-source1021

software, with minimal developer effort, both quickly and efficiently. We also1022

demonstrated that BPD can successfully construct updated binaries to address1023

installation-specific problematic behavior. Our open-source implementation is1024

available at https://github.com/Programming-Systems-Lab/ATTUNE.1025

7. Acknowledgment1026

Funding: This material is based upon work supported in part by the National1027

Science Foundation under Grants No. CNS-1563555 and CCF-1815494.1028

We thank Yangruibo Ding, Victor Xu, and Ziao Wang for compiling the patch-1029

testing dataset. We thank Robert O’Callahan and David Williams-King for1030

their suggestions.1031

47

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

References1032

[1] Q. Wang, Y. Brun, A. Orso, Behavioral Execution Comparison: Are Tests1033

Representative of Field Behavior?, in: IEEE International Conference on1034

Software Testing, Verification and Validation (ICST), 2017, pp. 321–332.1035

URL https://doi.org/10.1109/ICST.2017.361036

[2] D. Tiwari, L. Zhang, M. Monperrus, B. Baudry, Production Monitoring1037

to Improve Test Suites (December 2020). arXiv:2012.01198.1038

URL https://arxiv.org/abs/2012.011981039

[3] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, M. Monperrus, J. Klein,1040

Y. Le Traon, iFixR: Bug Report Driven Program Repair, in: 27th ACM1041

Joint Meeting on European Software Engineering Conference and Sym-1042

posium on the Foundations of Software Engineering (ESEC/FSE), 2019,1043

pp. 314–325.1044

URL http://doi.acm.org/10.1145/3338906.33389351045

[4] G. Catolino, F. Palomba, A. Zaidman, F. Ferrucci, Not All Bugs Are the1046

Same: Understanding, Characterizing, and Classifying the Root Cause of1047

Bugs, Journal of Systems and Software 152 (2019) 165–181.1048

URL http://www.sciencedirect.com/science/article/pii/1049

S01641212193005361050

[5] Cybersecrity & Infrastructure Security Agency, CISA COORDINATED1051

VULNERABILITY DISCLOSURE (CVD) PROCESS, https://www.1052

cisa.gov/coordinated-vulnerability-disclosure-process (Decem-1053

ber 2019).1054

[6] hackerone, Vulnerability Disclosure Guidelines, https://www.1055

hackerone.com/disclosure-guidelines (July 2019).1056

[7] O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus,1057

M. Di Penta, D. Poshyvanyk, V. Ng, Assessing the Quality of the Steps1058

to Reproduce in Bug Reports, in: 27th ACM Joint Meeting on European1059

48

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Software Engineering Conference and Symposium on the Foundations of1060

Software Engineering (ESEC/FSE), 2019, pp. 86–96.1061

URL http://doi.acm.org/10.1145/3338906.33389471062

[8] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, G. Wang, Under-1063

standing the Reproducibility of Crowd-reported Security Vulnerabilities,1064

in: 27th USENIX Security Symposium (USENIX Security 18), USENIX1065

Association, Baltimore, MD, 2018, pp. 919–936.1066

URL https://www.usenix.org/conference/usenixsecurity18/1067

presentation/mu1068

[9] A. J. Mashtizadeh, T. Garfinkel, D. Terei, D. Mazieres, M. Rosenblum,1069

Towards Practical Default-On Multi-Core Record/Replay, in: 22nd In-1070

ternational Conference on Architectural Support for Programming Lan-1071

guages and Operating Systems (ASPLOS), 2017, pp. 693–708.1072

URL http://doi.acm.org/10.1145/3037697.30377511073

[10] G. Zuo, J. Ma, A. Quinn, P. Bhatotia, P. Fonseca, B. Kasikci, Execution1074

Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduc-1075

tion, in: Proceedings of the 42nd ACM SIGPLAN International Confer-1076

ence on Programming Language Design and Implementation, PLDI 2021,1077

Association for Computing Machinery, New York, NY, USA, 2021, p.1078

1155–1170. doi:10.1145/3453483.3454101.1079

URL https://doi.org/10.1145/3453483.34541011080

[11] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, S. Ducasse, Untangling1081

