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Abstract

This work (Part (I)) together with its companion (Part (II)) develops a new framework for stochastic
unctional Kolmogorov equations, which are nonlinear stochastic differential equations depending on the
urrent as well as the past states. Because of the complexity of the results, it seems to be instructive
o divide our contributions to two parts. In contrast to the existing literature, our effort is to advance
he knowledge by allowing delay and past dependence, yielding essential utility to a wide range of
pplications. A long-standing question of fundamental importance pertaining to biology and ecology is:

hat are the minimal necessary and sufficient conditions for long-term persistence and extinction (or for
ong-term coexistence of interacting species) of a population? Regardless of the particular applications
ncountered, persistence and extinction are properties shared by Kolmogorov systems. While there are
any excellent treaties of stochastic-differential-equation-based Kolmogorov equations, the work on

tochastic Kolmogorov equations with past dependence is still scarce. Our aim here is to answer the
forementioned basic question. This work, Part (I), is devoted to characterization of persistence, whereas
ts companion, Part (II) is devoted to extinction. The main techniques used in this paper include the newly
eveloped functional Itô formula and asymptotic coupling and Harris-like theory for infinite dimensional
ystems specialized to functional equations. General theorems for stochastic functional Kolmogorov
quations are developed first. Then a number of applications are examined covering, improving, and
ubstantially extending the existing literature. Furthermore, our results reduce to that in the existing
iterature of Kolmogorov systems when there is no past dependence.
c 2021 Elsevier B.V. All rights reserved.

✩ The research of D. H. Nguyen was supported in part by the National Science Foundation under grant DMS-
1853467. The research of N. N. Nguyen and G. Yin was supported in part by the National Science Foundation
under grant DMS-2114649.

∗ Corresponding author.
E-mail addresses: dangnh.maths@gmail.com (D.H. Nguyen), nguyen.nhu@uconn.edu (N.N. Nguyen),

gyin@uconn.edu (G. Yin).
https://doi.org/10.1016/j.spa.2021.09.007
0304-4149/ c⃝ 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2021.09.007
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2021.09.007&domain=pdf
mailto:dangnh.maths@gmail.com
mailto:nguyen.nhu@uconn.edu
mailto:gyin@uconn.edu
https://doi.org/10.1016/j.spa.2021.09.007


D.H. Nguyen, N.N. Nguyen and G. Yin Stochastic Processes and their Applications 142 (2021) 319–364

e
b
i
e
p
f
t
d
p

w
e
p
2

w
r
t
V
s
s
t
p
u
g

w
b
e
s

i
o

MSC: 34K50; 60J60; 60J70; 92B99

Keywords: Stochastic functional equation; Kolmogorov system; Ecological and biological application; Invariance
measure; Extinction; Persistence

1. Introduction

This work develops a novel framework of systems of stochastic functional Kolmogorov
quations. Our main motivation stems from a wide variety of applications in ecology and
iology. A long-standing question of fundamental importance pertaining to biology and ecology
s: What are the minimal (necessary and sufficient) conditions for long-term persistence and
xtinction (or for long-term coexistence of interacting species) of a population? It turns out that
ersistence and extinction are phenomena go far beyond biological and ecological systems. In
act, such long-term properties are shared by all processes of Kolmogorov type. We focus on
he issues for such systems that involve stochastic disturbances and past dependence in the
ynamics. The problems are substantially more difficult compared to systems without delay or
ast independence because one has to treat infinite dimensional processes.

An n-dimensional deterministic Kolmogorov system is an autonomous system of equations
to depict the dynamics of n interacting populations, which takes the form

ẋi (t) = xi (t) fi (x1(t), . . . , xn(t)), i = 1, . . . , n, (1.1)

here fi (·) are functions satisfying suitable conditions. Realizing that fluctuations of the
nvironment make the dynamics of populations inherently stochastic, much effort has been
laced on the study of stochastic Kolmogorov equations. As an example, consider a simple
-dimensional Kolmogorov equations with stochastic effects:{

dx(t) = x(t) f1(x(t), y(t))dt + x(t)g1(x(t), y(t))d B1(t),
dy(t) = y(t) f2(x(t), y(t))dt + y(t)g2(x(t), y(t))d B2(t),

(1.2)

here B1(t) and B2(t) are two Brownian motions (independent or not). The formulation
eadily generalizes to n-dimensional stochastic Kolmogorov equations, which are used ex-
ensively in the modeling and analysis of ecological and biological systems such as Lotka–
olterra predator–prey models, Lotka–Volterra competitive models, replicator dynamic systems,
tochastic epidemic models, and stochastic chemostat models, among others. The study of
uch systems has encompassed the central issues of persistence and extinction as well as
he existence of invariant measures. Apart from ecological and biological systems, numerous
roblems arising in mathematical physics, statistical mechanics, and many related fields,
se Kolmogorov stochastic differential equations. We mention a simple one-dimensional
eneralized Ginzburg–Landau equation

dx(t) = x(t)[a(t) − b(t)xk(t)] + x(t)σ (x(t))d B(t), x(0) = x0 > 0, (1.3)

here k ≥ 2 is a positive integer, B(t) is a real-valued Brownian motion. Such equations have
een used in the theory of bistable systems, chemical turbulence, phase transitions in non-
quilibrium systems, nonlinear, optics with dissipation, thermodynamics, and hydrodynamic
ystems, etc.

Because of its prevalence in applications, Kolmogorov systems have attracted much attention
n the past decades; substantial progress has been made. To proceed, let us briefly recall some

f the developments to date. Some of the early mathematical formulations were introduced by
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Verhulst [62] for logistic models, by Lotka and Volterra [39,63] for Lotka–Volterra systems,
and by Kermack and McKendrick [29,30] for infectious diseases modeling using ordinary
differential equations in the last century. The study on mathematical models has stimulated
subsequent work with attention devoted to analyzing and predicting the behavior of the popu-
lations in a longtime horizon. Subsequently, not only deterministic systems, but also stochastic
systems have been studied. Resurgent effort has been devoted to finding the corresponding
classification by means of threshold levels. Fast forward, Imhof studied long-run behavior
of the stochastic replicator dynamics in [27], whereas Hofbauer and Imhof concentrated on
time averages, recurrence, and transience for stochastic replicator dynamics in [25]. By now,
Kolmogorov stochastic population systems (using stochastic differential equations or difference
equations) together with their longtime behavior have been relatively well understood; see
[4,54,56] for Kolmogorov stochastic systems in compact domains and [3,24] for certain
general Kolmogorov systems in non-compact domains. Variants of Kolmogorov systems such
as epidemic models [12,13,15,47], tumor-immune systems [61] and chemostat models [44],
etc. have also been studied. In contrast to numerous papers that used Lyapunov function
methods to analyze the underlying systems with limited success, Benaı̈m [3], Benaı̈m and

obry [4], Benaı̈m and Strickler [5], Chesson and Ellner [8], Evans, Hening, and Schreiber [20],
nd Schreiber and Benaı̈m [56] initiated the study by examining the corresponding boundary
ehavior and considered the stochastic rate of growth; see also Du, Nguyen, and Yin [16]. For
he most recent development and substantial progress, we refer to Benaı̈m [3], Hening and
guyen [24], Schreiber and Benaı̈m [56], and references therein.
Our study in this work is to consider a class of n-dimensional stochastic functional Kol-

ogorov systems; our effort is to substantially advance the existing literature by allowing delay
nd past dependence, which in turn, provides essential utility to a wide range of applications.

hy is it important to consider systems with delays as well as stochastic functional Kol-
ogorov systems? Mainly, the delays or past dependence are unavoidable in natural phenomena

nd dynamical systems; the framework of stochastic functional differential equations is more
ealistic, more effective, and more general for the population dynamics in real life than a
tochastic differential equation counterpart. In population dynamics, some delay mechanisms
tudied in the literature include age structure, feeding times, replenishment or regeneration
ime for resources [11]. Although there are many excellent treatises of Kolmogorov stochastic
ifferential equations, the work on Kolmogorov stochastic differential equations with delay is
elatively scarce. A few exceptions are the study on stochastic delay Lotka–Volterra competitive
odels [1,32], the work on stochastic delay Lotka–Volterra predator–prey models [22,33,35,

8,66], the treatment of stochastic delay epidemic SIR models [7,34,36,37,40], and the study
n stochastic delay chemostat models [57,58,67]. Nevertheless, other than the specific models
nd applications treated, there has not been a unified framework and a systematic treatment
or Kolmogorov stochastic functional differential systems yet. Moreover, most of the existing
esults involving delay are not as sharp as desired. Our effort in this paper takes up the
forementioned issues.

It should be noted that from stochastic Kolmogorov differential equation-type models to that
f stochastic functional differential equation models requires a big leap. There are essential
ifficulties. While the solutions of stochastic differential equations are Markovian processes,
he solutions of stochastic differential equations with delay is non-Markov. One typically uses
he so-called segment processes for the delay equations. However, such segment processes live
n an infinite dimensional space. Many of the known results in the usual stochastic differential

quation setup are no longer applicable. Besides, because Kolmogorov systems are highly
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nonlinear, analyzing such systems with delay becomes even more difficult. New methods and
techniques need to be developed to carry out the analysis. This brings us to the current work.

In this paper, we set up the problem in a unified form, develop new methodology to
haracterize the longtime behavior of the underlying system, establish results for persistence,
nd demonstrate the utility in a number of applications arising in ecology and biology. Our goal
s to obtain sharp results under mild and verifiable conditions, which is useful for a wide variety
f stochastic functional Kolmogorov systems. In view of the progress and challenges, this
ork combines the techniques of functional analysis (in particular, the functional Itô formula)

n [9,10], stochastic differential equations (SDEs) in infinite dimension, as well as the methods
f asymptotic couplings [23], to develop a new framework for treating functional Kolmogorov
ystems. It will substantially generalize the methods in [3,24]. Our results will cover, improve,
nd advance existing results for Kolmogorov systems with and without delays. It should be
entioned that in the case of replicator dynamics, it seems to be no investigation of delayed

tochastic systems to date to the best of our knowledge.
Although the models with functional stochastic differential equations are more realistic

nd more general, the analysis of such systems become far more difficult. Perhaps, part of
he difficulties in studying stochastic delay systems is that there had been virtually no bona
de operators and functional Itô formulas except some general setup in a Banach space such

as [43] before 2009. In [17], Dupire generalized the Itô formula to a functional setting by
sing pathwise functional derivatives. The Itô formula developed has substantially eased the
ifficulties and encouraged subsequent development with a wide range of applications. His
ork was developed further by Cont and Fournié [9,10]. Using the newly developed functional

Itô formula enables us to analyze effectively the segment processes in the stochastic functional
Kolmogorov equations.

Because of the non-Markovian property of the solution processes due to delay and the use
of memory segment functions, one needs to analyze the corresponding stochastic equations
in an infinite dimensional space. Handling occupation measures in an infinite dimensional
space to obtain the tightness and characterize its limit is more challenging, so is to prove
the uniqueness of the invariant probability measure. The associated Markov semigroups are
often not strong Feller, even in some simple cases. Because of the absence of the strong Feller
property, Doob’s method to prove the uniqueness of the invariant probability measure is no
longer applicable; see [53]. There are some recent works on asymptotic analysis for functional
stochastic differential equations; for example, see [2] and references therein. Most notably,
in [23], Hairer, Mattingly, and Scheutzow developed a necessary and sufficient condition for the
uniqueness of the invariant probability measure using asymptotic couplings, provided sufficient
conditions for weak convergence to the invariant probability measure, and obtained a Harris-
like theory for general infinite-dimensional spaces. By using ideas from this abstract theory
and our subtle estimates for certain coupled systems, we are able to prove the uniqueness
of the invariant probability measure for the Kolmogorov systems. To characterize the longtime
behavior of the underlying system under natural conditions and to develop a systematic method
for this kind problem, we use the intuition from dynamical system theory, in which we need
to examine the corresponding problem on the boundary and reveal the behavior of the process
when it is close to the boundary. Nevertheless, the behavior of solutions near the boundary for
functional Kolmogorov systems requires more delicate analysis than that for systems without
delay. Even if the current state is close to the boundary, its history may not be.

The rest of the paper is organized as follows. Section 2 presents the formulation of the

problem as well as mathematical definitions and terminologies, and state our main results.

322



D.H. Nguyen, N.N. Nguyen and G. Yin Stochastic Processes and their Applications 142 (2021) 319–364

p

r
|

C
C
ϕ

C
Γ
Γ

Σ

M
C
0
δ

1

D

γ

c

Section 3 examines basic properties of Kolmogorov equations with delays, including well-
posedness of the system, and positivity of solutions. Also obtained are the tightness of
families of occupation measures and the convergence to the corresponding invariant probability
measures. To obtain the desired theory, a number of key auxiliary results are provided. Then
the conditions for persistence of Kolmogorov systems are given in Section 4. Finally, Section 5
provides several applications involving Kolmogorov dynamical systems and detailed account
on how to use our results to treat each of the application examples.

2. Main results

To help the reading, we first provide a glossary of symbols and notation to be used in this
aper.

a fixed positive number
·| Euclidean norm
([a; b];Rn) set of Rn-valued continuous functions defined on [a; b]

:= C([−r; 0];Rn)
= (ϕ1, . . . , ϕn) ∈ C

x⃗ = (x1, . . . , xn) := ϕ(0) ∈ Rn

∥ϕ∥ := sup{|ϕ(t)| : t ∈ [−r, 0]}
X⃗ t := X⃗ t (s) := {X⃗ (t + s) : −r ≤ s ≤ 0} (segment function)
X i,t := X i,t (s) := {X i (t + s) : −r ≤ s ≤ 0}

C+ := {ϕ = (ϕ1, . . . , ϕn) ∈ C : ϕi (s) ≥ 0 ∀s ∈ [−r, 0], i = 1, . . . , n}

∂C+ := {ϕ = (ϕ1, . . . , ϕn) ∈ C : ∥ϕi∥ = 0 for some i = 1, . . . , n}

C◦
+

:= {ϕ ∈ C+ : ϕi (s) > 0, ∀s ∈ [−r, 0], i = 1, . . . , n} ̸= C+ \ ∂C+

∥ϕ∥α := ∥ϕ∥ + sup−r≤s<t≤0
|ϕ(t)−ϕ(s)|

(t−s)α , for some 0 < α < 1
α space of Hölder continuous functions endowed with the norm ∥·∥α

n × n matrix
⊤ transpose of Γ

B⃗(t) = (B1(t), . . . , Bn(t))⊤, a n-dimensional standard Brownian motion
E⃗(t) = (E1(t), . . . , En(t))⊤ := Γ⊤ B⃗(t)

= (σi j )n×n := Γ⊤Γ

set of ergodic invariant probability measures of X⃗ t supported on ∂C+

onv(M) convex hull of M
⃗ the zero constant function in C
∗ the Dirac measure concentrated at 0⃗
A the indicator function of set A

Dε,R := {ϕ ∈ C+ : ∥ϕ∥ ≤ R, xi ≥ ε ∀i; x⃗ := ϕ(0)} , ε, R > 0
space of Cadlag functions mapping [−r, 0] to Rn

A0, A1, A2 constants satisfying Assumption 2.1
0, γb, M constants satisfying Assumption 2.1

⃗, h(·), µ vector, function and probability measure satisfying Assumption 2.1
K̃ , b1, b2 constants satisfying Assumption 2.2
h1(·), µ1 function and probability measure satisfying Assumption 2.2
D0, d0 constants satisfying Assumption 2.4
I a subset of {1, . . . , n}

c
I :={1, . . . , n} \ I
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C I
+

:= {ϕ ∈ C+ : ∥ϕi∥ = 0 if i ∈ I c}
I,◦
+ := {ϕ ∈ C+ : ∥ϕi∥ = 0 if i ∈ I c and ϕi (s) > 0 ∀s ∈ [−r, 0] if i ∈ I }
C I

+
:= {ϕ ∈ C+ : ∥ϕi∥ = 0 if i ∈ I c and ∥ϕi∥ = 0 for some i ∈ I }

I sets of ergodic invariant probability measures on C I
+

I,◦ sets of ergodic invariant probability measures on C I,◦
+

MI sets of ergodic invariant probability measures on ∂C I
+

Iπ the subset of {1, . . . , n} such that π (C Iπ ,◦
+ ) = 1, π ∈ M

, p0, A constants satisfying the condition in Lemma 3.1
= (ρ1, . . . , ρn) vector satisfying the condition in Lemma 3.1

Vρ(ϕ) :=

(
1 + c⃗⊤ x⃗

)∏n
i=1 xρi

i exp
{

A2
∫ 0
−r µ(ds)

∫ 0
s eγ (u−s)h

(
ϕ(u)

)
du
}

V0⃗(ϕ) :=

(
1 + c⃗⊤ x⃗

)
exp

{
A2
∫ 0
−r µ(ds)

∫ 0
s eγ (u−s)h

(
ϕ(u)

)
du
}

V,M := {ϕ ∈ C+ : A2γ
∫ 0
−r µ(ds)

∫ 0
s eγ (u−s)h

(
ϕ(u)

)
du ≤ A0, |ϕ(0)| ≤ M}

H1 constant satisfying (3.29) and (3.36)
∗, κ∗ vector and constant satisfying (4.1)
∗ constant satisfying γ0(n∗

− 1) − A0 > 0
p1 constant satisfying condition (3.4) and p1 > p0

H∗

1 constant determined in (4.12)
RV,M constant determined in (4.15)
∗ constant determined in (4.16)

T ∗, δ̂ constants determined in Lemma 4.3
V (̂δ) := {ϕ ∈ C◦

+
∩ CV,M and |ϕi (0)| ≤ δ̂ for some i}

Consider a stochastic delay Kolmogorov system{
d X i (t) = X i (t) fi (Xt )dt + X i (t)gi (Xt )d Ei (t), i = 1, . . . , n,

X0 = φ ∈ C+,
(2.1)

nd denote by Xφ(t) its solution. For convenience, we usually suppress the superscript “φ” and
se Pφ and Eφ to denote the probability and expectation given the initial value φ, respectively.
e also assume that the initial value is non-random. Denoted by {Ft }t≥0 the filtration satisfying

he usual conditions and assume that the n-dimensional Brownian motion B(t) is adapted
o {Ft }t≥0. Note that a segment process is also referred to as a memory segment function.
hroughout the rest of the paper, we assume the following assumptions hold.

ssumption 2.1. The coefficients of (2.1) satisfy the following conditions.

