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Abstract
Motivated by our study of infiltrating dynamics of immune cells into tumors, we pro-
pose a stochastic model in terms of Ito stochastic differential equations to study how
two parameters, the chemoattractant production rate and the chemotactic coefficient,
influence immune cell migration and how these parameters distinguish two types of
gliomas. We conduct a detailed analysis of the stochastic model and its deterministic
counterpart. The deterministic model can differentiate two types of gliomas accord-
ing to the range of the chemoattractant production rate as two equilibrium solutions,
while the stochastic model also can differentiate two types of gliomas according to
the ranges of the chemoattractant production rate and chemotactic coefficient with
thresholds as one non-zero ergodic invariant measure and one weak persistent state
when the noise intensities are small. When the noise intensities are large comparing
with the chemotactic coefficient, there is only one type of glioma that corresponds to
a non-zero ergodic invariant measure. Using our experimental data, numerical simu-
lations are carried out to demonstrate properties of our models, and we give medical
interpretations and implications for our analytical results and numerical simulations.
This study also confirms some of our results about IDH gliomas.

Keywords Ergodic invariant measure · Weak persistence · Stochastic differential
equation · muIDH glioma · wtIDH glioma

Mathematics Subject Classification 37C40 · 37H10 · 60H10 · 92B05

1 Introduction

It is significant for many cancers to have infiltrated immune cells (Quail and Joyce
2013). There are lots of studies to explore the impacts of tumor-infiltrated immune cells
(Kitamura et al. 2015). Some studies showed that direct contact between immune cells
and tumor cells can reduce the tumor size while other studies indicated that increased
immune cells in the tumor may facilitate tumor cell invasion (Nosho et al. 2010;
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Gannot et al. 2002; Calzascia et al. 2003). Although the reason for these contradic-
tory observations remains elusive, it is important to understand how the migration of
immune cells into the tumor is regulated (Kesarwani et al. 2017). Recently, our group
performed a series of experimental studies about how tumor-associated immune cells
are regulated (Amankulor et al. 2017). Gliomas have two types, CIMP and non-CIMP,
according to CpG island methylator phenotype (CIMP) (Noushmehr et al. 2010).
CIMP gliomas have some mutations in isocitrate dehydrogenase 1/2 (IDH1/2). Non-
CIMP wild-type IDH1/2 (wtIDH1/2) gliomas are more malicious comparing with
their CIMP counterparts, CIMPmutant IDH1/2 (muIDH1/2). In our experiments with
human tissues, we compared the infiltrated immune cell amounts of wtIDH1 and
muIDH1 and found human CIMP gliomas have lower numbers of several immune
cell types compared with non-CIMP tumors. To understand the difference in vivo,
we utilized the RCAS/tva system to create isogenic glioma pairs from PDGF-driven
mouse glioma models whose initiating events differed only in the presence or absence
of muIDH1. Our experimental results showed that the muIDH1 mouse gliomas have
significant reduced immune cell contents, and showed a regulatory role of muIDH1 on
the infiltration of immune cells into gliomas with the secretion of several chemoattrac-
tants (Amankulor et al. 2017). However, to comprehend how IDH1 mutants regulate
the infiltration of immune cells into gliomas and how they affect the aggressiveness
of gliomas, it is necessary to integrate our experimental data into a dynamical system
to acquire a complete understanding of subtle regulation of immune cell infiltration.

In our study (Niu et al. 2020),we formulated amathematicalmodel of 3-dimensional
glioma driven by PDGF. We consider a radially symmetrical tumor and denote by r
the distance from a point to the center of the tumor. The tumor boundary is denoted
by r = R(t). Let G(r , t) be the number density of glioma cells, H(r , t) the number
density of necrotic cells, N (r , t) the number density of infiltrated immune cells, and
A(r , t) the concentration of chemoattractants produced by tumor cells. The prolifera-
tion and removal of cells cause movements of cells within the tumor, with a convection
term, for tumor cells G, which is of the form 1

r2
∂
∂r (r

2G(r , t)V (r , t)), where V (r , t)
is the velocity and V (0, t) = 0. The necrotic cells undergo the same convection while
the chemoattractants undergo diffusion. The immune cells migrate along the gradient
field generated by chemoattractants into the tumor, and then undergo the same con-
vection besides chemotaxis within the tumor. By mass conservation laws, the model
we proposed in Niu et al. (2020) is as follows:

∂G(r , t)

∂t
+ 1

r2
∂

∂r
[r2G(r , t)V (r , t)] = λG(r , t) − μG(r , t), r ∈ [0, R(t)),

∂H(r , t)

∂t
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r2
∂
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[r2H(r , t)V (r , t)] = μG(r , t) − δH(r , t), r ∈ [0, R(t)),
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= D
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r2
∂
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[
r2

∂A(r , t)

∂r

]
+ mG(r , t)

β + G(r , t)
− γ A(r , t), r ∈ [0,∞),

∂N (r , t)

∂t
+ 1
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∂

∂r
[r2N (r , t)V (r , t)] = −α

1

r2
∂

∂r
[r2N (r , t)

∂A(r , t)

∂r
]

− ρN (r , t), r ∈ [0, R(t)).
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We assumed that all cells have the same size. Since the number density of the tissue
is constant, we have G(r , t) + H(r , t) + N (r , t) = θ within the tumor. Combining
these equations, we have the equation for the velocity,

θ

r2
∂

∂r
[r2V (r , t)] = λG(r , t) − δH(r , t) − α

1

r2
∂

∂r
[r2N (r , t)

∂A(r , t)

∂r
] − ρN (r , t).

The free boundary condition is given by dR(t)
dt = V (R(t), t). The initial conditions

are specified as R(0) = ε, where ε is a very small number; G(r , 0), H(r , 0), N (r , 0),
for 0 < r < ε; and A(r , 0), 0 < r < ∞. The boundary conditions for the chemoat-
tractant A(r , t) are specified as ∂

∂r A(0, t) = 0 and A(r , t) vanishes at infinity, and
V (0, t) = 0 for t ≥ 0. We did computational studies to verify our model and made
numerical predications in Niu et al. (2020). Particularly, we found two parameters,
the chemoattractant production rate m and chemotactic coefficient α, play important
roles. The chemoattractant production rate m can distinguish two types of tumors,
wtIDH1 and muIDH1, according to the range of its value. The chemotactic coefficient
α determines the possibilities of immune cell migration along chemoattractant gradi-
ent fields. However, as these two parameters are perturbed or in a noisy environment
which actually is the case in reality, wewould like to explore how stable our conclusion
about these two parameters are. This is a medical relevant question. There are several
factors which contribute randomness of parameter values (Phan et al. 2021). We men-
tioned parameter sensitivity analysis in Niu et al. (2020). However, the influence of
randomness and noise on parameters is a different question.

Therefore, in this article, we conduct some analysis of how these two parameters
will affect the dynamics of immune cells infiltrating into the tumor site if they are
perturbed. In order to grasp the essence of the problem, we first reduce our PDE
system above to a system of ordinary differential equations and then perturb two
parameters to obtain a system of Ito stochastic differential equations.

The simplified ODE system is as follows:

dG

dt
= λG

(
1 − G + N

C

)
,

d A

dt
= mG

β + G
− γ A,

dN

dt
= αAN − ρN .

(1.1)

where G = G(t) is the number density of glioma cells at time t , A = A(t) is the
concentration of chemoattractants at time t , and N = N (t) is the number density
of infiltrated immune cells at time t . We use logistic growth to model the growth of
glioma cells with the proliferation rate λ and carrying capacityC . The necrotic cells is
not needed since it is built in logistic growth function. Chemoattractants is produced
by glioma cells and the Michaelis-Menten Kinetics is used to model the production
rate of chemoattractants which is proportional to mG

β+G , where β is Michaelis constant.
The parameter γ denotes the chemoattractant degradation rate. The parameter ρ is the
immune clearance rate. The last two parametersm andα, represent the chemoattractant

123



22 Page 4 of 45 T. A. Phan et al.

production rate and the chemotactic coefficient, respectively. This ODE model may
be regarded as a simplified version of our PDE model without spatial distributions,
but inherits dynamical properties in time, particularly, which we are interested in most
are about these two parameters.

Aforementioned,we are interested in parametersm andα. The chemoattractant pro-
duction ratem describes how much chemoattractants are produced in unit volume and
unit time. The randomness or noise form mainly comes from howmuch chemoattrac-
tants are in the tumor, or its variation can be described by variation of chemoattractant
concentrations. Specifically, wemay assume that each chemoattractantmoleculemake
almost same contribution to the stochastic effects and receive the same environmental
noise. Then, the environmental noise and randomness for chemoattractant production
can be represented by τ1Aξ , where ξ is the unit noise and τ1 can be regarded as a way
to measure average variation of each chemoattractant molecule (Phan et al. 2021). As
usual, we take the white noise ξ = dW

dt , and Wt represents the standard Wiener pro-

cess. Thus, we will changem tom+τ1A
dW1
dt . The chemotactic coefficient α describes

howmuch area or volume of the gradient can be generated per unit of chemoattractant
and time. In other words, the chemotactic coefficient describes how much possibility
that chemoattractant substance can make immune cell move forward. The randomness
and noise for α mainly is from the environment. We may represent the noise by τ2ξ ,
where τ2 measure an average variation of the environmental contribution (Phan and
Tian 2020). We then replace α with α + τ2

dW2
dt . It should be mentioned that W1 and

W2 are mutually independent one dimensional Wiener processes. Therefore, we get
the following system of Ito stochastic differential equations.

dG = λG

(
1 − G + N

C

)
dt,

d A =
(

mG

β + G
− γ A

)
dt + τ1AG

β + G
dW1,

dN = (αAN − ρN ) dt + τ2AN dW2.

(1.2)

As the way we incorporate randomness and noise is not usually to simply add addi-
tive or linear noise, our stochasticmodel does not satisfy usual boundedness conditions
(Benaïm 2018; Hening and Nguyen 2018). This creates difficulties in analyzing our
stochastic model. Based on significant progress in the theory of stochastic persistence
(Benaïm 2018; Schreiber et al. 2011; Hening and Nguyen 2018), we develop delicate
and new estimates for our model. Meanwhile, we conduct numerical studies using our
experimental data with detailed biological interpretations and implications.

The rest of the article is organized as follows. In Sect. 2, we non-dimensionalize
the systems (1.1) and (1.2), present main analytical results, and provide medical inter-
pretations. In Sect. 3, using our experimental data, we provide numerical simulations
for two systems with biological explanations, we discuss some aspects of stochastic
modeling and list several open problems. In Sect. 4, an analysis of the deterministic
counterpart of our stochastic model is presented and the main theorem for this sys-
tem is proved. In Sect. 5, we analyze our stochastic model by studying the long-term
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behaviors near the boundary of the positive invariant domain. The article ends with
Acknowledgements and References.

2 Results and interpretations

In this section, we list our major analytical results and give some biological interpre-
tations. For simplicity, we non-dimensionalize the system (1.2) by setting G = CG,
A = CA, N = CN , T = γ t , and rename parameters r = λ

γ
, a = m

γC , b = β
C ,

c = αC
γ
, d = ρ

γ
, τ 1 = τ1

C , and τ 2 = τ2
C . Then the system (1.2) becomes

dG = rG(1 − G − N ) dT ,

d A =
(

aG

b + G
− A

)
dT + τ 1AG

b + G
dW1,

dN = (cAN − dN ) dT + τ 2AN dW2.

For convenience, drop all the bars over the variables and write T as t , we get

dG = rG(1 − G − N ) dt,

d A =
(

aG

b + G
− A

)
dt + τ1AG

b + G
dW1,

dN = (cAN − dN ) dt + τ2AN dW2,

(2.1)

and the corresponding deterministic system of (2.1) is

dG

dt
= rG(1 − G − N ),

d A

dt
= aG

b + G
− A,

dN

dt
= cAN − dN .

(2.2)

It is assumed that all parameters are nonnegative.
For the deterministic system (2.2), it is straightforward to find the positive invariant

domain which is biologically meaningful as

D = {(G, A, N ) : 0 ≤ G ≤ 1, A ≥ 0, N ≥ 0}.

Now, the parameter a represents the chemoattractant production rate and c represents
chemotactic coefficient.Wefind the first critical value for the parameter a, as1 = bd+d

c ,
by determining three equilibrium solutions E0 = (0, 0, 0), E1 = (1, a

b+1 , 0), and

E2 =
(

bd
ac−d , d

c , ac−d−bd
ac−d

)
. We linearize the system (2.2) at these equilibria to study

their local stability. We also use center manifold theorem to study the global and local
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stability of the equilibria on the boundary of D. To investigate Hopf bifurcations,
we develop a family of coefficient parameterized polynomials and take advantage of
properties of Routh–Hurwitz determinant to obtain the second critical value for the

parameter a, as2 = y∗
3+d
c , where y∗

3 is the unique positive root of the cubic polynomial

(y) = −y3 + (b+ bd)y2 + bd(br + 1)y+ b2d2r . The main result for the dynamics
of the system (2.2) can be summarized in the following theorem.