Fine-Grained Code Changes, in: 2015 IEEE 22nd International Confer-1082

ence on Software Analysis, Evolution, and Reengineering (SANER), 2015,1083

pp. 341–350.1084

URL https://doi.org/10.1109/SANER.2015.70818441085

[12] J. Tucek, W. Xiong, Y. Zhou, Efficient Online Validation with Delta Ex-1086

ecution, in: 14th International Conference on Architectural Support for1087

Programming Languages and Operating Systems (ASPLOS), 2009, pp.1088

49

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

193–204.1089

URL http://doi.acm.org/10.1145/1508244.15082671090

[13] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, J. Bell, A Large-Scale1091

Longitudinal Study of Flaky Tests, Proceedings of the ACM on Program-1092

ming Languages 4 (OOPSLA) (2020) 1–29.1093

URL https://doi.org/10.1145/34282701094

[14] A. Ng, How the Equifax hack happened, and what still needs to be done1095

(September 7 2018).1096

URL https://tinyurl.com/276336621097

[15] A. Saieva, S. Singh, G. Kaiser, Ad hoc Test Generation Through Binary1098

Rewriting, in: IEEE 20th International Working Conference on Source1099

Code Analysis and Manipulation (SCAM), 2020, pp. 115–126.1100

URL https://doi.org/10.1109/SCAM51674.2020.000181101

[16] A. Saieva, G. Kaiser, Binary Quilting to Generate Patched Executables1102

without Compilation, in: Workshop on Forming an Ecosystem Around1103

Software Transformation (FEAST), 2020, pp. 3—-8.1104

URL https://doi.org/10.1145/3411502.34184241105

[17] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson,1106

F. Spano, Y. J. Wu, J. Yang, V. P. Kemerlis, Egalito: Layout-Agnostic1107

Binary Recompilation, in: 25th International Conference on Architectural1108

Support for Programming Languages and Operating Systems (ASPLOS),1109

2020, pp. 133—-147.1110

URL https://doi.org/10.1145/3373376.33784701111

[18] Mozilla, what rr does (2021).1112

URL https://rr-project.org/1113

[19] Red Hat Bugzilla – Bug 1599943, libpng: Integer overflow and resul-1114

tant divide-by-zero, https://bugzilla.redhat.com/show_bug.cgi?id=1115

50

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

1599943, CVE: https://nvd.nist.gov/vuln/detail/CVE-2018-137851116

(2019).1117

[20] Curl string parsing bug, https://github.com/curl/curl/pull/33651118

(2019).1119

[21] Curl string parsing vulnerability, https://github.com/curl/1120

curl/commit/3bb273db7, CVE: https://curl.haxx.se/docs/1121

CVE-2016-8624.html (2019).1122

[22] wc special character bug, https://github.com/coreutils/coreutils/1123

commit/a5202bd58531923e (2019).1124

[23] Redis monitor request causes crash, https://github.com/antirez/1125

redis/commit/e2c1f80b (2019).1126

[24] wget insert new loop to parse URL’s, https://github.com/mirror/1127

wget/commit/4d729e322fae, CVE: https://nvd.nist.gov/vuln/1128

detail/CVE-2017-6508. (2019).1129

[25] yes coreutils library function, https://github.com/coreutils/1130

coreutils/commit/44af84263e (2019).1131

[26] df coreutils library function, https://github.com/coreutils/1132

coreutils/commit/b04ce61958c (2019).1133

[27] shred coreutils library function, https://github.com/coreutils/1134

coreutils/commit/c34f8d5c787e6 (2019).1135

[28] Curl change parameter fix, https://github.com/curl/curl/commit/1136

e50a2002 (2019).1137

[29] C. Cadar, D. Dunbar, D. Engler, KLEE: Unassisted and Automatic Gen-1138

eration of High-Coverage Tests for Complex Systems Programs, in: 8th1139

USENIX Conference on Operating Systems Design and Implementation1140

(OSDI), 2008, pp. 209—-224.1141

51

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

URL https://www.usenix.org/legacy/events/osdi08/tech/full_1142

papers/cadar/cadar_html/index.html1143

[30] KLEE Team, KLEE LLVM execution engine, http://klee.github.io/1144