(1) diag(g1(ϕ), . . . , gn(ϕ))Γ⊤Γdiag(g1(ϕ), . . . , gn(ϕ)) = (gi (ϕ)g j (ϕ)σi j )n×n is a positive
definite matrix for any ϕ ∈ C+.

(2) fi (·), gi (·) : C+ → R are Lipschitz continuous in each bounded set of C+ for any
i = 1, . . . , n.

(3) There exist c = (c1, . . . , cn) ∈ Rn with ci > 0, ∀i , and γb, γ0 > 0, A0 > 0, A1 > A2 > 0,
M > 0, a continuous function h : Rn

→ R and a probability measure µ concentrated
+
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on [−r, 0] such that for any ϕ ∈ C+∑n
i=1 ci xi fi (ϕ)
1 + c⊤x

−
1
2

∑n
i, j=1 σi j ci c j xi x j gi (ϕ)g j (ϕ)

(1 + c⊤x)2

+ γb

n∑
i=1

(| fi (ϕ)| + g2
i (ϕ))

≤A01{|x|<M} − γ0 − A1h(x) + A2

∫ 0

−r
h
(
ϕ(s)

)
µ(ds),

(2.2)

where x := ϕ(0). We assume without loss of generality that h : Rn
→ [1, ∞), otherwise,

we can always change γ0 and A1, A2 to fulfill this requirement.

Assumption 2.2. One of following assumptions hold:

(a) There is a constant K̃ such that for any ϕ ∈ C+, x = ϕ(0)
n∑

i=1

| fi (ϕ)| +

n∑
i=1

g2
i (ϕ) ≤ K̃

[
h(x) +

∫ 0

−r
h(ϕ(s))µ(ds)

]
. (2.3)

(b) There exist constants b1, b2 > 0, a function h1 : Rn
→ [1, ∞], and a probability measure

µ1 on [−r, 0] such that for any ϕ ∈ C+, x = ϕ(0)

b1h1(x) ≤

n∑
i=1

| fi (ϕ)| +

n∑
i=1

g2
i (ϕ) ≤ b2

[
h1(x) +

∫ 0

−r
h1(ϕ(s))µ1(ds)

]
. (2.4)

emark 1.
Let us comment on the above assumptions.

• The above assumptions (and additional assumptions provided later) are not restrictive, and
are easily verifiable. Such conditions are widely used in popular models in the literature;
see Section 5.

• Parts (2) and (3) of Assumption 2.1 guarantee the existence and uniqueness of a strong
solution to (2.1). We need part (1) of Assumption 2.1 to ensure that the solution to (2.1) is
a non-degenerate diffusion. Moreover, as will be seen later that (3) implies the tightness
of the family of transition probabilities associated with the solution to (2.1). One difficulty
stems from the positive term A2

∫ 0
−r h

(
ϕ(s)

)
µ(ds) on the right-hand side of (2.2), which

cannot be relaxed in practice.
• Assumption 2.2 plays an important role in guaranteeing the π -uniform integrability of

the function
∑

i

(
| fi (·)| + g2

i (·)
)
, for any invariant measure π . It will become clear in

Lemmas 3.4 and 3.5 as well as the remaining parts of the paper.

As was alluded to, persistence and extinction are concepts of vital importance in biology
nd ecology. It turns out that such concepts are features shared by all stochastic functional
olmogorov systems. While the termination of a species in biology is referred to as extinction,

he moment of extinction is generally considered to be the death of the last individual of the
pecies. In contrast to extinction, we have the persistence of a species. To proceed, similar
o [24,55,56], we define persistence and extinction as follows.

efinition 2.1. Let X(t) = (X1(t), . . . , Xn(t))⊤ be the solution of (2.1). The process X is
trongly stochastically persistent if for any ε > 0, there exists an R = R(ε) > 0 such that for
325
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any φ ∈ C◦
+

lim inf
t→∞

Pφ

{
R−1

≤ |X i (t)| ≤ R
}

≥ 1 − ε for all i = 1, . . . , n. (2.5)

efinition 2.2. With X(t) given in Definition 2.1, for φ ∈ C◦
+

and some i ∈ {1, . . . , n}, we
ay X i goes extinct with probability pφ > 0 if

Pφ

{
lim

t→∞
X i (t) = 0

}
= pφ .

In what follows, in the main theorems, we use the terminology “strongly stochastic persis-
ence” for clarity. However, we will use “persistent” for “strongly stochastically persistent” and
persistence” for “strongly stochastic persistence” interchangeably in the rest of the paper for
implicity.

Let M be the set of ergodic invariant probability measures of Xt supported on the boundary
C+. Note that if we let δ∗ be the Dirac measure concentrated at 0, then δ∗

∈ M so that M ̸= ∅.
or a subset M̃ ⊂ M, denote by Conv(M̃) the convex hull of M̃, that is, the set of probability
easures π of the form π (·) =

∑
ν∈M̃ pνν(·) with pν ≥ 0 and

∑
ν∈M̃ pν = 1.

ssumption 2.3. For any π ∈ Conv(M), we have

max
i=1,...,n

{λi (π )} > 0,

here

λi (π ) :=

∫
∂C+

(
fi (ϕ) −

σi i g2
i (ϕ)
2

)
π (dϕ). (2.6)

heorem 2.1. Assume that Assumptions 2.1–2.3 hold. The solution X of (2.1) is strongly
stochastically persistent.

It is well-recognized that the nondegeneracy of the diffusion is not sufficient to imply the
strong Feller property as well as the uniqueness of an invariant probability measure of stochastic
delay systems. The following assumption is needed to obtain the uniqueness of an invariant
probability measure.

Assumption 2.4. The following conditions hold:

(i) There are some constants D0, d0 > 0 such that for any ϕ(1), ϕ(2)
∈ C◦

+
, i ∈ {1, . . . , n},

| fi (ϕ(1)) − fi (ϕ(2))| ≤ D0
⏐⏐x(1)

− x(2)
⏐⏐ ⏐⏐1 + x(1)

+ x(2)
⏐⏐d0

+ D0

∫ 0

−r

⏐⏐ϕ(1)(s) − ϕ(2)(s)
⏐⏐ ⏐⏐1 + ϕ(1)(s) + ϕ(2)(s)

⏐⏐d0
µ(ds),

(2.7)

where x(1)
:= ϕ(1)(0), x(2)

:= ϕ(2)(0).
(ii) The conditions in (i) above hold with fi (·) replaced by gi (·) and g2

i (·).
(iii) The inverse of matrix (gi (ϕ)g j (ϕ)σi j )n×n is uniformly bounded in C◦

+
.

roposition 2.1. Under Assumptions 2.1 and 2.4, the solution of Eq. (2.1) has at most one
nvariant probability measure on C◦

+
.
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Theorem 2.2. Under Assumptions 2.1–2.4, system (2.1) has a unique invariant probability
easure concentrated on C◦

+
.

Remark 2. Assumption 2.3 means that all invariant measures on the boundary are repellers
(because the maximum Lyapunov exponent of an invariant measure is positive), which
guarantees that the solution in the interior cannot stay long near the boundary. As a result,
the species coexist.

3. Preliminaries and key technical results

3.1. Existence, uniqueness, positivity, and key estimates of the solutions

To begin, we state the functional Itô formula for our processes; see [10] for more details.
Let D be the space of càdlàg functions ϕ : [−r, 0] ↦→ Rn . For ϕ ∈ D, with s ≥ 0 and y ∈ Rn ,
we define horizontal and vertical perturbations as

ϕs(t) =

{
ϕ(t + s) if t ∈ [−r, −s],
ϕ(0) if t ∈ [−s, 0],

and

ϕ y(t) =

{
ϕ(t) if t ∈ [−r, 0),
ϕ(0) + y if t = 0,

respectively. The horizontal and vertical partial derivatives of V : D → R at ϕ, denoted by
∂t V (ϕ), (∂i V (ϕ))n

i=1, are defined as

∂t V (ϕ) = lim
s→0

V (ϕs) − V (ϕ)
s

,

nd

∂i V (ϕ) = lim
s→0

V (ϕsei ) − V (ϕ)
s

, i = 1, . . . , n, (3.1)

respectively, if the limits exist. In (3.1), ei is the standard unit vector in Rn whose i th component
is 1 and all other components are 0. Let F be the family of functions V (·) : D ↦→ R satisfying
hat

• V is continuous, that is, for any ε > 0, ϕ ∈ D there is a δ > 0 such that |V (ϕ) − V (ϕ′)| <

ε as long as ∥ϕ − ϕ′
∥ < δ;

• the derivatives Vt , Vx := (∂i V ), and Vxx := (∂i j V ) exist and are continuous;
• V , Vt , Vx = (∂i V ) and Vxx = (∂i j V ) are bounded in each set {ϕ ∈ D : ∥ϕ∥ ≤ R}, R > 0.

et V (·) ∈ F, we define the operator

LV (ϕ) =∂t V (ϕ) +

n∑
i=1

ϕi (0) fi (ϕ)∂i V (ϕ)

+
1
2

n∑
i, j=1

ϕi (0)ϕ j (0)σi j gi (ϕ)g j (ϕ)∂i j V (ϕ).

(3.2)

e have the functional Itô formula (see [9,10]) as follows

dV (Xt ) =
(
LV (Xt )

)
dt +

n∑
X i (t)gi (Xt )∂i V (Xt )d Ei (t). (3.3)
i=1
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Lemma 3.1. For any γ < γb and p0 > 0, ρ = (ρ1, . . . , ρn) ∈ Rn satisfying

|ρ| < min
{

γb

2
,

1
n
,

γb

4σ ∗

}
and p0 < min

{
1,

γb

8nσ ∗

}
, (3.4)

here σ ∗
:= max{σi j : 1 ≤ i, j ≤ n}, let

Vρ(ϕ) :=

(
1 + c⊤x

) n∏
i=1

xρi
i exp

{
A2

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du
}

.

hen, we have

LV p0
ρ (ϕ) ≤p0V p0

ρ (ϕ)
[

A01{|x|<M} − γ0 − Ah(x)

−A2γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du −

γb

2

n∑
i=1

(
| fi (ϕ)| + g2

i (ϕ)
) ]

,

(3.5)

here x := ϕ(0) and A is a positive number satisfying A < A1 − A2
∫ 0
−r e−γ sµ(ds). Recall

hat c, M, A0, A1, A2, γ0, γb, h(·), and µ(·) are defined in Assumption 2.1(3).

roof. Let
Uρ(ϕ) = ln Vρ(ϕ)

= ln
(

1 + c⊤x
)

+

n∑
i=1

ρi ln xi + A2

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du.

y [46, Remark 2.2] and direct calculation, we have

∂tUρ(ϕ) =A2h(x)
∫ 0

−r
e−γ sµ(ds)

− A2

∫ 0

−r
h
(
ϕ(s)

)
µ(ds) − A2γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du,

∂iUρ(ϕ) =
ci

1 + c⊤x
+

ρi

xi
; ∂i jUρ(ϕ) =

−ci c j(
1 + c⊤x

)2 +
−δi jρi

x2
i

,

here

δi j =

{
1 if i = j,
0 otherwise.

As a consequence, we obtain from the functional Itô formula that

LUρ(ϕ) =A2h(x)
∫ 0

−r
e−γ sµ(ds) − A2

∫ 0

−r
h
(
ϕ(s)

)
µ(ds)

− A2γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du

+

∑n
i=1 ci xi fi (ϕ)
1 + c⊤x

−
1
2

n∑
i, j=1

ci c jσi j xi x j gi (ϕ)g j (ϕ)(
1 + c⊤x

)2

+

n∑
ρi

(
fi (ϕ) − σi i g2

i (ϕ)
)
.

(3.6)
i=1
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Therefore, by the fact V p0
ρ (ϕ) = ep0Uρ (ϕ) and an application of the functional Itô formula, we

get

LV p0
ρ (ϕ) =p0V p0

ρ (ϕ)
(

A2h(x)
∫ 0

−r
e−γ sµ(ds) − A2

∫ 0

−r
h
(
ϕ(s)

)
µ(ds)

− A2γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du

+

∑n
i=1 ci xi fi (ϕ)
1 + c⊤x

−
1
2

n∑
i, j=1

ci c jσi j xi x j gi (ϕ)g j (ϕ)(
1 + c⊤x

)2

+

n∑
i=1

ρi

(
fi (ϕ) − σi i g2

i (ϕ)
)

+
1
2

p0

n∑
i, j=1

( ci xi

1 + c⊤x
+ ρi

)( c j x j

1 + c⊤x
+ ρ j

)
σi j gi (ϕ)g j (ϕ)

)
.

ince

1
2

p0

n∑
i, j=1

( ci xi

1 + c⊤x
+ ρi

)( c j x j

1 + c⊤x
+ ρ j

)
σi j gi (ϕ)g j (ϕ)

≤
1
4

p0

n∑
i, j=1

(1 + ρi )(1 + ρ j )σi j

(
g2

i (ϕ) + g2
j (ϕ)

)
≤ 2p0nσ ∗

n∑
i=1

g2
i (ϕ),

nd |ρi | <
γb
2 ; |ρi | σ

∗
+ 2p0nσ ∗ <

γb
2 ∀i = 1, . . . , n, using Assumption 2.1, we have

LV p0
ρ (ϕ) ≤p0V p0

ρ (ϕ)
(

A01{|x|<M} − γ0 − h(x)
(

A1 − A2

∫ 0

−r
e−γ sµ(ds)

)
−A2γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du −

γb

2

n∑
i=1

(
| fi (ϕ)| + g2

i (ϕ)
) )

≤p0V p0
ρ (ϕ)

(
A01{|x|<M} − γ0 − Ah(x)

−A2γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du −

γb

2

n∑
i=1

(
| fi (ϕ)| + g2

i (ϕ)
) )

.

he proof is complete. □

heorem 3.1. For any initial condition φ ∈ C+, there exists a unique global solution of
2.1). It remains in C+ (resp., C◦

+
), provided φ ∈ C+ (resp., φ ∈ C◦

+
). Moreover, for any p0, ρ

atisfying condition (3.4), we have

EφV p0
ρ (Xt ) ≤ V p0

ρ (φ)eA0 p0t . (3.7)

n addition, if ρi ≥ 0, ∀i , then

E V p0 (X ) ≤ V p0 (φ)e−γ0 p0t
+ M , (3.8)
φ ρ t ρ p0,ρ
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where

M p0,ρ :=
A0

γ0
sup

ϕ∈CV,M

V p0
ρ (ϕ) < ∞ provided ρi ≥ 0 ∀i,

nd CV,M = {ϕ ∈ C+ : A2γ
∫ 0
−r µ(ds)

∫ 0
s eγ (u−s)h

(
ϕ(u)

)
du ≤ A0 and |x| ≤ M}.

roof. We prove the existence and uniqueness of the solution with initial value φ ∈ C◦
+

. The
ther cases can be handled similarly. Let ρ(1)

= (ρ(1)
1 , . . . , ρ(1)

n ) ∈ Rn with ρ
(1)
i < 0 ∀i =

, . . . , n satisfy the conditions (3.4). We define the following stopping times τ
(1)
k = inf{t ≥ 0 :

V p0
ρ(1) (Xt ) ≥ k} and τ

(1)
∞ = limk→∞ τ

(1)
k . It is easily seen that

lim
m→∞

inf
{

V p0
ρ(1) (ϕ) : xi ∨ x−1

i > m for some i ∈ {1, . . . , n}, x := ϕ(0), ϕ ∈ C◦

+

}
= ∞.