Theorem 2.1 The system (2.2) has three equilibrium solutions E0, E1, and the positive
equilibrium E2. E0 is always unstable for all positive values of a. E1 is globally
asymptotically stable when 0 < a < as1 , and it is unstable when a > as1 . At a = as1 ,
E1 is locally asymptotically stable and the positive equilibrium E2 moves into the
positive invariant domain D, a similar type of transcritical bifurcation occurs with E1
and E2. As as1 < a < as2 , E2 is locally asymptotically stable; when a > as2 , E2 is
unstable. Only one Hopf bifurcation occurs at a = as2 , and this bifurcation gives rise
to one family of periodical solutions. As a becomes large enough, E2 ≈ (O( 1a ), d

c , 1).

This theorem has some biological interpretations or implications. From our study
in Niu et al. (2020), we know that the chemoattractant production rate m or a now
can distinguish two type of gliomas, wtIDH1 and muIDH1. Gliomas of wtIDH1 have
more infiltrated immune cells. We may give the following interpretations.

Interpretation 2.1 With the deterministic system (2.2), two types of gliomas can be
distinguished by their chemoattractant production rate. If the chemoattractant pro-
duction rate is smaller than a critical value, as1 , then the tumor belongs to muIDH1
type. If the chemoattractant production rate is greater than as1 , then the tumor belongs
to wtIDH1 type. When the chemoattractant production rate is even larger, the tumor
will attract more immune cells and is more aggressive.

For the stochastic system (2.1), we specify an appropriate completed filtered prob-
ability space. Let � = {ω ∈ C(R,R2), ω(0) = 0},F the Borel σ -algebra on � and P
the measure induced by {Wt }t∈R, a two-sided 2-dimensionalWiener process. Then the
elements of � can be identified with paths of a Wiener process ω(t) = Wt (ω). Now
we consider the P-completion of F , also denoted by F , that is F contains all P-null
sets. The filtration Ft is given by the canonical filtration generated by the Wiener pro-
cess completed by all P-null sets of F . Denote the probability measure given by the
extension of P to the completed F again by P. Thus, a completed filtered probability
space (�,F , {Ft }t∈R,P) is obtained. We denote the drift term and the diffusion term
of the system (2.1) by

f (U ) =
⎡
⎣rG(1 − G − N )

aG
b+G − A

cAN − dN

⎤
⎦ , and g(U ) =

⎡
⎣ 0 0

τ1AG
b+G 0
0 τ2AN

⎤
⎦ .

The process given by the solution to (2.1) will be denoted by U or U (t) =
(G(t), A(t), N (t)), t ≥ 0. Let L be the infinitesimal generator of the process U
and, for any smooth enough functions F : R3+ := [0,∞)3 → R, the generator L acts
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as

LF(u) = Fu · f (u) + 1

2
trace(g(u)g(u)T Fuu),

where Fu is the gradient of F and Fuu is the Hessian matrix of F . We use Pu to denote
the probability law on � when the solution path starts at u = (G, A, N ) and Eu is the
expectation corresponding to Pu .

Our aim for studying the stochastic system (2.1) is to explore how environmental
noise and parameter randomness affect our tumor classification and the dynamics of
the system (2.2). Our method is to analyze solutions of (2.1) on the boundary of D.
Our analysis shows that there are two ergodic invariant measures μ1 = δ∗

0 × δ∗
0 × δ∗

0
andμ2 = δ∗

1 ×π ×δ∗
0 on the boundary ∂D. Here δ∗

1 and δ∗
0 denote the Dirac measures

with mass at 1 and 0, respectively. The invariant measure π is the inverse gamma

distribution: π ∼ IG

(
2( b+1

τ1
)2 + 1, 2a(b+1)

τ 21

)
. From these measures, we derive the

sufficient and almost necessary condition for weak persistence of the SDE system
(2.1). Our main result for the dynamics of the system (2.1) is stated in the following
theorem.

Theorem 2.2 Assume that τ1 < (b + 1)
√
2 and define the threshold

λ := ac

b + 1
− d − τ 22 a

2

2(b + 1)2 − τ 21
.

If λ < 0 then for any initial value u = (G, A, N ) in the interior of D, D◦, the solution
U (t) = (G(t), A(t), N (t)) of the system (2.1) converges to μ2 in the sense that G(t)
converges to 1 a.s., A(t) converges weakly to π , and N (t) converges to 0 exponentially
fast with the rate λ. If λ > 0, then lim supt→∞ Eu

1
t

∫ t
0 ln(N (s) + 1)ds > 0 that is

N (t) cannot converge to 0 in “log-moment”time average sense, which also implies
that lim supt→∞ Eu

1
t

∫ t
0 N p(s)ds > 0, p ∈ (0, 1). In this case,μ2 becomes a repeller

and the system (2.1) becomes weakly persistent in the sense that solution U (t) does
not converge to μ2 a.s.

In order to interpret this theorem and give some biological implications, we need
to find relations between λ, a, and noise intensities. We consider λ = λ(a, τ1, τ2) as
a function of the parameter a, τ1, and τ2. The following lemma lists some possible
relations among these parameters.

Lemma 2.1 The existence of the second moment of the invariant measure π requires
the noise intensity τ1 is bounded as τ 21 < 2(b + 1)2.

(1) When 1
4d ( c

b+1 )
2τ 21 + τ 22 ≥ c2

2d and τ 21 < 2(b + 1)2, we have λ < 0.

(2) When 1
4d ( c

b+1 )
2τ 21 + τ 22 < c2

2d , there exist the values a1 and a2 of the parameter a
with as1 < a1 and a1 < a2, where λ(a1) = λ(a2) = 0. We have two cases:

• if a ∈ (0, a1) ∪ (a2,∞), then λ < 0;
• if a ∈ (a1, a2), then λ > 0.
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In the case of 1
4d ( c

b+1 )
2τ 21 + τ 22 < c2

2d , a2 can be considered as a function of τ1 and
τ2 and then it is increasing with two noise intensities; a2 > as2 for small values of τ1
and τ2 while a2 < as2 for large values of τ1 and τ2.

It is easy to see that the mean of the inverse gamma distribution π approaches a
b+1

when (τ1, τ2) approaches (0, 0). Hence,wemay say that the ergodic invariantmeasures
of the stochastic system (2.1), μ1 and μ2, correspond to the equilibrium solutions of
the deterministic system (2.2), E0 and E1, respectively. There should exist another
ergodic invariant measure of the system (2.1) which corresponds to the equilibrium
solution E2 of the system (2.2). However, it is difficult to prove this property because
our model has a rational function noise term and lacks boundedness. We will list this
as an open problem for future studies. We only can say that, when λ > 0, any solution
starting in the interior of the positive invariant domain D will not approach neither
μ1 nor μ2 on the boundary ∂D. In other words, this solution will stay at the interior
of D; it may either approach an invariant measure supported by the interior of D or
stochastically oscillate.

Biologically, we obtain more subtle implications related to two parameters, a and
c, and noise intensities from our stochastic model (2.1).

Interpretation 2.2 If the noise of chemotactic coefficient c is big enough, τ 22 ≥ c2
2d

while τ 21 < 2(b + 1)2, then the tumor always belongs to type muIDH1 no matter
how large the chemoattractant production rate a is. In this case, the tumor type is
determined by the chemotactic coefficient. This is a new situation when randomness
and stochastic effects are introduced into the model.

When both noise intensities are not big, namely τ 22 < c2
2d and τ 21 < 2(b + 1)2,

the tumor type is largely determined by the chemoattractant production rate which
is similar as the deterministic model (2.2). However, we have more subtle situations.
The critical value of the chemoattractant production rate that determines tumor type
in the stochastic model is greater than that in the deterministic model which is the
case as1 < a1. This is reasonable because the stochastic model counts parameter
randomness and environmental noise. Another new situation is that, when the value
of the chemoattractant production rate is greater than a2, the tumor type seems to
be switched again. A reasonable interpretation may be as follows. The tumor type is
not changed again, but periodic solutions or pulse solutions with low immune cell
contents appear.

It is clear that the stochastic model confirms the result about tumor type classifica-
tion from our PDE model by the chemoattractant production rate with emphasizing
the importance of the chemotactic coefficient. The classification of tumor types with
these parameters in either model is stable in the sense of parameter perturbations.

3 Numerical simulations and discussion

3.1 Numerical simulations with biological interpretations

In order to illustrate our analytical results, we utilize some data from our previous
research (see Niu et al. 2020) to simulate our model of deterministic type and stochas-
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Table 1 Parameters and their values

Parameters Description Values Dimensions

λ Proliferation rate of glioma cells 0.48 day−1

m Maximum of chemoattractant production rate 0.7–17 105 pg/ml day

β Michaelis constant 0.1 106 cells/mm3

γ Chemoattractant degradation rate 2.185 102/day

α Chemotactic coefficient 0.6 mm2 ml/day pg

ρ Clearance rate of immune cells 0.9 day−1

C Cell density of tumor tissue 1 106 cells/mm3

tic type. Before we do so, we would like to explain some connection between our
current models and previous PDE model and related experimental work. In our study
(Niu et al. 2020), our PDE model fits our experimental results, for example, tumor
volume changes over time in under several conditions. In these simplified models,
there is no spatial variable. However, our quantities are now still cell number densi-
ties and chemoattractant concentration as in our PDE model, not cell numbers and
chemoattractant quantity in general ODE/SDE models. In this way, our current mod-
els inherit dynamical behaviors and some sort of spatial information, and we will
be able to use the parameter values from our previous work which were estimated
from our experimental results. All parameters of the system (1.2), except the noise
intensities τ1 and τ2, are listed in Table 1, which are from our study (Niu et al. 2020).
After non-dimensionalization, the parameters of the stochastic system (2.1) and its
corresponding deterministic system (2.2) are r = 0.22, b = 0.1, c = 0.275, and
d = 0.412. For the sake of simplicity, we conduct numerical simulations based on
the non-dimensionalized SDE system (2.1) and ODE system (2.2). Thus, the units
of glioma cells, concentration of chemoattractants, and infiltrated immune cells are
not absolute number densities but relative numbers. The quantities such as G, A, and
N are, the portion of glioma cells, concentration of chemoattractants, and infiltrated
immune cells over the tumor carrying capacity, respectively. We just indicate them
as relative glioma cells and so on in the figures. For the time, it can be regarded as
relative time since τ = γ t . In all the figures below, we will simulate the trajectories
of the ODE system (2.2) and the SDE system (2.1) with initial value (0.5, 0.1, 0.1)
and all parameters fixed except the parameter a and the noise intensities τ1 and τ2.

In Sect. 4, we found two thresholds of the parameter a which are as1 = 1.65
and as2 = 2.5579. The parameter a measures how much chemoattractants can be
produced by tumor cells in a unit time. The analysis in Sect. 4 shows this parameter
plays a central role in determining the dynamics of the ODE system (2.2).

When a is below as1 , Fig. 1 indicates that relative glioma cells are increasing to
its carrying capacity while relative infiltrated immune cells decay to zero. This can
be explained as follows. At the beginning, glioma cells secrete chemoattractants that
form a dynamic gradient field to facilitate migration of immune cells into the tumor.
However, the concentration of chemoattractants is not strong enough to attract immune
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Fig. 1 Deterministic solution paths when a = 1.5
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Fig. 2 Deterministic solution paths when a = 2
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Fig. 3 Deterministic solution paths when a = 2.6

cells. So the number density of infiltrated immune cells goes down while the number
density of glioma cells keep growing.

When a is between as1 and as2 , Fig. 2 shows relative glioma cells, relative concen-
tration of chemoattractants, and relative infiltrated immune cells eventually settle down
into an equilibrium state (which is the positive equilibrium E2). This is because after
recruiting a portion of immune cells, the number density of glioma cells becomes oscil-
latory and starts reaching a steady state. But then the concentration of chemoattractants
becomes saturated, consequently immune cell migration undergoes a slowdown phase
and finally its number density reaches an equilibrium state.

When a is slightly bigger than as2 , Fig. 3 indicates that the populations of glioma
cells and infiltrated immune cells and concentration of chemoattractants undergo an
oscillating process. As in the proof of Sect. 4, there is only one stable periodic solu-
tion arising from the Hopf bifurcation at as2 = 2.5579. This solution represents the
predator-prey dynamics among glioma cells, chemoattractants, and infiltrated immune
cells.

As a is becoming large, say a = 5, the solution behaves differently. Figure 4 shows
populations of glioma cells and infiltrated immune cells can reach a very small value.
It represents a pulsating oscillation. The minimum of the pulsating oscillation solution
is decreasing as a increases.