(2021).1145

[31] KLEE Team, Stable releases of KLEE (2021).1146

URL http://klee.github.io/releases/1147

[32] wc reports wrong byte counts when using ’–from-files0=-’, https://1148

debbugs.gnu.org/cgi/bugreport.cgi?bug=23073 (2016).1149

[33] ls -aA shows . and .. in an empty directory, https://debbugs.gnu.org/1150

cgi/bugreport.cgi?bug=30963 (2018).1151

[34] ’cp -n -u’ and ’mv -n -u’ now consistently ignore the -u1152

option, https://github.com/coreutils/coreutils/commit/1153

7e244891b0c41bbf9f5b5917d1a71c183a8367ac (2018).1154

[35] Running b2sum with –check option, and simply providing a1155

string ”BLAKE2”, https://debbugs.gnu.org/cgi/bugreport.cgi?1156

bug=28860 (2017).1157

[36] Redis benchmark tests server functionality, https://github.com/1158

antirez/redis (2019).1159

[37] The httperf HTTP load generator, https://github.com/httperf (2019).1160

[38] Curl string parsing bug, https://github.com/curl/curl/pull/33811161

(2019).1162

[39] Curl info leak, https://github.com/curl/curl/pull/3381, cVE:1163

https://curl.haxx.se/docs/CVE-2017-1000101.html (2019).1164

[40] Curl security vulnerability, https://github.com/curl/curl/pull/34331165

(2019).1166

52

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

[41] Curl follow: accept non-supported schemes for ”fake”1167

redirects, https://github.com/curl/curl/commit/1168

2c5ec339ea67f43ac370ae77636a0f915cc5fbeb (2018).1169

[42] URL: fix IPv6 numeral address parser, https://github.com/curl/curl/1170

pull/3219 (2018).1171

[43] Curl globbing error, https://github.com/curl/curl/issues/32511172

(2019).1173

[44] libpng IDAT miscalculation, https://sourceforge.net/p/libpng/1174

bugs/270/ (2019).1175

[45] Simple fix stops creating the log when using -o and -q in1176

the background, https://github.com/mirror/wget/commit/1177

7ddcebd61e170fb03d361f82bf8f5550ee62a1ae (2018).1178

[46] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, N. Partush,1179

Engineering Record and Replay for Deployability, in: USENIX Annual1180

Technical Conference (USENIX ATC), 2017, pp. 377–389.1181

URL https://www.usenix.org/conference/atc17/1182

technical-sessions/presentation/ocallahan1183

[47] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, N. Partush, Engi-1184

neering Record And Replay For Deployability: Extended Technical Report1185

(May 2017).1186

URL http://arxiv.org/abs/1705.059371187

[48] M. Castro, M. Costa, J.-P. Martin, Better Bug Reporting with Better1188

Privacy, in: 13th International Conference on Architectural Support for1189

Programming Languages and Operating Systems (ASPLOS), 2008, pp.1190

319—-328.1191

URL https://doi.org/10.1145/1346281.13463221192

[49] J. Clause, A. Orso, Camouflage: Automated Anonymization of Field Data,1193

in: 33rd International Conference on Software Engineering (ICSE), 2011,1194

53

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

pp. 21—-30.1195

URL https://doi.org/10.1145/1985793.19857971196

[50] D. Dangwal, W. Cui, J. McMahan, T. Sherwood, Safer Program Behavior1197

Sharing Through Trace Wringing, in: 24th International Conference on1198

Architectural Support for Programming Languages and Operating Sys-1199

tems (ASPLOS), 2019, pp. 1059—-1072.1200

URL https://doi.org/10.1145/3297858.33040741201

[51] S. Englehardt, G. Acar, A. Narayanan, No boundaries: Exfiltration of1202

personal data by session-replay scripts, Freedom to Tinker.1203

URL https://freedom-to-tinker.com/2017/11/15/1204

no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/1205

[52] S. Elbaum, H. N. Chin, M. B. Dwyer, M. Jorde, Carving and Replaying1206

Differential Unit Test Cases from System Test Cases, IEEE Transactions1207

on Software Engineering (TSE) 35 (1) (2009) 29–45.1208

URL https://doi.org/10.1109/TSE.2008.1031209