(3.9)

he existence and uniqueness of local solutions can be seen in [42] due to the local Lipschitz
ontinuity of the coefficients. To prove the solution is global and remains in C◦

+
, because of

3.9), it is sufficient to prove that τ
(1)
∞ = ∞ a.s. We obtain from (3.5) that

LV p0
ρ(1) (ϕ) ≤ A0 p0V p0

ρ(1) (ϕ), ∀ϕ ∈ C◦

+
.

ence, by the functional Itô formula, we get

EφV p0
ρ(1) (Xt∧τ

(1)
k

) = V p0
ρ(1) (φ) + Eφ

∫ t∧τ
(1)
k

0
LV p0

ρ(1) (Xs)ds

≤ V p0
ρ(1) (φ) + p0 A0

∫ t

0
EφV p0

ρ(1) (Xs∧τ
(1)
k

)ds.

ombined with Gronwall’s inequality yields that

EφV p0
ρ(1) (Xt∧τ

(1)
k

) ≤ V p0
ρ(1) (φ)ep0 A0t , ∀t ≥ 0. (3.10)

s a consequence,

Pφ

{
V p0

ρ(1) (Xt∧τ
(1)
k

) ≥ k
}

≤

V p0
ρ(1) (φ)ep0 A0t

k
→ 0 as k → ∞,

hich forces τ
(1)
∞ > t a.s. for any t > 0 and hence, τ

(1)
∞ = ∞ a.s.

Next, we consider the second part. For any p0, ρ satisfying (3.4), by applying (3.5), one has

LV p0
ρ (ϕ) ≤ A0 p0V p0

ρ (ϕ) for all ϕ ∈ C◦

+
.

hus, from (3.10), we get

EφV p0
ρ (Xt ) ≤ V p0

ρ (φ)eA0 p0t .

If ρi ≥ 0 ∀i , a consequence of (3.5) is

LV p0
ρ (ϕ) ≤ γ0 p0 M p0,ρ − γ0 p0V p0

ρ (ϕ). (3.11)

n (3.11), we have used the fact

A01{|x|<M} − A2γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du ≤ 0, if ϕ /∈ CV,M .

By a standard argument (see e.g., [41, Theorem 5.2, p. 157]), we can obtain (3.8) from (3.11).
The proof is complete. □
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Lemma 3.2. For any R1 > 0, T > r , and ε > 0, there exists an R2 > 0 such that

Pφ

{
∥Xt∥ ≤ R2, ∀t ∈ [r, T ]

}
> 1 − ε,

for any initial data φ satisfying V0(φ) < R1, where V0 is defined as in Lemma 3.1
orresponding to ρ = 0 = (0, . . . , 0).

roof. As the proof of Theorem 3.1, we define the following stopping times τ
(2)
k = inf{t ≥

: V p0
0 (Xt ) ≥ k} and τ

(2)
∞ = limk→∞ τ

(2)
k . Analogous (3.10), we obtain

EφV p0
0 (Xt∧τ

(2)
k

) ≤ V p0
0 (φ)ep0 A0t , ∀t ≥ 0.

herefore, for any R1, T , ε > 0, and initial condition φ satisfying V0(φ) < R1, there exists a
nite constant k0 such that

V p0
0 (φ)ep0 A0T

k0
< ε,

and

Pφ

{
V p0

0 (XT ∧τ
(2)
k0

) ≥ k0

}
≤

V p0
0 (φ)ep0 A0T

k0
< ε.

hat means Pφ{τ
(2)
k0

≥ T } > 1 − ε or

Pφ

{
V p0

0 (Xt ) ≤ k0 ∀t ∈ [0, T ]
}

> 1 − ε.

Note that V p0
0 (Xt ) ≥ 1 +

∑n
i=1 ci X i (t) and ci > 0 ∀i = 1, . . . , n. Therefore, it is easily seen

hat there exists a finite constant R2 satisfying

Pφ

{
∥Xt∥ ≤ R2, ∀t ∈ [r, T ]

}
> 1 − ε. □

emma 3.3. There is a sufficiently small α > 0 such that for any R > 0 and ε > 0, there
xists R3 = R3(R, ε) > 0 satisfying

if ∥φ∥ ≤ R then Pφ {∥Xt∥2α ≤ R3 ∀t ∈ [r, 3r ]} ≥ 1 −
ε

2
. (3.12)

s a consequence, for any R > 0 and ε > 0, there exists an R4 = R4(ε, R) > 0 satisfying that

if V0(φ) ≤ R then Pφ {∥Xt∥2α ≤ R4 ∀t ∈ [2r, 3r ]} ≥ 1 − ε. (3.13)

roof. For any R and ε > 0, by slightly modifying the proof of Lemma 3.2, there exists an
R̃ > 0 depending only on R such that

Pφ{∥Xt∥ ≤ R̃, for all t ∈ [0, 3r ]} ≥ 1 −
ε

4
if ∥φ∥ ≤ R. (3.14)

enote by f R̃
i (·) and g R̃

i (·) the truncated functions, where

f R̃
i (ϕ) =

⎧⎨⎩ fi (ϕ) if ∥ϕ∥ < R̃,

fi

(
R1ϕ

∥ϕ∥

)
otherwise,

nd g R̃
i (·) is defined similarly. Then f R̃

i (·) and g R̃
i (·) are globally Lipschitz and bounded. Let

X(t) =
(
X̃ (t), . . . , X̃ (t)

)
be the solution of (2.1) when we replace f (·) and g (·) by f R̃(·)
1 n i i i
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and g R̃
i (·), respectively. By a standard argument, it is easy to obtain that

Eφ

⏐⏐X̃ i (t)
⏐⏐4 ≤ K̃ ∀0 ≤ t ≤ 3r, ∥φ∥ ≤ R

where K̃ is a constant depending only on R and R̃. On the other hand, by Burkholder’s
inequality we have that ∀0 ≤ s ≤ t ≤ 3r, ∥φ∥ ≤ R,

Eφ

⏐⏐X̃ i (t) − X̃ i (s)
⏐⏐4 ≤ C1Eφ

⏐⏐⏐⏐∫ t

s
X̃ i (y)dy

⏐⏐⏐⏐4 + C1Eφ

(∫ t

s
|X̃ i (y)|2dy

)2

,

here C1 depends only on T , R, and R̃. Hence, by Hölder’s inequality, we obtain for 0 ≤ s ≤

≤ 3r, ∥φ∥ ≤ R that

Eφ

⏐⏐X̃ i (t) − X̃ i (s)
⏐⏐4 ≤ 2C1(t − s)2Eφ

∫ s

0

⏐⏐X̃ i (y)
⏐⏐4 dy ≤ C2(t − s)2,

here C2 is a constant depending only on R and R̃. As a consequence of the Kolmogorov–
hentsov theorem, {X̃(t) : 0 ≤ t ≤ 3r} has Hölder-continuous sample paths with an exponent
α ∈ (0, 1

2 ). Moreover, there is a R3 = R3(R, ε) satisfying

Pφ

{
sup

0≤t≤3r
|X̃(t)| + sup

0≤s≤t≤3r

|X̃(t) − X̃(s)|
(t − s)2α

≤ R3

}
≥ 1 −

ε

4
, ∥φ∥ ≤ R,

hich implies

Pφ

{
∥X̃t∥2α ≤ R3 ∀t ∈ [r, 3r ]

}
≥ 1 −

ε

4
, ∥φ∥ ≤ R. (3.15)

ombining (3.14) and (3.15) implies that

Pφ {∥Xt∥2α ≤ R3 ∀t ∈ [r, 3r ]} ≥ 1 −
ε

2
, provided ∥φ∥ < R,

nd the first part of the proposition is proved.
Now, we consider the second part. By Lemma 3.2, there is an R5 = R5(ε, R) such that

Pφ{∥Xt∥ < R5 ∀t ∈ [r, 3r ]} ≥ 1 −
ε

2
if V0(φ) < R. (3.16)

ence, the second conclusion follows from the first part, (3.16) and the Markov property of
Xt ). □

roposition 3.1. The following results hold.

(i) Let ρ
(3)
1 be a fixed constant satisfying 0 < ρ

(3)
1 < min

{
γb
2 , 1

n ,
γb

4σ∗

}
. For any T > r and

m > 0 there exists a finite constant Km,T such that

Eφ

X i,t
p0ρ

(3)
1 ≤ Km,T φ

p0ρ
(3)
1

i (0), ∀t ∈ [r, T ], i = 1, . . . , n,

given that

|φ(0)| +

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
φ(u)

)
du < m,

where Xt =: (X1,t , . . . , Xn,t ) and φ =: (φ1, . . . , φn) is the initial value.
(ii) For any T > r , ε > 0, R > 0, there exists an ε1 > 0 such that

P
{Xφ1

T − Xφ2
T

 ≤ ε
}

≥ 1 − ε whenever V0(φi ) < R,
φ1 − φ2

 ≤ ε1. (3.17)

Moreover, the solution (X ) has the Feller property in C .
t +
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Proof. Let ρ(3)
= (ρ(3)

1 , 0, . . . , 0). Then ρ(3) satisfies condition (3.4). By the functional Itô
ormula, we obtain

V
p0
2

ρ(3) (Xt ) = V
p0
2

ρ(3) (φ) +

∫ t

0
LV

p0
2

ρ(3) (Xs)ds

+

∫ t

0

p0

2
V

p0
2

ρ(3) (Xs)
n∑

i=1

(
ci X i (s)

1 +
∑n

i ′=1 ci ′ X i ′ (s)
+ δ1iρ

(3)
1

)
gi (Xs)d Ei (s),

(3.18)

here δ1i = 1 if i = 1 and otherwise, δ1i = 0. Therefore, combining with (3.5) leads to that

V
p0
2

ρ(3) (Xt ) ≤V
p0
2

ρ(3) (φ) + A0 p0

∫ t

0
V

p0
2

ρ(3) (Xs)ds

+

∫ t

0

p0

2
V

p0
2

ρ(3) (Xs)
n∑

i=1

(
ci X i (s)

1 +
∑n

i ′=1 ci ′ X i ′ (s)
+ δ1iρ

(3)
1

)
gi (Xs)d Ei (s).

(3.19)

n the estimates to follow, in fact we need the terms in (3.20) to be finite, which can be done
y first using estimates for the solution at stopping time t ∧ τk with τk being the first time such
hat |g(Xs)| ∨ Vρ(3) (Xs) > k, and letting k → ∞. Since it is a standard argument, we omit it
or brevity. We obtain from (3.19) that

Eφ sup
t∈[0,T ]

[
V

p0
2

ρ(3) (Xt )
]2

≤ C (1)V p0
ρ(3) (φ) + C (1)Eφ

∫ T

0
sup

s′∈[0,s]

[
V

p0
2

ρ(3) (Xs′ )
]2

ds

+ C (1)Eφ sup
t∈[0,T ]

⏐⏐⏐⏐ ∫ t

0
V

p0
2

ρ(3) (Xs)
n∑

i=1

(
ci X i (s)

1 +
∑n

i ′=1 ci ′ X i ′ (s)
+ δ1iρ

(3)
1

)
gi (Xs)d Ei (s)

⏐⏐⏐⏐2,
(3.20)

here C (1) is a constant, independent of φ. The Burkholder–Davis–Gundy inequality and the
ölder inequality imply that

Eφ sup
t∈[0,T ]

⏐⏐⏐⏐⏐
∫ t

0
V

p0
2

ρ(3) (Xs)
n∑

i=1

(
ci X i (s)

1 +
∑n

i ′=1 ci ′ X i ′ (s)
+ δ1iρ

(3)
1

)
gi (Xs)d Ei (s)

⏐⏐⏐⏐⏐
2

≤ 16nσ ∗Eφ

∫ T

0
V p0

ρ(3) (Xs)
n∑

i=1

g2
i (Xs)ds,

(3.21)

or a constant C (2)
p , independent of φ. In the display above, we have used

n∑
i, j=1

(
ci X i (s)

1 +
∑n

i ′=1 ci ′ X i ′ (s)
+ 1

)(
c j X j (s)

1 +
∑n

i ′=1 ci ′ X i ′ (s)
+ 1

)
σi j gi (Xs)g j (Xs)

≤ 4nσ ∗

n∑
g2

i (Xs).

i=1
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It follows from (3.20) and (3.21) that

Eφ sup
t∈[0,T ]

V p0
ρ(3) (Xt ) ≤C (1)V p0

ρ(3) (φ) + C (1)Eφ

∫ T

0
sup

s′∈[0,s]
V p0

ρ(3) (Xs′ )ds

+ 16nσ ∗C (1)Eφ

∫ T

0
V p0

ρ(3) (Xs)
n∑

i=1

g2
i (Xs)ds.

(3.22)

n the other hand, by (3.7), we get

EφV p0
ρ(3) (Xt ) ≤ V p0

ρ(3) (φ)ep0 A0t , ∀t ≥ 0.

herefore, we obtain from the functional Itô formula and (3.5) that

0 ≤ EφV p0
ρ(3) (XT ) = V p0

ρ(3) (φ) + Eφ

∫ T

0
LV p0

ρ(3) (Xs)ds

≤ V p0
ρ(3) (φ) + Eφ

∫ T

0

(
p0 A0V p0

ρ (Xs) −
γb

2
V p0

ρ (Xs)
n∑

i=1

g2
i (Xs)

)
ds

≤ K (1)
T V p0

ρ(3) (φ) −
γb

2
Eφ

∫ T

0
V p0

ρ(3) (Xs)
n∑

i=1

g2
i (Xs)ds,

where K (1)
T is a finite constant depending only on T . It follows that

Eφ

∫ T

0
V p0

ρ(3) (Xs)
n∑

i=1

g2
i (Xs)ds ≤ K (2)

T V p0
ρ(3) (φ), for some constant K (2)

T . (3.23)

ombining (3.22) and (3.23) yields that

Eφ sup
t∈[0,T ]

V p0
ρ(3) (Xt ) ≤ K (3)

T V p0
ρ(3) (φ) + K (3)

T Eφ

∫ T

0
sup

s′∈[0,s]
V p0

ρ(3) (Xs′ )ds, (3.24)

or some constant K (3)
T independent of φ. It is clear that there exists K (4)

m,T such that

V p0
ρ(3) (φ) ≤ K (4)

m,T φ
p0ρ

(3)
1

1 (0), (3.25)

iven that

|φ(0)| +

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
φ(u)

)
du < m.

ombining (3.24), (3.25), and Gronwall’s inequality, we have that

Eφ sup
t∈[0,T ]

V p0
ρ(3) (Xt ) ≤ K (5)

m,T φ
p0ρ

(3)
1

1 (0), (3.26)

here K (5)
m,T is a finite constant independent of φ. Note that

V p0
ρ(3) (Xt ) ≥ X

p0ρ
(3)
1

1 (t). (3.27)

t follows from (3.26) and (3.27) that

∥ ∥
p0ρ

(3)
1 (5) p0ρ

(3)
1
Eφ X1t ≤ Km,T φ1 (0), ∀t ∈ [r, T ].
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Hence, by a similar argument, we obtain

Eφ ∥X i t∥
p0ρ

(3)
1 ≤ Km,T φ

p0ρ
(3)
1

i (0), ∀t ∈ [r, T ], i = 1, . . . , n,

or some constant Km,T depending only on m, T . As a result, the first part of the Theorem is
roved.