In Sect. 5, we analyzed the SDE system (2.1) which is obtained from the ODE sys-
tem (2.2) by perturbing the parameter a, the relative maximum of the chemoattractant
production rate, and the parameter c, the relative chemotactic coefficient. We found a
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Fig. 4 Deterministic solution paths when a = 5

threshold

λ = λ(a, τ1, τ2) = ac

b + 1
− d − τ 22 a

2

2(b + 1)2 − τ 21
, (3.1)

to determine the extinction and weak persistence of the SDE system (2.1) provided
τ1 < (b+1)

√
2. According to Lemma 2.1, we can regard λ as a function of a, τ1, and

τ2. Actually, λ is a quadratic function of a with negative leading coefficient, which
has two positive real solutions

a1,2 = c(2(b + 1)2 − τ 21 )

2τ 22 (b + 1)
∓
√
2(b + 1)2 − τ 21

τ2

√
c2(2(b + 1)2 − τ 21 )

4τ 22 (b + 1)2
− d

provided that 1
4d ( c

b+1 )
2τ 21 + τ 22 < c2

2d . The main theorem 2.2 showed that pop-
ulation of glioma cells reaches its carrying capacity and population of infiltrated
immune cells goes extinct when λ < 0. By Lemma 2.1, this condition is equiva-
lent to either 1

4d ( c
b+1 )

2τ 21 + τ 22 ≥ c2
2d , τ1 < (b + 1)

√
2 or 1

4d ( c
b+1 )

2τ 21 + τ 22 < c2
2d ,

a ∈ (0, a1) ∪ (a2,∞). We observe that the condition for the extinction of the system
(2.1) is quite subtle and complicated. Particularly, when noise intensities are small
and a is large enough, the solution of the system (2.1) approaches the boundary of the
positive invariant domain and hence the system goes extinct. Furthermore, when noise
intensities are large enough, the solution of the system (2.1) is suppressed to approach
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Fig. 5 Stochastic solution paths when a = 1.5, τ1 = τ2 = 0.1

the boundary no matter how large the value of a is. Contrary to the complexity of
the extinction conditions, the weak persistent condition for the system (2.1) is quite
simple. All populations become weakly persistent when λ > 0, which is equivalent
to 1

4d ( c
b+1 )

2τ 21 + τ 22 < c2
2d and a1 < a < a2. With parameters as in simulating ODE

system (2.2), we illustrate the extinction and weak persistence of the SDE system (2.1)
in the following two examples.

Example 1. We demonstrate the situation when λ < 0. Take a = 1.5, τ1 = τ2 = 0.1
in Fig. 5 and take a = 5, τ1 = 0.1, τ2 = 0.4 in Fig. 6. Both figures indicate that
in a short period of time glioma cells increases to the tumor carrying capacity and
infiltrated immune cells decay to zero exponentially fast, while the concentration of
chemoattractants becomes saturated.

Example 2. We simulate the stochastic trajectories when λ > 0. Take a = 2.5,
τ1 = τ2 = 0.1 in Fig. 7. This picture shows that glioma cells, chemoattractants,
and infiltrated immune cells coexist and interact in the predator-type dynamics. Even
though the solution path represents an oscillatory behavior as in the deterministic case,
its pattern cannot be predicted. Next, take a = 5, τ1 = τ2 = 0.1 in Fig. 8. This figure
indicates the solution path still weakly persist but represents a pulsating oscillation.

Our PDGF models of the deterministic type and stochastic type are able to predict
the dynamical behavior of these two types of gliomas.As an example, themathematical
model of PDE type in Niu et al. (2020) predicted that the wild-type tumor mice
will survive longer if the immune cells are blocked to migrate into the tumor. The
infiltrated immune cells help to drive the aggressiveness of gliomas and then increase
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Fig. 6 Stochastic solution paths when a = 5, τ1 = 0.1, τ2 = 0.4
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123



Deterministic and stochastic modeling for PDGF-driven… Page 15 of 45 22

relative time
0 200 400 600 800 1000

G

0

0.5

1

relative time
0 200 400 600 800 1000

A

0

2

4

6

relative time
0 200 400 600 800 1000

N

0

20

40

Fig. 8 Stochastic solution paths when a = 5, τ1 = τ2 = 0.1
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production of chemoattractants. So in order to block immune cells to infiltrate into the
tumor, we can reduce the chemotactic strength which is represented by the relative
chemotactic coefficient and its corresponding noise intensity τ2.Using our SDEmodel,
take a = 2.5, τ1 = 0.1 as in Fig. 7 but τ2 is decreased to 0.01. Fig. 9 shows that
the solution oscillates less wildly and hence glioma cells of wild type become less
aggressive.

It should be noticed that we only plot one realization for each case above for
demonstration purpose. We actually simulated many realizations for each case, and
observed that these realizations share a similar pattern in each case. Therefore, we
present one typical path for each case.

3.2 Discussion

Themotivation of this study is to understand the roles of two parameters, the chemoat-
tractant production rate and chemotactic coefficient, in the infiltrating dynamics of
immune cells into tumors. In our experiments and modeling of immune cells infil-
trating to tumor sites in terms of PDE free boundary problem, we computationally
found these two parameters are very important. The chemoattractant production rate
by tumor cells determines two types of gliomas according to the range of its value, or
aggressiveness of gliomas, while the chemotactic coefficient determines the possibil-
ities of immune cells migrating to tumor sites. We would like to know how stable our
conclusion about these two parameters are when they are perturbed or when stochastic
effects are counted in noisy tumor growth environments. This is a medical relevant
question because there are many randomness and stochastic effects in medical prob-
lems. Due to difficulties of analysis of free boundary problem, we propose to utilize
stochastic differential equations to explore this question. The first step is to reduce
the free boundary PDE system to an ODE system. We then add white noises to these
two parameters according to their properties, and obtain a system of Ito stochastic
differential equations. We carry out detailed studies about these two models. We see
the correspondence between equilibrium solutions of the deterministic system and
ergodic invariant measures of the stochastic system according to different value range
of the chemoattractant production rate and chemotactic coefficient. For the stochastic
system, there appears some new features. For example, when both noise intensities are
not big comparingwith the chemotactic coefficient, the stochasticmodel behavesmore
or less similarly as the deterministic counterpart. However, when both noise intensities
are big, particularly when the noise intensity of the chemotactic coefficient is greater
than a scaled chemotactic coefficient, the occupation measure of the stochastic solu-
tion converges to the invariant measure μ2 and hence the stochastic system behaves
uniformly as muIDH gliomas.

Mathematically, the noise term for the chemoattractant production rate is of a ratio-
nal function which creates difficulties for analysis. For the deterministic system, there
is a stable equilibrium solution E2 which is in the interior of the positive invariant
domain D. We expect that there is a ergodic invariant measure for the stochastic sys-
tem which corresponds to E2. However, it is not easy to show the existence of such
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invariant measure supported by the interior of the positive invariant domain D. We
would like to list this question as an open problem.

For the deterministic system, we show there is a Hopf bifurcation and appearance
of one family of periodic solutions when the value of the chemoattractant production
rate passes through a second critical value. For the stochastic model, we observe
some periodical solution paths. However, it is difficult to show the existence of Hopf
bifurcations in stochastic models. We would also like to list this question as an open
problem.

Although the stochastic model is obtained by a simplification of PDE model, it is
interesting on its own. Besides the two open problems mentioned above, it will be
interesting to explore what new features we can obtain if we also perturb the tumor
growth rate, because one way to model aggressiveness of tumors is to increase growth
rate. We plan to study this problem in the future.

4 Analysis of the ODEmodel

This section is devoted to the proof of Theorem 2.1 for the ODE system (2.2).

4.1 Preliminaries

Since the right-hand side of each equation of the system (2.2) is a continuously differ-
entiable function with respectG, A, and N , by existence and uniqueness theorem of an
ODE system [see Theorem 1 on page 89 in Perko (2006)], the system (2.2) with initial
value (G(0), A(0), N (0)) always has a unique solution (G(t), A(t), N (t)) defined on
the maximal interval [0, ζ ). It is important to know if the solution exists for all time
t ≥ 0. Our result is summarized in the following theorem.

Theorem 4.1 If G(0) ≥ 0, A(0) ≥ 0, and N (0) ≥ 0 then G(t) ≥ 0, A(t) ≥ 0, and
N (t) ≥ 0 for all t ∈ [0, ζ ). Furthermore, if 0 ≤ G(0) ≤ 1, 0 ≤ A(0) ≤ a

b+1 , and
N (0) ≥ 0 then 0 ≤ G(t) ≤ 1, 0 ≤ A(t) ≤ a

b+1 , N (t) ≥ 0 for all t ∈ [0, ζ ). Finally,
we can conclude that the solution (G(t), A(t), N (t)) exists for all time t ≥ 0, i.e.
ζ = ∞.

Proof First, assume that G(0) ≥ 0, A(0) ≥ 0, and N (0) ≥ 0. By the first equation of
(2.2), for all t ∈ (0, ζ )

G(t) = G(0) exp

{∫ t

0
r(1 − G(s) − N (s))ds

}
,

which implies thatG(t) ≥ 0 for all t ∈ (0, ζ ) becauseG(0) ≥ 0. The second equation
of (2.2) implies for t ∈ (0, ζ )

A(t) = A(0)e−t + e−t
∫ t

0

aG(s)

b + G(s)
esds.
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Since A(0) ≥ 0 and G(s) ≥ 0 for all s ∈ [0, ζ ), A(t) ≥ 0 for all t ∈ (0, ζ ). From the
last equation of (2.2), we get for all t ∈ (0, ζ )

N (t) = N (0) exp

{∫ t

0
[cA(s) − d]ds

}
.

As N (0) ≥ 0, so N (t) ≥ 0 for all t ∈ (0, ζ ).
Next, assume that 0 ≤ G(0) ≤ 1, 0 ≤ A(0) ≤ a

b+1 , and N (0) ≥ 0. By the
above proof G(t), A(t), and N (t) are non-negative for all t ∈ [0, ζ ). Since N (t) ≥ 0,
G ′ = rG(1 − G − N ) ≤ rG(1 − G). Because G(0) ≤ 1, by comparison theorem
G(t) ≤ 1 for all t ∈ [0, ζ ). But, then from the second equation we have A′ = aG

b+G −
A ≤ a

b+1 − A. Again the comparison theorem implies A(t) ≤ a
b+1 −( a

b+1 − A(0))e−t .
Since A(0) ≤ a

b+1 , A(t) ≤ a
b+1 for all t ∈ [0, ζ ). Now define the domain

E =
{
(G, A, N ) : 0 ≤ G ≤ 1, 0 ≤ A ≤ a

b + 1
, N ≥ 0

}
.

We have proved that given any (G(0), A(0), N (0)) ∈ E the system (2.2) with this
initial value has a unique solution (G(t), A(t), N (t)) ∈ E defined on the maximal
interval [0, ζ ). In order to prove that ζ = ∞, consider the following compact set
contained in E

K =
{
(G, A, N ) : 0 ≤ G ≤ 1, 0 ≤ A ≤ a

b + 1
, 0 ≤ N ≤ M

}

for some constant M which is to be chosen. By way of contradiction, assume that
ζ < ∞. Notice that we can assume that A(0) and N (0) are very small initial values that
is close to 0 because A(0) and N (0) represent relative concentration of chemoattractant
and relative number density of infiltrated immune cells at the beginning, respectively.
Then we can suppose that A(0) ≤ a

b+1 , by above proof A(t) ≤ a
b+1 for all t ∈ [0, ζ ).

The third equation of the system (2.2) implies that N ′(t) ≤ ac−bd−d
b+1 N and then by

comparison theorem N (t) ≤ N (0)exp
{
ac−bd−d

b+1 t
}
. Choose M > 0 big enough so

that for all finite times t ∈ (0, ζ )

N (0)exp

{
ac − bd − d

b + 1
t

}
≤ M .

Thus N (t) ≤ M for all t ∈ (0, ζ ) and hence (G(t), A(t), N (t)) ∈ K for all t ∈ (0, ζ ).
This contradicts the conclusion of Theorem 3 on page 91 in Perko (2006). Therefore
ζ = ∞. ��

4.2 Equilibrium analysis

Define the domain D = {(G, A, N ) : 0 ≤ G ≤ 1, A ≥ 0, N ≥ 0}. By the The-
orem 4.1, D is a positive invariant domain for the system (2.2). So we refer it as

123



Deterministic and stochastic modeling for PDGF-driven… Page 19 of 45 22

a “global” domain. Let U = (G, A, N )T and f (U ) = (rG(1 − G − N ), aG
b+G −

A, cAN − dN )T . The equilibrium solutions of (2.2) are the solutions to f (U ) = 0,
which is equivalent to

rG(1 − G − N ) = 0,

aG

b + G
= A,

(cA − d)N = 0.