[53] F. Křikava, J. Vitek, Tests from Traces: Automated Unit Test Extraction1210

for R, in: 27th ACM SIGSOFT International Symposium on Software1211

Testing and Analysis (ISSTA), 2018, pp. 232—-241.1212

URL https://doi.org/10.1145/3213846.32138631213

[54] P. D. Marinescu, C. Cadar, KATCH: High-Coverage Testing of Software1214

Patches, in: 9th Joint Meeting of the European Software Engineering1215

Conference / ACM SIGSOFT Symposium on the Foundations of Software1216

Engineering (ESEC/FSE), 2013, pp. 235–245.1217

URL https://doi.org/10.1145/2491411.24914381218

[55] T. Kuchta, H. Palikareva, C. Cadar, Shadow Symbolic Execution for test-1219

ing software patches, ACM Transactions on Software Engineering and1220

Methodology (TOSEM) 27 (3) (2018) 10:1–10:32.1221

URL http://doi.acm.org/10.1145/32089521222

54

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

[56] A. Quinn, J. Flinn, M. Cafarella, Sledgehammer: Cluster-fueled debug-1223

ging, in: 12th USENIX Conference on Operating Systems Design and1224

Implementation (OSDI), 2018, pp. 545–560.1225

URL https://dl.acm.org/doi/10.5555/3291168.32912081226

[57] N. Arora, J. Bell, F. Ivančić, G. Kaiser, B. Ray, Replay Without Record-1227

ing of Production Bugs for Service Oriented Applications, in: 33rd1228

ACM/IEEE International Conference on Automated Software Engineer-1229

ing (ASE), 2018, pp. 452–463.1230

URL http://doi.acm.org/10.1145/3238147.32381861231

[58] I. Kravets, D. Tsafrir, Feasibility of Mutable Replay for Automated1232

Regression Testing of Security Updates, in: 2nd Workshop on Runtime1233

Environments, Systems, Layering and Virtualized Environments (RE-1234

SoLVE), 2012, pp. 1–6.1235

URL http://www.dcs.gla.ac.uk/conferences/resolve12/papers/1236

session4_paper2.pdf1237

[59] O. Laadan, N. Viennot, J. Nieh, Transparent, Lightweight Application1238

Execution Replay on Commodity Multiprocessor Operating Systems, in:1239

ACM SIGMETRICS International Conference on Measurement and Mod-1240

eling of Computer Systems, 2010, pp. 155–166.1241

URL http://doi.acm.org/10.1145/1811039.18110571242

[60] N. Viennot, S. Nair, J. Nieh, Transparent Mutable Replay for Multicore1243

Debugging and Patch Validation, in: 18th International Conference on1244

Architectural Support for Programming Languages and Operating Sys-1245

tems (ASPLOS), 2013, pp. 127–138.1246

URL http://doi.acm.org/10.1145/2451116.24511301247

[61] O. Laadan, J. Nieh, Transparent Checkpoint-Restart of Multiple Processes1248

on Commodity Operating Systems, in: USENIX Annual Technical Con-1249

ference (ATC), 2007, pp. 25:1–25:14.1250

URL https://dl.acm.org/doi/10.5555/1364385.13644101251

55

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

[62] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, W. G. J. Halfond,1252

ReCDroid: Automatically Reproducing Android Application Crashes1253

from Bug Reports, in: 41st International Conference on Software En-1254

gineering (ICSE), 2019, pp. 128–139.1255

URL https://doi.org/10.1109/ICSE.2019.000301256

[63] E. Pobee, W. K. Chan, AggrePlay: Efficient Record and Replay of Multi-1257

threaded Programs, in: 27th ACM Joint Meeting on European Software1258

Engineering Conference and Symposium on the Foundations of Software1259

Engineering (ESEC/FSE), 2019, pp. 567–577.1260

URL http://doi.acm.org/10.1145/3338906.33389591261

[64] H. Liu, S. Silvestro, W. Wang, C. Tian, T. Liu, iReplayer: In-situ1262

and Identical Record-and-replay for Multithreaded Applications, in: 39th1263

ACM SIGPLAN Conference on Programming Language Design and Im-1264

plementation (PLDI), 2018, pp. 344–358.1265

URL http://doi.acm.org/10.1145/3192366.31923801266

[65] Y. Shalabi, M. Yan, N. Honarmand, R. B. Lee, J. Torrellas, Record-Replay1267