Because our coefficients are Lipschitz continuous in each bounded set of C+, by using (3.7)
nd the truncation argument, the second conclusion is obtained (it is similar to the proof of
emma 3.3). In addition, the Feller property can be obtained by slightly modifying the proof

n [41, Lemma 2.9.4 and Theorem 2.9.3]. □

.2. Tightness, weak convergence of occupation measures, and uniform integrability

Let ρ = 0. We obtain from (3.5) that for all ϕ ∈ C+, x := ϕ(0),

LV p0
0 (ϕ) ≤ γ0 p0 M p0,0 − Ap0V p0

0 (ϕ)h(x),

here M p0,0 is defined as in Theorem 3.1. Hence, by the functional Itô formula, we have

EφV p0
0 (Xt ) ≤ V p0

0 (φ) + γ0 p0 M p0,0t − Eφ

∫ t

0
Ap0V p0

0 (Xs)h(X(s))ds.

ince V0(ϕ) ≥ 1 + c⊤x, we get∫ T

0
Eφ

(
1 +

n∑
i=1

ci X i (t)

)p0

h(X(t))dt ≤
1

Ap0

(
V p0

0 (φ) + T γ0 p0 M p0,0
)
, ∀T ≥ 0.

(3.28)

consequence of (3.28) is that there is a constant H1 such that∫ T

r
Eφ

((
1 +

n∑
i=1

ci X i (t)
)p0

h(X(t))

+

∫ 0

−r

(
1 +

n∑
i=1

ci X i (t + s)
)p0

h(X(t + s))µ(ds)
)

dt

≤H1
(
T + V p0

0 (φ)
)
, ∀T ≥ r.

(3.29)

On the other hand, using (3.5) again, we have

LV p0
0 (ϕ) ≤ γ0 p0 M0,p0 − γ0 p0V p0

0 (ϕ) for all ϕ ∈ C+. (3.30)

herefore, similarly to the process of getting (3.28), we obtain∫ T

0
EφV p0

0 (Xt )dt ≤
1

p0γ0
(T γ0 p0 M p0,0 + V p0

0 (φ)), ∀T ≥ 0. (3.31)

ombining (3.31) and the Markov inequality leads to that for any ε, R > 0 there exists a finite
onstant R1 = R1(ε, R) such that

1
∫ t

Eφ1
{V

p0 (X )<R }
ds ≥ 1 −

ε
, provided V0(φ) < R. (3.32)
t 0 0 s 1 2
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Because of (3.32), Lemma 3.3, and the Markov property of Xt , for any ε, R > 0, there exists
compact subset K = K(ε, R) := {ϕ : ∥ϕ∥2α ≤ R4} of C+ satisfying

1
t

∫ t+2r

2r
Eφ1{Xs∈K}ds ≥ 1 − ε, provided V0(φ) < R. (3.33)

n the above, R4 = R4(ε, R) is determined as in Lemma 3.3; the compactness of K in C follows
he Sobolev embedding theorem.

For each t > r , define the following occupation measures

Π
φ
t (·) :=

1
t
Eφ

∫ t

r
1{Xs∈·}ds. (3.34)

hen it follows from (3.33) that for V0(φ) < R,{
Π

φ
t (·) : t ≥ 2r

}
is tight. (3.35)

ote that Π φ
t (·) defined in (3.34) is a subprobability measure for each t > 2r . However, its

eak∗-limit is still a probability measure.

emma 3.4. Under Assumption 2.2(b), there is a constant, still denoted by H1 (for simplicity
f notation) such that∫ T

r
Eφ

((
1 +

n∑
i=1

ci X i (t)
)p0

h1(X(t))

+

∫ 0

−r

(
1 +

n∑
i=1

ci X i (t + s)
)p0

h1(X(t + s))µ1(ds)
)

dt

≤H1
(
T + V p0

0 (φ)
)
, ∀T ≥ r.

(3.36)

roof. By (3.5), we have

LV p0
0 (ϕ) ≤ γ0 p0 M p0,0 −

p0γb

2
V p0

0 (ϕ)
n∑

i=1

(
| fi (ϕ)| + g2

i (ϕ)
)
.

n view of the functional Itô formula,

EφV p0
0 (Xt ) ≤V p0

0 (φ) + γ0 p0 M p0,0t

−
p0γb

2
Eφ

∫ t

0

(
1 +

n∑
i=1

ci X i (s)
)p0

n∑
i=1

(
| fi (Xs)| + g2

i (Xs)
)

ds.
(3.37)

herefore, we get∫ T

0
Eφ

(
1 +

n∑
i=1

ci X i (t)

)p0 n∑
i=1

(
| fi (Xs)| + g2

i (Xs)
)

ds

≤
2

p0γb

(
V p0

0 (φ) + T γ0 p0 M p0,0
)

for all T ≥ 0.

(3.38)

n view of (2.4) and (3.38), for all T > 0 one has∫ T

Eφ

(
1 +

n∑
ci X i (t)

)p0

h1(Xs)ds ≤
2

b p γ

(
V p0

0 (φ) + T γ0 p0 M p0,0
)
. (3.39)
0 i=1 1 0 b
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Hence, we obtain (3.36). □

Remark 3. It is easily seen that
∑

i | fi (ϕ)| + g2
i (ϕ) is uniformly integrable owing to either

3.29) and Assumption 2.2(a) or (3.36) and Assumption 2.2(b). Lemma 3.4 reveals that
ssumption 2.2(b) can play the same role as Assumption 2.2(a) in guaranteeing the uniform

ntegrability of
∑

i | fi (ϕ)| + g2
i (ϕ). Hence, from now on, when we assume Assumption 2.2

olds, without loss of generality, we can assume that Assumption 2.2(a) holds.

emma 3.5. Assume that (φk)k∈N ⊂ C+, (Tk)k∈N ⊂ R+ are such that V0(φk) ≤ R, Tk > r ,
imk→∞ Tk = ∞, and the sequence (Π φk

Tk
)k∈N converges weakly to a probability measure π .

hen π is an invariant probability measure and moreover,

lim
k→∞

∫
C

G(ϕ)Π φk
Tk

(dϕ) =

∫
C

G(ϕ)π (dϕ), (3.40)

or any function G : C+ → R satisfying

|G(ϕ)| ≤ KG

(
(1 + c⊤x)ph(x) +

∫ 0

−r

(
1 +

n∑
i=1

ciϕi (s)
)p

h(ϕ(s))µ(ds)

)
, (3.41)

or some p < p0, where x := ϕ(0). Likewise, if Assumption 2.2 (b) holds, we also have (3.40)
or G satisfying

|G(ϕ)| ≤ KG

(
(1 + c⊤x)ph1(x) +

∫ 0

−r

(
1 +

n∑
i=1

ciϕi (s)
)p

h1(ϕ(s))µ1(ds)

)
,

where x := ϕ(0).

roof. For the proof of π being an invariant probability measure, we refer to [18, Theorem 9.9],
r [20, Proposition 6.4] with a slight modification. We proceed to prove the second assertion.
or any ε > 0, let lε be sufficiently large such that for any ϕ satisfying |x|+

∫ 0
−r |ϕ(s)|µ(ds) ≥

lε,

(1 + c⊤x)ph(x) +
∫ 0
−r

(
1 +

∑n
i=1 ciϕi (s)

)p
h(ϕ(s))µ(ds)

(1 + c⊤x)p0 h(x) +
∫ 0
−r

(
1 +

∑n
i=1 ciϕi (s)

)p0
h(ϕ(s))µ(ds)

≤
ε

KG H1(1 + R p0 )
. (3.42)

he above inequality follows from

lim
|x|→∞

(1 + c⊤x)ph(x)
(1 + c⊤x)p0 h(x)

= 0

nd

lim∫ 0
−r |ϕ(s)|µ(ds)→∞

∫ 0
−r

(
1 +

∑n
i=1 ciϕi (s)

)p h(ϕ(s))µ(ds)∫ 0
−r

(
1 +

∑n
i=1 ciϕi (s)

)p0 h(ϕ(s))µ(ds)
= 0 ( because h(·) ≥ 1).

Denote by ulε : C → [0, 1], a continuous function satisfying

ulε (ϕ) =

{
1 if |x| +

∫ 0
−r |ϕ(s)|µ(ds) ≤ 2lε,∫ 0
0 if |x| +
−r |ϕ(s)|µ(ds) ≥ 4lε.
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By Tonelli’s theorem, we get that∫
C

(
(1 + c⊤x)p0 h(x) +

∫ 0

−r

(
1 +

n∑
i=1

ciϕi (s)
)p0

h(ϕ(s))µ(ds)

)
Π

φk
Tk

(dϕ)

=
1
Tk

∫ Tk

r
Eφk

( (
1 +

n∑
i=1

ci X i (t)
)p0

h(X(t))

+

∫ 0

−r

(
1 +

n∑
i=1

ci X i (t + s)
)

h(X(t + s))µ(ds)
)

dt.

(3.43)

ecause of (3.41)–(3.43), and (3.29), one gets∫
C

(
1 − ulε (ϕ)

)
|G(ϕ)|Π φk

Tk
(dϕ)

≤KG

∫
C

(
1 − ulε (ϕ)

) (
(1 + c⊤x)ph(x)

+

∫ 0

−r

(
1 +

n∑
i=1

ciϕi (s)
)p

h(ϕ(s))µ(ds)
)
Π

φk
Tk

(dϕ)

≤
ε

H1(1 + R p0 )

∫
C

(
1 − ulε (ϕ)

) (
(1 + c⊤x)p0 h(x)

+

∫ 0

−r

(
1 +

n∑
i=1

ciϕi (s)
)p0

h(ϕ(s))µ(ds)
)
Π

φk
Tk

(dϕ)

≤ε.

(3.44)

imilarly, because of (3.29) and π being invariant, we have∫
C

(
1 − ulε (ϕ)

)
|G(ϕ)|π (dϕ) ≤ ε. (3.45)

he weak convergence of Π φk
Tk

to π implies

lim
k→∞

∫
C

ulε (ϕ)|G(ϕ)|Π φk
Tk

(dϕ) =

∫
C

ulε (ϕ)|G(ϕ)|π (dϕ). (3.46)

ombining (3.44), (3.45), and (3.46) yields that

lim sup
k→∞

⏐⏐⏐⏐∫
C

|G(ϕ)|Π φk
Tk

(dϕ) −

∫
C

|G(ϕ)|π (dϕ)
⏐⏐⏐⏐ ≤ 2ε.

ence, the proof of the lemma is concluded by letting ε → 0. □

emma 3.6. Let Y be a random variable, θ0 > 0 be a constant, and suppose

E exp(θ0Y ) + E exp(−θ0Y ) ≤ K1

or some finite constant K . Then the log-Laplace transform η(θ ) = lnE exp(θY ) is twice
1
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differentiable on
[
0,

θ0
2

)
and

dη

dθ
(0) = EY,

0 ≤
d2η

dθ2 (θ ) ≤ K2 , θ ∈

[
0,

θ0

2

)
,

or some K2 > 0 depending only on K1.

roof. The proof of this lemma can be found in [24, Proof of Lemma 3.5]. □

. Persistence

This section is devoted to proving Theorem 2.1 and Theorem 2.2. It is shown in [56,
emma 4], by the min–max principle that Assumption 2.3 is equivalent to the existence of
∗

= (ρ∗

1 , . . . , ρ∗
n ) with ρ∗

i > 0 such that

inf
π∈M

{
n∑

i=1

ρ∗

i λi (π )

}
:= 2κ∗ > 0. (4.1)

y rescaling if necessary, we can assume that |ρ∗| is sufficiently small to satisfy condition
3.4).

emma 4.1. Assume Assumptions 2.1 and 2.2 hold. For any invariant measure π , one has∫
C+

Q0(ϕ)π (dϕ) = 0,

here

Q0(ϕ) =A2h(x)
∫ 0

−r
e−γ sµ(ds) − A2

∫ 0

−r
h
(
ϕ(s)

)
µ(ds)

− A2γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du

+

∑n
i=1 ci xi fi (ϕ)
1 + c⊤x

−
1
2

n∑
i, j=1

ci c jσi j xi x j gi (ϕ)g j (ϕ)(
1 + c⊤x

)2 .

roof. Because of (3.29), (3.36), Lemma 3.5, and Assumption 2.2, Q0 is π -integrable. By the
trong law of large numbers (see, e.g., [31, Theorem 4.2]) we have

lim
t→∞

1
t

∫ t

0
Q0(Xs)ds =

∫
C+

Q0(ϕ)π (dϕ), Pπ - a.s. , (4.2)

nd

lim
t→∞

1
t

∫ t

0

∑
i, j σi j ci c j X i (s)X j (s)gi (Xs)g j (Xs)

(1 +
∑

i ci X i (s))2 ds

=

∫ ∑
i, j σi j ci c j xi x j gi (ϕ)g j (ϕ)

⊤ 2 π (dϕ) < ∞ Pπ - a.s. , where x := ϕ(0).

C+

(1 + c x)
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The above limit tells us that if we let ⟨L ·, L ·⟩t be the quadratic variation of the local martingale

L t :=

∫ t

0

∑
i ci X i (s)gi (Xs)d Ei (s)

1 +
∑

i ci X i (s)
,

hen

lim sup
t→∞

⟨L ·, L ·⟩t

t
=

∫
C+

∑
i, j σi j ci c j xi x j gi (ϕ)g j (ϕ)

(1 + c⊤x)2 π (dϕ) < ∞ Pπ -a.s.