It is easy to obtain equilibrium solutions as follows.

• If 0 < ac ≤ d+bd then the system (2.2) has 2 equilibrium solutions E0 = (0, 0, 0)
and E1 = (1, a

b+1 , 0).• If ac > d + bd then the system (2.2) has 3 equilibrium solutions which are E0,

E1, and the unique positive equilibrium solution E2 =
(

bd
ac−d , d

c , ac−d−bd
ac−d

)
.

Now we analyze the stability of all equilibrium solutions when the parameter a is
varied. First, the variational matrix of the system (2.2) is given by

Df (U ) =
⎡
⎣r − 2rG − r N 0 −rG

ab
(b+G)2

−1 0

0 cN cA − d

⎤
⎦ .

A. At E0 = (0, 0, 0), the variational matrix is Df (E0) =
⎡
⎣ r 0 0
a/b −1 0
0 0 −d

⎤
⎦, having r ,

−1, and −d as its eigenvalues. Since r > 0, E0 is unstable.
B. At E1 = (1, a

b+1 , 0), the variational matrix is

Df (E1) =
⎡
⎢⎣

−r 0 −r
ab

(b+1)2
−1 0

0 0 ac−d−bd
b+1

⎤
⎥⎦

which has 3 eigenvalues λ1 = −r , λ2 = −1, and λ3 = ac−d−bd
b+1 . If 0 < ac < bd + d

then λ3 < 0, so E1 is locally asymptotically stable. If ac > bd + d then λ3 > 0,
hence E1 is unstable.
C. In fact, when 0 < ac < bd + d, we can show that E1 is globally stable. For
convenience, we make a translation of variables G = 1 − G, A = a

b+1 − A, and

N = N . The equilibrium solution E1 is translated to E1 = (0, 0, 0). Then, after
dropping all the bars over variables, the system (2.2) becomes

dG

dt
= r(1 − G)(N − G),

d A

dt
= a

b + 1
− A − a(1 − G)

b + 1 − G
,
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dN

dt
= −cAN + ac − bd − d

b + 1
N , (4.1)

while the domain D is translated into D1 = {(G, A, N ) : 0 ≤ G ≤ 1, A ≤ a
b+1 , N ≥

0}. Let (G(0), A(0), N (0)) ∈ D1, then by Theorem 4.1 we have (G(t), A(t), N (t)) ∈
D1 for t ≥ 0. Since −cAN ≤ 0, the third equation implies N ′ ≤ ac−bd−d

b+1 N . By

comparison theorem, 0 ≤ N (t) ≤ N (0)exp{ ac−bd−d
b+1 t} → 0 as t → ∞ since ac −

bd − d < 0. Thus N (t) decays to 0 exponentially fast. Now it makes sense to assume
that G(0) < 1 because if G(0) = 1 then it would mean that originally we don’t have
any glioma cells in tumor tissue. Then 0 < G(t) < 1 for all t ≥ 0. So by the first
equation of (4.1) we have

dG(t)

1 − G(t)
= r(N (t) − G(t)).

Integrating both sides from 0 to t yields

G(t) = 1 − 1 − G(0)

exp{∫ t
0 r(N (s) − G(s)) ds} . (4.2)

Since N (t) ≥ 0 for all t ≥ 0 and N (t) → 0 exponentially as t → ∞,
limt→∞ exp{∫ t

0 N (s)ds} exists and is positively finite. As − ∫ t
0 G(s)ds is decreasing

with respect to t , so limt→∞ exp{− ∫ t
0 G(s)ds} exists and is either zero or positively

finite. This follows that limt→∞ exp{∫ t
0 r(N (s) − G(s))ds} exists and is either zero

or positively finite. Thus limt→∞ G(t) exists. As 0 < G(t) < 1 for all t ≥ 0,
so 0 ≤ limt→∞ G(t) ≤ 1. Due to (4.2), limt→∞ exp{∫ t

0 r(N (s) − G(s))ds} can-
not be zero. Therefore limt→∞ exp{∫ t

0 r(N (s) − G(s))ds} is positively finite. Since
G(0) < 1, by (4.2) we obtain limt→∞ G(t) < 1. Again, by the first equation of (4.1)

dG(t)

dt
= r N (t)(1 − G(t)) − rG(t)(1 − G(t)).

Integrating both sides from 0 to t and then dividing by t give

G(t) − G(0)

t
= 1

t

∫ t

0
r N (s)(1 − G(s))ds − 1

t

∫ t

0
rG(s)(1 − G(s))ds. (4.3)

Since 0 ≤ 1 − G(s) ≤ 1 for all s ≥ 0 and N (s) ≥ 0 for all s ≥ 0,

0 ≤ 1

t

∫ t

0
r N (s)(1 − G(s))ds ≤ 1

t

∫ t

0
r N (s)ds.
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By L’Hospital’s Rule (Lee 1977, p. 28), since lim
t→∞ N (t) = 0, lim

t→∞
1
t

∫ t
0 r N (s)ds =

lim
t→∞ r N (t) = 0. So letting t → ∞ in (4.3) yields

lim
t→∞

1

t

∫ t

0
rG(s)(1 − G(s))ds = 0.

By the above proof, lim
t→∞G(t)(1 − G(t)) exists and hence, by L’Hospital’s Rule we

get

lim
t→∞G(t)(1 − G(t)) = lim

t→∞
1

t

∫ t

0
rG(s)(1 − G(s))ds = 0.

Since lim
t→∞G(t) < 1, lim

t→∞G(t) = 0. Finally, we show that lim
t→∞ A(t) = 0. From the

second equation of (4.1), we have

A(t) = A(0)e−t + e−t
∫ t

0

(
a

b + 1
− a(1 − G(s))

b + 1 − G(s)

)
esds.

By L’Hospital’s Rule,

lim
t→∞ e−t

∫ t

0

(
a

b + 1
− a(1 − G(s))

b + 1 − G(s)

)
es ds = lim

t→∞

∫ t
0

(
a

b+1 − a(1−G(s))
b+1−G(s)

)
es ds

et

= lim
t→∞

(
a

b+1 − a(1−G(t))
b+1−G(t)

)
et

et

= lim
t→∞

(
a

b + 1
− a(1 − G(t))

b + 1 − G(t)

)

= a

b + 1
− a

b + 1
= 0.

Thus lim
t→∞ A(t) = 0. Therefore, E1 is globally stable with respect to the system (4.1).

In other words, the system (2.2) has a global attractor E1.
D. When ac = bd + d, the system (4.1) becomes

dG

dt
= r(1 − G)(N − G),

d A

dt
= a

b + 1
− A − a(1 − G)

b + 1 − G
,

dN

dt
= −cAN . (4.4)
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LetU =(G, A, N )T and F(U )=
(
r(1 − G)(N − G), a

b+1 − A − a(1−G)
b+1−G ,−cAN

)T
,

then the variational matrix at E1 is

L := DF(E1) =
⎡
⎣ −r 0 r

ab
(b+1)2

−1 0

0 0 0

⎤
⎦

which has two negative eigenvalues λ1 = −r , λ2 = −1, and one eigenvalue λ3 = 0.
To study the stability of the equilibrium solution E1, we will utilize the center man-
ifold theorem to reduce the system (4.4) into a center manifold, and then look at
the reduced system. Without loss of generality, assume that r �= 1. Then 3 corre-

sponding eigenvectors with respect λ1, λ2, and λ3 are V1 =
(

(1−r)(b+1)2

ab , 1, 0
)T

,

V2 = (0, 1, 0)T , and V3 =
(
1, ab

(b+1)2
, 1
)T

. We set a transformation matrix to be

T = (V1, V2, V3). Then the system (4.4) can be written as dX
dt = LX + F1, where

F1 =
(
−rGN + rG2, a

b+1 − a(1−G)
b+1−G − ab

(b+1)2
G,−cAN

)T
. Set U = TY where

Y = (y1, y2, y3)T , then the system (4.4) is equivalent to

dY

dt
= T−1LTY + T−1F1,

where T−1LT = diag(−r ,−1, 0), and G = (1−r)(b+1)2

ab y1 + y3, A = y1 + y2 +
ab

(b+1)2
y3, and N = y3. Denote T−1F1 = ( f1, f2, f3)T , then

f1 = ab

(1 − r)(b + 1)2

[
r(1 − r)2(b + 1)4

a2b2
y21

+
(
r(1 − r)(b + 1)2

ab
+ c

)
y1y3 + cy2y3 + abc

(b + 1)2
y23

]

= A11y
2
1 + A13y1y3 + A23y2y3 + A33y

2
3 ,

f2 = rab

(1 − r)(b + 1)2

[
− (1 − r)2(b + 1)4

a2b2
y21 −

(
(1 − r)(b + 1)2

ab
+ c

)
y1y3

−cy2y3 − abc

(b + 1)2
y23

]

+ a

b + 1
− a − (1−r)(b+1)2

b y1 − ay3

b + 1 − (1−r)(b+1)2
ab y1 − y3

− (1 − r)y1 − ab

(b + 1)2
y3

= B11y
2
1+B13y1y3+B23y2y3+B33y

2
3+ a

b + 1
− a − B1y1 − ay3
b + 1 − B2y1 − y3

+ B3y1 + B4y3

= B11y
2
1 + B13y1y3 + B23y2y3 + B33y

2
3 + K (y1, y2, y3),
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f3 = −cy1y3 − cy2y3 − abc

(b + 1)2
y23

= C13y1y3 + C23y2y3 + C33y
2
3 ,

where Ai j , Bi j , Ci j , and Bi are easily determined and

K (y1, y2, y3) = a

b + 1
− a − B1y1 − ay3

b + 1 − B2y1 − y3
+ B3y1 + B4y3.

Note that g ∈ C∞, K (0, 0, 0) = 0, and DK (0, 0, 0) = 0. Using the Taylor series,
we can rewritten K as an infinite polynomial of y1, y2, and y3 with degree at least 2.
Next, the transformed system can be written as

dZ

dt
= BZ +

(
f1
f2

)
,

dy3
dt

= 0y3 + f3,

(4.5)

where B = diag(−r ,−1) and Z = (y1, y2)T . It is straightforward to check that
the functions fk’s are C2 functions, fk(0, 0, 0) = 0 and Dfk(0, 0, 0) = 0, where
k = 1, 2, 3, and Df is the first derivative of the function f . Thus, by the Center
Manifold Theorem (see Tian 2011; Carr 1981), there exists a center manifold given
by Z = h(y3) = (h1(y3), h2(y3))T with h ∈ C2, h(0) = Dh(0) = 0, and it satisfies

Bh(y3) +
(
f1(h(y3), y3)
f2(h(y3), y3)

)
= Dh(y3) f3(h(y3), y3).

We can assume that y1 = h1(y3) = e2y23 + e3y33 + o(y33) and y2 = m2y23 + m3y33 +
o(y33). Then f3(h(y3), y3) = C33y23+o(y23 ), whereC33 = − abc

(b+1)2
< 0. The behavior

of zero solution of the system (4.5) is governed by that of the single equation dy3
dt =

f3(h(y3), y3) or
dy3
dt = C33y23+o(y23 ). SinceC33 < 0, y3 = 0 is locally asymptotically

stable. Therefore E1 = (1, a
b+1 , 0) is also locally asymptotically stable when ac =

bd + d.

E. Now assume that ac > bd + d. Then there is a third equilibrium solution E2 =(
bd

ac−d , d
c , ac−d−bd

ac−d

)
, which is the unique positive equilibrium of the system (2.2).

The variational matrix at this point is

Df (E2) =
⎡
⎢⎣

− rbd
ac−d 0 − rbd

ac−d
(ac−d)2

abc2
−1 0

0 c(ac−d−bd)
ac−d 0

⎤
⎥⎦ .

The |Df (E2) − λI | = 0 is equivalent to

p(λ) = λ3 + a1λ
2 + a2λ + a3 = 0,
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where a1 = rbd
ac−d + 1, a2 = rbd

ac−d , and a3 = rd(ac−d−bd)
ac . Since ac > bd + d, all the

coefficients ai ’s are positive. By the Routh–Hurwitz Criterion, all roots of p(λ) = 0

have negative real parts iff H1 = a1 > 0, H2 =
∣∣∣∣a1 a3
1 a2

∣∣∣∣ = a1a2 − a3 > 0, and

H3 =
∣∣∣∣∣∣
a1 a3 0
1 a2 0
0 a1 a3

∣∣∣∣∣∣ = a3H2 > 0. Since H1 = a1 > 0 and a3 > 0, these conditions are

the same as H2 > 0. We have

H2 = a1a2 − a3 =
(

rbd

ac − d
+ 1

)
rbd

ac − d
− rd(ac − d − bd)

ac
> 0

is equivalent to (rbd+ac−d)a
(ac−d)2(ac−d−bd)

> 1
bc . Define ϕ(a) = (rbd+ac−d)a

(ac−d)2(ac−d−bd)
, then we

can conclude that if ϕ(a) > 1
bc then the positive equilibrium solution E2 is locally

asymptotically stable.