Architecture as a General Security Framework, in: IEEE International1268

Symposium on High Performance Computer Architecture (HPCA), 2018,1269

pp. 180–193.1270

URL https://doi.org/10.1109/HPCA.2018.000251271

[66] GDB Wiki, Process Record and Replay (2013).1272

URL https://sourceware.org/gdb/wiki/ProcessRecord1273

[67] Microsoft, IntelliTrace for Visual Studio Enterprise (C#, Visual Basic,1274

C++) (2018).1275

URL https://docs.microsoft.com/en-us/visualstudio/debugger/1276

intellitrace?view=vs-20191277

[68] A. Miraglia, D. Vogt, H. Bos, A. Tanenbaum, C. Giuffrida, Peeking into1278

the Past: Efficient Checkpoint-Assisted Time-Traveling Debugging, in:1279

56

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

2016 IEEE 27th International Symposium on Software Reliability Engi-1280

neering (ISSRE), 2016, pp. 455–466.1281

URL https://doi.org/10.1109/ISSRE.2016.91282

[69] D. Vogt, Efficient High Frequency Checkpointing for Recovery and1283

Debugging, Ph.D. thesis, Vrije Universiteit Amsterdam (2019).1284

URL https://research.vu.nl/ws/portalfiles/portal/77028965/1285

complete+dissertation.pdf1286

[70] Y. Cai, B. Zhu, R. Meng, H. Yun, L. He, P. Su, B. Liang, Detecting1287

Concurrency Memory Corruption Vulnerabilities, in: 27th ACM Joint1288

Meeting on European Software Engineering Conference and Symposium1289

on the Foundations of Software Engineering (ESEC/FSE), 2019, pp. 706—1290

-717.1291

URL https://doi.org/10.1145/3338906.33389271292

[71] Y. Hu, I. Neamtiu, A. Alavi, Automatically Verifying and Reproducing1293

Event-Based Races in Android Apps, in: 25th International Symposium1294

on Software Testing and Analysis (ISSTA), 2016, pp. 377–388.1295

URL http://doi.acm.org/10.1145/2931037.29310691296

[72] S. Rattanasuksun, T. Yu, W. Srisa-An, G. Rothermel, RRF: A Race Re-1297

production Framework for Use in Debugging Process-Level Races, in: 20161298

IEEE 27th International Symposium on Software Reliability Engineering1299

(ISSRE), 2016, pp. 162–172.1300

URL https://doi.org/10.1109/ISSRE.2016.351301

[73] C. Lidbury, A. F. Donaldson, Sparse Record and Replay with Controlled1302

Scheduling, in: 40th ACM SIGPLAN Conference on Programming Lan-1303

guage Design and Implementation (PLDI), 2019, pp. 576–593.1304

URL http://doi.acm.org/10.1145/3314221.33146351305

[74] A. Orso, B. Kennedy, Selective Capture and Replay of Program Execu-1306

tions, in: 3rd International Workshop on Dynamic Analysis (WODA),1307

57

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

2005, pp. 1—-7.1308

URL https://doi.org/10.1145/1083246.10832511309

[75] Y. Hu, T. Azim, I. Neamtiu, Versatile yet Lightweight Record-and-Replay1310

for Android, in: ACM SIGPLAN International Conference on Object-1311

Oriented Programming, Systems, Languages, and Applications (OOP-1312

SLA), 2015, pp. 349–366.1313

URL http://doi.acm.org/10.1145/2814270.28143201314

[76] S. Joshi, A. Orso, SCARPE: A Technique and Tool for Selective Capture1315

and Replay of Program Executions, in: 23rd IEEE International Confer-1316

ence on Software Maintenance (ICSM), 2007, pp. 234–243.1317

URL https://doi.org/10.1109/ICSM.2007.43626361318

[77] W. Cui, X. Ge, B. Kasikci, B. Niu, U. Sharma, R. Wang, I. Yun, REPT:1319

Reverse Debugging of Failures in Deployed Software, in: 12th USENIX1320

Conference on Operating Systems Design and Implementation (OSDI),1321

2018, pp. 17–32.1322

URL https://dl.acm.org/doi/10.5555/3291168.32911711323

[78] J. Steven, P. Chandra, B. Fleck, A. Podgurski, JRapture: A Cap-1324

ture/Replay Tool for Observation-Based Testing, in: ACM SIGSOFT In-1325

ternational Symposium on Software Testing and Analysis (ISSTA), 2000,1326

pp. 158—-167.1327

URL https://doi.org/10.1145/347324.3489931328

[79] Microsoft, WinAppDriver (2021).1329

URL https://github.com/Microsoft/WinAppDriver1330

[80] SeleniumHQ, Browser automation (2021).1331

URL https://www.seleniumhq.org1332

[81] appium, Automation for apps (2021).1333

URL http://appium.io/1334

58

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

[82] S. Negara, N. Esfahani, R. P. L. Buse, Practical Android Test Recording1335

with Espresso Test Recorder, in: 41st International Conference on Soft-1336

ware Engineering: Software Engineering in Practice (ICSE-SEIP), 2019,1337

pp. 193–202.1338

URL https://doi.org/10.1109/ICSE-SEIP.2019.000291339

[83] T. Ki, C. M. Park, K. Dantu, S. Y. Ko, L. Ziarek, Mimic: Ui compatibility1340

testing system for Android apps, in: 41st International Conference on1341

Software Engineering (ICSE), 2019, pp. 246–256.1342

URL https://doi.org/10.1109/ICSE.2019.000401343

[84] P. Hosek, C. Cadar, Safe Software Updates via Multi-version Execution,1344

in: International Conference on Software Engineering (ICSE), 2013, pp.1345

612–621.1346

URL https://dl.acm.org/doi/10.5555/2486788.24868691347

[85] P. Hosek, C. Cadar, VARAN the Unbelievable: An Efficient N-version1348

Execution Framework, in: 20th International Conference on Architectural1349

Support for Programming Languages and Operating Systems (ASPLOS),1350

2015, pp. 339–353.1351

URL http://doi.acm.org/10.1145/2694344.26943901352

[86] D. Kim, Y. Kwon, W. N. Sumner, X. Zhang, D. Xu, Dual Execution for1353

On the Fly Fine Grained Execution Comparison, in: 20th International1354

Conference on Architectural Support for Programming Languages and1355

Operating Systems (ASPLOS), 2015, pp. 325–338.1356

URL http://doi.acm.org/10.1145/2694344.26943941357

[87] S. Österlund, K. Koning, P. Olivier, A. Barbalace, H. Bos, C. Giuffrida,1358