Applying the strong law of large numbers for local martingales (see [41, Theorem 1.3.4]),

lim
t→∞

1
t

∫ t

0

∑
i ci X i (s)gi (Xs)d Ei (s)

1 +
∑

i ci X i (s)
= 0 Pπ -a.s. (4.3)

s in (3.6), we have LU0(ϕ) = Q0(ϕ), where

U0(ϕ) = ln(1 + c⊤x) + A2

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du, x := ϕ(0). (4.4)

Combining (4.2)–(4.4), and the functional Itô formula yields that

0 ≤ lim
t→∞

U0(Xt )
t

=

∫
C+

Q0(ϕ)π (dϕ) Pπ -a.s. (4.5)

simple contradiction argument coupled with (3.8) and (4.5) leads to that∫
C+

Q0(ϕ)π (dϕ) = 0. □

Lemma 4.2. Assume Assumptions 2.1–2.3 hold. Let ρ∗ be as in (4.1). For any compact set
K of C+, there exists a TK > r such that for any T ≥ TK and φ ∈ ∂C+ ∩ K, we have∫ T

r
Eφ Qρ∗ (Xt )dt ≤ −κ∗T, (4.6)

here

Qρ∗ (ϕ) := Q0(ϕ) −

n∑
i=1

ρ∗

i

(
fi (ϕ) −

σi i g2
i (ϕ)
2

)
.

roof. We prove the lemma by using a contradiction argument. Suppose that we can find
k ∈ ∂C+ ∩ K and Tk > r , Tk ↑ ∞ such that∫ Tk

r
Eφ Qρ∗ (Xt )dt ≥ −κ∗Tk . (4.7)

ince Eφ|Qρ∗ (Xt )| ≤ H1 K̃ (t + V p0
0 (φ)) due to (3.29), (3.36), and Assumption 2.2, we can

apply Tonelli’s theorem to obtain∫
C+

Qρ∗ (ϕ)Π φk
Tk

(dϕ) =
1
Tk

∫ Tk

r
Eφk Qρ∗ (Xt )dt.

nder Assumption 2.2, as a consequence of Lemma 3.5,

lim
1
∫ Tk

Eφk Qρ∗ (Xt )dt =

∫
Qρ∗ (ϕ)π (dϕ), (4.8)
k→∞ Tk r C+
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where the invariant measure π is the weak limit of {Π
φk
Tk

}. Since the initial values lie on the
oundary, π is supported in ∂C+. This combined with Lemma 4.1 implies that∫

C+

Qρ∗ (ϕ)π (dϕ) = −

n∑
i=1

ρ∗

i λi (π ). (4.9)

Thus, we obtain from (4.1), (4.8), and (4.9) that

lim
k→∞

1
Tk

∫ Tk

r
Eφk Qρ∗ (Xt )dt ≤ −2κ∗. (4.10)

ombining (4.7) and (4.10) leads to a contradiction. As a result, the Lemma is proved. □

Now, let n∗ be sufficiently large to satisfy

γ0(n∗
− 1) − A0 > 0, (4.11)

nd p1 > p0 but (3.4) still holds. Under Assumption 2.2, a consequence of (3.29) is that there
s an H∗

1 satisfying∫ T

r
Eφ Qρ∗ (Xt )dt ≤ H∗

1 (T + V p0
0 (φ)) for all T ≥ r. (4.12)

ecause of (3.8), we have

EφV p1
0 (Xt ) ≤ V p1

0 (φ)e−γ0 p1t
+ M p1,0. (4.13)

ote that

if φ ∈ CV,M then V0(φ) ≤ (1 + M |c|)eA0 , (4.14)

here CV,M is defined as in Theorem 3.1. Eqs. (4.13) and (4.14) imply that

EφV p1
0 (Xt ) ≤ RV,M if φ ∈ CV,M , t ≥ 0 (4.15)

or some RV,M > 0. Let ε∗
∈ (0, 1

9 ) be such that

R
p0
p1

V,M

(
ε∗
) p1−p0

p1 + ε∗ H∗

1 T ≤
κ∗

10
(T − 2r ) for any T ≥ 3r. (4.16)

o take care of the case when X i (t) is small but the norm of the segment function ∥X t∥ is not,
e derive the following Lemma.

emma 4.3. Assume Assumptions 2.1–2.3 hold. There exist a δ̂ > 0 and T ∗ > 0 such that
or any T ∈ [T ∗, n∗T ∗],

Eφ

∫ T

0
Qρ∗ (Xt )dt ≤ −

1
2
κ∗T, if φ ∈ CV (̂δ), (4.17)

here

CV (̂δ) :=
{
φ ∈ C◦

+
∩ CV,M such that |φi (0)| ≤ δ̂ for some i

}
.
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Proof. For any event A with Pφ(A) ≥ 1 − ε, we obtain from (4.12), the Hölder inequality,
nd (4.15) that

Eφ1Ac

∫ T

3r
Qρ∗ (Xt )dt ≤E1Ac H∗

1

(
T + V p0

0 (X2r )
)

≤
(
ε∗
) p1−p0

p1
(
EφV p1

0 (X2r )
) p0

p1 + ε∗ H∗

1 T

≤R
p0
p1

V,M

(
ε∗
) p1−p0

p1 + ε∗ H∗

1 T if φ ∈ CV,M ,

(4.18)

where Ac
= Ω \ A. Applying Lemma 3.3 implies that there is a compact set K∗

= K∗(ε∗) :=

ϕ ∈ C+ : ∥ϕ∥ ≤ R, ∥ϕ∥2α − ∥ϕ∥ ≤ R4} (R4 = R4(ε∗) is as in Lemma 3.3) such that

Pφ

{
Xt ∈ K∗ for all t ∈ [2r, 3r ]

}
≥ 1 −

ε∗

2
if φ ∈ CV,M . (4.19)

In view of Lemma 4.2, there exists T ∗
= T ∗(K∗) > 0 such that for all T ≥ T ∗

− 3r ,∫ T

r
Eφ Qρ∗ (Xt )dt ≤ −κ∗T if φ ∈ ∂C+ ∩ K∗. (4.20)

Without loss of generality, we can choose T ∗ > 3r sufficiently large such that for all T ≥ T ∗,

−
7

10
κ∗(T − 2r ) + 3A0r ≤ −

1
2
κ∗T . (4.21)

n view of the Feller property of Xt and (4.20), we obtain that there is a δ1 > 0 such that for
ll T ∈ [T ∗

− 3r, n∗T ∗]∫ T

r
Eφ Qρ∗ (Xt )dt ≤ −

9
10

κ∗T if φ ∈ K∗, dist(φ, ∂C+) < δ1. (4.22)

y virtue of (4.19), part (i) of Proposition 3.1, and the structure of K∗, there exists a δ̂ > 0
uch that

Pφ(A) ≥ 1 − ε∗ if φ ∈ CV (̂δ), (4.23)

here

A =
{
dist(X2r , ∂C+) < δ1, X2r ∈ K∗

}
.

ombining (4.22) and (4.23) leads to that for all T ∈ [T ∗, n∗T ∗]

Eφ1A
∫ T

3r
Qρ∗ (Xt )dt ≤ −

9
10

κ∗(T − 2r )(1 − ε∗) ≤ −
8
10

κ∗(T − 2r ) if φ ∈ CV (̂δ). (4.24)

e obtain from (4.18), (4.16), and (4.24) that for all T ∈ [T ∗, n∗T ∗]

Eφ

∫ T

3r
Qρ∗ (Xt )dt ≤ −

7
10

κ∗(T − 2r ), φ ∈ CV (̂δ). (4.25)

sing the functional Itô formula, Jensen’s inequality, and (3.7), we have∫ 3r

0
Eφ Qρ∗ (Xs)ds =

1
p0

Eφ

(
ln V p0

−ρ∗ (X3r ) − ln V p0
−ρ∗ (φ)

)
≤

1
ln

EφV p0
−ρ∗ (X3r )
p0

≤
ln e3A0 p0r

= 3A0r.
(4.26)
p0 V
−ρ∗ (φ) p0
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Therefore, we obtain from (4.25), (4.26), and (4.21) that if φ ∈ CV (̂δ),

Eφ

∫ T

0
Qρ∗ (Xt )dt ≤ −

7
10

κ∗(T − 2r ) + 3A0r ≤ −
1
2
κ∗T, for all T ∈ [T ∗, n∗T ∗].

he lemma is proved. □

roposition 4.1. Assume that Assumptions 2.1–2.3 hold. Then there are θ ∈
(
0,

p0
2

)
and

K̃θ > 0 such that for any T ∈ [T ∗, n∗T ∗] and φ ∈ C◦
+

∩ CV,M ,

EφV θ
−ρ∗ (XT ) ≤ V θ

−ρ∗ (φ) exp
(
−

1
4
θκ∗T

)
+ K̃θ , (4.27)

here −ρ∗
=
(
−ρ∗

1 , . . . ,−ρ∗
n

)
.

roof. By the functional Itô formula, we obtain that

ln V−ρ∗ (XT ) = ln V−ρ∗ (φ) +

∫ T

0
Qρ∗ (Xt )dt

+

∫ T

0

(∑
i ci X i (t)g(Xt )d Ei (t)

1 +
∑

i ci X i (t)
−

∑
i

ρ∗

i gi (Xt )d Ei (t)

)
=: ln V−ρ∗ (φ) + z(T ).

(4.28)

ecause of (3.7) and (4.28), we have

Eφ exp (p0z(T )) =
EφV p0

−ρ∗ (XT )

V p0
−ρ∗ (φ)

≤ eA0 p0T . (4.29)

Another consequence of (3.7) is that

EφV p0
ρ∗ (XT )

V p0
ρ∗ (φ)

≤ eA0 p0T . (4.30)

e obtain from the definition of V p0
ρ (ϕ) that

V −p0
−ρ∗ (ϕ) =

(
1 + c⊤x

)−2p0 exp
{
−2p0 A2

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
ϕ(u)

)
du
}

V p0
ρ∗ (ϕ)

≤V p0
ρ∗ (ϕ), where x := ϕ(0).

(4.31)

pplying (4.30) and (4.31) to (4.28) yields

Eφ exp(−p0z(T )) =
EφV −p0

−ρ∗ (XT )

V −p0
−ρ∗ (φ)

≤
EφV p0

ρ∗ (XT )

V δ0
ρ∗ (φ)

(
1 + c⊤φ(0)

)−2p0 exp
{
−2p0 A2

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
φ(u)

)
du
}

≤
(
1 + c⊤φ(0)

)−2p0 exp
{
−2p0 A2

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)h

(
φ(u)

)
du
}

exp(A0 p0T ).

(4.32)

n view of (4.29) and (4.32), an application of Lemma 3.6 for z(T ) implies that there is K̃2 ≥ 0
uch that

0 ≤
d2η̃φ,T (θ ) ≤ K̃2 for all θ ∈

[
0,

p0
)

, φ ∈ CV (̂δ), T ∈ [T ∗, n∗T ∗],

dθ2 2
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where

η̃φ,T (θ ) = lnEφ exp(θ z(T )).

ence, using Lemma 3.6 and (4.17) yields

dη̃φ,T

dθ
(0) = Eφz(T ) ≤ −

1
2
κ∗T for φ ∈ CV (̂δ), T ∈ [T ∗, n∗T ∗].

y a Taylor expansion around θ = 0, for φ ∈ CV (̂δ), T ∈ [T ∗, n∗T ∗], and θ ∈
[
0,

p0
2

)
, we have

η̃φ,T (θ ) ≤ −
1
2
κ∗T θ + θ2 K̃2.

Now, if we choose θ ∈
(
0,

p0
2

)
satisfying θ < κ∗T ∗

4K̃2
, we get

η̃φ,T (θ ) ≤ −
1
4
κ∗T θ for all φ ∈ CV (̂δ), T ∈ [T ∗, n∗T ∗]. (4.33)

n light of (4.33), we have for such θ , φ ∈ CV (̂δ), and T ∈ [T ∗, n∗T ∗] that

EφV θ
−ρ∗ (XT )

V θ
−ρ∗ (φ)

= exp η̃φ,T (θ ) ≤ exp
(

−
1
4
κ∗T θ

)
. (4.34)

n the other hand, because of (3.7), we have for φ /∈ CV (̂δ) but satisfying φ ∈ C◦
+

∩ CV,M and
T ∈ [T ∗, n∗T ∗] that

EφV θ
−ρ∗ (XT ) ≤ exp(θn∗T ∗ H ) sup

φ /∈CV (̂δ),φ∈CV,M

{V θ
−ρ∗ (φ)} =: K̃θ < ∞. (4.35)

Combining (4.34) and (4.35) completes the proof. □

Theorem 4.1. Assume that Assumptions 2.1, 2.2, and 2.3 hold. There is a finite constant K ∗

such that

lim sup
t→∞

EφV θ
−ρ∗ (Xt ) ≤ K ∗ for all φ ∈ C◦

+
.

s a result, the solution X of (2.1) is strongly stochastically persistent.

roof. Once we obtained Proposition 4.1, the proof is similar to [24, Theorem 4.1]. By virtue
f (3.5), we have

LV θ
−ρ∗ (ϕ) ≤ −θγ0V θ

−ρ∗ (ϕ) if ϕ /∈ CV,M , (4.36)

here CV,M is as in Theorem 3.1. Define the stopping time

τ = inf{t ≥ 0 : Xt ∈ CV,M}. (4.37)

e obtain from Dynkin’s formula and (4.36) that

Eφ

[
exp

{
θγ0

(
τ ∧ n∗T ∗

)}
V θ

−ρ∗

(
Xτ∧n∗T ∗

)]
≤ V θ

−ρ∗ (φ) + Eφ

∫ τ∧n∗T ∗

0
exp{θγ0s}

[
LV θ

−ρ∗ (Xs) + θγ0V θ
−ρ∗ (Xs)

]
ds

θ

≤ V

−ρ∗ (φ).
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As a consequence,

V θ
−ρ∗ (φ) ≥Eφ

[
exp

{
θγ0

(
τ ∧ n∗T ∗

)}
V θ

−ρ∗

(
Xτ∧n∗T ∗

)]
=Eφ

[
1{τ≤(n∗−1)T ∗} exp

{
θγ0

(
τ ∧ n∗T ∗

)}
V θ

−ρ∗

(
Xτ∧n∗T ∗

)]
+ Eφ

[
1{(n∗−1)T ∗<τ<n∗T ∗} exp

{
θγ0

(
τ ∧ n∗T ∗

)}
V θ

−ρ∗

(
Xτ∧n∗T ∗

)]
+ Eφ

[
1{τ≥n∗T ∗} exp

{
θγ0

(
τ ∧ n∗T ∗

)}
V θ

−ρ∗

(
Xτ∧n∗T ∗

)]
≥Eφ

[
1{τ≤(n∗−1)T ∗}V θ

−ρ∗ (Xτ )
]

+ exp
{
θγ0((n∗

− 1)T ∗)
}
Eφ

[
1{(n∗−1)T ∗<τ<n∗T ∗}V θ

−ρ∗ (Xτ )
]

+ exp
{
θγ0n∗T ∗

}
Eφ

[
1{τ≥n∗T ∗}V θ

−ρ∗ (Xn∗T ∗ )
]
.

(4.38)

ombining the Markov property of (Xt ) and Proposition 4.1 yields

Eφ

[
1{τ≤(n∗−1)T ∗}V θ

−ρ∗ (Xn∗T ∗ )
]

≤ Eφ

[
1{τ≤(n∗−1)T ∗}

[
K̃θ + e−

1
4 θκ∗(n∗T ∗

−τ )V θ
−ρ∗ (Xτ )

]]
≤ K̃θ + exp

(
−

1
4
θκ∗T ∗

)
Eφ

[
1{τ≤(n∗−1)T ∗}V θ

−ρ∗ (Xτ )
]
.

(4.39)

sing again the strong Markov property of (Xt ) and (3.7), we obtain that

Eφ

[
1{(n∗−1)T ∗<τ<n∗T ∗}V θ

−ρ∗ (Xn∗T ∗ )
]

≤ Eφ

[
1{(n∗−1)T ∗<τ<n∗T ∗}eθ A0(n∗T ∗

−τ )V θ
−ρ∗ (Xτ )

]
≤ exp(θ A0T ∗)Eφ

[
1{(n∗−1)T ∗<τ<n∗T ∗}V θ

−ρ∗ (Xτ )
]
.

(4.40)

pplying (4.39) and (4.40) to (4.38) leads to

V θ
−ρ∗ (φ)

≥ exp
(

1
4
θκ∗T ∗

)
Eφ

[
1{τ≤(n∗−1)T ∗}V θ

−ρ∗ (Xn∗T ∗ )
]
− exp

(
1
4
θκ∗T ∗

)
K̃θ

+ exp(−θ A0T ∗) exp
(
θγ0(n∗

− 1)T ∗
)
Eφ

[
1{(n∗−1)T ∗<τ<n∗T ∗}V θ

−ρ∗ (Xn∗T ∗ )
]

+ exp
(
θγ0n∗T ∗

)
Eφ

[
1{τ≥n∗T ∗}V θ

−ρ∗ (Xn∗T ∗ )
]

≥ exp(mθT ∗)EφV θ
−ρ∗ (Xn∗T ∗ ) − K̃θ exp

(
1
4
θκ∗T ∗

)
,

(4.41)

here m = min
{ 1

4κ∗, γ0n∗, γ0(n∗
− 1) − A0

}
> 0 by (4.11). As a result,

EφV θ
−ρ∗ (Xn∗T ∗ ) ≤ q̂1V θ

−ρ∗ (φ) + q∗

1 for all φ ∈ C◦

+
,

or some 0 < q̂1 < 1, 0 < q∗

1 < ∞. Therefore, by the Markov property of Xt , we have

EφV θ
−ρ∗ (X(k+1)n∗T ∗ ) ≤ q̂1EφV θ

−ρ∗ (Xkn∗T ∗ ) + q∗

1 for all φ ∈ C◦

+
,

sing this recursively, we obtain

EφV θ
−ρ∗ (Xkn∗T ∗ ) ≤ q̂k

1 V θ
−ρ∗ (φ) +

q∗

1 (1 − q̂k
1 )

1 − q̂1
. (4.42)

e obtain from (3.7) and (4.42) that

EφV θ
−ρ∗ (XT ) ≤

[
q̂k

1 V θ
−ρ∗ (φ) +

q∗

1 (1 − q̂k
1 )
]

eA0θT ∗

for all T ∈ [kn∗T ∗, kn∗T ∗
+ T ∗].
1 − q̂1
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Hence, by letting k → ∞, we obtain the existence of a finite constant K ∗ such that

lim sup
t→∞

EφV θ
−ρ∗ (Xt ) ≤ K ∗ for all φ ∈ C◦

+
. (4.43)

inally, the strongly stochastic persistence of X is obtained by applying Markov’s inequality
o (4.43), and using V−ρ∗ (ϕ) ≥

1+c⊤x∏n
i=1 x

ρ∗
i

i

and
∑n

i=1 ρ∗

i < 1, ρ∗

i > 0. □

To proceed, we prove the uniqueness of the invariant probability measure under suitable
ssumptions. For x ∈ Rn,◦

+ , ln x is understood as the component-wise logarithm of x. By using
he fact⏐⏐x(1)

− x(2)
⏐⏐ ≤

⏐⏐ln x(1)
− ln x(2)

⏐⏐ ⏐⏐1 + x(1)
+ x(2)

⏐⏐
nd basic inequalities (Young’s inequality and the Cauchy–Schwarz inequality), we obtain from
2.7) and Assumption 2.4 (ii) that there is some constant D1 depending only D0, d0 satisfying∑

i

(⏐⏐ fi (ϕ(1)) − fi (ϕ(2))
⏐⏐+ ⏐⏐gi (ϕ(1)) − gi (ϕ(2))

⏐⏐+ ⏐⏐g2
i (ϕ(1)) − g2

i (ϕ(2))
⏐⏐)

≤ D1
⏐⏐ln x(1)

− ln x(2)
⏐⏐ ⏐⏐1 + x(1)

+ x(2)
⏐⏐d0+1

+ D1

∫ 0

−r

⏐⏐ln ϕ(1)(s) − ln ϕ(2)(s)
⏐⏐ ⏐⏐1 + ϕ(1)(s) + ϕ(2)(s)

⏐⏐d0+1
µ(ds),

(4.44)

nd ∑
i

( ⏐⏐ fi (ϕ(1)) − fi (ϕ(2))
⏐⏐+ ⏐⏐gi (ϕ(1)) − gi (ϕ(2))

⏐⏐
+
⏐⏐g2

i (ϕ(1)) − g2
i (ϕ(2))

⏐⏐ ) ⏐⏐ln x(1)
− ln x(2)

⏐⏐
≤D1

⏐⏐ln x(1)
− ln x(2)

⏐⏐2 ⏐⏐1 + x(1)
+ x(2)

⏐⏐d0+1

+ D1

∫ 0

−r

⏐⏐ln ϕ(1)(s) − ln ϕ(2)(s)
⏐⏐2 ⏐⏐1 + ϕ(1)(s) + ϕ(2)(s)

⏐⏐2d0+2
µ(ds),

(4.45)

nd ∑
i

( ⏐⏐ fi (ϕ(1)) − fi (ϕ(2))
⏐⏐+ ⏐⏐gi (ϕ(1)) − gi (ϕ(2))

⏐⏐
+
⏐⏐g2

i (ϕ(1)) − g2
i (ϕ(2))

⏐⏐ ) ⏐⏐ln x(1)
− ln x(2)

⏐⏐3
≤D1

⏐⏐ln x(1)
− ln x(2)

⏐⏐4 ⏐⏐1 + x(1)
+ x(2)

⏐⏐4d0+4

+ D1

∫ 0

−r

⏐⏐ln ϕ(1)(s) − ln ϕ(2)(s)
⏐⏐4 ⏐⏐1 + ϕ(1)(s) + ϕ(2)(s)

⏐⏐4d0+4
µ(ds).

(4.46)

o apply asymptotic couplings method and results in [23], we let Yi (t) = ln X i (t) and consider
he following equations⎧⎨⎩dYi (t) =

[
fi (Xt ) −

g2
i (Xt )σ 2

i i
2

]
dt + gi (Xt )d Ei (t), i = 1, . . . , n,

◦

(4.47)

Y0 = ln φ, φ ∈ C

+
,
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and ⎧⎪⎪⎨⎪⎪⎩
dỸi (t) =

[
fi (X̃t ) −

g2
i (X̃t )σ 2

i i
2

]
dt + λ̃

[
1 + X i (t) + X̃ i (t)

]4d0+4 [
Yi (t) − Ỹi (t)

]
dt

+gi (X̃t )d Ei (t), i = 1, . . . , n
Ỹ0 = ln φ̃, φ̃ ̸= φ ∈ C◦

+
,

(4.48)

here λ̃ is sufficiently large to be determined later; and X̃(t) :=

(
eỸ1(t), . . . , eỸn (t)

)
. Put

:= Y − Ỹ. Combining the functional Itô formula and (4.44)–(4.46), one has

d |Z(t)|2 ≤

[
D2

∫ 0

−r

⏐⏐1 + X̃(t + s) + X(t + s)
⏐⏐4d0+4

|Z(t + s)|2 µ(ds)
]

dt

−
(̃
λ − D2

) ⏐⏐1 + X̃(t) + X(t)
⏐⏐4d0+4

|Z(t)|2 dt

+ 2
∑

i

(
Yi (t) − Ỹi (t)

) (
gi (Xt ) − gi (X̃t )

)
d Ei (t),

(4.49)

nd

d |Z(t)|4 ≤

[
D2

∫ 0

−r

⏐⏐1 + X̃(t + s) + X(t + s)
⏐⏐4d0+4

|Z(t + s)|4 µ(ds)
]

dt

−
(̃
λ − D2

) ⏐⏐1 + X̃(t) + X(t)
⏐⏐4d0+4

|Z(t)|4 dt

+ 4
∑

i

(
Yi (t) − Ỹi (t)

)3 (
gi (Xt ) − gi (X̃t )

)
d Ei (t),

(4.50)

or some constant D2 depending only D0, d0, σi j and independent of Xt , X̃t . For ϕ(1), ϕ(2)
∈ C◦

+
,

efine

Ũ (ϕ(1),ϕ(2)) :=
⏐⏐ln x(1)

− ln x(2)
⏐⏐4

+
D2 + 9nσ ∗ D1

γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)

⏐⏐1 + ϕ(1)(s) + ϕ(2)(s)
⏐⏐4d0+4

×
⏐⏐ϕ(1)(s) − ϕ(2)(s)

⏐⏐4 du,

nd

U (ϕ(1),ϕ(2)) :=
⏐⏐ln x(1)

− ln x(2)
⏐⏐2

+
D2 + 9nσ ∗ D1

γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ (u−s)

⏐⏐1 + ϕ(1)(s) + ϕ(2)(s)
⏐⏐4d0+4

×
⏐⏐ϕ(1)(s) − ϕ(2)(s)

⏐⏐2 du,

here σ ∗
:= max{σi j : 1 ≤ i, j ≤ n}. Hence, by direct calculations using the functional Itô

ormula, [46, Remark 2.2] and then applying (4.49), (4.50), it is easily seen that we can choose
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λ being sufficiently large such that

dŨ (Xt , X̃t ) ≤ − 2D3

(
Ũ (Xt , X̃t ) + |1 + X(t) + X̃(t)|4d0+4

|Z(t)|4

+

∫ 0

−r
|1 + X(t + s) + X̃(t + s)|4d0+4

|Z(t + s)|4 µ(ds)
)

dt

+ 4
∑

i

(
Yi (t) − Ỹi (t)

)3 (
gi (Xt ) − gi (X̃t )

)
d Ei (t),

(4.51)

nd

dU (Xt , X̃t ) ≤ − 2D3

(
U (Xt , X̃t ) + |1 + X(t) + X̃(t)|4d0+4

|Z(t)|2

+

∫ 0

−r
|1 + X(t + s) + X̃(t + s)|4d0+4

|Z(t + s)|2 µ(ds)
)

dt

+ 2
∑

i

(
Yi (t) − Ỹi (t)

) (
gi (Xt ) − gi (X̃t )

)
d Ei (t),

(4.52)

or some positive constant D3 > 8nσ ∗ D1.
Similar to [23, Theorem 3.1], let

v(t) = λ̃
[
(gi (X̃t )g j (X̃t )σi j )n×n

]−1 [1 + |X(t)| + |X̃(t)|
]4d0+4 (Y(t) − Ỹ(t)

)
,

here
[
(gi (ϕ)g j (ϕ)σi j )n×n

]−1 is the inverse matrix of matrix
[
(gi (ϕ)g j (ϕ)σi j )n×n

]
and for each

> 0

τ̃ε := inf
{

t ≥ 0 :

∫ t

0
|v(s)|2 ds ≥ ε−1

∥Y0 − Ỹ0∥
2
}

.

emma 4.4. The following assertions hold:

lim
ε→0

P{̃τε = ∞} = 1, (4.53)

nd

lim
t→∞

|Y(t) − Ỹ(t)| = 0 a.s. (4.54)

emark 4. In the proof of the Lemma, our purpose is to prove limt→∞ U (Xt , X̃t ) = 0 a.s.
o handle the diffusion part of U (Xt , X̃t ), we need some helps from Ũ (Xt , X̃t ). That is why
e introduced both U (Xt , X̃t ) and Ũ (Xt , X̃t ) in the above.

roof. A consequence of (4.51) and (4.52) is that

d
[
eD3tEU (Xt , X̃t )

]
≤ −D3eD3tEU (Xt , X̃t )dt,

nd

d
[
eD3tEŨ (Xt , X̃t )

]
≤ −D3eD3tEŨ (Xt , X̃t )dt,

hich implies that

lim EeD3tU (Xt , X̃t ) = lim EeD3tŨ (Xt , X̃t ) = 0, (4.55)

t→∞ t→∞
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and

E
∫

∞

0
eD3tU (Xt , X̃t )dt ≤

U (φ, φ̃)
D3

. (4.56)

n application of Markov’s inequality and (4.56) imply that

P
(∫

∞

0
eD3tU (Xt , X̃t )dt ≤

U (φ, φ̃)
D3

√
ε

)
≥ 1 −

√
ε. (4.57)

o proceed, similar to the proof of Proposition 5.1 part (i) (in particular, the process of getting
3.24)), we can obtain that for p < p0,

Eφ sup
t∈[0,1]

V p
0 (Xt ) ≤ C1V p

0 (X0),

or some constant C1. Then, combining with (3.8), we have

Eφ sup
t∈[k,k+1]

V p
0 (Xt ) ≤ C2(1 + V p

0 (X0)),

or some constant C2. We have for any C > 0,

P
{

e
−D3t

2 V 4d0+4
0 (Xt ) ≥

C
√

ε
, for some t ∈ [k, k + 1]

}
≤P

{
V p

0 (Xt ) ≥
CeD3 pk/(8d0+8)

ε p/(8d0+8) , for some t ∈ [k, k + 1]
}

≤C2(1 + V p
0 (X0))

ε p/(8d0+8)

CeD3 pk/(8d0+8) .

Thus, one has

P
{

e−
D3
2 t V 4d0+4

0 (Xt ) ≤
C
√

ε
∀t ≥ 0

}
≥1 −

∞∑
k=0

C2(1 + V p
0 (X0))

ε p/(8d0+8)

CeD3 pk/(8d0+8)

≥1 − KC,V p
0 (X0)ε

p/(8d0+8),

(4.58)

for some finite constant KC,V p
0 (X0) depending on C, V p

0 (X0). Combining (4.57) and (4.58), we
an obtain

P
(∫

∞

0

[
1 + |X(t)| + |X̃(t)|

]4d0+4 ⏐⏐Y(t) − Ỹ(t)
⏐⏐ dt ≤

C
ε

)
≥ 1 −

√
ε − KC,V p

0 (X0)ε
p

8d0+8 .

(4.59)

e obtain from the definition of τ̃ε that

P{̃τε = ∞} ≥ P
{∫

∞

0
|v(s)|2 ds < ε−1

∥φ − φ̃∥
2
}

. (4.60)

ince (4.59), (4.60), definition of v(·), and Assumption 2.4(iii), we obtain (4.53) by letting

→ 0.
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On the other hand, applying the Burkholder–Davis–Gundy inequality and (4.44), we have

E sup
t∈[0,1]

∑
i

(
Yi (t) − Ỹi (t)

) (
gi (Xt ) − gi (X̃t )

)
d Ei (t)

≤ 4E

(
nσ ∗

n∑
i

∫ 1

0

(
Yi (t) − Ỹi (t)

)2 (
gi (Xt ) − gi (X̃t )

)2
dt

) 1
2

≤ 4n
√

σ ∗ D1

(
E
∫ 1

0

(
|1 + X(t) + X̃(t)|4d0+4

|Z(t)|4

+

∫ 0

−r
|1 + X(t + s) + X̃(t + s)|4d0+4

|Z(t + s)|4 µ(ds)
)

dt
)

1
2 .

(4.61)

e obtain from (4.51) and the functional Itô formula that

E
∫ 1

0

(
|1 + X(t) + X̃(t)|4d0+4

|Z(t)|4

+

∫ 0

−r
|1 + X(t + s) + X̃(t + s)|4d0+4

|Z(t + s)|4 µ(ds)
)

dt

≤
1

2D3
EŨ (φ, φ̃).

(4.62)

pplying (4.62) to (4.61) yields that

E sup
t∈[0,1]

∑
i

(
gi (Xt ) − gi (X̃t )

)
d Ei (t) ≤ 4n

√
σ ∗ D1

(
1

2D3
EŨ (φ, φ̃)

) 1
2
. (4.63)

ence, combining (4.52) and (4.63), by a standard argument, we conclude that

E sup
t∈[0,1]

U (Xt+t0 , X̃t+t0 ) ≤ D4

(
EU (Xt0 , X̃t0 ) +

(
EŨ (Xt0 , X̃t0 )

) 1
2

)
, ∀t0 > 0, (4.64)

for some constant D4, independent of Xt , X̃t . A consequence of Markov’s inequality and (4.64)
is that

P

{
sup

t∈[n−1,n]
U (Xt , X̃t ) ≥ e−

D3n
4

}

≤ D4e
D3n

4

(
EU (Xn−1, X̃n−1) +

(
EŨ (Xn−1, X̃n−1)

) 1
2

)
.

(4.65)

e obtain from (4.55) and (4.65) that
∞∑

n=1

P

{
sup

t∈[n−1,n]
U (Xt , X̃t ) ≥ e−

D3n
4

}
< ∞. (4.66)

t follows from the Borel–Cantelli lemma and (4.66) that limt→∞ U (Xt , X̃t ) = 0 a.s. and thus
e get (4.54). □

Once we have Lemma 4.4, we can mimic the proof of [23, Theorem 3.1] to obtain the
niqueness of the invariant probability measure of (4.47), which is stated as in the following
roposition.
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Proposition 4.2. Under Assumptions 2.1 and 2.4, the solution process of (4.47) has at most
one invariant probability measure, and moreover (2.1) has at most one invariant probability
measure concentrated on C◦

+
.

By the tightness (3.35) of the occupation measures and Theorem 4.1, the existence of
invariant probability measure of (2.1) concentrated on C◦

+
is guaranteed. Combined with

Proposition 4.2, we have the following Theorem to end this section.

Theorem 4.2. Under Assumptions 2.1–2.4, system (2.1) has a unique invariant probability
measure concentrated on C◦

+
.

5. Applications

This section presents a number of applications of our main results to different models. We
make use of Theorems 2.2 together with the following lemma whose proof can be found in [24],
to characterize the persistence.

Lemma 5.1. For any π ∈ M and i ∈ Iπ , we have λi (π ) = 0.

Moreover, it is worth noting that these sufficient conditions for persistence are sharp and
are almost necessary in the sense that if they are not satisfied and critical cases are excluded,
the extinction will take place, which will be seen in part (II) [45].

5.1. Stochastic delay Lotka–Volterra competitive models

The Lotka–Volterra model, introduced in [39,63], is one of the most popular models in
mathematical biology and has been studied extensively in the literature. When two or more
species live in proximity and share the same basic resources, they usually compete for food,
habitat, territory, etc., we therefore have the Lotka–Volterra competitive model. To capture
many complex properties in real life, other terms (white noises, Markov switching, delayed
time, etc.) are added to the original system. Stochastic delay Lotka–Volterra competitive models
have also been widely studied; see, for example, [1,32] and references therein. This kind model
for two species has the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

d X1(t) = X1(t)
(
a1 − b11 X1(t) − b12 X2(t) − b̂11 X1(t − r ) − b̂12 X2(t − r )

)
dt

+X1(t)d E1(t),
d X2(t) = X2(t)

(
a2 − b21 X1(t) − b22 X2(t) − b̂21 X1(t − r ) − b̂22 X2(t − r )

)
dt

+X2(t)d E2(t).

(5.1)

ote that in the above X i (t) is the size of the species i at time t ; ai > 0 represents the growth
ate of the species i ; bi i > 0 is the intra-specific competition of the i th species; bi j ≥ 0, (i ̸= j)
tands for the inter-specific competition; b̂i j > −bi i (i, j = 1, 2) (i.e., b̂i j can be negative);
is the delay time; (E1(t), E2(t))⊤ = Γ⊤B(t) with B(t) = (B1(t), B2(t))⊤ being a vector of

ndependent standard Brownian motions and Γ being a 2 × 2 matrix such that Γ⊤Γ = (σi j )2×2
s a positive definite matrix.
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Before applying our Theorems, let us verify our Assumptions. First, it is easy to see that
here is a sufficiently large M1 such that∑2

i, j=1 σi j xi x j

(1 + x1 + x2)2 ≥ 2σ∗ if |x| > M1, x := (x1, x2), (5.2)

for some σ∗ > 0. There exist 0 < b∗

2 < b∗

1 and M2 > 0 satisfying∑2
i=1 xi

(
ai − bi1x1 − bi2x2 − b̂i1ϕ1(−r ) − b̂i2ϕ2(−r )

)
1 + x1 + x2

< −b∗

1(1 + |x|) + b∗

2 |ϕ(−r )| ,
(5.3)

for all ϕ ∈ C+ satisfying |x| := |ϕ(0)| > M2, and∑2
i=1 xi

(
ai − bi1x1 − bi2x2 − b̂i1ϕ1(−r ) − b̂i2ϕ2(−r )

)
1 + x1 + x2

< |x|

∑
i

ai + b∗

2 |ϕ(−r )| , ∀ϕ ∈ C+.
(5.4)

et M > max{M1, M2}, c = (1, 1),

0 < γb < min

{
b∗

1

2
∑

i ai
,
σ∗

2
,

b∗

1 − b∗

2∑
i, j

(
bi j + |̂bi j |

)} , 0 < γ0 <
b∗

1

2
− γb

∑
i

ai ,

A1, A2 be such that

0 < b∗

2 + γb

∑
i, j

|̂bi j | < A2 < A1 < b∗

1 − γb

∑
i, j

bi j and A1 − A2 <
b∗

1

2
,

nd h(x) := 1 + |x|, µ is be the Dirac delta measure (concentrated) at {−r}, and

A0 :=γ0 + A1(1 + M) + γb

⎛⎝∑
i

ai + M
∑

i j

bi j + 2

⎞⎠+ M
∑

i

ai

+ sup
|x|<M

{∑2
i, j=1 σi j xi x j

(1 + x1 + x2)2 +

∑2
i=1 xi (ai − bi1x1 − bi2x2)

1 + x1 + x2

}
.

Combined with (5.2)–(5.4), direct calculations lead to that (2.2) is satisfied and that As-
sumption 2.1 holds. Moreover, it is easy to confirm that Assumptions 2.2 and 2.4 also
hold.

Applying our Theorems in Section 2, we have that λi (δ∗) = ai −
σi i

2
, i = 1, 2. Let C◦

1+
:=

(ϕ1, 0) ∈ C+ : ϕ1(s) > 0 ∀s ∈ [−r, 0]} and C◦

2+
:= {(0, ϕ2) ∈ C+ : ϕ2(s) > 0 ∀s ∈ [−r, 0]}. In

view of Theorem 2.2, if λi (δ∗) > 0, there is a unique invariant probability measure πi on C◦

i+,
= 1, 2. By Lemma 5.1, we have

λi (πi ) = ai −
σi i

2
−

∫
C◦

i+

(
bi iϕi (0) + b̂i iϕi (−r )

)
πi (dϕ) = 0, where ϕ = (ϕ1, ϕ2),

hich implies∫
◦

(
bi iϕi (0) + b̂i iϕi (−r )

)
πi (dϕ) = ai −

σi i

2
. (5.5)
Ci+
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Since πi is an invariant probability measure of {Xt }, it is easy to see that∫
C◦

i+

ϕi (0)πi (dϕ) = lim
T →∞

1
T

∫ T

0
X i,t (0)dt = lim

T →∞

1
T

∫ T

0
X i (t)dt, (5.6)

here (X1,t , X2,t ) = Xt . Similarly,∫
C◦

i+

ϕi (−r )πi (dϕ) = lim
T →∞

1
T

∫ T

0
X i (t − r )dt. (5.7)

By virtue of (5.6) and (5.7), we can prove that∫
C◦

i+

ϕi (0)πi (dϕ) =

∫
C◦

i+

ϕi (−r )πi (dϕ). (5.8)

Combining (5.5) and (5.8) yields that∫
C◦

i+

ϕi (0)πi (dϕ) =

∫
C◦

i+

ϕi (−r )πi (dϕ) =
ai −

σi i
2

bi i + b̂i i
.

Therefore, we have

λ2(π1) =

∫
C◦

1+

[
a2 −

σ22

2
− b21ϕ1(0) − b̂21ϕ1(−r )

]
π1(dϕ)

= a2 −
σ22

2
−

(
a1 −

σ11

2

)
·

b21 + b̂21

b11 + b̂11
,

and

λ1(π2) =

∫
C◦

2+

[
a1 −

σ11

2
− b12ϕ2(0) − b̂12ϕ2(−r )

]
π2(dϕ)

= a1 −
σ11

2
−

(
a2 −

σ22

2

)
·

b12 + b̂12

b22 + b̂22
.

If λ1(δ∗) > 0, λ2(δ∗) > 0 and λ1(π2) > 0, λ2(π1) > 0, any invariant probability measure
n ∂C+ has the form π = q0δ

∗
+ q1π1 + q2π2 with 0 ≤ q0, q1, q2 and q0 + q1 + q2 = 1.

hen, one has maxi=1,2 {λi (π )} > 0 for any π having the form as above. As a consequence of
heorem 2.2, there is a unique invariant probability measure π∗ on C◦

+
. This result generalizes

he results of long-term properties in [32].
In the above, we considered a 2-dimension case to illustrate the idea as well as to simplify

he explicit computation. For the stochastic delay Lotka–Volterra competitive model with
-species, our results can still be applied to characterize the long-term behavior of the solution.

.2. Stochastic delay Lotka–Volterra predator–prey models

To continue our study of Lotka–Volterra competitive models, this section is devoted to
pplying our results to stochastic Lotka–Volterra predator–prey models with time delay. Such
odels are frequently used to describe the dynamics of biological systems in which two species
nteract, one as a predator and the other one as prey. In this section, we consider Lotka–Volterra
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predator–prey system with one prey and two competing predators as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d X1(t) = X1(t)
{

a1 − b11 X1(t) − b12 X2(t) − b13 X3(t)

−b̂11 X1(t − r ) − b̂12 X2(t − r ) − b̂13 X3(t − r )
}

dt + X1(t)d E1(t),

d X2(t) = X2(t)
{

−a2 + b21 X1(t) − b22 X2(t) − b23 X3(t)

−b̂21 X1(t − r ) − b̂22 X2(t − r ) − b̂23 X3(t − r )
}

dt + X2(t)d E2(t),

d X3(t) = X3(t)
{

−a3 + b31 X1(t) − b32 X2(t) − b33 X3(t)

−b̂31 X1(t − r ) − b̂32 X2(t − r ) − b̂33 X3(t − r )
}

dt + X3(t)d E3(t),

(5.9)

here X1(t), X2(t), and X3(t) are the densities at time t of the prey, and two predators,
espectively; a1 > 0 is the growth rate; a2, a3 > 0 are the death rate of X2, X3; bi i > 0, i =

, 2, 3 denote the intra-specific competition coefficient of X i ; bi j ≥ 0, i ̸= j = 1, 2, 3, in
hich b12, b13 represent the capture rates, b21, b31 represent the growth from food, and b23 and

32 signify the competitions between predators (species 2 and 3); for each i, j ∈ {1, 2, 3}, b̂i j

s either positive or in (−bi i , 0]; r is the time delay; (E1(t), E2(t), E3(t))⊤ = Γ⊤B(t) with
(t) = (B1(t), B2(t), B3(t))⊤ being a vector of independent standard Brownian motions and Γ

eing a 3 × 3 matrix such that Γ⊤Γ = (σi j )3×3 is a positive definite matrix.
The model in the current setup, was considered in [33]. However, by switching the sign of

i or bi j , i ̸= j , we can obtain a stochastic time-delay Lotka–Volterra system with the prey
nd the mesopredator or intermediate predator. Note that the case involving a superpredator or
op predator, was studied in [35,66], and the stochastic time-delay Lotka–Volterra system with
ne predator and two preys was investigated in [22].

By a similar calculation as in Section 5.1, we can check that (2.2) is satisfied if we let

=

(
1,

b12

b21
,

b13

b31

)
and other parameters be similarly determined as in Section 5.1. Moreover,

other assumptions also hold.
We consider the equation on the boundaries C12+ := {(ϕ1, ϕ2, 0) ∈ C+ : ϕ1(s), ϕ2(s) ≥

∀s ∈ [−r, 0]} and C13+ := {(ϕ1, 0, ϕ3) ∈ C+ : ϕ1(s), ϕ3(s) ≥ 0, ∀s ∈ [−r, 0]}. If λ1(δ∗) > 0,
here is an invariant probability measure π1 on C◦

1+
:= {(ϕ1, 0, 0) ∈ C+ : ϕ1(s) > 0 ∀s ∈

−r, 0]}.
In view of Lemma 5.1, we obtain∫

C◦
1+

(
b11ϕ1(0) + b̂11ϕ1(−r )

)
π1(dϕ) = a1 −

σ11

2
. (5.10)

imilar to the process of getting (5.8), we obtain from (5.10) that∫
C◦

1+

ϕ1(0)π1(dϕ) =

∫
C◦

1+

ϕ1(−r )π1(dϕ) =
a1 −

σ11
2

b11 + b̂11
.

Therefore,

λi (π1) =

∫
C◦

1+

[
−ai −

σi i

2
+ bi1ϕ1(0) − b̂i1ϕ1(−r )

]
π1(dϕ)

= −ai −
σi i

+

(
a1 −

σ11
)

·
bi1 − b̂i1

, i = 2, 3.

2 2 b11 + b̂11
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In case of λ1(δ∗) > 0 and λ2(π1) > 0, Theorem 2.2 implies that there is an invariant
probability measure π12 on C◦

12+
. In view of Lemma 5.1 and (5.8), we obtain∫

C◦
12+

ϕ1(0)π12(dϕ) =

∫
C◦

12+

ϕ1(−r )π12(dϕ) = A1,∫
C◦

12+

ϕ2(0)π12(dϕ) =

∫
C◦

12+

ϕ2(−r )π12(dϕ) = A2,

here the pair (A1, A2) is the unique solution to{
a1 −

σ11
2 −

(
b11 + b̂11

)
A1 −

(
b12 + b̂12

)
A2 = 0,

−a2 −
σ22
2 +

(
b21 − b̂21

)
A1 −

(
b22 + b̂22

)
A2 = 0.

n this case,

λ3(π12) =

∫
C◦

12+

[
−a3 −

σ33

2
+
(
b31ϕ1(0) − b̂31ϕ1(−r )

)
−
(
b32ϕ2(0) + b̂32ϕ2(−r )

)]
π12(dϕ)

= −a3 −
σ33

2
+
(
b31 − b̂31

)
A1 −

(
b32 + b̂32

)
A2.

imilarly, if λ1(δ∗) > 0 and λ3(π1) > 0, by Theorem 2.2, there is an invariant probability
easure π13 on C◦

13+
and

λ2(π13) =

∫
C◦

13+

[
−a2 −

σ22

2
+
(
b21ϕ1(0) − b̂21ϕ1(−r )

)
−
(
b23ϕ3(0) + b̂23ϕ3(−r )

)]
π13(dϕ)

= −a2 −
σ22

2
+
(
b21 − b̂21

)
Â1 −

(
b32 + b̂23

)
Â3,

here ( Â1, Â3) is the unique solution to{
a1 −

σ11
2 −

(
b11 + b̂11

)
Â1 −

(
b13 + b̂13

)
Â3 = 0,

−a3 −
σ33
2 +

(
b31 − b̂31

)
Â1 −

(
b33 + b̂33

)
Â3 = 0.

Because of the ergodic decomposition theorem, every invariant probability measure on ∂C+

s a convex combination of δ∗, π1, π12, π13 (when these measures exist). As a consequence,
ome computations for the Lyapunov exponents with respect to a convex combination of these
rgodic measures together with an application of Theorem 2.2 yield that there exists a unique
nvariant probability measure in C◦

+
if one of the following conditions is satisfied:

• λ1(δ∗) > 0, λ2(π1) > 0, λ3(π1) < 0 and λ3(π12) > 0.
• λ1(δ∗) > 0, λ2(π1) < 0, λ3(π1) > 0 and λ2(π13) > 0.
• λ1(δ∗) > 0, λ2(π1) > 0, λ3(π1) > 0, λ3(π12) > 0, and λ2(π13) > 0.

The above assertions generalize the results in [33]. Moreover, if we switch the sign of ai or
bi j , i ̸= j , we obtain another modifications of Lotka–Volterra prey–predator equation as we
mentioned at the beginning of this section with modification of the above characterization,

which improve the results in [22,35,66].
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Confining our analysis to C12+ (this describes the evolution of one predator and its prey),
e get⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d X1(t) = X1(t)
{

a1 − b11 X1(t) − b̂11 X1(t − r ) − b12 X2(t)

−b̂12 X2(t − r )
}

dt + X1(t)d E1(t),

d X2(t) = X2(t)
{

−a2 + b21 X1(t) + b̂21 X1(t − r ) − b22 X2(t)

−b̂22 X2(t − r )
}

dt + X2(t)d E2(t).

(5.11)

his further leads to that if λ1(δ∗) > 0, λ2(π1) > 0, there exists a unique invariant probability
easure of (5.11) on C◦

12+
, which improves the results in [38].

.3. Stochastic delay replicator equations

In evolutionary game theory, originally, a replicator equation is a deterministic monotone,
onlinear, and non-innovative game dynamic system. Such a deterministic system has been
xpanded to systems with stochastic perturbations. In this section, we consider the replicator
ynamics for a game with n strategies, involving social-type time delay (see, e.g., [28] for
etails of such delays) and white noise perturbation. The system of interest can be expressed
s ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi (t) = xi (t)

⎛⎝ fi (x(t − r )) −
1
X

n∑
j=1

x j (t) f j (x(t − r ))

⎞⎠ dt

+xi (t)

⎛⎝σi d Bi (t) −
1
X

n∑
j=1

σ j x j d B j (t)

⎞⎠ ; i = 1, . . . , n,

x(s) = x0(s); t ∈ [−r, 0],

(5.12)

here X is the size of the populations; xi (t) is the portion of population that has selected
he i th strategy and the distribution of the whole population among the strategy; the fitness
unctions fi (·) : Rn

+
→ R, i = 1, . . . , n are the payoffs obtained by the individuals playing the

th strategy; r is the time delay; and x0(s) ∈ ∆X := {x ∈ Rn
+

:
∑n

i=1 xi = X} for all s ∈ [−r, 0]
s the initial value.

The replicator equation was introduced in 1978 by Taylor and Jonker in [59]. Since then
ignificant contributions have been made in biology [26,49], economics [64], and optimization
nd control for a variety of systems [6,50,52,60]. Much attention has been devoted to studying
heir properties. For instance, when fi (·) : Rn

+
→ R, i = 1, . . . , n are linear mappings,

q. (5.12) without time delay was studied in [25,27]. Moreover, the deterministic version
f Eq. (5.12) was studied in [28,51].

By a similar argument as in [51,64], we can show that ∆X remains invariant a.s. As a
onsequence, our assumptions are verified. Hence, our results in Theorem 2.2 hold for (5.12).

o demonstrate, for better visualization, we apply our results to some low-dimensional systems.
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First, we consider Eq. (5.12) in case of two dimensions. Define

CX
+

:= {(ϕ1, ϕ2) : ϕ1(s) + ϕ2(s) = X and ϕ1(s), ϕ2(s) ≥ 0 for all s ∈ [−r, 0]},

∂CX
+

:= {(ϕ1, ϕ2) ∈ CX
+

: ∥ϕ1∥ = 0 or ∥ϕ2∥ = 0},

CX,◦
+ := {(ϕ1, ϕ2) ∈ CX

+
: ϕ1(s), ϕ2(s) > 0 for all s ∈ [−r, 0]}.

In this case, it is clear that there are two invariant probability measures on the boundary ∂CX
+

,
which are δ1 and δ2 concentrating on (X, 0) and (0, X ), respectively, where 0, X are understood
to be constant functions. We have

λ1(δ2) = f1((0, X )) − f2((0, X )) −
σ 2

1 + σ 2
2

2
, (5.13)

λ2(δ1) = f2((X, 0)) − f1((X, 0)) −
σ 2

1 + σ 2
2

2
. (5.14)

y Theorem 2.2, in case of (5.12) of 2-dimensional systems, if λ1(δ2) > 0 and λ2(δ1) > 0,
here is a unique invariant probability measure of (5.12) on CX,◦

+ .
Next, we consider (5.12) in three dimensions. Similarly, we also define the following set

CX
+

:= {(ϕ1, ϕ2, ϕ3) :ϕ1(s) + ϕ2(s) + ϕ3(s) = X

and ϕ1(s), ϕ2(s), ϕ3(s) ≥ 0 for all s ∈ [−r, 0]},

∂CX
+

:= CX
12+

∪ CX
23+

∪ CX
13+

,

CX
i j+ := {(ϕ1, ϕ2, ϕ3) ∈ CX

+
: ∥ϕk∥ = 0, k ̸= i, j}, for i ̸= j ∈ {1, 2, 3},

CX,◦
+ := {(ϕ1, ϕ2, ϕ3) ∈ CX

+
: ϕ1(s), ϕ2(s), ϕ3(s) > 0 for all s ∈ [−r, 0]}.

Denote by δ1, δ2, δ3 the invariant probability measures on the boundary ∂CX
+

of (5.12),
concentrating on (X, 0, 0), (0, X, 0), and (0, 0, X ), respectively. We have

λi (δ1) = fi ((X, 0, 0)) − f1((X, 0, 0)) −
σ 2

1 + σ 2
i

2
, i = 2, 3,

λ j (δ2) = f j ((0, X, 0)) − f2((0, X, 0)) −
σ 2

2 + σ 2
j

2
, j = 1, 3,

nd

λk(δ3) = fk((0, 0, X )) − f3((0, 0, X )) −
σ 2

3 + σ 2
k

2
, k = 1, 2.

f max j=1,3 λ j (δ2) > 0 and maxk=1,2 λk(δ3) > 0, there is a unique invariant probability measure
n CX

23+
, denoted by π23. When π23 exists, we have

λ1(π23) = −
σ 2

1

2
+

∫
CX

23+

(
f1(ϕ) −

2Xϕ2(0) f2(ϕ) + σ 2
2 ϕ2

2 (0)
X2

−
2Xϕ3(0) f3(ϕ) + σ 2

3 ϕ2
3 (0)

X2

)
π23(dϕ).
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By Lemma 5.1 and λ2(π23) = λ3(π23) = 0, we have∫
CX

23+

(
2Xϕ2(0) f2(ϕ) + σ 2

2 ϕ2
2 (0)

2X2 +
2Xϕ3(0) f3(ϕ) + σ 2

3 ϕ2
3 (0)

2X2

)
π23(dϕ)

=
σ 2

2

2
+

∫
CX

23+

f2(ϕ)π23(dϕ)

=
σ 2

3

2
+

∫
CX

23+

f3(ϕ)π23(dϕ).

s a result,

λ1(π23) = −
σ 2

1 + σ 2
2

2
+

∫
CX

23+

( f1(ϕ) − f2(ϕ)) π23(dϕ)

= −
σ 2

1 + σ 2
3

2
+

∫
CX

23+

( f1(ϕ) − f3(ϕ)) π23(dϕ).

The conditions to guarantee the existence of the unique invariant probability measure π12, π13
n the boundary CX

12+
, CX

13+
are similarly obtained and λ2(π13), λ3(π12) can be computed similar

o λ1(π23). Therefore, we have the following classification for the long-run solution of (5.12)
n three dimensions as follows. System (5.12) admits a unique invariant probability measure
n CX,◦

+ if

• maxi=2,3 λi (δ1) > 0, max j=1,3 λ j (δ2) > 0, maxk=1,2 λk(δ3) > 0 and λ1(π23) > 0,
λ2(π13) > 0, λ3(π12) > 0.

he (explicit) condition for persistence of (5.12) in n-dimensions is more complex. However,
ur results (Theorem 2.2) still hold and will be computable in practice under suitable
onditions. Moreover, if r = 0 (i.e., there is no time delay) and fi (·), i = 1, . . . , n are linear,
he condition of the persistence of (5.12) in this section is equivalent to results in [25,27].

.4. Stochastic delay epidemic SIR models

The SIR model is one of the basic building blocks of compartmental models, from which
any infectious disease models are derived. The model consists of three compartments, S

or the number of susceptible, I for the number of infectious, and R for the number of
ecovered (or immune). First introduced by Kermack and McKendrick in [29,30], the models
re deemed effective to depict the spread of many common diseases with permanent immunity
uch as rubella, whooping cough, measles, and smallpox. A variety of modifications of original
quation are introduced due to the complexity of environment. Much attention has been devoted
o analyzing the behavior of these systems; for example, see [12,15] and the references therein.
n this section, we study the stochastic epidemic SIR models with time delay.

To start, we consider the equation with linear incidence rate of the following form{
d S(t) = (a − b1S(t) − c1 I (t)S(t) − c2 I (t)S(t − r )) dt + S(t)d E1(t),
d I (t) = (−b2 I (t) + c1 I (t)S(t) + c2 I (t)S(t − r )) dt + I (t)d E2(t),

(5.15)

here S(t) is the density of susceptible individuals, I (t) is the density of infected individuals,
> 0 is the recruitment rate of the population, bi > 0, i = 1, 2 are the death rates,

⊤ ⊤

i > 0, i = 1, 2 are the incidence rates, r is the delayed time, (E1(t), E2(t)) = Γ B(t)

358



D.H. Nguyen, N.N. Nguyen and G. Yin Stochastic Processes and their Applications 142 (2021) 319–364

b
t
a

a
{

a

S
i
π

λ

0

w
L

B

T

w

with B(t) = (B1(t), B2(t))⊤ being a vector of independent standard Brownian motions, and Γ

eing a 2 × 2 matrix such that Γ⊤Γ = (σi j )2×2 is a positive definite matrix. It is well-known
hat the dynamics of recovered individuals have no effect on the disease transmission dynamics
nd that is why we only consider the dynamics of S(t), I (t) in (5.15).

Although Eq. (5.15) does not have the exact form as in (2.1), we can use the same idea
nd the same method to obtain similar results. First, we consider the equation on the boundary
(ϕ1, 0) : ϕ1(s) ≥ 0 ∀s ∈ [−r, 0]} and let Ŝ(t) be the solution of the equation on this boundary
s follows

d Ŝ(t) =
(
a − b1 Ŝ(t)

)
dt + Ŝ(t)d E1(t). (5.16)

ince the drift coefficient of this equation is negative if Ŝ(t) is sufficiently large and positive,
f Ŝ(t) is sufficiently small, we can show that there is a unique invariant probability measure

of (5.15) on C◦

1+
:= {(ϕ1, 0) : ϕ1(s) > 0 ∀s ∈ [−r, 0]}. On the other hand, since

2(δ∗) = −b2 −
σ22

2
< 0, there is no invariant probability measure in C◦

2+
:= {(0, ϕ2) : ϕ2(s) >

; ∀s ∈ [−r, 0]}.
Hence, we define the following threshold

λ(π ) = −b2 −
σ22

2
+

∫
C◦

1+

(c1ϕ1(0) + c2ϕ1(−r )) π (dϕ), (5.17)

hose sign will be able to characterize the permanence and extinction. As an application of
emma 5.1, we get∫

C◦
1+

ϕ1(0)π (dϕ) =
a
b1

. (5.18)

y (5.8), we have that∫
C◦

1+

ϕ1(−r )π (dϕ) =

∫
C◦

1+

ϕ1(0)π (dϕ) =
a
b1

.

herefore, under this condition, we obtain from (5.17) and (5.18) that

λ(π ) = −b2 −
σ22

2
+

a(c1 + c2)
b1

.

Using the same idea and techniques, it is possible to obtain similar results to Theorem 2.2
for Eq. (5.15). We have that if λ(π ) > 0, (5.15) has a unique invariant probability measure in
C◦

+
. This characterization is equivalent to the result in [34,36].
In the above, we consider the linear incidence to make our computations be more explicit.

The characterizations still hold for the following stochastic delay SIR epidemic model with
general incidence rate{

d S(t) =
(
a − b1S(t) − I (t) f1

(
S(t), S(t − r ), I (t), I (t − r )

))
dt + S(t)d E1(t),

d I (t) =
(
−b2 I (t) + I (t) f2

(
S(t), S(t − r ), I (t), I (t − r )

))
dt + I (t)d E2(t),

(5.19)

4
here fi : R → R, i = 1, 2 are the incidence functions satisfying
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• f1(0, 0, i1, i2) = f2(0, 0, i1, i2) = 0.
• there exists some κ ∈ (0, ∞) such that for all ϕ ∈ C+

f2
(

ϕ1(0),ϕ1(−r ), ϕ2(0), ϕ2(−r )
)
≤ κ f1

(
ϕ1(0), ϕ1(−r ), ϕ2(0), ϕ2(−r )

)
≤ κ2 (1 + |ϕ(0)| + |ϕ(−r )|) .

• f2(s1, s2, i1, i2) is non-decreasing in s1, s2 and is non-increasing in i1, i2.

lmost all incidence functions used in the literature, e.g., linear functional response, Holling
ype II functional response, Beddington–DeAngelis functional response, etc., satisfy the above
onditions. In the general case, the system has a unique invariant probability measure in C◦

+
if

(π ) > 0, where λ(π ) is defined as follows

λ(π ) = −b2 −
σ22

2
+

∫
C◦

1+

f2
(
ϕ1(0), ϕ1(−r ), ϕ2(0), ϕ2(−r )

)
π (dϕ),

here ϕ = (ϕ1, ϕ2) and π is the invariant probability measure of (5.16). These results
ignificantly generalize and improve that of [7,14,37,40].

.5. Stochastic delay chemostat models

A chemostat is a bio-reactor. In a chemostat, fresh medium is continuously added, and
ulture liquid containing left-over nutrients, metabolic end products, and microorganisms are
ontinuously removed at the same rate to keep a constant culture volume. The chemostat model
s based on a technique introduced by Novick and Szilard in [48] and plays an important role
n microbiology, biotechnology, and population biology. This section is devoted to studying a

odel of n-microbial populations competing for a single nutrient in a chemostat with delay in
ptake conversion and under effects of white noises. Precisely, the model is described by the
ollowing system of stochastic functional differential equations⎧⎪⎨⎪⎩d S(t) =

(
1 − S(t) + aS(t − r ) −

n∑
i=1

xi (t)pi (S(t))

)
dt + S(t)d E0(t),

dxi (t) = xi (t) (pi (S(t − r )) − 1) dt + xi (t)d Ei (t), i = 1, . . . , n,

(5.20)

here S(t) is the concentration of nutrient at time t ; 0 ≤ a < 1 is a constant; xi (t), i =

, . . . , n are the concentrations of the competing microbial populations; pi (S), i = 1, . . . , n
re the density-dependent uptakes of nutrient by population xi ; r is the delayed time; and
E0(t), . . . , En(t))⊤ = Γ⊤B(t) with B(t) = (B0(t), . . . , Bn(t))⊤ being a vector of independent
tandard Brownian motions and Γ being a (n + 1) × (n + 1) matrix such that Γ⊤Γ =

σi j )(n+1)×(n+1) is a positive definite matrix. Moreover, in this section, C := C([−r, 0],Rn+1)
nstead of C([−r, 0],Rn). The deterministic version of (5.20) is studied and the long-time
ehavior is characterized in [19,21,65]. Recently, much attention is devoted to studying the
elated stochastic systems; see [57,58,67].

It is similar to Section 5.4, if we assume that pi : R → R, i = 1, . . . , n satisfying non-
ecreasing and bounded properties and pi (0) = 0, then our Assumptions hold. Therefore, our
esults in this paper can be applied to (5.20).

Before obtaining the results in multi-dimensional systems, we consider n = 1, 2. If n = 1,
here is only one population x1 together with the nutrient S(t). Similar to Section 5.4, there is
o invariant probability measure of (St , x1t ) in C◦

1+
:= {(0, ϕ1) ∈ C+ : ϕ1(s) > 0, ∀s ∈ [−r, 0]},
here x1t is the memory segment function of x1(t). Moreover, there is a unique invariant
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probability measure π0 in C◦

0+
:= {(ϕ0, 0) ∈ C+ : ϕ0(s) > 0, ∀s ∈ [−r, 0]}. Hence, it is

easy to see that for any invariant probability measure π in ∂C+, we have

λ1(π ) = λ1(π0) = −1 −
σ11

2
+

∫
C◦

0+

p1(ϕ0(−r ))π0(dϕ).

y applying our result, if λ1(π0) > 0 then (St , x1t ) admits a unique invariant probability
easure in C◦

+
.

We next reveal the characterization of the longtime behavior in the case n = 2, which is
imilar to the case of n = 1. There is no invariant probability measure in C◦

i+ := {(0, ϕ1, ϕ2) ∈

+ :
ϕ j

 = 0, j ̸= i and ϕi (s) > 0, ∀s ∈ [−r, 0]}, and there is a unique measure π0 in
◦

0+
:= {(ϕ0, 0, 0) ∈ C+ : ϕ0(s) > 0, ∀s ∈ [−r, 0]}. As characterized in the case n = 1, if

i (π0) > 0, where

λi (π0) = −1 −
σi i

2
+

∫
C◦

0+

pi (ϕ0(−r ))π0(dϕ), i = 1, 2,

hen there is a unique invariant probability measure π0i in C◦

0i+ := {(ϕ0, ϕ1, ϕ2) ∈ C+ :
ϕ j

 =

, j ̸= i and ϕ0(s), ϕi (s) > 0, ∀s ∈ [−r, 0]}. Hence, let

λ j (π0i ) = −1 −
σ j j

2
+

∫
C◦

0+

p j (ϕ0(−r ))π0i (dϕ), j ̸= i.

he persistence is classified as follows. The (St , x1t , x2t ) admits a unique invariant probability
easure in C◦

+
if λ1(π0) > 0, λ2(π0) > 0, λ1(π02) > 0, and λ2(π01) > 0.

The two examples in low dimension (n = 1, 2) provide a scheme to construct recursively
the characterization of the longtime behavior of (5.20) in higher dimensions. It is difficult to
show concretely in case of general functions pi (·), but it is computable in certain examples.
These classifications improve the results in [58,67].

Remark 5. In fact, in all the examples in Sections 5.1–5.5, similar results can be obtained for
multi-delays or distributed delays. We used a single delay in this Section for simplifying the
notation and calculations so as to present the main ideas without notation complication. On the
other hand, if r = 0, i.e., there is no time delay, the above results are consistent with and/or
improve the existing results in the literature.
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