4.3 Hopf bifurcations

Now, we study the function H(a) = H2 to get insight into the Hopf bifurcation that
occurs when ac > bd+d. Note that we fix all the parameters except a andwe consider
H2 as a function of the variable a. Then we have

H(a) = rd

ac(ac − d)2
[abc(rbd + ac − d) − (ac − d)2(ac − d − bd)].

Set y = ac − d, then ac = y + d. Since ac > bd + d, y > bd. So

H(a) = rd 
(y)

ac(ac − d)2

where 
(y) := b(y + d)(rbd + y) − y2(y − bd) = −y3 + (b + bd)y2 + bd(rb +
1)y + rb2d2 is a cubic polynomial of y. Clearly, H(a) and 
(ac − d) have the same
roots. It is easy to compute


(bd) = b2d2(r + 1)(b + 1) > 0.

Since limy→∞ 
(y) = −∞, 
(y) = 0 has at least one real root, say y∗
3 , bigger than

bd. On the other hand,


′(y) = −3y2 + 2(b + bd)y + bd(rb + 1) = 0

has 2 distinct real roots y2,1 = 1
3

(
b + bd ±√

(b + bd)2 + 3bd(rb + 1)
)
. Note that

y2 > 0 > y1 and 
(0) = rb2d2 > 0. As 
(y) = ( y
3 − b+bd

9

)

′(y) + r(y) and

r(y) = [ 2
3bd(rb + 1) + 2

9 (b + bd)2
]
y + rb2d2 + bd(b + bd)(rb + 1), so 
(y2) =

r(y2) > 0. There are 3 cases. First, if 
(y1) < 0 then, since limy→−∞ 
(y) = ∞, 
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has at least one real root, say y∗
1 , less than y1. Since 
(0) > 0, 
 has at least another

real root, say y∗
2 , between y1 and 0. Thus 
 has 3 distinct real roots y∗

1 < y1 < y∗
2 <

0 < bd < y∗
3 . Second, if 
(y1) = 0 then, since 
′(y1) = 0, 
 has one repeated real

root y∗
1 = y1. So 
 has 2 distinct real roots y∗

1 < 0 < bd < y∗
3 . Lastly, if 
(y1) > 0

then 
 has a unique real root y∗
3 > bd.

Lemma 4.1 The equation H(a) = 0 has only one root a0 bigger than as1 := d(b+1)
c .

Furthermore, there is a small neighborhood of a0, (a0 − δ1, a0 + δ1), where δ1 <

a0 −as1 , such that H
′(a0) �= 0 and H(a) is monotonically decreasing in this interval.

Proof From the above argument, in any case y∗
3 is the unique positive root of
(y) = 0.

Let a0 = y∗
3+d
c , since 
(y∗

3 ) = 0, H(a0) = 0. As y∗
3 > bd, so a0 > as1 . Note that


′(y∗
3 ) < 0 since y∗

3 > y2 > y1. It is easy to compute

H ′(a0) = rd
′(y∗
3 )

a0(a0c − d)2
< 0.

Since H ′(a) is continuous, there exists a δ1 > 0 that can be made smaller than a0−as1
so that H ′(a) < 0 for all a ∈ (a0 − δ1, a0 + δ1). We’re done. ��
Let as2 = a0, then H(a) > 0 when as1 < a < as2 , H(as2) = 0, and H(a) < 0 when
a > as2 . From Lemma 4.1, as2 is a unique positive value that zeroes out the function
H(a) and after as2 the function H(a) is always negative.

In order to show that the Hopf bifurcation occurs in the system (2.2) when a passes
through the critical value as2 , we need following two lemmas whose proofs can be
found in Tian (2011), Phan and Tian (2017).

Lemma 4.2 A cubic polynomial λ3 + a1λ2 + a2λ + a3 = 0 with real coefficients has
a pair of pure imaginary roots iff a2 > 0 and a3 = a1a2. When it has pure imaginary
roots, the pure imaginary roots are ±i

√
a2, the real root is −a1, and a1a3 ≥ 0.

Furthermore, the real part of two complex roots of the above cubic polynomial is
positive iff a2 > 0 and a3 − a1a2 > 0.

Lemma 4.3 Consider a coefficient parametrized polynomial λ3+a1(τ )λ2+a2(τ )λ+
a3(τ ) = 0, where the coefficients ak(τ ), k=1,2,3, are C1 real-valued functions. Denote
its complex roots by λ(τ) = α(τ) + iβ(τ). Suppose there is a τ0 such that α(τ0) = 0
andβ(τ0) �= 0, i.e.λ(τ0) = iβ(τ0). Ifα′(τ0) = 0 then a′

2(τ0)a3(τ0) = a2(τ0)(a′
3(τ0)−

a2(τ0)a′
1(τ0)).

Now we consider each coefficient of the characteristic polynomial p(λ) to be a
function of the parameter a. So

p(λ) = λ3 + a1(a)λ2 + a2(a)λ + a3(a), (4.6)

where a1(a) = rbd
ac−d +1, a2(a) = rbd

ac−d , and a3(a) = rd(ac−d−bd)
ac . Since ac > bd+d,

all the coefficients ak(a)’s are positive. Denote the complex roots of (4.6) by λ(a) =
α(a) ± iβ(a). By Lemma 4.1, H(a) is monotonically decreasing in a neighborhood
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of a0, (a0 − δ1, a0 + δ1). When a0 − δ1 < a < a0, H2 = H(a) > 0, and we know that
H1 = a1(a) > 0 and H3 = a3(a)H2 > 0. By the Routh–Hurwitz Criterion, α(a) < 0.
When a0 < a < a0 + δ1, H(a) < 0 which implies that a3(a) − a1(a)a2(a) > 0. Due
to Lemma 4.2, α(a) must be positive. When a = a0, H(a0) = 0 which means that
a3(a0) = a1(a0)a2(a0). Since a2(a0) > 0, by Lemma 4.2 the cubic equation p(λ) = 0
has a pair of pure imaginary roots and hence α(a0) = 0. Thus we have proved that the
real part α(a) changes sign as a passes through a0. Finally, we state a theorem that
guarantees the occurrence of Hopf bifurcation for the system (2.2) as the parameter a
passes through the critical value a0.

Theorem 4.2 There exists a neighborhood of a0, (a0 − δ0, a0 + δ0), such that for each
a in this interval the characteristic polynomial (4.6) has a pair of complex conjugate
eigenvalues λ(a) = α(a)± iβ(a), in which α(a) changes sign when a passes through
a0 and β(a) > 0 in the interval. Furthermore, when a = a0, (4.6) has a pair of pure
imaginary roots and one negative real root, and α′(a0) �= 0.

Proof When a = a0, from the above argument, p(λ) = 0 has a pair of pure imaginary

roots λ(a0) = ±iβ(a0). In light of Lemma 4.3, β(a0) = √
a2(a0) =

√
rbd

a0c−d > 0.

Since β(a) is continuous with respect to a, there is a neighborhood of a0 so that
β(a) > 0 in this neighborhood. The radius δ0 of the neighborhood can be taken small
enough so that δ0 < δ1 in Lemma 4.1. Hence when a ∈ (a0 − δ0, a0 + δ0) the
cubic equation p(λ) = 0 has a pair of complex conjugate eigenvalues with positive
imaginary parts and real parts change sign when a passes through a0. It remains to
prove that α′(a0) �= 0. Indeed, if α′(a0) = 0 then Lemma 4.3 implies that a′

3(a0) −
a′
1(a0)a2(a0) = a′

2(a0)a3(a0)
a2(a0)

. On the other hand,

H ′(a0) = a′
1(a0)a2(a0) + a1(a0)a

′
2(a0) − a′

3(a0)

= a1(a0)a
′
2(a0) − a′

2(a0)a3(a0)

a2(a0)

= (a1(a0)a2(a0) − a3(a0))a′
2(a0)

a2(a0)
= H(a0)a′

2(a0)

a2(a0)
= 0,

which is a contradiction since H ′(a0) �= 0 by Lemma 4.1. This completes the proof.
��

Because we cannot find exactly algebraic expression for a0, it is very difficult to gain
insight into the nature of periodical solutions that occur around the equilibrium point
E2 as a is close to a0 such as their amplitudes, periods, and their stability. But we
know that as2 := a0 is the unique critical point after as1 at which the function H(a)

has zeros and so we can have only one Hopf bifurcation at a = as2 . Thus, there will
be only one family of periodical solutions rising from this bifurcation. We will use
numerical simulations to demonstrate some typical dynamics of periodical solutions
for the system. However, we can make some statements about the general properties
of periodical solutions occurring around E2 as in the following corollary.
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Corollary 4.1 If E2 is stable but not asymptotically stable at a = a0 then all solutions
of the system (2.2) in a neighborhood of E2 are periodical in a surface. If E2 is
asymptotically stable or unstable at b = b0 then there is an asymptotically stable
periodical solution in a neighborhood of E2 as a is close to a0.

We now look at the relation between equilibria E1 and E2. When a < as1 , we showed
that E1 is globally asymptotically stable; furthermore, the equilibrium E2 is not in the
positive invariant domain D. As a increases to as1 = bd+d

c , the equilibrium E2 moves
into D, and it coalesces with the equilibrium E1. At a = as1 , E1 ≡ E2 and we proved
that it is locally asymptotically stable.When a > as1 and a is in a neighborhood of as1 ,
E2 is still locally asymptotically stable while E1 becomes unstable. This demonstrates
a similar type of transcritical bifurcation occurs at a = as1 . Therefore, we prove the
main Theorem 2.1.

5 Analysis of the SDE system

This section is devoted to deriving a sufficient and almost necessary condition for weak
persistence of the SDE system (2.1), in other words, the condition for distinguishing
two types of gliomas.

5.1 Preliminaries

In previous section, we proved that D = {(G, A, N ) : 0 ≤ G ≤ 1, A ≥ 0, N ≥ 0} is
the positive invariant domain of the deterministic system (2.2). It is natural to expect
D is also the almost sure positive invariant domain for the stochastic system (2.1). We
prove this fact in the following theorem.

Theorem 5.1 For any initial value u = (G, A, N ) ∈ D, there exists a unique a.s.
continuous global solution U (t) = (G(t), A(t), N (t)), t ≥ 0, for the system (2.1) that
remains in D a.s. Particularly, if N = 0 thenPu{N (t) = 0 ∀ t > 0} = 1, and if N > 0
then Pu{N (t) > 0 ∀ t > 0} = 1. Similarly, if G = 0 then Pu{G(t) = 0 ∀ t > 0} = 1,
and if 0 < G ≤ 1 and N ≥ 0 then Pu{0 < G(t) ≤ 1 ∀ t > 0} = 1. If either G > 0 or
A > 0 then Pu{A(t) > 0 ∀ t > 0} = 1. Finally, the solution U (t) is a strong Markov
process that possesses the Feller property.

Proof Since the coefficients f (U ) and g(U ) are locally Lipschitz continuous on
(−b,∞) × R

2, there exists a unique a.s. continuous local solution U (t) =
(G(t), A(t), N (t))T up to the explosion time

τe = inf

{
t > 0 : min

{
G(t)

b + G(t)
, A(t), N (t)

}
= −∞ or max{A(t), N (t)} = ∞

}

with any initial value in (−b,∞) × R
2 and, furthermore, the solution U (t) with

t ∈ [0, τe) is a strong Markov process with Feller-Markov property (see Khasminskii
2012). Next, we will show that Pu{τe = ∞} = 1when the initial value is in D. Indeed,
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by the equation of N (t), we have

N (t) = N exp

{∫ t

0

[
cA(s) − d − τ 22

2
A2(s)

]
ds + τ2

∫ t

0
A(s)dW2(s)

}
.

It follows that if N = 0 then N (t) = 0 for all t ∈ (0, τe) a.s. and if N > 0 then
N (t) > 0 for all t ∈ (0, τe) a.s. Next, the equation for G(t) implies

G(t) = G exp

{∫ t

0
r(1 − G(s) − N (s))ds

}
.