kMVX: Detecting Kernel Information Leaks with Multi-variant Execu-1359

tion, in: 24th International Conference on Architectural Support for Pro-1360

gramming Languages and Operating System (ASPLOS), 2019, pp. 559–1361

572.1362

URL http://doi.acm.org/10.1145/3297858.33040541363

59

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

[88] C. Giuffrida, C. Iorgulescu, G. Tamburrelli, A. S. Tanenbaum, Automat-1364

ing Live Update for Generic Server Programs, IEEE Transactions on Soft-1365

ware Engineering 43 (3) (2017) 207–225.1366

URL https://doi.org/10.1109/TSE.2016.25840661367

[89] S. Kashyap, C. Min, B. Lee, T. Kim, P. Emelyanov, Instant OS Updates1368

via Userspace Checkpoint-and-Restart, in: USENIX Annual Technical1369

Conference (USENIX ATC), 2016, pp. 605–619.1370

URL https://www.usenix.org/conference/atc16/1371

technical-sessions/presentation/kashyap1372

[90] L. Pina, A. Andronidis, M. Hicks, C. Cadar, MVEDSUA: Higher avail-1373

ability dynamic software updates via multi-version execution, in: 24th1374

International Conference on Architectural Support for Programming Lan-1375

guages and Operating Systems (ASPLOS), 2019, pp. 573–585.1376

URL http://doi.acm.org/10.1145/3297858.33040631377

[91] Y. Kwon, D. Kim, W. N. Sumner, K. Kim, B. Saltaformaggio, X. Zhang,1378

D. Xu, LDX: Causality Inference by Lightweight Dual Execution, in: 21st1379

ACM International Conference on Architectural Support for Programming1380

Languages and Operating Systems (ASPLOS), 2016, pp. 503—-515.1381

URL https://doi.org/10.1145/2872362.28723951382

[92] R. Padhye, C. Lemieux, K. Sen, L. Simon, H. Vijayakumar, FuzzFactory:1383

Domain-Specific Fuzzing with Waypoints, Proceedings of the ACM on1384

Programming Languages (PACMPL) (2019) 3.1385

URL https://doi.org/10.1145/33606001386

[93] L. Lampropoulos, M. Hicks, B. C. Pierce, Coverage Guided, Property1387

Based Testing, Proceedings of the ACM on Programming Languages1388

(PACMPL) (2019) 3.1389

URL https://doi.org/10.1145/33606071390

[94] C. Lemieux, K. Sen, FairFuzz: A Targeted Mutation Strategy for Increas-1391

ing Greybox Fuzz Testing Coverage, in: 33rd ACM/IEEE International1392

60

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Conference on Automated Software Engineering (ASE), 2018, pp. 475–1393

485.1394

URL http://doi.acm.org/10.1145/3238147.32381761395

[95] J. Choi, J. Jang, C. Han, S. K. Cha, Grey-box Concolic Testing on Binary1396

Code, in: 41st International Conference on Software Engineering (ICSE),1397

2019, pp. 736–747.1398

URL https://doi.org/10.1109/ICSE.2019.000821399

[96] M. Biagiola, A. Stocco, F. Ricca, P. Tonella, Diversity-based Web Test1400

Generation, in: 27th ACM Joint Meeting on European Software Engi-1401

neering Conference and Symposium on the Foundations of Software En-1402

gineering (ESEC/FSE), 2019, pp. 142–153.1403

URL http://doi.acm.org/10.1145/3338906.33389701404

[97] H. Wu, N. Changhai, J. Petke, Y. Jia, M. Harman, An Empirical Com-1405

parison of Combinatorial Testing, Random Testing and Adaptive Random1406

Testing, IEEE Transactions on Software Engineering (TSE) 46 (3) (2018)1407

302–320.1408

URL https://doi.org/10.1109/TSE.2018.28527441409

[98] M. Soltani, A. Panichella, A. van Deursen, A Guided Genetic Algorithm1410

for Automated Crash Reproduction, in: 39th International Conference on1411

Software Engineering (ICSE), 2017, pp. 209—-220.1412

URL https://doi.org/10.1109/ICSE.2017.271413

[99] G. Fraser, A. Arcuri, EvoSuite: Automatic Test Suite Generation for1414

Object-Oriented Software, in: 19th ACM SIGSOFT Symposium and1415

the 13th European Conference on Foundations of Software Engineering1416

(ESEC/FSE), 2011, pp. 416–419.1417

URL https://doi.org/10.1145/2025113.20251791418

[100] C. Lemieux, K. Sen, FairFuzz: A Targeted Mutation Strategy for In-1419

creasing Greybox Fuzz Testing Coverage, in: Proceedings of the 33rd1420

61

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

ACM/IEEE International Conference on Automated Software Engineer-1421

ing, Association for Computing Machinery, New York, NY, USA, 2018, p.1422

475–485.1423

URL https://doi.org/10.1145/3238147.32381761424

[101] W. Lam, K. Muşlu, H. Sajnani, S. Thummalapenta, A Study on the Life-1425

cycle of Flaky Tests, in: 42nd International Conference on Software En-1426

gineering (ICSE), 2020, pp. 1471–1482.1427

URL https://doi.org/10.1145/3377811.33817491428

[102] M. Shahin, M. Ali Babar, L. Zhu, Continuous Integration, Delivery and1429

Deployment: A Systematic Review on Approaches, Tools, Challenges and1430

Practices, IEEE Access 5 (2017) 3909–3943.1431

URL https://doi.org/10.1109/ACCESS.2017.26856291432

[103] D. Tiwari, L. Zhang, M. Monperrus, B. Baudry, Production Monitoring1433

to Improve Test Suites, IEEE Transactions on Reliability (2021) 1–17.1434

URL https://ieeexplore.ieee.org/document/95263401435

[104] P. R. Srivastava, TEST CASE PRIORITIZATION, Journal of Theoreti-1436

cal & Applied Information Technology 4 (3).1437

URL https://www.researchgate.net/profile/1438

Dr-Praveen-Srivastava/publication/235799411_Test_1439

case_prioritization/links/0c960531bf241d5bee000000/1440

Test-case-prioritization.pdf1441

[105] A. Bajaj, O. P. Sangwan, A Systematic Literature Review of Test Case1442

Prioritization Using Genetic Algorithms, IEEE Access 7 (2019) 126355–1443

126375.1444

URL https://doi.org/10.1109/ACCESS.2019.29382601445

[106] X. Li, A. Orso, More Accurate Dynamic Slicing for Better Supporting1446

Software Debugging, in: 2020 IEEE 13th International Conference on1447

Software Testing, Validation and Verification (ICST), 2020, pp. 28–38.1448

URL https://doi.org/10.1109/ICST46399.2020.000141449

62

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

[107] B. Stoica, S. K. Sahoo, J. R. Larus, V. S. Adve, Statistical Program Slic-1450

ing: a Hybrid Slicing Technique for Analyzing Deployed Software, CoRR1451