So it is obvious that if G = 0 then G(t) = 0 for all t ∈ (0, τe) a.s. and if 0 < G ≤ 1
and N ≥ 0 thenG(t) > 0 for all t ∈ (0, τe) a.s. and N (t) ≥ 0 for all t ∈ (0, τe) a.s. By
comparison theorem for the equation of G(t), dG(t) = rG(t)(1−G(t)− N (t))dt ≤
rG(t)(1 − G(t))dt . This implies that 0 < G(t) ≤ 1 for all t ∈ (0, τe) a.s. From the
equation of A(t), we get

A(t) = φt

[
A +

∫ t

0
φ−1
s

aG(s)

b + G(s)
ds

]
(5.1)

where

φt = exp

{∫ t

0

[
−1 − τ 21

2

G2(s)

(b + G(s))2

]
ds +

∫ t

0

τ1G(s)

b + G(s)
dW1(s)

}
. (5.2)

If A = 0 and G > 0 then G(t) > 0 for all t ∈ (0, τe) a.s. and it implies that for a.s.

A(t) = φt

∫ t

0
φ−1
s

aG(s)

b + G(s)
ds > 0 ∀ t ∈ (0, τe).

If A > 0 and G = 0 then G(t) = 0 for all t ∈ (0, τe) a.s. Thus A(t) = φt A(0) > 0
for all t ∈ (0, τe) a.s. It is clear that if A > 0 and G > 0 then we have A(t) > 0 for
all t ∈ (0, τe) a.s. Therefore, we have shown that if the initial value u = (G, A, N ) is
in D then for a.s. 0 ≤ G(t) ≤ 1, A(t) ≥ 0, and N (t) ≥ 0 for all t ∈ (0, τe).

Now we consider V (G, A, N ) = A+ 1
c log(1+ N ). Then it is easy to compute for

all t ∈ (0, τe)

LV (t) = aG(t)

b + G(t)
− A(t)

N (t) + 1
− d

c

N (t)

N (t) + 1
− τ 22

2c

A2(t)N 2(t)

(N (t) + 1)2
≤ a

b + 1
.

Let ξn = inf{t ∈ [0, τe) : A(t) > n or N (t) > n}. Clearly, ξn is increasing as
n → ∞. Set

τ∞ := lim
n→∞ ξn = inf{t ∈ [0, τe) : A(t) = ∞ or N (t) = ∞}.
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Since max{A(τe), N (τe)} = ∞, τ∞ ≤ τe a.s. Thus it suffices to show that Pu{τ∞ =
∞} = 1. Fix t > 0, applying Itô’s formula for V gives

EuV (t ∧ ξn) := EuV (G(t ∧ ξn), A(t ∧ ξn), N (t ∧ ξn))

= V (G(0), A(0), N (0)) + Eu

∫ t∧ξn

0
LV (G(s), A(s), N (s))ds

≤ K + a

b + 1
(t ∧ ξn) ≤ K + at

b + 1

where K = V (G(0), A(0), N (0)) is a positive constant. On the other hand,

EuV (t ∧ ξn) ≥
∫

{ξn<t}
V (t ∧ ξn)dPu =

∫
{ξn<t}

V (G(ξn), A(ξn), N (ξn))dPu .

But, since V (G(ξn), A(ξn), N (ξn)) = A(ξn)+ 1
c log(1+N (ξn)) ≥ n∧ 1

c log(1+n) =:
h(n),

Pu{ξn < t} ≤ K + at/(b + 1)

h(n)
→ 0 as n → ∞

and so Pu{τ∞ < t} = 0. As t > 0 is arbitrary, so Pu{τ∞ = ∞} = 1. This completes
the proof. ��

5.2 Ergodic invariant measures on the boundary

To investigate the long-term behavior of the SDE system, we first find possible ergodic
invariant measures of the system (2.1) on the boundary ∂D.

A. When N (0) = 0, N (t) = 0 for all t > 0 a.s. The system (2.1) becomes

dG = rG(1 − G)dt,

d A =
[

aG

b + G
− A

]
dt + τ1

AG

b + G
dW1.

(5.3)

If G(0) = 0 then, from the first equation above, G(t) = 0 for all t > 0 a.s. But then
the second equation becomes d A = −Adt , which implies that A(t) = A(0)e−t → 0
a.s. as t → ∞. So we obtain an ergodic invariant measure μ1 = δ∗

0 × δ∗
0 × δ∗

0 for
solutions of (2.1) on ∂D.

B. If 0 < G(0) ≤ 1 then the first equation of (5.3) implies that limt→∞ G(t) = 1 a.s.
If G = 1 then the second equation becomes

d Ã =
(

a

b + 1
− Ã

)
dt + τ1

b + 1
ÃdW1. (5.4)
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Let c > 0 and consider

s( Ã) =
∫ Ã

c
exp

{
−
∫ y

c

2( a
b+1 − u)

( τ1u
b+1 )

2

}
dy = C1

∫ Ã

c
y

2(b+1)2

τ21 exp

{
2a(b + 1)

τ 21

1

y

}
dy

for some positive constant C1. Rewrite the integrand as

y
2(b+1)2

τ21

[
1 + 2a(b + 1)

τ 21

1

y
+ 1

2!
4a2(b + 1)2

τ 41

1

y2
+ · · ·

]
.

Clearly, there is a k ∈ Z+ such that 2(b+1)2

τ 21
− k < −1 and hence s(0+) :=

lim Ã↓0 s( Ã) = −∞. Of course, s(∞) := lim Ã↑∞ s( Ã) = ∞. Then Ã(t) oscil-
lates between 0 and ∞. Hence (5.4) has a unique invariant measure π on R+ whose
density p = p(x) solves the associated Fokker-Planck equation

− d

dx

[(
a

b + 1
− x

)
p(x)

]
+ d2

dx2

[
1

2

τ 21 x
2

(b + 1)2
p(x)

]
= 0. (5.5)

Set y(x) = 1
2

τ 21 x
2

(b+1)2
p(x), and γ (x) = 2(b+1)2

τ 21
[ a
b+1

1
x2

− 1
x ]. Then (5.5) is equivalent

to

y′(x) − γ (x)y(x) = −C

for some constant C . The solution of this equation is given by

y(x) = A(x)

[
K + C

∫ 1

x

dt

A(t)

]

for some positive constant K . It is easy to show that p is a density iff C = 0. Note
that

A(t) = exp

{∫ t

1
γ (u)du

}
= exp

{
2a(b + 1)

τ 21

}
t
− 2(b+1)2

τ21 exp

{
−2a(b + 1)

τ 21

1

t

}
.

Thus

p(x) = K
2(b + 1)2

τ 21
exp

{
2a(b + 1)

τ 21

}
x

− 2(b+1)2

τ21 exp

{
−2a(b + 1)

τ 21

1

x

}
.

Let α := 2( b+1
τ1

)2 + 1 and β := 2a(b+1)
τ 21

, then p(x) = K x−α−1e−β/x where

K =
(∫ ∞

0
x−α−1e−β/xdx

)−1
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is the normalizing constant. By changing variable u = β
x , we get

∫ ∞

0
x−α−1e−β/xdx = β−α

∫ ∞

0

(
β

x

)α−1

e−β/x β

x2
dx

= β−α

∫ ∞

0
uα−1e−udu = β−α�(α),

where � is the Gamma function. Hence p(x) = βα

�(α)
x−α−1e−β/x . In other words,

the invariant measure π is the Inverse-Gamma distribution with parameters α and β.
Therefore μ2 = δ∗

1 × π × δ∗
0 is an ergodic invariant measure for solutions of (2.1) on

∂D.
From now on, we assume that ( τ1

b+1 )
2 < 2 in order for the second moment of the

invariant measure π exists.

C. We state and prove several lemmas that are needed to prove the main theorem 2.2.

Lemma 5.1 Eu A4(t) ≤ eK t (A(0) + K ) for some constant K > 0. There exist
cp, Kp > 0 such that Eu A2+p(t) < A2+p(0) e−cpt + Kp for some small constant
p > 0.

Proof We can easily obtain that LA4 ≤ C1(1 + A4) for some constant C1, then
standard arguments [see e.g. Mao (2007, Section 2.4)] can be applied to prove the first
part of the lemma.

To prove the second part, noting from Itô’s formula for A2+p (p > 0) that

L(A2+p) = (2 + p)A1+p
(

aG

b + G
− A

)
+ (2 + p)(1 + p)

τ 21

2

(
G

b + G

)2

A2+p

= (2 + p)
aG

b + G
A1+p − (2 + p)

[
1 − (1 + p)

τ 21

2

(
G

b + G

)2
]
A2+p

≤ a(2 + p)

b + 1
A1+p − (2 + p)

[
1 − 1 + p

2

(
τ1

b + 1

)2
]
A2+p.

Notice that lim
p→0+

[
1 − 1+p

2 ( τ1
b+1 )

2
]

= 1 − 1
2 (

τ1
b+1 )

2 > 0 and lim
p→0+ Eu A1+p = Eu A.

Since d
dtEu A ≤ a

b+1 − Eu A, Eu A ≤ a
b+1 . Thus, for p > 0 small enough, 1 −

1+p
2 ( τ1

b+1 )
2 > 0 and Eu A1+p ≤ a

b+1 . Hence EuL(A2+p) ≤ Hp − cp A2+p for p > 0
small and for somepositive constants Hp and cp .We show that lim supt→∞ Eu A2+p ≤
Hp
cp

. In fact,

Eu L(ecpt A2+p(t)) ≤ ecpt
[
(Hp − cpEu A

2+p) + cpEu A
2+p

]
= Hpe

cpt ,
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and then, by Itô’s formula, we get

Eu

(
ecpt A2+p(t)

)
= Eu A

2+p(0) + Eu

∫ t

0
L(ecpt A2+p(s))ds

≤ Eu A
2+p(0) + Hp

∫ t

0
ecpsds = Eu A

2+p(0) + Hp

cp
(ecpt − 1).

Dividing both sides by ecpt gets

Eu A
2+p(t) ≤ Eu A

2+p(0)e−cpt + Hp

cp
(1 − e−cpt ).

This implies that lim supt→∞ Eu A2+p(t) ≤ Hp
cp

. ��

Lemma 5.2 Eu sup
t∈[0,T ]

Nq(t) ≤ KT Nq(0) for q ∈ (0, 1
2 ) sufficiently small and any

T > 0.

Proof Apply Itô’s formula for Nq (0 < q < 1), we have for all t ∈ [0, T ]

Nq(t) = Nq(0) +
∫ t

0
L(Nq(s))ds +

∫ t

0
qτ2N

q(s)A(s)dW2(s)

where

L(Nq) = qNq
[
cA − d + 1

2
(q − 1)τ 22 A

2
]

≤ HqN
q

for some positive constant Hq . Then

Eu N
q(t) ≤ Nq(0) + Hq

∫ t

0
Eu N

q(s)ds.

By Gronwall’s inequality, for all t ∈ [0, T ] and q ∈ (0, 1),

Eu N
q(t) ≤ Nq(0) exp{Hqt} ≤ H1N

q(0).

Now we have

Eu sup
t∈[0,T ]

Nq(t) ≤ Nq(0) + Eu sup
t∈[0,T ]

∫ t

0
L(Nq(s))ds

+ Eu sup
t∈[0,T ]

qτ2

∣∣∣∣
∫ t

0
Nq(s)A(s)dW2(s)

∣∣∣∣ .
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It is clear that

Eu sup
t∈[0,T ]

∫ t

0
L(Nq(s))ds ≤ Eu sup

t∈[0,T ]
Hq

∫ t

0
Nq(s)ds = Hq

∫ T

0
Eu N

q(s)ds ≤ H2N
q(0).

On the other hand, by the Burkholder–Davis–Gundy inequality (Revuz and Yor 1999,
p. 160), for some constant C1 > 0

Eu sup
t∈[0,T ]

qτ2

∣∣∣∣
∫ t

0
Nq(s)A(s)dW2(s)

∣∣∣∣ ≤ C1Eu

[∫ T

0
N 2q(s)A2(s)ds

]1/2

≤ C1

[(
Eu

∫ T

0
N 2q(2+p)/p(s)ds

)p/(2+p) (
Eu

∫ T

0
A2+p(s)

)2/(2+p)
]1/2

here we have used the Holder’s inequality in the last one. By Lemma 5.1, choose
p > 0 small enough so that Eu

∫ T
0 A2+p(s)ds < ∞ for any T > 0. For q <

p
2(2+p)

sufficiently small, we have for some positive constant H3

Eu

∫ T

0
N 2q(2+p)/p(s)ds ≤ H3N

2q(2+p)/p(0).

Thus

Eu sup
t∈[0,T ]

qτ2

∣∣∣∣
∫ t

0
Nq(s)A(s)dW2(s)

∣∣∣∣ ≤ H4N
q(0)

for some positive constant H4. This completes the proof. ��
Lemma 5.3 There exists a compact set K̃ ⊆ D such that for any initial value u =
(G, A, N ) ∈ D◦, the solution process U (t) = (G(t), A(t), N (t)) is recurrent relative
to K̃ .

Proof By Theorem 3.9 p.89 in Khasminskii (2012), it suffices to construct a non-
negative twice differentiable function V = V (G, A, N ) so that LV < 0 for all
(G, A, N ) ∈ K̃ c. Now we consider V (G, A, N ) = G + 2cA + ln(1 + N ), then

LV = rG(1 − G − N ) + 2caG

b + G
− 2cA + (cA − d)N

N + 1
− τ 22

2

A2N 2

(1 + N )2

≤ rG(1 − G) + 2caG

b + G
− cA − dN

1 + N
≤ H51{G+A+N≤R} − H61{G+A+N>R}

for some positive constants H5, H6, and R. Hence

K̃ = {(G, A, N ) ∈ D : G + A + N ≤ R}
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is the desired compact set. ��

D. Next, we will prove the following claim that is also needed for the proof the main
theorem 2.2.

Claim 5.1 If lim sup
t→∞

ln N (t)

t
< −r ′ a.s for some constant r ′ > 0 then lim

t→∞ |A(t) −
Ã(t)| = 0 a.s.

Proof Under the hypothesis of the claim and the first ODE in (2.1), we can easily
show that lim supt→∞ eρt |G(t) − 1| = 0 for some constant ρ > 0. As a result, for
any ε > 0, there exists Kε such that

Pu
{
eρt |G(t) − 1| ≤ Kε, t ≥ 0

} ≥ 1 − ε. (5.6)

Let A(t) satisfying

d A =
(

aG

b + G
− A

)
dt + τ1A G

b + G
dW1 with A(0) = A(0) (5.7)

where G(t) = G(t ∧ ξε), ξε = inf{t ≥ 0 : eρt |G(t) − 1| ≥ Kε}. From the equation
(5.4) and (5.7), we get

d(A(t)− Ã(t))=
[

aG(t)

b + G(t)
− a

b + 1
− (A(t) − Ã(t))

]
dt+

(
τ1A(t)G(t)

b + G(t)
− τ1 Ã(t)

b + 1

)
dW1

and then

d(A(t) − Ã(t))2 =
{

−θ(A(t) − Ã(t))2 + 2a

(
G(t)

b + G(t)
− 1

b + 1

)
(A(t) − Ã(t))

+ τ21

[(
G(t)

b + G(t)

+ 1

b + 1

)
A(t)2 − 2

b + 1
A(t) Ã(t)

]
b(G(t) − 1)

(b + 1)(b + G(t))

}
dt

+ 2τ1

(
A(t)G(t)

b + G(t)
− Ã(t)

b + 1

)
(A(t) − Ã(t))dW1

= − θ(A(t) − Ã(t))2dt+h1(t)(A(t) − Ã(t))dt

+
[(

G(t)

b + G(t)
+ 1

b + 1

)
A(t)2− 2

b + 1
A(t) Ã(t)

]
h2(t)dt+h3(t)dW1

(5.8)
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where θ :=2− τ 21

(b + 1)2
, h1(t) :=2a

(
G(t)

b+G(t)
− 1

b + 1

)
, h2(t) := τ 21 b(G(t) − 1)

(b + 1)(b+G(t))
,

and

h3(t) := 2τ1

(
A(t)G(t)

b + G(t)
− Ã(t)

b + 1

)
(A(t) − Ã(t)).

One can easily obtain that from the fact that lim supt→∞ eρt (G(t) − 1) = 0 that

sup
t>0

eρt/2(|h1(t)| + |h2(t)|) < K ′
ε (5.9)

for some non-random constant K ′
ε.

Hence, for some positive constants r , K1 and K2, there exists t0 > 0 such that
t > t0 implies

EuL(A(t) − Ã(t))2 ≤ −θ Eu(A(t) − Ã(t))2 + K1e
−r t

Eu |A(t) − Ã(t)|

+ K2e
−r t

Eu

∣∣∣∣∣
(

G(t)

b + G(t)
+ 1

b + 1

)
A(t)2 − 2

b + 1
A(t) Ã(t)

∣∣∣∣∣ .

It is clear that Eu Ã(t)2 is uniformly bounded for u ∈ D◦ and, by Lemma 5.1 with
slight modification, so is Eu A(t)2. Hence both Eu |A(t)− Ã(t)| and Eu(A(t) Ã(t)) are
uniformly bounded. Thus

EuL(A(t) − Ã(t))2 ≤ −θ Eu(A(t) − Ã(t))2 + K3e
−r t

for all t > t0 and some positive constant K3. Let 0 < θ0 < min{θ, r}, then for all
t > 0

EuL
(
eθ0t (A(t) − Ã(t))2

)
≤ eθ0t

[
θ0Eu(A(t)− Ã(t))2−θEu(A(t)− Ã(t))2+K3e

−r t
]

≤ K3e
−(r−θ0)t .

Again by Itô’s formula,

Eue
θ0t (A(t) − Ã(t))2 = eθ00Eu(A(0) − Ã(0))2 + Eu

∫ t

0
L
(
eθ0s(A(s) − Ã(s))2

)

≤ Eu(A(0) − Ã(0))2 + K3

∫ t

0
e−(r−θ0)sds

= Eu(A(0) − Ã(0))2 + K3

r − θ0

[
1 − e−(r−θ0)t

]
,

which follows that Eu(A(t) − Ã(t))2 ≤ K4e−θ0t for all t > 0 and for some positive
constant K4. By Holder’s inequality, Eu |A(t) − Ã(t)| ≤ √

K4 e−θ0t/2 for all t > 0.

123



22 Page 36 of 45 T. A. Phan et al.

Now we have for any n ≥ 1

Eu sup
t∈[n,n+1]

|A(t) − Ã(t)| ≤ Eu |A(n) − Ã(n)| + Eu sup
t∈[n,n+1]

∣∣∣∣
∫ t

n
L(A(s) − Ã(s))ds

∣∣∣∣
+ Eu sup

t∈[n,n+1]

∣∣∣∣∣
∫ t

n
τ1

(
A(s)G(s)

b + G(s)
− Ã(s)

b + 1

)
dW1(s)

∣∣∣∣∣ .

When n > t0, for some positive constant K5

Eu sup
t∈[n,n+1]

∣∣∣∣
∫ t

n
L(A(s) − Ã(s))ds

∣∣∣∣ ≤ Eu

∫ n+1

n
|L(A(s) − Ã(s))|ds

≤ Eu

∫ n+1

n

∣∣∣∣∣
aG(s)

b + G(s)
− a

b + 1

∣∣∣∣∣ ds + Eu

∫ n+1

n
|A(s) − Ã(s)|ds

≤ aK

b + 1

∫ n+1

n
e−rsds +√

K4

∫ n+1

n
e−θ0s/2ds ≤ K5e

−θ0n/2.

On the other hand, by the Burkholder–Davis–Gundy inequality (Revuz and Yor 1999,
p. 160), there is a positive constant C > 0 such that

Eu sup
t∈[n,n+1]

∣∣∣∣∣
∫ t

n
τ1

(
A(s)G(s)

b + G(s)
− Ã(s)

b + 1

)
dW1(s)

∣∣∣∣∣

≤ Cτ1Eu

√√√√∫ n+1

n

(
A(s)G(s)

b + G(s)
− Ã(s)

b + 1

)2

ds

= Cτ1Eu

√√√√∫ n+1

n

[
A(s)

(
G(s)

b + G(s)
− 1

b + 1

)
+ 1

b + 1
(A(s) − Ã(s))

]2
ds

≤ Cτ1
√
2

√√√√
Eu

∫ n+1

n
A
2
(s)

(
G(s)

b + G(s)
− 1

b + 1

)2

ds

+ Cτ1
√
2

√√√√
Eu

∫ n+1

n

(
A(s) − Ã(s)

b + 1

)2

ds

≤ Cτ1
√
2

K

b + 1
e−rn

√
Eu

∫ n+1

n
A
2
(s)ds + Cτ1

√
2
√
K4

b + 1
e−θ0n/2 ≤ K6e

−θ0n/2,

for some positive constant K6. Thus for all n > 0 we get

Eu sup
t∈[n,n+1]

|A(t) − Ã(t)| ≤ K7e
−θ0n/2
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for some constant K7 > 0. Then the Markov’s inequality implies for all n > 0

Pu

{
sup

t∈[n,n+1]
|A(t) − Ã(t)|≥e−θ0n/4

}
≤eθ0n/4

Eu sup
t∈[n,n+1]

|A(t) − Ã(t)|≤K7e
−θ0n/4.

Since
∑
n>0

K7(e−θ0/4)n < ∞, Borel-Cantelli’s lemma implies with probability 1 there

exists a n0 such that for all n > n0 we get

sup
t∈[n,n+1]

|A(t) − Ã(t)| < e−θ0n/4.

Hence |A(t)− Ã(t)| → 0 a.s. It is obvious that Pu{ξε = ∞} ≥ 1−ε and A(t) = A(t)
for any t ≥ 0 if ξε = ∞. Since ε > 0 is chosen arbitrarily, we can easily obtain the
desired result. ��
Remark 5.1 Since π is the invariant measure of (5.4), it follows from the strong law
of large numbers that for a.s.

lim
t→∞

1

t
E

∫ t

0
Ã(s)ds =

∫ ∞

0
Ãπ(d Ã) = β

α − 1
= a

b + 1

and

lim
t→∞

1

t
E

∫ t

0
Ã2(s)ds =

∫ ∞

0
Ã2π(d Ã) = β2

(α − 1)(α − 2)
= 2a2

2(b + 1)2 − τ 21
.

We can see that μ2 := δ1 × π × δ0 is the unique invariant measure of U (t) on the set
{u = (G, A, N ) : N = 0} where δ0, δ1 are the Dirac measures with mass at 0 and 1
respectively.

E. To give an idea how to determine the long term behavior of (2.1), we look at the
Lyapunov exponents of μ1. Now, from the first equation of (2.1),

lnG(t)

t
= lnG(0)

t
+ 1

t

∫ t

0
r(1 − G(s) − N (s))ds.

When the solution U (t) is close to the support of μ1 for a long time, lnG(t)
t can be

approximated by the average with respect to μ1

λ1(μ1) :=
∫

∂D
r(1 − G − N )dμ1 = r ,

which is the Lyapunov exponent of the ergodic invariant measureμ1 along the solution
component G. Since λ1(μ1) = r > 0, the ergodic invariant measure μ1 is always a
repeller.
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By the third equation of (2.1), using Itô’s formula we get

ln N (t)

t
= ln N (0)

t
+ 1

t

∫ t

0

[
cA(s) − d − τ 22

2
A2(s)

]
ds + 1

t

∫ t

0
τ2A(s)dW2(s).

If the solution U (t) is close to the support of μ2 for a long time, ln N (0)
t and

1
t

∫ t
0 τ2A(s)dW2(s) approximate zero for t large enough while ln N (t)

t can be approx-
imated by the average with respect to μ2

λ3(μ2) :=
∫

∂D

[
cA − d − τ 22

2
A2

]
dμ2 = ac

b + 1
− d − τ 22 a

2

2(b + 1)2 − τ 21
,

which is the Lyapunov exponent of the ergodic invariant measureμ2 along the solution
component N (t). Let

λ := λ3(μ2) = ac

b + 1
− d − τ 22 a

2

2(b + 1)2 − τ 21
.

When λ < 0, N (t) approaches 0 a.s. By the same argument as in Sect. 3, G(t)
approaches 1 a.s. and the occupation measure of A(t) converges weakly to π a.s. due
to Claim 5.1. Hence μ2 is a local attractor. When λ > 0, μ2 becomes a repeller. In
fact, our main theorem 2.2 claims that if λ < 0 then μ2 is a global attractor and if
λ > 0 then the solution does not converge to μ2 a.s.

5.3 Proof of themain theorem 2.2

It is ready now to give the detailed proof of the main theorem 2.2.
Case 1. Assume that λ < 0. By Theorem 5.1, there are only two ergodic invariant

measures for the process (G(t), A(t), N (t)) on the boundary ∂D, which are μ1 =
δ∗
0 × δ∗

0 × δ∗
0 and μ2 = δ∗

1 × π × δ∗
0 . Notice that

∫
∂D

(cA − d − τ 22 A
2/2)dμ1 = −d < 0,

∫
∂D

(cA − d − τ 22 A
2/2)dμ2 = λ < 0.

Applying Itô’s formula for Nq (0 < q < 1)

d(Nq) = qNq
[
cA − d + 1

2
(q − 1)τ 22 A

2
]
dt + qτ2N

q A dW2. (5.10)

For q = 1
2 , let M > 0 such that L(

√
N ) ≤ −√

N if A ≥ M . Set H = sup
A≥0

[cA − d −
1
4τ

2
2 A

2], then H > 0 and L(
√
N ) ≤ H

√
N for all N ≥ 0. Now let n∗ > 8(H + 1),
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and define the family of occupation measures

�u
t (·) := 1

t

∫ t

0
Pu{U (s) ∈ ·}ds.

By the Fubini–Tonelli’s theorem (Revuz and Yor 1999, p. 160),

∫
D
(cA − d − τ 22 A

2/2)�u
t (dv) =

∫
D
(cA − d − τ 22 A

2/2)
1

t

∫ t

0
Pu{U (s) ∈ dv}ds

= 1

t

∫ t

0

[∫
D
(cA − d − τ 22 A

2/2)Pu{U (s) ∈ dv}
]
ds

= 1

t

∫ t

0
Eu(cA(s) − d − τ 22 A

2(s)/2)ds.

Due to Lemma 5.1, when the initial value u = (G, A, N ) is in {G > 0, A > 0, N =
0} ⊆ ∂D such that G ≤ 1 and A ≤ M , we have

sup
A≤M,t>0

1

t

∫ t

0
Eu(cA(s) − d − τ 22 A

2(s)/2)ds < ∞.

This means that {�u
t }t≥0 is tight in ∂D. Then there is a sequence {tk}k≥1 such that

tk ↑ ∞ and �u
tk converges weakly to some invariant measure of U (t) supported by

{G > 0, A > 0, N = 0}. But, since μ2 is the unique ergodic invariant measure on
there, by lemma 3.4 in Hening and Nguyen (2018),

lim
k→∞

1

tk

∫ tk

0
Eu(cA(s) − d − τ 22 A

2(s)/2)ds =
∫

∂D
(cA − d − τ 22 A

2/2)dμ2 = λ < 0.

Use the argument as in Lemma 4.1 in Hening and Nguyen (2018), we can show that
there is a T ∗ > 0 such that for any initial value u = (G, A, N ) ∈ (0, 1]× (0, M]×{0}
and for all T ≥ T ∗

Eu

∫ T

0
[cA(t) − d − τ 22 A

2(t)/2]dt ≤ λT

2
.

Because of the Feller propery ofU (t) [see Remark 3.1 in Hening and Nguyen (2018)],
and the uniform boundedness of Eu A2+p by Lemma 5.1, we get

Eu

∫ T

0
[cA(t) − d − τ 22 A

2(t)/2]dt ≤ λT

2
(5.11)

for all T ∈ [T ∗, n∗T ∗] and for any initial value u = (G, A, N ) ∈ (0, 1] × (0, M] ×
(0, δ], where δ is some positive constant. By (5.10), we get for any q ∈ (0, 1) and
T ∈ [T ∗, n∗T ∗]

ln Nq(T ) = ln Nq(0) + q m(T )
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where

m(T ) =
∫ T

0
[cA(t) − d − τ 22 A

2(t)/2]dt +
∫ T

0
τ2A(t)dW2(t).

Let φu,T (q) = Eu exp{qm(T )}, then standard calculus shows that

dφu,T

dq
(0) = Eum(T ) = Eu

∫ T

0
[cA(t) − d − τ 22 A

2(t)/2]dt

and

d2φu,T

dq2
= Eum

2(T )eqm(T ) ≤ CEum
2(T ) + Eue

1
2m(T ), q ∈ [0, 1

4
]

Since LN
1
2 ≤ HN

1
2 , we have Eue

1
2m(T ) = Eu N

1
2 (T )

N
1
2

≤ eHT . Due to Lemma 5.1, we

have Eum2(T ) ≤ KT ,M for some constant K depending on T , M . Then

d2φu,T

dq2
= Eum

2(T )eqm(T ) ≤ C̃ := C(KT ,M + eHT ), q ∈ [0, 1
4
]

As a result, for any initial value u = (G, A, N ) ∈ (0, 1] × (0, M] × (0, δ], T ∈
[T ∗, n∗T ∗], and q ∈ (0, 1

4 ) sufficiently small, Taylor expansion around q = 0 for
φu,T , reads

φu,T (q) ≤ 1 + q
dφu,T

dq
(0) + C̃

2
q2 ≤ 1 − λT

4
q + C̃

2
q2.

For sufficiently small q, we have

Eu(N (T )q/N (0)q) = Eu exp{qm(T )} = φu,T (q) ≤ 1 − qλT

8
< 1

for u = (G, A, N ) ∈ (0, 1]×(0, M]×(0, δ] and T ∈ [T ∗, n∗T ∗]. SinceLN
1
2 ≤ −N

1
2

if A > M , we can mimic the argument in Hening and Nguyen (2018, Theorem 5.1)
to show that

Eu(N (n∗T ∗)q/N (0)q) ≤ ρ, for any u = (G, A, N ) ∈ (0, 1] × (0,∞) × (0, δ0],

for some δ0, and ρ ∈ (0, 1). Define

Y (k) = Nq(kn∗T ∗) ∧ δ
q
0

ρk
, k ∈ N.
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Then

Eu(N
q(n∗T ∗) ∧ δq) ≤ Eu N

q(n∗T ∗) ≤ Nq(0) exp

{
qλn∗T ∗

2

}
= Nq(0)ρ.

It follows that EuY (1) ≤ Nq(0) = Y (0), this combined with the Markov property of
U (t) implies that Y (k) is a super-martingale. Now, for ε ∈ (0, δ0), let ηε := inf{k ∈
N : Y (k) > ε}, Z(k) := 1{ηε>k}Nq(kn∗T ∗), and Bk := [kn∗T ∗, (k + 1)n∗T ∗]. By
Lemma 5.2, we have for some positive constant K∗

Eu sup
t∈[0,n∗T ∗]

Nq(t) ≤ K∗Nq(0). (5.12)

By Markov’s property and due to (5.12),

Eu sup
t∈Bk

1{ηε>t}Nq(t) = Eu

{
1{ηε>k}EU (kn∗T ∗)

[
sup

t∈[0,n∗T ∗]
1{ηε>t}Nq(t)

]}

≤ K∗Eu
[
1{ηε>k}Nq(kn∗T ∗)

]
≤ K∗ρk Nq(0).

(5.13)

Here the last inequality follows from the fact that Y (t) is a super martingale. As a
result, we have from applying Markov’s inequality to (5.13) that

Pu

{
sup
t∈Bk

1{ηε=∞}Nq(t) > ρk/2

}
≤ Pu

{
sup
t∈Bk

1{ηε>t}Nq(t) > ρk/2

}

≤ K∗Nq(0)ρk/2.

Since
∑∞

k=1 K∗Nq(0)ρk/2 < ∞, Borel-Cantelli Lemma shows that, wp1, there exists
a k0 so that k > k0 implies 1{ηε=∞}Nq(t) ≤ ρk/2 for all t ∈ Bk . As a result,

lim supt→∞
ln(Nq (t))

t < −r ′′ < 0 a.s. on the event {ηε = ∞} for a nonrandom
positive constant r ′′. On the other hand, since Y (k) is a super-martingale,

Pu{ηε < k} = Pu{Y (k) > ε} ≤ EuY (k)

ε
≤ Nq(0)

ε

for all k ≥ 1, and hence Pu{ηε < ∞} ≤ Nq (0)
ε

. Thus

Pu

{
ln(Nq(t))

t
< −r ′′

}
= Pu{ηε = ∞} ≥ 1 − Nq(0)

ε
.

We have shown that for any ε′ > 0 there exists a δ′ > 0 so that

N < δ′ implies Pu

{
ln(Nq(t))

t
< −r ′′

}
> 1 − ε′. (5.14)
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Next, we want to show that for some T > 0

inf
u∈K Pu{G(T ) ≤ 1, A(T ) ≤ M, N (T ) < δ′} > 0 (5.15)

for any compact set K in D. Indeed, consider the control system associated with (2.1)

Ġφ = rGφ(1 − Gφ − Nφ),

Ȧφ = aGφ

b + Gφ

− Aφ − τ 21

2

AφG2
φ

(b + Gφ)2
+ τ1AφGφ

b + Gφ

φ1,

Ṅφ = cAφNφ − dNφ − τ 22

2
A2

φNφ + τ2AφNφφ2,

where φ(t) = (φ1(t), φ2(t))T is a piece-wise continuous control. It is clear that
Gφ(t) ≤ 1 for all t ≥ 0 and any control φ. With the controls φ1(t) ≤ −H̃ and
φ2(t) ≤ −H̃ for sufficiently large H̃ > 0, we can get Aφ(T ) ≤ M and Nφ(T ) < δ′
for some T > 0. For any compact set K in D, by the support theorem [see Theorem
8.1 p. 518 in Ikeda and Watanabe (1989)],

Pu{U (T ) ∈ Vδ′ } > 0

for any initial value u = (G, A, N ) ∈ K , where Vδ′ = (0, 1] × (0, M] × (0, δ′).
Then the uniform bound (5.15) follows from the Feller property of U (t). In view of
Lemma 5.3, for any initial value u = (G, A, N ) in the interior of D, the process
U (t) = (G(t), A(t), N (t)) is recurrent relative to some compact set K̃ in D◦. That is,
ζk < ∞ a.s. for all k ≥ 1 where ζ0 = 0,

ζ1 = inf{t > 0 : U (t) ∈ K̃ },
ζk+1 = inf{t > ζk + T : U (t) ∈ K̃ }.

Let Ck := {U (t) /∈ Vδ′ ∀ t ∈ [ζk, ζk+1]}. By (5.15), there is a ρ∗ > 0 such that
P(Cc

k ) ≥ ρ∗ for all k ≥ 1 and for any initial value u in D◦. Using the Strong Markov
Property of the process U (t), it is easy to show that

P(∩n
k=1Ck) ≤ (1 − ρ∗)n → 0 as n → ∞

and hence P
(∪∞

k=1C
c
k

) = 1. This means that for any initial value u in D◦, the process
U (t) will eventually enter the set {G ≤ 1, A ≤ M, N < δ′} in a finite time with
probability 1. Combining this with (5.14) and using the strong Markov property, we
can conclude that

Pu

{
ln(Nq(t))

t
< −r ′′

}
≥ 1 − ε′
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for any ε′ > 0 and for any initial value u in D◦. Therefore, lim
t→∞

ln N (t)
t < − r ′′

q < 0

a.s. Using Claim 5.1, we obtain |A(t) − Ã(t)| → 0 a.s. and hence A(t) converges
weakly to the ergodic invariant measure π . Now, the equation of N (t) implies

lim
t→∞

ln N (t)

t
= lim

t→∞
ln N

t
+ lim

t→∞
1

t

∫ t

0
[cA(s) − d − τ 22 A

2(s)/2]ds

+ lim
t→∞

1

t

∫ t

0
τ2A(s)dW2(s)

= λ + lim
t→∞

1

t

∫ t

0
τ2A(s)dW2(s).

In view of Theorem 3.4 inMao (2007), since
∫ t
0 τ2A(s)dW2(s), t ≥ 0, is a real-valued

continuous local martingale vanishing at t = 0 and

lim sup
t→∞

1

t

∫ t

0
τ 22 A

2(s)ds = 2a2τ 22
2(b + 1)2 − τ 21

< ∞,

we have

lim
t→∞

1

t

∫ t

0
τ2A(s)dW2(s) = 0 a.s.

Thus

lim
t→∞

ln N (t)

t
= λ a.s.

That is N (t) decays a.s. to 0 exponentially fast with the rate λ.

Case 2. Suppose that λ > 0 and the initial value u = (G, A, N ) ∈ D◦. By way of
contradiction, assume that lim supt→∞ Eu

1
t

∫ t
0 ln(N (s) + 1)ds = 0. By generalized

L’Hospital’s Rule (Lee 1977, p. 28), it implies that lim inf t→∞ Eu ln(N (t) + 1) =
0. Then Fatou’s lemma implies that Eu lim inf t→∞ ln(N (t) + 1) = 0 and hence
lim inf t→∞ ln(N (t) + 1) = 0 a.s. So there exists a sequence of positive real numbers
{tk}k such that tk ↑ ∞ and ln(N (tk) + 1) → 0 as k → ∞ a.s. Hence N (tk) → 0 as
k → ∞ a.s. By Claim 5.1, G(tk) → 1 a.s. and |A(tk) − Ã(tk)| → 0 a.s. This means
the family of occupation measures {�uk

tk (·)}, where uk = U (tk), is tight on ∂D and
converges weakly to the invariant measure μ2. But, using Lemma 5.2 and (Hening
and Nguyen 2018, Lemma 3.4), we get

lim
k→∞

1

tk
Eu ln N (tk)

= lim
k→∞

1

tk

∫ tk

0
Eu(cA(s)−d−τ 22 A

2(s)/2)ds=
∫

∂D
(cA − d − τ 22 A

2/2)dμ2=λ>0
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which contradicts the hypothesis that lim supt→∞ Eu
1
t

∫ t
0 ln(N (s)+1)ds = 0. There-

fore, the proof of Theorem 2.2 is completed. ��
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