abs/2201.00060. arXiv:2201.00060.1452

URL https://arxiv.org/abs/2201.000601453

[108] S. Chatterjee, A. Shukla, A unified approach of testing coverage-based1454

software reliability growth modelling with fault detection probability, im-1455

perfect debugging, and change point, Journal of Software: Evolution and1456

Process 31 (3) (2019) e2150.1457

URL https://doi.org/10.1002/smr.21501458

[109] Q. Yang, J. J. Li, D. M. Weiss, A Survey of Coverage Based Testing Tools,1459

The Computer Journal 52 (5) (2009) 589–597.1460

URL https://doi.org/10.1093/comjnl/bxm0211461

[110] C. Le Goues, M. Pradel, A. Roychoudhury, Automated Program Repair,1462

Communications of the ACM 62 (12) (2019) 56–65.1463

URL https://doi.org/10.1145/33181621464

[111] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, R. Tumeng, Test case prior-1465

itization approaches in regression testing: A systematic literature review,1466

Information and Software Technology 93 (2018) 74–93.1467

URL https://doi.org/10.1016/j.infsof.2017.08.0141468

[112] A. Ramaswamy, S. Bratus, S. W. Smith, M. E. Locasto, Katana: A Hot1469

Patching Framework for ELF Executables, in: International Conference1470

on Availability, Reliability and Security (ARES), 2010, pp. 507–512.1471

URL https://doi.org/10.1109/ARES.2010.1121472

[113] H. Jeong, J. Baik, K. Kang, Functional Level Hot-patching Platform for.1473

Executable and Linkable Format Binaries, in: IEEE International Con-1474

ference on Systems, Man, and Cybernetics (SMC), 2017, pp. 489–494.1475

URL https://doi.org/10.1109/SMC.2017.81226531476

63

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

[114] W. H. Hawkins, J. D. Hiser, M. Co, A. Nguyen-Tuong, J. W. David-1477

son, Zipr: Efficient Static Binary Rewriting for Security, in: 47th Annual1478

IEEE/IFIP International Conference on Dependable Systems and Net-1479

works (DSN), 2017, pp. 559–566.1480

URL https://doi.org/10.1109/DSN.2017.271481

[115] J. Hiser, A. Nguyen-Tuong, W. Hawkins, M. McGill, M. Co, J. Davidson,1482

Zipr++: Exceptional Binary Rewriting, in: Workshop on Forming an1483

Ecosystem Around Software Transformation (FEAST), 2017, pp. 9–15.1484

URL https://doi.org/10.1145/3141235.31412401485

64

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Generates test cases from record-replay execution trace

Tests candidate fixes in addition to reproducing bug

Decomposes version update binaries into partial patches

Customer selectively tests and applies partial patches

Leverages binary rewriting without requiring source code

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Anthony Saieva received his BA in Computer Science from Stonehill College, his BS in Computer
Engineering from University of Notre Dame, and his MS in Computer Science from Columbia University.
Anthony was a PhD student in Computer Science at Columbia University at the time this work was
conducted.

Gail Kaiser is a Professor of Computer Science at Columbia University. She received her ScB in Computer
Science and Engineering from Massachusetts Institute of Technology, her MS in Computer Science from
Carnegie Mellon University, and her PhD in Computer Science from Carnegie Mellon University.

Biography

Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Declaration of interests

☒ The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in
this paper.

☐ The authors declare the following financial interests/personal relationships which
may be considered as potential competing interests:

