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Abstract

Motivated by our study of infiltrating dynamics of immune cells into tumors, we pro-
pose a stochastic model in terms of Ito stochastic differential equations to study how
two parameters, the chemoattractant production rate and the chemotactic coefficient,
influence immune cell migration and how these parameters distinguish two types of
gliomas. We conduct a detailed analysis of the stochastic model and its deterministic
counterpart. The deterministic model can differentiate two types of gliomas accord-
ing to the range of the chemoattractant production rate as two equilibrium solutions,
while the stochastic model also can differentiate two types of gliomas according to
the ranges of the chemoattractant production rate and chemotactic coefficient with
thresholds as one non-zero ergodic invariant measure and one weak persistent state
when the noise intensities are small. When the noise intensities are large comparing
with the chemotactic coefficient, there is only one type of glioma that corresponds to
a non-zero ergodic invariant measure. Using our experimental data, numerical simu-
lations are carried out to demonstrate properties of our models, and we give medical
interpretations and implications for our analytical results and numerical simulations.
This study also confirms some of our results about IDH gliomas.

Keywords Ergodic invariant measure - Weak persistence - Stochastic differential
equation - mulDH glioma - wtIDH glioma
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1 Introduction

It is significant for many cancers to have infiltrated immune cells (Quail and Joyce
2013). There are lots of studies to explore the impacts of tumor-infiltrated immune cells
(Kitamura et al. 2015). Some studies showed that direct contact between immune cells
and tumor cells can reduce the tumor size while other studies indicated that increased
immune cells in the tumor may facilitate tumor cell invasion (Nosho et al. 2010;
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Gannot et al. 2002; Calzascia et al. 2003). Although the reason for these contradic-
tory observations remains elusive, it is important to understand how the migration of
immune cells into the tumor is regulated (Kesarwani et al. 2017). Recently, our group
performed a series of experimental studies about how tumor-associated immune cells
are regulated (Amankulor et al. 2017). Gliomas have two types, CIMP and non-CIMP,
according to CpG island methylator phenotype (CIMP) (Noushmehr et al. 2010).
CIMP gliomas have some mutations in isocitrate dehydrogenase 1/2 (IDH1/2). Non-
CIMP wild-type IDH1/2 (wtIDH1/2) gliomas are more malicious comparing with
their CIMP counterparts, CIMP mutant IDH1/2 (muIlDH1/2). In our experiments with
human tissues, we compared the infiltrated immune cell amounts of wtIDH1 and
mulDH1 and found human CIMP gliomas have lower numbers of several immune
cell types compared with non-CIMP tumors. To understand the difference in vivo,
we utilized the RCAS/tva system to create isogenic glioma pairs from PDGF-driven
mouse glioma models whose initiating events differed only in the presence or absence
of muIDHI. Our experimental results showed that the muIDHI mouse gliomas have
significant reduced immune cell contents, and showed a regulatory role of muIDH1 on
the infiltration of immune cells into gliomas with the secretion of several chemoattrac-
tants (Amankulor et al. 2017). However, to comprehend how IDH1 mutants regulate
the infiltration of immune cells into gliomas and how they affect the aggressiveness
of gliomas, it is necessary to integrate our experimental data into a dynamical system
to acquire a complete understanding of subtle regulation of immune cell infiltration.

In our study (Niu et al. 2020), we formulated a mathematical model of 3-dimensional
glioma driven by PDGF. We consider a radially symmetrical tumor and denote by r
the distance from a point to the center of the tumor. The tumor boundary is denoted
by r = R(t). Let G(r, t) be the number density of glioma cells, H (r, t) the number
density of necrotic cells, N (r, ) the number density of infiltrated immune cells, and
A(r, t) the concentration of chemoattractants produced by tumor cells. The prolifera-
tion and removal of cells cause movements of cells within the tumor, with a convection
term, for tumor cells G, which is of the form & (rZG(r t)V(r,t)), where V(r, t)
is the velocity and V (0, t) = 0. The necrotic cells undergo the same convection while
the chemoattractants undergo diffusion. The immune cells migrate along the gradient
field generated by chemoattractants into the tumor, and then undergo the same con-
vection besides chemotaxis within the tumor. By mass conservation laws, the model
we proposed in Niu et al. (2020) is as follows:

% r——[rzG(r DV, D]l =1G@r, 1) — uG(r, 1), r €0, R()),
0H(r,t) 5
“ar r23 [ H(r,n)V(r,0)l = pnG(r,t) —8H(r, 1), r € [0, R(1)),
A, 1) 1 3 [ ,0A(r,1) mG(r,1)

31 —Dr23r |:” or i|+/3+G(r,t) yA(r,t), r €[0,00),
%+%8 PN, OV, )] = a5 1 [rZN(r )aA(’ D,

— pN(r,t), r €[0, R(2)).
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We assumed that all cells have the same size. Since the number density of the tissue
is constant, we have G(r,t) + H(r,t) + N(r,t) = 0 within the tumor. Combining
these equations, we have the equation for the velocity,

09 , 1 a_, 0A(r,t)
——[rV(@,t)] =AGr,t) —§H(r,t) —a——[r"N@,t)——] — pN(r, t).
r2 or r2 or r

The free boundary condition is given by % = V(R(t), t). The initial conditions

are specified as R(0) = €, where € is a very small number; G (r, 0), H(r, 0), N(r, 0),
for0 <r < €;and A(r,0), 0 < r < oo. The boundary conditions for the chemoat-
tractant A(r, t) are specified as %A(O, t) = 0 and A(r, t) vanishes at infinity, and
V(0,t) = 0 for t > 0. We did computational studies to verify our model and made
numerical predications in Niu et al. (2020). Particularly, we found two parameters,
the chemoattractant production rate m and chemotactic coefficient «, play important
roles. The chemoattractant production rate m can distinguish two types of tumors,
wtIDH1 and mulDH]1, according to the range of its value. The chemotactic coefficient
a determines the possibilities of immune cell migration along chemoattractant gradi-
ent fields. However, as these two parameters are perturbed or in a noisy environment
which actually is the case in reality, we would like to explore how stable our conclusion
about these two parameters are. This is a medical relevant question. There are several
factors which contribute randomness of parameter values (Phan et al. 2021). We men-
tioned parameter sensitivity analysis in Niu et al. (2020). However, the influence of
randomness and noise on parameters is a different question.

Therefore, in this article, we conduct some analysis of how these two parameters
will affect the dynamics of immune cells infiltrating into the tumor site if they are
perturbed. In order to grasp the essence of the problem, we first reduce our PDE
system above to a system of ordinary differential equations and then perturb two
parameters to obtain a system of Ito stochastic differential equations.

The simplified ODE system is as follows:

dt

dA G

2 4 (1.1)
dt B+G

dN

— =aAN — pN

dt

where G = G(t) is the number density of glioma cells at time r, A = A(t) is the
concentration of chemoattractants at time ¢, and N = N(¢) is the number density
of infiltrated immune cells at time 7. We use logistic growth to model the growth of
glioma cells with the proliferation rate A and carrying capacity C. The necrotic cells is
not needed since it is built in logistic growth function. Chemoattractants is produced
by glioma cells and the Michaelis-Menten Kinetics is used to model the production
rate of chemoattractants which is proportional to é’erG, where § is Michaelis constant.
The parameter y denotes the chemoattractant degradation rate. The parameter p is the
immune clearance rate. The last two parameters m and «, represent the chemoattractant
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production rate and the chemotactic coefficient, respectively. This ODE model may
be regarded as a simplified version of our PDE model without spatial distributions,
but inherits dynamical properties in time, particularly, which we are interested in most
are about these two parameters.

Aforementioned, we are interested in parameters m and «. The chemoattractant pro-
duction rate m describes how much chemoattractants are produced in unit volume and
unit time. The randomness or noise for m mainly comes from how much chemoattrac-
tants are in the tumor, or its variation can be described by variation of chemoattractant
concentrations. Specifically, we may assume that each chemoattractant molecule make
almost same contribution to the stochastic effects and receive the same environmental
noise. Then, the environmental noise and randomness for chemoattractant production
can be represented by 1 A§, where £ is the unit noise and 7 can be regarded as a way
to measure average variation of each chemoattractant molecule (Phan et al. 2021). As
usual, we take the white noise £ = dd_VIV, and W; represents the standard Wiener pro-

cess. Thus, we will change m tom 4171 A d‘%. The chemotactic coefficient o describes
how much area or volume of the gradient can be generated per unit of chemoattractant
and time. In other words, the chemotactic coefficient describes how much possibility
that chemoattractant substance can make immune cell move forward. The randomness
and noise for « mainly is from the environment. We may represent the noise by 1,&,
where 17, measure an average variation of the environmental contribution (Phan and
Tian 2020). We then replace o with o + tz%. It should be mentioned that W and
W, are mutually independent one dimensional Wiener processes. Therefore, we get
the following system of Ito stochastic differential equations.

G+ N
dG:AG(l— z )dt,

G AG
dA = (m_ - yA) dr + 222 gwy, 1.2
B+G B+G

dN = (¢AN — pN)dt + 1pAN dW,.

As the way we incorporate randomness and noise is not usually to simply add addi-
tive or linear noise, our stochastic model does not satisfy usual boundedness conditions
(Benaim 2018; Hening and Nguyen 2018). This creates difficulties in analyzing our
stochastic model. Based on significant progress in the theory of stochastic persistence
(Benaim 2018; Schreiber et al. 2011; Hening and Nguyen 2018), we develop delicate
and new estimates for our model. Meanwhile, we conduct numerical studies using our
experimental data with detailed biological interpretations and implications.

The rest of the article is organized as follows. In Sect. 2, we non-dimensionalize
the systems (1.1) and (1.2), present main analytical results, and provide medical inter-
pretations. In Sect. 3, using our experimental data, we provide numerical simulations
for two systems with biological explanations, we discuss some aspects of stochastic
modeling and list several open problems. In Sect. 4, an analysis of the deterministic
counterpart of our stochastic model is presented and the main theorem for this sys-
tem is proved. In Sect. 5, we analyze our stochastic model by studying the long-term

@ Springer



Deterministic and stochastic modeling for PDGF-driven... Page50f45 22

behaviors near the boundary of the positive invariant domain. The article ends with
Acknowledgements and References.

2 Results and interpretations

In this section, we list our major analytical results and give some biological interpre-
tations. For simplicity, we non-dimensionalize the system (1.2) by setting G = CG,
A =CA, N = CN, T = yt, and rename parameters r = %, a = )j"—c, b = g,

c= d= g, 7| = &, and Ty = 2. Then the system (1.2) becomes

v

dG =rG(1 —G —N)dT,

_ G — AG

dA =22 _ &) ar + 222 aw,.
b+G

dN = (cAN —dN)dT +T,AN dW,.
For convenience, drop all the bars over the variables and write T as ¢, we get

dG =rG(1 — G — N)dt,

aG T1AG
dA = — A dt awy, 2.1
<b+G ) Trrgt @1

dN = (cAN — dN)dt + 1, AN dW,

and the corresponding deterministic system of (2.1) is

dG
2 6 -G =N,
dt
A
dA_ aG 22)
dt b+ G
dN
2 _CAN —dN.
dt

It is assumed that all parameters are nonnegative.

For the deterministic system (2.2), it is straightforward to find the positive invariant
domain which is biologically meaningful as

D={G,A,N):0<G<1,A>0, N >0}.

Now, the parameter a represents the chemoattractant production rate and ¢ represents
chemotactic coefficient. We find the first critical value for the parameter a, a;, = b d;'d s
by determining three equilibrium solutions Ey = (0,0,0), E; = (1, 2%, 0), and

5 b__H’
bd d ac—d—bd . : P
E, = (aci 5 o0 T ) We linearize the system (2.2) at these equilibria to study

their local stability. We also use center manifold theorem to study the global and local
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stability of the equilibria on the boundary of D. To investigate Hopf bifurcations,
we develop a family of coefficient parameterized polynomials and take advantage of

properties of Routh—Hurwitz determinant to obtain the second critical value for the

i+d . . .- . .
parameter a, dy, = y37, where y3 is the unique positive root of the cubic polynomial

®(y) = —y> + (b+bd)y* + bd (br + 1)y + b>d?r. The main result for the dynamics
of the system (2.2) can be summarized in the following theorem.

Theorem 2.1 The system (2.2) has three equilibrium solutions Eq, E|, and the positive
equilibrium E,. Eq is always unstable for all positive values of a. E1 is globally
asymptotically stable when 0 < a < ay,, and it is unstable when a > ay,. At a = ay,,
Eq is locally asymptotically stable and the positive equilibrium E, moves into the
positive invariant domain D, a similar type of transcritical bifurcation occurs with Ey
and E>. As a5, < a < ay,, E> is locally asymptotically stable; when a > ay,, E> is
unstable. Only one Hopf bifurcation occurs at a = ay,, and this bifurcation gives rise

to one family of periodical solutions. As a becomes large enough, E» =~ (0(3—1), %, 1).

This theorem has some biological interpretations or implications. From our study
in Niu et al. (2020), we know that the chemoattractant production rate m or a now
can distinguish two type of gliomas, wtIDH1 and mulDH]1. Gliomas of wtIDH1 have
more infiltrated immune cells. We may give the following interpretations.

Interpretation 2.1 With the deterministic system (2.2), two types of gliomas can be
distinguished by their chemoattractant production rate. If the chemoattractant pro-
duction rate is smaller than a critical value, ay,, then the tumor belongs to mulDH1
type. If the chemoattractant production rate is greater than ag,, then the tumor belongs
to wtIDH1 type. When the chemoattractant production rate is even larger, the tumor
will attract more immune cells and is more aggressive.

For the stochastic system (2.1), we specify an appropriate completed filtered prob-
ability space. Let 2 = {w € C(R, R?), w(0) = 0}, F the Borel o-algebra on Q2 and P
the measure induced by {W; };cR, a two-sided 2-dimensional Wiener process. Then the
elements of €2 can be identified with paths of a Wiener process w(t) = W;(w). Now
we consider the P-completion of F, also denoted by F, that is F contains all P-null
sets. The filtration F; is given by the canonical filtration generated by the Wiener pro-
cess completed by all P-null sets of F. Denote the probability measure given by the
extension of P to the completed F again by IP. Thus, a completed filtered probability
space (2, F, {F:}ier, IP) is obtained. We denote the drift term and the diffusion term
of the system (2.1) by

rG(1 — G —N) 0 0
fy=| FH-A | adg)=|%E 0
cAN —dN 0 AN

The process given by the solution to (2.1) will be denoted by U or U(t) =
(G(@), A(t), N(t)), t > 0. Let L be the infinitesimal generator of the process U
and, for any smooth enough functions F' : ]Ri = [0, 00)3 = R, the generator L acts
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as
LFu)=Fy- fu)+ %trace(g(u)g(u)TFW),

where F,, is the gradient of F and F,, is the Hessian matrix of F. We use PP, to denote
the probability law on €2 when the solution path starts at u = (G, A, N) and E,, is the
expectation corresponding to P,,.

Our aim for studying the stochastic system (2.1) is to explore how environmental
noise and parameter randomness affect our tumor classification and the dynamics of
the system (2.2). Our method is to analyze solutions of (2.1) on the boundary of D.
Our analysis shows that there are two ergodic invariant measures | = 85 X 8 X &;
and py = 87 x 7 x &, on the boundary 8 D. Here 7 and 8 denote the Dirac measures
with mass at 1 and 0, respectively. The invariant measure 7 is the inverse gamma

distribution: 7 ~ IG 2(%)2 + 1, @) From these measures, we derive the
1

sufficient and almost necessary condition for weak persistence of the SDE system
(2.1). Our main result for the dynamics of the system (2.1) is stated in the following
theorem.

Theorem 2.2 Assume that 11 < (b + 1)~/2 and define the threshold

L ac ‘522(12
Tb+1 20+ D2 =1}

If A < O then for any initial value u = (G, A, N) in the interior of D, D°, the solution
U(t) = (G(t), A(t), N(t)) of the system (2.1) converges to iy in the sense that G(t)
converges to 1 a.s., A(t) converges weakly to 7, and N (t) converges to 0 exponentially
fast with the rate X. If A > 0, then lim sup,_, o, Eu% fé In(N(s) + 1)ds > O that is
N(t) cannot converge to 0 in “log-moment”’time average sense, which also implies
that lim sup,_, o, Eu% fé NP(s)ds > 0, p € (0, 1). Inthis case, py becomes a repeller
and the system (2.1) becomes weakly persistent in the sense that solution U (t) does
not converge to |42 a.s.

In order to interpret this theorem and give some biological implications, we need
to find relations between A, a, and noise intensities. We consider A = A(a, 1, 72) as
a function of the parameter a, 71, and t;. The following lemma lists some possible
relations among these parameters.

Lemma 2.1 The existence of the second moment of the invariant measure 7w requires
the noise intensity 11 is bounded as ‘512 <2(b+1)%

. 2
(1) When 35 (559t + 13 > 57 and ¥ < 2(b + 1)%, we have A < 0.

. 2 .
2) When ﬁ(b‘?)zrf + 122 < E—d, there exist the values ay and ay of the parameter a
with as, < ay and a1 < ap, where A(a1) = A(az) = 0. We have two cases:

e ifa € (0,ay) U (az, 00), then A < O;
e ifa € (ay,a), then . > 0.
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1 c 2.2 2 c? . .
In the case of _4_d.(b_+1) i + Ty < 57, G2 can be. 'conSldered as a function of t1 and
7 and then it is increasing with two noise intensities; ay > as, for small values of 71
and T while ay < ay, for large values of t| and 7.

It is easy to see that the mean of the inverse gamma distribution 7z approaches b“?
when (71, 2) approaches (0, 0). Hence, we may say that the ergodic invariant measures
of the stochastic system (2.1), i and w7, correspond to the equilibrium solutions of
the deterministic system (2.2), Eg and E1, respectively. There should exist another
ergodic invariant measure of the system (2.1) which corresponds to the equilibrium
solution E3 of the system (2.2). However, it is difficult to prove this property because
our model has a rational function noise term and lacks boundedness. We will list this
as an open problem for future studies. We only can say that, when A > 0, any solution
starting in the interior of the positive invariant domain D will not approach neither
(1 nor uy on the boundary dD. In other words, this solution will stay at the interior
of D; it may either approach an invariant measure supported by the interior of D or
stochastically oscillate.

Biologically, we obtain more subtle implications related to two parameters, a and
¢, and noise intensities from our stochastic model (2.1).

Interpretation 2.2 [f the noise of chemotactic coefficient c is big enough, ‘L'22 > %
while t]2 < 2(b + 1)?, then the tumor always belongs to type mulDHI no matter
how large the chemoattractant production rate a is. In this case, the tumor type is
determined by the chemotactic coefficient. This is a new situation when randomness
and stochastic effects are introduced into the model.

When both noise intensities are not big, namely 7:22 < % and 1’12 < 2(b+ 1)2,
the tumor type is largely determined by the chemoattractant production rate which
is similar as the deterministic model (2.2). However, we have more subtle situations.
The critical value of the chemoattractant production rate that determines tumor type
in the stochastic model is greater than that in the deterministic model which is the
case as;, < ay. This is reasonable because the stochastic model counts parameter
randomness and environmental noise. Another new situation is that, when the value
of the chemoattractant production rate is greater than a, the tumor type seems to
be switched again. A reasonable interpretation may be as follows. The tumor type is
not changed again, but periodic solutions or pulse solutions with low immune cell
contents appeatr.

It is clear that the stochastic model confirms the result about tumor type classifica-
tion from our PDE model by the chemoattractant production rate with emphasizing
the importance of the chemotactic coefficient. The classification of tumor types with
these parameters in either model is stable in the sense of parameter perturbations.

3 Numerical simulations and discussion
3.1 Numerical simulations with biological interpretations

In order to illustrate our analytical results, we utilize some data from our previous
research (see Niu et al. 2020) to simulate our model of deterministic type and stochas-
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Table 1 Parameters and their values

Parameters Description Values Dimensions

A Proliferation rate of glioma cells 0.48 day_1

m Maximum of chemoattractant production rate 0.7-17 10 pg/ml day
B Michaelis constant 0.1 10 cells/mm3
y Chemoattractant degradation rate 2.185 102/day

o Chemotactic coefficient 0.6 mm? ml/day pg
P Clearance rate of immune cells 0.9 da)f1

C Cell density of tumor tissue 1 10° cells/mm3

tic type. Before we do so, we would like to explain some connection between our
current models and previous PDE model and related experimental work. In our study
(Niu et al. 2020), our PDE model fits our experimental results, for example, tumor
volume changes over time in under several conditions. In these simplified models,
there is no spatial variable. However, our quantities are now still cell number densi-
ties and chemoattractant concentration as in our PDE model, not cell numbers and
chemoattractant quantity in general ODE/SDE models. In this way, our current mod-
els inherit dynamical behaviors and some sort of spatial information, and we will
be able to use the parameter values from our previous work which were estimated
from our experimental results. All parameters of the system (1.2), except the noise
intensities 71 and 1, are listed in Table 1, which are from our study (Niu et al. 2020).
After non-dimensionalization, the parameters of the stochastic system (2.1) and its
corresponding deterministic system (2.2) are r = 0.22, b = 0.1, ¢ = 0.275, and
d = 0.412. For the sake of simplicity, we conduct numerical simulations based on
the non-dimensionalized SDE system (2.1) and ODE system (2.2). Thus, the units
of glioma cells, concentration of chemoattractants, and infiltrated immune cells are
not absolute number densities but relative numbers. The quantities such as G, A, and
N are, the portion of glioma cells, concentration of chemoattractants, and infiltrated
immune cells over the tumor carrying capacity, respectively. We just indicate them
as relative glioma cells and so on in the figures. For the time, it can be regarded as
relative time since T = yt. In all the figures below, we will simulate the trajectories
of the ODE system (2.2) and the SDE system (2.1) with initial value (0.5, 0.1, 0.1)
and all parameters fixed except the parameter a and the noise intensities 1 and 7.

In Sect. 4, we found two thresholds of the parameter a which are a5, = 1.65
and a5, = 2.5579. The parameter ¢ measures how much chemoattractants can be
produced by tumor cells in a unit time. The analysis in Sect. 4 shows this parameter
plays a central role in determining the dynamics of the ODE system (2.2).

When a is below ay,, Fig. 1 indicates that relative glioma cells are increasing to
its carrying capacity while relative infiltrated immune cells decay to zero. This can
be explained as follows. At the beginning, glioma cells secrete chemoattractants that
form a dynamic gradient field to facilitate migration of immune cells into the tumor.
However, the concentration of chemoattractants is not strong enough to attract immune
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Fig. 1 Deterministic solution paths whena = 1.5
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Fig.2 Deterministic solution paths when a = 2
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Fig.3 Deterministic solution paths when a = 2.6

cells. So the number density of infiltrated immune cells goes down while the number
density of glioma cells keep growing.

When a is between a,, and ay,, Fig. 2 shows relative glioma cells, relative concen-
tration of chemoattractants, and relative infiltrated immune cells eventually settle down
into an equilibrium state (which is the positive equilibrium E»). This is because after
recruiting a portion of immune cells, the number density of glioma cells becomes oscil-
latory and starts reaching a steady state. But then the concentration of chemoattractants
becomes saturated, consequently immune cell migration undergoes a slowdown phase
and finally its number density reaches an equilibrium state.

When a is slightly bigger than ay,, Fig. 3 indicates that the populations of glioma
cells and infiltrated immune cells and concentration of chemoattractants undergo an
oscillating process. As in the proof of Sect. 4, there is only one stable periodic solu-
tion arising from the Hopf bifurcation at a;, = 2.5579. This solution represents the
predator-prey dynamics among glioma cells, chemoattractants, and infiltrated immune
cells.

As a is becoming large, say a = 5, the solution behaves differently. Figure 4 shows
populations of glioma cells and infiltrated immune cells can reach a very small value.
It represents a pulsating oscillation. The minimum of the pulsating oscillation solution
is decreasing as a increases.

In Sect. 5, we analyzed the SDE system (2.1) which is obtained from the ODE sys-
tem (2.2) by perturbing the parameter a, the relative maximum of the chemoattractant
production rate, and the parameter c, the relative chemotactic coefficient. We found a
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Fig.4 Deterministic solution paths when a = 5
threshold
A= A( — __we 3.1)
=Aa, 171, 2) = —a-— ’ :
b+1 2(b+ 12— 1}

to determine the extinction and weak persistence of the SDE system (2.1) provided
71 < (b+ l)«/§. According to Lemma 2.1, we can regard A as a function of a, 71, and
7p. Actually, A is a quadratic function of a with negative leading coefficient, which
has two positive real solutions

cQb+ 12— 2+ 12— rlz\/CZ(z(b +1)2—12)
alp = —d

203 (b + 1) 53 473 (b +1)2

provided that ﬁ(#)zrf + 1 < %. The main theorem 2.2 showed that pop-

ulation of glioma cells reaches its carrying capacity and population of infiltrated
immune cells goes extinct when A < 0. By Lemma 2.1, this condition is equiva-

lent to either ﬁ(ﬁl)sz + 122 > %, 71 < (b+ D2 or ﬁ(bLH)Qrf + 122 < %,
a € (0,ar) U (az, 00). We observe that the condition for the extinction of the system
(2.1) is quite subtle and complicated. Particularly, when noise intensities are small
and a is large enough, the solution of the system (2.1) approaches the boundary of the
positive invariant domain and hence the system goes extinct. Furthermore, when noise

intensities are large enough, the solution of the system (2.1) is suppressed to approach

@ Springer



Deterministic and stochastic modeling for PDGF-driven...

Page 13 of 45

22

1 T T T
08 4
(O]
0.6 4
0.4 L . L L
0 20 40 60 80 100
relative time
2 T T T T
<1y 1
0 . . . .
0 20 40 60 80 100
relative time
0.1 T T T T
Z 0.05 b
0 . A .
0 20 40 60 80 100
relative time

Fig.5 Stochastic solution paths whena = 1.5, 11 = 1p = 0.1

the boundary no matter how large the value of a is. Contrary to the complexity of
the extinction conditions, the weak persistent condition for the system (2.1) is quite
simple. All populations become weakly persistent when A > 0, which is equivalent
to ﬁ(ﬁ)%f + 122 < % and a; < a < ap. With parameters as in simulating ODE
system (2.2), we illustrate the extinction and weak persistence of the SDE system (2.1)
in the following two examples.

Example 1. We demonstrate the situation when A < 0. Takea = 1.5, 11 = 1o = 0.1
in Fig. 5 and take @ = 5, 11 = 0.1, » = 0.4 in Fig. 6. Both figures indicate that
in a short period of time glioma cells increases to the tumor carrying capacity and
infiltrated immune cells decay to zero exponentially fast, while the concentration of
chemoattractants becomes saturated.

Example 2. We simulate the stochastic trajectories when A > 0. Take a = 2.5,
71 = 13 = 0.1 in Fig. 7. This picture shows that glioma cells, chemoattractants,
and infiltrated immune cells coexist and interact in the predator-type dynamics. Even
though the solution path represents an oscillatory behavior as in the deterministic case,
its pattern cannot be predicted. Next, take a = 5, t; = 1 = 0.1 in Fig. 8. This figure
indicates the solution path still weakly persist but represents a pulsating oscillation.
Our PDGF models of the deterministic type and stochastic type are able to predict
the dynamical behavior of these two types of gliomas. As an example, the mathematical
model of PDE type in Niu et al. (2020) predicted that the wild-type tumor mice
will survive longer if the immune cells are blocked to migrate into the tumor. The
infiltrated immune cells help to drive the aggressiveness of gliomas and then increase
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Fig.6 Stochastic solution paths whena =5, 711 = 0.1, 7o = 0.4
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Fig.7 Stochastic solution paths whena = 2.5, 711 = 15 = 0.1
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production of chemoattractants. So in order to block immune cells to infiltrate into the
tumor, we can reduce the chemotactic strength which is represented by the relative
chemotactic coefficient and its corresponding noise intensity 7. Using our SDE model,
take a = 2.5, 11 = 0.1 as in Fig. 7 but 1, is decreased to 0.01. Fig. 9 shows that
the solution oscillates less wildly and hence glioma cells of wild type become less
aggressive.

It should be noticed that we only plot one realization for each case above for
demonstration purpose. We actually simulated many realizations for each case, and
observed that these realizations share a similar pattern in each case. Therefore, we
present one typical path for each case.

3.2 Discussion

The motivation of this study is to understand the roles of two parameters, the chemoat-
tractant production rate and chemotactic coefficient, in the infiltrating dynamics of
immune cells into tumors. In our experiments and modeling of immune cells infil-
trating to tumor sites in terms of PDE free boundary problem, we computationally
found these two parameters are very important. The chemoattractant production rate
by tumor cells determines two types of gliomas according to the range of its value, or
aggressiveness of gliomas, while the chemotactic coefficient determines the possibil-
ities of immune cells migrating to tumor sites. We would like to know how stable our
conclusion about these two parameters are when they are perturbed or when stochastic
effects are counted in noisy tumor growth environments. This is a medical relevant
question because there are many randomness and stochastic effects in medical prob-
lems. Due to difficulties of analysis of free boundary problem, we propose to utilize
stochastic differential equations to explore this question. The first step is to reduce
the free boundary PDE system to an ODE system. We then add white noises to these
two parameters according to their properties, and obtain a system of Ito stochastic
differential equations. We carry out detailed studies about these two models. We see
the correspondence between equilibrium solutions of the deterministic system and
ergodic invariant measures of the stochastic system according to different value range
of the chemoattractant production rate and chemotactic coefficient. For the stochastic
system, there appears some new features. For example, when both noise intensities are
not big comparing with the chemotactic coefficient, the stochastic model behaves more
or less similarly as the deterministic counterpart. However, when both noise intensities
are big, particularly when the noise intensity of the chemotactic coefficient is greater
than a scaled chemotactic coefficient, the occupation measure of the stochastic solu-
tion converges to the invariant measure (., and hence the stochastic system behaves
uniformly as mulDH gliomas.

Mathematically, the noise term for the chemoattractant production rate is of a ratio-
nal function which creates difficulties for analysis. For the deterministic system, there
is a stable equilibrium solution E, which is in the interior of the positive invariant
domain D. We expect that there is a ergodic invariant measure for the stochastic sys-
tem which corresponds to E;. However, it is not easy to show the existence of such
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invariant measure supported by the interior of the positive invariant domain D. We
would like to list this question as an open problem.

For the deterministic system, we show there is a Hopf bifurcation and appearance
of one family of periodic solutions when the value of the chemoattractant production
rate passes through a second critical value. For the stochastic model, we observe
some periodical solution paths. However, it is difficult to show the existence of Hopf
bifurcations in stochastic models. We would also like to list this question as an open
problem.

Although the stochastic model is obtained by a simplification of PDE model, it is
interesting on its own. Besides the two open problems mentioned above, it will be
interesting to explore what new features we can obtain if we also perturb the tumor
growth rate, because one way to model aggressiveness of tumors is to increase growth
rate. We plan to study this problem in the future.

4 Analysis of the ODE model

This section is devoted to the proof of Theorem 2.1 for the ODE system (2.2).

4.1 Preliminaries

Since the right-hand side of each equation of the system (2.2) is a continuously differ-
entiable function with respect G, A, and N, by existence and uniqueness theorem of an
ODE system [see Theorem 1 on page 89 in Perko (2006)], the system (2.2) with initial
value (G (0), A(0), N(0)) always has a unique solution (G (t), A(t), N(t)) defined on
the maximal interval [0, ¢). It is important to know if the solution exists for all time
t > 0. Our result is summarized in the following theorem.

Theorem 4.1 If G(0) > 0, A(0) > 0, and N(0) > O then G(t) > 0, A(t) > 0, and
N() = 0 forallt € [0, ). Furthermore, if 0 < G(0) < 1,0 < A(0) < b"?, and
N@O)>0then0 <G@) <1,0<A@) < b“?, N(t) >0 forallt € [0, ¢). Finally,
we can conclude that the solution (G(t), A(t), N(t)) exists for all time t > 0, i.e.

¢ = oo.

Proof First, assume that G(0) > 0, A(0) > 0, and N(0) > 0. By the first equation of
(2.2), forallr € (0, ¢)

G(t) = G(0)exp {/l r(l—G(s) — N(s))ds} ,
0

which implies that G(¢) > O forall ¢ € (0, ¢) because G(0) > 0. The second equation
of (2.2) implies for ¢t € (0, ¢)

aG(s)

——— ¢é%ds.
b+ G(s)

t
A(t) = A(O)e ™" + e*’/
0
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Since A(0) > 0and G(s) > Oforalls € [0,¢), A(t) > O forallt € (0, ¢). From the
last equation of (2.2), we get for all t € (0, ¢)

t
N(t) = N(0) exp{/ [cA(s) —d]ds}.
0

As N(0) > 0,so N(t) > Oforall ¢ € (0, ¢).

Next, assume that 0 < G(0) < 1,0 < A0) < h”ﬁ, and N(0) > 0. By the
above proof G(t), A(t), and N (¢) are non-negative for all ¢ € [0, ¢). Since N(¢) > 0,
G'=rG(1 —G — N) <rG( — G). Because G(0) < 1, by comparison theorem

G(r) < 1forallt € [0, ¢). But, then from the second equation we have A" = biGG —
A< b“? — A. Again the comparison theorem implies A (1) < b”’? - (b“? —A(0))e .

Since A(0) < baﬁ, At) < b“? for all t € [0, ¢). Now define the domain

E=](G,AN):0<G<1,0<A<-—2_ N=>o0}.
bl

We have proved that given any (G(0), A(0), N(0)) € E the system (2.2) with this
initial value has a unique solution (G(t), A(t), N(t)) € E defined on the maximal
interval [0, ). In order to prove that { = oo, consider the following compact set
contained in E

K:{(G,A,N):OSGSl,OSASbLH,OSNSM}

for some constant M which is to be chosen. By way of contradiction, assume that
¢ < oo. Notice that we can assume that A(0) and N (0) are very small initial values that
is close to O because A (0) and N (0) represent relative concentration of chemoattractant
and relative number density of infiltrated immune cells at the beginning, respectively.

Then we can suppose that A(0) < bL+1’ by above proof A(t) < bL-H forall ¢ € [0, ¢).

The third equation of the system (2.2) implies that N'(r) < %N and then by

ac—bd—d
b+1

comparison theorem N (7) < N(0)exp {
that for all finite times ¢ € (0, ¢)

t}. Choose M > 0 big enough so

ac—bd —d

N (0)exp { b1

t} <M.
Thus N(t) < M forallt € (0, ¢) and hence (G(z), A(t), N(t)) € K forallt € (0, ¢).
This contradicts the conclusion of Theorem 3 on page 91 in Perko (2006). Therefore

{ = o0. O

4.2 Equilibrium analysis

Define the domain D = {(G,A,N) : 0 < G < 1,A > 0, N > 0}. By the The-
orem 4.1, D is a positive invariant domain for the system (2.2). So we refer it as
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a “global” domain. Let U = (G, A, N)T and f(U) = (rG(1 — G — N), b“+—GG —
A,cAN —dN)T. The equilibrium solutions of (2.2) are the solutions to f(U) = 0,
which is equivalent to

rG(1—G—N) =0,
aG _
b+G
(cA —d)N = 0.

k]

It is easy to obtain equilibrium solutions as follows.

e If0 < ac < d+bd then the system (2.2) has 2 equilibrium solutions Ey = (0, 0, 0)
and E1 = (1, b“ﬁ,O).

e If ac > d + bd then the system (2.2) has 3 equilibrium solutions which are E,

bd d acfdfbd).

E1, and the unique positive equilibrium solution E; = (m, vt By

Now we analyze the stability of all equilibrium solutions when the parameter a is
varied. First, the variational matrix of the system (2.2) is given by

r—2rG—rN 0 —-rG

b
D =|  Gieg L O
0 cN cA—d
r 0 O
A. At Ep = (0,0, 0), the variational matrix is Df (Ep) = | a/b —1 0 |, havingr,
0 0 —d
—1, and —d as its eigenvalues. Since r > 0, E is unstable.
B. At Ey = (1, hL-H’ 0), the variational matrix is
—r 0 —r
b
Df(EN) = | Giz ~1 3 y
0 0 5
which has 3 eigenvalues A = —r, Ay = —1,and A3 = %3954 10 < ac < bd +d

then A3 < 0, so E; is locally asymptotically stable. If ac > bd + d then A3 > 0,
hence E| is unstable.

C. In fact, when 0 < ac < bd + d, we can show that E; is globally stable. For
convenience, we make a translation of variables G = 1 — G, A = bL-H — A, and

N = N. The equilibrium solution £ is translated to E| = (0,0, 0). Then, after
dropping all the bars over variables, the system (2.2) becomes

4 _ (I-G)(N -G)
a ’
dA _ _a__, a-0)

dt  b+1  b+1-G’
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dN AN+ac—bd—dN @1
— = —C —— N, .
dt b+1

while the domain D is translated into D1 = {(G,A,N) : 0 <G <1,A < b"?, N >
0}. Let (G(0), A(0), N(0)) € Dy, then by Theorem 4.1 we have (G (¢), A(t), N(t)) €
D; fort > 0. Since —cAN < 0, the third equation implies N’ < ”C;i’rdl_dN. By
comparison theorem, 0 < N(¢) < N(0)exp %t} — 0 ast — oo since ac —
bd —d < 0. Thus N(t) decays to 0 exponentially fast. Now it makes sense to assume
that G(0) < 1 because if G(0) = 1 then it would mean that originally we don’t have
any glioma cells in tumor tissue. Then 0 < G(¢) < 1 for all + > 0. So by the first

equation of (4.1) we have

dG(t)
-0 - r(N(@@) — G(1)).

Integrating both sides from O to ¢ yields

1—-G(0)
exp{ [y r(N(s) — G(s))ds}

Gt)=1- 4.2)

Since N(t) > 0 for all ¥+ > 0 and N(t) — O exponentially as t — oo,
lim;— 00 exp{fé N (s)ds} exists and is positively finite. As — f(; G (s)ds is decreasing
with respect to ¢, so lim;_, o exp{— fé G (s)ds} exists and is either zero or positively
finite. This follows that lim,_, oo exp{fé r(N(s) — G(s))ds} exists and is either zero
or positively finite. Thus lim;_, o, G(¢) exists. As 0 < G(t) < 1 forall ¢t > O,
s0 0 < lim; o G(t) < 1. Due to (4.2), lim;_, exp{fot r(N(s) — G(s))ds} can-
not be zero. Therefore lim;_, o exp{ fot r(N(s) — G(s))ds} is positively finite. Since
G(0) < 1, by (4.2) we obtain lim;_, o, G(¢) < 1. Again, by the first equation of (4.1)

dG (1)
dt

=rN@®(1 -G@) —rG@)(1 — G(2)).

Integrating both sides from O to ¢ and then dividing by ¢ give

_ t t
w - ;/ FN(s)(1 — G(s))ds — ;/ rG(s)(1 — G(s)ds. (4.3)
0 0

Since0 <1 —-G(s) <1foralls >0and N(s) >0 foralls > 0,

t

t
051/ rN(s)(l—G(s))dSSl/ rN(s)ds.
t Jo 1 Jo
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By L'Hospital’s Rule (Lee 1977, p. 28), since tlim N(t) =0, tlim %fot rN(s)ds =
— 00 — 00
tlino10 rN(t) = 0. So letting t — oo in (4.3) yields

t
lim l/ rG(s)(1 — G(s))ds = 0.
—>oo 0

By the above proof, tlim G(t)(1 — G(1)) exists and hence, by L’Hospital’s Rule we
— 00
get

t
IMnGUX1—GOD=}m1%/rG@Xl—G@Dﬁ:ﬂl
—> 00 —> 00 0

Since tlim G(t) <1, tlim G (t) = 0. Finally, we show that tlim A(t) = 0. From the
—00 —00 — 00
second equation of (4.1), we have

t _
A(t)zA(O)e_’+e_’/< a _ad G(s)))efds.

o \b+1 b+1—G(s)

By L’Hospital’s Rule,

t (1-G(5))
N / o« _a0-Ge\,, _ (et - 5EEE) e ds
m e — e S = l1im
1—00 o \b+1 b+1—-G(s) t—00 et
( a a(l—G(t)))ez
. b+1 b+1-G(1)
= lim
t—00 et
) a a(l —G(1))
= lim —
t—oo\b+1 b+1—-G(t)
a a
= - =0.
b+1 b+1

Thus tlim A(r) = 0. Therefore, E| is globally stable with respect to the system (4.1).
—00

In other words, the system (2.2) has a global attractor E.
D. When ac = bd + d, the system (4.1) becomes

dG

— =r(1=G)(N - G),

= r( )( )

dA  a a(l —G)

dt ~ b+1 b+1-G’

dN

= —CAN. 4.4
7 c 4.4)
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T
LetU=(G, A, )T and F(U)=(r(1 = G)(N = G), 57 — A — 445% —caN)

then the variational matrix at E| is

—r 0 r
L:=DF(E,) = (bf’ﬁ)z -10
0 00
which has two negative eigenvalues A1 = —r, Ap = —1, and one eigenvalue A3 = 0.

To study the stability of the equilibrium solution E, we will utilize the center man-
ifold theorem to reduce the system (4.4) into a center manifold, and then look at
the reduced system. Without loss of generality, assume that » # 1. Then 3 corre-

2 T
sponding eigenvectors with respect A, Ay, and A3 are V| = (%, 1, 0) s

T
Vo, = (0,1, O)T, and V3 = (1, #, 1) . We set a transformation matrix to be

T = (Vi, Va, V3). Then the system (4.4) can be written as ‘Z{ = LX + Fj, where

F = GN +rG?, & — «l=0) @G _cAN) . Set U = TY wh
1 = \7ON+76% 57 = 5516 — G120 € et = whete

Y = (y1, y2, y3)7, then the system (4.4) is equivalent to

dy ~1 —1
o =TTULTY + 771y,

where T-'LT = diag(—r, —1 0) and G = Myl +y3, A=y +ym+

(bH)zys,andN—ys Denote T~ Fi = (fi, f2, f3)", then

b= ab |:r(l—r)2(b+1)4 )

A=)+ 1)72 a2

N (r(l — )b+ 1)?

ab b+ 1273

abc 5
+ec)lyivzt+eyay3z+ ——=5Y
= Anyl + Aiyiys + Anyays + Asyg,

rab A=r*G+D* 5, [(A=rb+1)?
A-rnG+D2 a2 1‘( ab +c>y1y3

abc 2]
—CNy3 — 5

fH=

b+ 127
_ 2
L a—t r)éhi) yI—ay3 Cd—n ab
b+l b+ 1 _ (170;54,1)2)}1 —y3 yl (b+ 1)2Y3

a  a—Biyi—ays
b+1 b+1— By —y3
= B11y12 + B13y1y3 + Bazy2y3 + B33y32 + K1, y2, ¥3),

= BllY12+Bl3Y1Y3+B23)’2)’3+B33Y§+ + B3y1 + Bays
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abc 2
b+ 123
= C13y1y3 + C23y2y3 + C33y32,

f3=—cy1y3 —cy2y3 —

where A;;, B;j, C;j, and B; are easily determined and

__a—Byyi —ay;
b+1 b+1— By —»

K1, y2,¥3) = + B3y1 + Bsys.

Note that g € C*°, K(0,0,0) = 0, and DK (0, 0,0) = 0. Using the Taylor series,

we can rewritten K as an infinite polynomial of yj, y», and y3 with degree at least 2.
Next, the transformed system can be written as

dz fi
2 _Bz ,
dt + <f2>
dy3

25 i
R v+ f3

(4.5)

where B = diag(—r, —1) and Z = (y1, y2)T. It is straightforward to check that
the functions f;’s are C? functions, f1x(0,0,0) = 0 and Df(0,0,0) = 0, where
k = 1,2,3, and Df is the first derivative of the function f. Thus, by the Center
Manifold Theorem (see Tian 2011; Carr 1981), there exists a center manifold given
by Z = h(y3) = (h1(y3), ha(y3))T with h € C?, h(0) = Dh(0) = 0, and it satisfies

S1(h(y3), ¥3)

Bh(ys) + (fz(h<y3>, ¥

) = Dh(y3) f3(h(y3), ¥3).

We can assume that y; = h1(y3) = ezy32 + e3y33 + O(yg) and y; = m2y32 + m3y33 +

0(y3). Then f3(h(y3), y3) = C33y3+0(y3), where C33 = — (b‘fﬁz < 0. The behavior
dys

of zero solution of the system (4.5) is governed by that of the single equation ~7* =

f3(h(y3), y3) or ‘%3 = C33y32+0(y§). Since C33 < 0, y3 = Oislocally asymptotically
stable. Therefore E; = (1 0) is also locally asymptotically stable when ac =
bd +d.

_a_
s b1

E. Now assume that ac > bd + d. Then there is a third equilibrium solution E, =
( bd d ac—d—bd

ac—d’ ¢’ ac—d

), which is the unique positive equilibrium of the system (2.2).
The variational matrix at this point is

rbd rbd
- acf% 0 " ac—d
Df(Ex) = |&Zes  —1 0
0 clac—d—bd) 0

ac—d

The |Df (E2) — AI| = 0 1is equivalent to
pA) =1 +aix? +ash +a3 =0,
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where a; = a’CIde +1,a0 = a’clidd, and a3 = W. Since ac > bd + d, all the
coefficients a;’s are positive. By the Routh-Hurwitz Criterion, all roots of p(A) = 0
. . a a
have negative real parts iff Hy = a; > 0, H, = 11 a3 = ajap —az > 0, and
aiaz 0
Hy = |1 a 0| =a3H, > 0. Since H; = a; > 0 and a3 > 0, these conditions are
0 ay asz

the same as H, > 0. We have

0

rbd rbd rd(ac —d — bd)
Hy =ajay —az = +1 >

ac—d ac—d ac

(rbd+ac—d)a (rbd+ac—d)a
(ac—d)?(ac—d—bd) (ac—d)?(ac—d—bd)’
can conclude that if ¢(a) > i then the positive equilibrium solution E; is locally
asymptotically stable.

is equivalent to > i Define ¢(a) = then we

4.3 Hopf bifurcations

Now, we study the function H(a) = H; to get insight into the Hopf bifurcation that
occurs when ac > bd +d. Note that we fix all the parameters except a and we consider
H> as a function of the variable a. Then we have

H(a) = labe(rbd + ac — d) — (ac — d)*(ac —d — bd)].

ac(ac —d)?
Sety =ac—d,thenac =y +d. Since ac > bd +d, y > bd. So

_ rd®(y)
Hia) = ac(ac —d)?

where ®(y) := b(y + d)(rbd + y) — y*(y — bd) = —y* + (b + bd)y* + bd (rb +
1)y + rb*d? is a cubic polynomial of y. Clearly, H (a) and ® (ac — d) have the same
roots. It is easy to compute

@ (bd) = b*d*(r + (b + 1) > 0.

Since limy ;o ®(y) = —00, ®(y) = 0 has at least one real root, say y§, bigger than
bd. On the other hand,

' (y) = —=3y*> +2(b+ bd)y + bd(rb+ 1) =0

has 2 distinct real roots y, | = % (b + bd £ \/(b + bd)? +3bd(rb + 1)). Note that
y2 > 0 > yj and ®(0) = rb%d* > 0. As @(y) = (3 — 24) &'(y) + r(y) and

r(y) = [3bd(rb+ 1) + 3(b + bd)*] y + rb>d®> + bd (b + bd) (rb + 1), s0 ®(y2) =
r(y2) > 0. There are 3 cases. First, if ®(y1) < 0 then, since limy_, _, ®(y) = 0o, ¢
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has at least one real root, say yT, less than y;. Since ®(0) > 0, ® has at least another
real root, say y;, between y; and 0. Thus & has 3 distinct real roots y|' < y; < y5 <
0<bd < ygk. Second, if ®(y;) = 0 then, since ®'(y;) = 0, ® has one repeated real
root yj = y1. So ® has 2 distinct real roots y|' < 0 < bd < yj. Lastly, if ®(y;) > 0
then @ has a unique real root y3 > bd.

Lemma 4.1 The equation H(a) = 0 has only one root ay bigger than as, := d(h'H)

Furthermore, there is a small neighborhood of ag, (ag — 81, ag + 81), where 81 <
ap — ag,, such that H'(ap) # 0 and H (a) is monotonically decreasing in this interval.

Proof From the above argument, in any case y3 is the unique positive root of ®(y) = 0.

Letag = 274 £) = 0, H(ap) = 0. As y* > bd, s0 ap > as,. Note that
@' (y;) < Osince y; > y» > yi. Itis easy to compute

" aplage — d)?

Since H'(a) is continuous, there exists a §; > 0 that can be made smaller than ag — aj,
so that H'(a) < O forall a € (ag — 81, ap + 81). We’re done. O

Let ay, = ag, then H(a) > 0 when a,, < a < ay,, H(as,) =0, and H(a) < 0 when
a > ag,. From Lemma 4.1, ay, is a unique positive value that zeroes out the function
H (a) and after ay, the function H (a) is always negative.

In order to show that the Hopf bifurcation occurs in the system (2.2) when a passes
through the critical value ay,, we need following two lemmas whose proofs can be
found in Tian (2011), Phan and Tian (2017).

Lemma 4.2 A cubic polynomial 13 + aiA* + a» + az = 0 with real coefficients has
a pair of pure imaginary roots iff ay > 0 and az = ajay. When it has pure imaginary
roots, the pure imaginary roots are %xi./as, the real root is —ay, and ajaz > 0.
Furthermore, the real part of two complex roots of the above cubic polynomial is
positive iff ax > 0 and a3 — ajaz > 0.

Lemma 4.3 Consider a coefficient parametrized polynomial \> +ay (t)A> +ax (T)A +
az(t) = 0, where the coefficients ay(t), k=1,2,3, are C U yeal-valued functions. Denote
its complex roots by A(t) = a(t) +iB(7). Suppose there is a 1y such that a(tp) = 0
and B(t9) # 0, i.e. AM(t0) = i B(10). Ifa'(t0) = Othena;(t0)az (o) = az(to)(a5(t0)—
ax(t)aj (10)).

Now we consider each coefficient of the characteristic polynomial p(A) to be a
function of the parameter a. So

p(R) =21 + a1 (@A + ax(@)r + a3(a), (4.6)

where a; (a) = ’bd 7+l ax(a) = a’bed,anda3(a) = W.Sinceac > bd+d,

all the coefﬁcients ak (a)’s are positive. Denote the complex roots of (4.6) by A(a) =
a(a) £ iB(a). By Lemma 4.1, H(a) is monotonically decreasing in a neighborhood
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of ag, (ap — 61, ap+61). Whenag — 61 < a < ag, Hy = H(a) > 0, and we know that
Hy = ai(a) > 0and H3 = a3(a) Hy > 0. By the Routh—-Hurwitz Criterion, «(a) < 0.
When ag < a < ag + 61, H(a) < 0 which implies that a3(a) — aj(a)az(a) > 0. Due
to Lemma 4.2, «(a) must be positive. When a = ag, H(ap) = 0 which means that
az(ag) = ay(ap)az(aop). Since az(ag) > 0, by Lemma 4.2 the cubic equation p(A) = 0
has a pair of pure imaginary roots and hence «(ag) = 0. Thus we have proved that the
real part o(a) changes sign as a passes through ag. Finally, we state a theorem that
guarantees the occurrence of Hopf bifurcation for the system (2.2) as the parameter a
passes through the critical value ayg.

Theorem 4.2 There exists a neighborhood of ag, (ag — 8¢, ag + 8o), such that for each
a in this interval the characteristic polynomial (4.6) has a pair of complex conjugate
eigenvalues AM(a) = a(a) £ ipB(a), in which o(a) changes sign when a passes through
ao and B(a) > 0 in the interval. Furthermore, when a = ay, (4.6) has a pair of pure
imaginary roots and one negative real root, and o' (ap) # 0.

Proof When a = ag, from the above argument, p(A) = 0 has a pair of pure imaginary
roots A(ap) = =iB(ap). In light of Lemma 4.3, B(ag) = /az(ao) = /-4 > 0.

apc—d
Since B(a) is continuous with respect to a, there is a neighborhood of g so that
B(a) > 0 in this neighborhood. The radius §¢ of the neighborhood can be taken small
enough so that §9p < §; in Lemma 4.1. Hence when a € (ag — 8¢, ap + o) the
cubic equation p(X) = 0 has a pair of complex conjugate eigenvalues with positive
imaginary parts and real parts change sign when a passes through ag. It remains to

prove that «(ag) # 0. Indeed, if ’(ap) = 0 then Lemma 4.3 implies that a5 (ag) —

> (@0)az(ag)
d}(ao)az(ag) = % On the other hand,

H'(ag) = aj(ap)az(ao) + ai(ag)as(ag) — aj(ao)

— a1 (a)a) (ag) — 2L0ED)
az(ao)
_ @@ - as@)d@) _ Had@) _
az(aop) (o) ’

which is a contradiction since H'(ap) # 0 by Lemma 4.1. This completes the proof.
(]

Because we cannot find exactly algebraic expression for ay, it is very difficult to gain
insight into the nature of periodical solutions that occur around the equilibrium point
E; as a is close to ap such as their amplitudes, periods, and their stability. But we
know that ay, := ay is the unique critical point after a,, at which the function H (a)
has zeros and so we can have only one Hopf bifurcation at a = ay,. Thus, there will
be only one family of periodical solutions rising from this bifurcation. We will use
numerical simulations to demonstrate some typical dynamics of periodical solutions
for the system. However, we can make some statements about the general properties
of periodical solutions occurring around E» as in the following corollary.
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Corollary 4.1 If E; is stable but not asymptotically stable at a = ag then all solutions
of the system (2.2) in a neighborhood of E, are periodical in a surface. If E> is
asymptotically stable or unstable at b = by then there is an asymptotically stable
periodical solution in a neighborhood of E» as a is close to ay.

We now look at the relation between equilibria £1 and E>. Whena < a;,, we showed
that £ is globally asymptotically stable; furthermore, the equilibrium E5 is not in the
positive invariant domain D. As a increases to ay, = @, the equilibrium E3 moves
into D, and it coalesces with the equilibrium E. Ata = a,,, E; = E; and we proved
that it is locally asymptotically stable. When a > a,, and a is in a neighborhood of ay;, ,
E5 is still locally asymptotically stable while £ becomes unstable. This demonstrates
a similar type of transcritical bifurcation occurs at a = ay,. Therefore, we prove the

main Theorem 2.1.

5 Analysis of the SDE system

This section is devoted to deriving a sufficient and almost necessary condition for weak
persistence of the SDE system (2.1), in other words, the condition for distinguishing
two types of gliomas.

5.1 Preliminaries

In previous section, we proved that D = {(G, A, N): 0 <G <1, A>0, N >0} is
the positive invariant domain of the deterministic system (2.2). It is natural to expect
D is also the almost sure positive invariant domain for the stochastic system (2.1). We
prove this fact in the following theorem.

Theorem 5.1 For any initial value u = (G, A, N) € D, there exists a unique a.s.
continuous global solution U (t) = (G(t), A(t), N(t)), t > 0, for the system (2.1) that
remains in D a.s. Particularly, if N = Othen P,{N () =0Vt >0} = 1,andif N > 0
then P,{N(t) > 0Vt > 0} = 1. Similarly, if G =0 then P,{G(t) =0Vt >0} =1,
andif0 < G <land N > 0thenP,{0 < G(t) <1Vt > 0} = 1. Ifeither G > 0 or
A > 0then P, {A(t) > 0Vt > 0} = 1. Finally, the solution U (t) is a strong Markov
process that possesses the Feller property.

Proof Since the coefficients f(U) and g(U) are locally Lipschitz continuous on
(=b, 00) x R2, there exists a unique a.s. continuous local solution U(t) =
(G(t), A(t), N(t))T up to the explosion time

G(1)

Iezinf{t>0:min{b+G(t),

A(t), N(t)} = —oo or max{A(t), N(t)} = oo}

with any initial value in (—b, c0) X R? and, furthermore, the solution U (t) with
t € [0, t.) is a strong Markov process with Feller-Markov property (see Khasminskii
2012). Next, we will show that P, {t, = co} = 1 when the initial value is in D. Indeed,
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by the equation of N (¢), we have

t 2 t
N(t) = Nexp :/ |:cA(s) —d— %Az(s)i| ds + 12/ A(s)sz(s)} .
0 0

It follows that if N = O then N(t) = O for all t € (0, 7,) a.s. and if N > O then
N(t) > Oforallt € (0, 7,) a.s. Next, the equation for G (¢) implies

t
G(t) = Gexp {/ r(l—G(s) — N(s))ds} .
0

So it is obvious that if G = 0 then G(t) = O forall7 € (0, 7,) a.s.andif 0 < G < 1
and N > Othen G(¢) > Oforallz € (0, t,) a.s.and N(¢) > Oforallt € (0, 7,) a.s. By
comparison theorem for the equation of G(¢), dG(t) = rG(t)(1 — G(¢t) — N(¢))dt <
rG(t)(1 — G(t))dt. This implies that 0 < G(¢t) < 1 for all r € (0, t.) a.s. From the
equation of A(r), we get
by aG(s)
A(t) = ¢ |:A +/(; oy g G(S)ds:| (CA))

where

_ ¢ 112 G2(s) " 11G(s)
¢Z—CXP{A [—l—gm}ds—i-/o de](S)} (52)

IfA=0and G > Othen G(t) > Oforall t € (0, 7.) a.s. and it implies that for a.s.

t
_ _1 aG(s)
A(r) = ¢>t/0 on 5T GE) G(s)ds >0 Vire(0, ).

If A>0and G =0then G(r) = 0forallt € (0, 7,) a.s. Thus A(¢) = ¢;A(0) > 0
forall r € (0, 7,) a.s. It is clear that if A > 0 and G > 0 then we have A(t) > O for
allr € (0, 7,) a.s. Therefore, we have shown that if the initial value u = (G, A, N) is
in D then fora.s.0 < G(t) <1, A(t) > 0,and N(¢t) > Oforall ¢t € (0, 7).

Now we consider V(G, A, N) = A+ % log(1 + N). Then it is easy to compute for
allt € (0, 7.)

aG (1) Aw)  d N@ _r_zzAz(t)Nz(t)< a

£V(t):b+G(t) N()+1 EN(t)~|—1 2c (N +1D2 ~ b+1°

Let &, = inf{t € [0,7.) : A(t) > nor N(t) > n}. Clearly, &, is increasing as
n — o0. Set

To 1= ll)rrgoén =inf{r € [0, 7,) : A(t) = o0 or N(t) = oo}.
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Since max{A(t,), N(t.)} = 00, Too < T. a.s. Thus it suffices to show that P,{to =
oo} = 1. Fix t > 0, applying Itd’s formula for V' gives

E V(A NE) :=E, V(G NE), At A&y, Nt AE))
&
= V(G(0), A(0), N(0)) + E, / LV(G(s), A(s), N(s))ds
0

<K+-—2 gy <k+-Y
- b+1 "= b+1

where K = V(G(0), A(0), N(0)) is a positive constant. On the other hand,

E, V(i A &) z/

_ V(i AENIP, = / V(G (&), A(6n), N(5n))dPy.
<t

{6n <t}

But, since V(G (€,), A(€,), N(En)) = A(E)+ 1 log(1+N (€,)) = nAtlog(l+n) =
h(n),

Pu{5n<t}§w—>035n—>oo
h(n)

and so P, {tec < t} = 0. Ast > 0 is arbitrary, so P,{toc = oo} = 1. This completes
the proof. O

5.2 Ergodic invariant measures on the boundary

To investigate the long-term behavior of the SDE system, we first find possible ergodic
invariant measures of the system (2.1) on the boundary 9 D.

A. When N(0) =0, N(t) =0 for all + > 0 a.s. The system (2.1) becomes

dG =rG(1 — G)dt,
5.3)

G AG
dA:[ a A]dt+r1 dw;.

b+G b+ G

If G(0) = 0 then, from the first equation above, G(¢t) = 0 for all # > 0 a.s. But then
the second equation becomes d A = — Adt, which implies that A(r) = A(0)e™" — 0
a.s.as t — o0. So we obtain an ergodic invariant measure | = §; x & x §; for
solutions of (2.1) on 9 D.

B.If 0 < G(0) < 1 then the first equation of (5.3) implies that lim,_, o G(¢) = 1 a.s.
If G = 1 then the second equation becomes

~ a ~ ‘L'l ~
dA=———A)dt AdW,. 54
(b+1 ) TR 4
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Let ¢ > 0 and consider

i i Y2 — u) A 2en? 2a(b+1) 1
s(A):/ exp{—f ?i—u)z}dY=Cl/ y 0 eXpy———— 4y
c ¢ b+1 ¢ T y

for some positive constant C1. Rewrite the integrand as

T
y 1 2 4 2

20412 2 2
2a(b+1) 1 14a*(b+1)" 1
Sl 24Dl a6 LT
T y 2! 7 y

Clearly, there is a k € Z4 such that 2(}1;21)2 — k < —1 and hence s(0+4) :=
1

hmmﬂwA)= —mefummqs@@:=lmuﬁmﬂﬂ)=<m.ﬂmnﬁa)mdk
lates between 0 and co. Hence (5.4) has a unique invariant measure 7 on R4 whose
density p = p(x) solves the associated Fokker-Planck equation

d a d> |1 tix? —0 ss
_d_x|:<b+1_x>p(x)i|+ﬁ 5—(b—|—1)2p(x) =0. (5.5)

2.2
Set y(x) = %%p(x), and y(x) = %[b%% — %]. Then (5.5) is equivalent
to

Y'(x) —y@)yx) =-C

for some constant C. The solution of this equation is given by

—A [K+c/lm]
y(x) = Ax) ; m

for some positive constant K. It is easy to show that p is a density iff C = 0. Note
that

' 20412
A(t)=exp{f1 y(u)du}:exp{@}t T expi_wl}.

1 31 4

Thus

px) =K

2 2
7 7 X

2b + 1)2 {mw+n]—”y2 [ mw+n1}
5 exp X I expl——m—5——1¢.
4

Leta := 2(%)2 +land 8 := @, then p(x) = K x~* " le=#/* where
1

o0 -1
K = (/ x“leﬂ/xdx>
0
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is the normalizing constant. By changing variable u = 7, we get

a—1
/Oox—oc—le—ﬁ/xdx =B /oo E e B/x ﬁdx
0 0 X x2

=p /oo u* e "du = BT (),
0

o
where I' is the Gamma function. Hence p(x) = F'B( )x“" Le=B/x In other words,
o

the invariant measure 7 is the Inverse-Gamma distribution with parameters o and S.
Therefore iy = 87 x m x 63 is an ergodic invariant measure for solutions of (2.1) on
aD.

From now on, we assume that (- r )2 < 2 in order for the second moment of the
invariant measure 7 exists.

C. We state and prove several lemmas that are needed to prove the main theorem 2.2.

Lemma5.1 E,A*(t) < ef’(A(O) + K) for some constant K > 0. There exist
cps Kp > 0 such that E,A*TP(t) < A**P(0)e=»" + K, for some small constant
p > 0.

Proof We can easily obtain that LAY < Ci(l+ A4) for some constant Cp, then
standard arguments [see e.g. Mao (2007, Section 2.4)] can be applied to prove the first
part of the lemma.

To prove the second part, noting from It&’s formula for A7 (p > 0) that

LOAPP) = 2+ p)A*? (—G ) et (L)ZA”"
b+ G 2 \b+G

aG 72 G 2
2 —— Atr_2 1-Q L ——) | A%fr
(+p)b+G (+p)[ (I+p) <b+G>:|

2
a2+ p) 1+ 1+p T 2 2
<—ATP -2 1— —=(— A2
=T+ 1 @+p) 2 \b+1
Notice that lim [ - 32D ] — 3(32)? > 0 and hm E,A*P =E,A.
Since dzE A< b+1 —E,A EA < b_+1 Thus, for p > 0 small enough, 1 —

B2 (82 > 0and B, AP < ;4 Hence B, L(A**P) < H) — ¢, AP for p > 0

small and for some positive constants H, and ¢ ,. We show thatlim sup,_, ., E, AP <

H” . In fact,

E, L(e' AZP (1)) < ¢! [(Hp — ¢y B, AYP) + c,,IEuA2+”] = Hye'
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and then, by Itd’s formula, we get

t
E, (év’A“P(;)) =E,A”P0) + E, / L7 A*FP (s))ds
0

t
- H, .
<E,A*P0) + H,,/ er’ds = E,A*TP(0) + C—p(e‘”’ -1.
0 14

Dividing both sides by e?’ gets

. H .
E, AP (1) < E, AP (0)e " + —2(1 — =",
Cp

This implies that lim sup,_, ., E,A2P (1) < ’:’—’j O

Lemma5.2 E, sup N9(t) < K7 N1(0) for q € (0, %) sufficiently small and any
1€[0,T]
T > 0.

Proof Apply It6’s formula for N7 (0 < g < 1), we have for all ¢ € [0, T]
t t
Ni(t) = N%(0) —|—/ L(NY(s))ds —1—/ qraN1(s)A(s)dW>(s)
0 0
where
1
L(N?) = gN1 |:cA —d+ E(q — 1)122A2:| < H,N‘
for some positive constant H,. Then
t
E,N9(t) < N1(0) + Hq/ E.N9(s)ds.
0
By Gronwall’s inequality, for all# € [0, T]and g € (0, 1),

E,N%(1) < N9(0) exp{H,t} < H;N%(0).

Now we have

t
E, sup N9(t) < N1(0) +E, sup /E(Nq(s))ds
t€l0,T] t€[0,T]170

+E;, sup gm
t€[0,T]

t
/ N () A(s)dWas)
0

@ Springer



Deterministic and stochastic modeling for PDGF-driven... Page330f45 22

It is clear that

t T
E, sup f L(N9(s))ds <E, sup H, Ni(s)ds = Hq/ E,N9(s)ds < HyN9(0).
1€[0,T] 1€[0,T] 0 0

On the other hand, by the Burkholder—Davis—Gundy inequality (Revuz and Yor 1999,
p. 160), for some constant C1 > 0

T 1/2
E, sup qm < CE, |:/ qu(s)Az(s)dsj|
te[0,T] 0

T p/2+p) T 2/Q2+p)
<C |:(Eu / N2q<2+f’>/1’(s)ds> (IEL, / A2+”(s)> }
0 0

here we have used the Holder’s inequality in the last one. By Lemma 5.1, choose
p > 0 small enough so that E,, fOT A%*tP(s)ds < oo forany T > 0. For ¢ <
sufficiently small, we have for some positive constant H3

t
/ NY(s)A(s)dWa(s)
0

1/2

R
2(2+p)

T
Eu/ N2CEP/P(5)ds < H3N24FHP)/P(().
0

Thus

E, sup gm
t€l0,T]

t
/ N(s)A(s)dWa(s)| < HaN?(0)
0

for some positive constant Hs. This completes the proof. O

Lemma 5.3 There exists a compact set K C D such that for any initial value u =
(G, A, N) € D°, the solution process U (t) = (G (1), A(t), N (1)) is recurrent relative
to K.

Proof By Theorem 3.9 p.89 in Khasminskii (2012), it suffices to construct a non-
negative twice~ differentiable function V. = V(G, A, N) so that LV < 0 for all
(G, A, N) € K. Now we consider V(G, A, N) = G +2cA + In(1 + N), then

G A—dN 2 A2N?
LV=rGl-G-N)+- 2caG a4 N _ 5
N+1 2 (1+N)2
2caG dN
<rGl—-G)+ —— —cA— ——
b+G 1+N

< Hs1{Gya+N<Rr) — Hol{G+a1N>R)
for some positive constants Hs, Hg, and R. Hence

K={(G,ALN)eD:G+A+N <R}
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is the desired compact set. O

D. Next, we will prove the following claim that is also needed for the proof the main
theorem 2.2.
N (1)

In
Claim 5.1 Iflimsup ———= < —r' a.s for some constant r’ > 0 then lim |A(t) —
t—00 t t—>00

A(D)| =0 a.s.

Proof Under the hypothesis of the claim and the first ODE in (2.1), we can easily
show that lim sup,_, ., ¢”'|G(¢) — 1| = 0 for some constant p > 0. As a result, for
any ¢ > 0, there exists K, such that

Py {e”|G(1) — 1| < K,, 1 =0} = 1 —e. (5.6)
Let A(t) satisfying
_ G - AG _
dA = | 27 A ) ar + 222 aw, with A(0) = A(0) (5.7)
b+G b+G

where G(1) = G(r A &), & = inf{t > 0 : e”"|G(¢t) — 1| > K.}. From the equation
(5.4) and (5.7), we get

aG (1) _a
b+G(t) b+1

ﬂAm—Aa»z[

—Oﬂﬂ—ﬁo»}m+(”A@G0X_nAm> W

b+ G(@) b+1

and then

G(@) RN
b+G() b+l

ﬂmn—AmV:{—mmn—Amf+aa<

+ ‘L’2 a(i)
"\s+G0)

1 )7 s 2 o
o AW = A A1)

)uun—Ao»

b(G@) = 1)
b1 b+l ] }m

(b+Db+G®) (5.8

(Ame A@)
27y —

— A1) — A(t)dwW
b1 50 b+]>((t) @)dW;

=—0(A(1) — AD))>dt+h (1) (A1) — A(t))dt

+ GW bt Xaﬁ—uiifzap&n ho ()dt+h3()dW
b+G() b+1 b+1 2 3 !
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2 = 20 A1
Whereé::Z—t—l,hl(t)::%z L_t)—; ,hg(t)::w,
(b+1)? b+G(r) b+1 b+ DB+G@)
and
o ADG@) A\ — o
h3(1) =27 (b+6(t) b 1) (A(r) — A@)).

One can easily obtain that from the fact that lim sup,_, , e”’ (G@) — 1) = 0 that

sup e”'/2(|h1 ()] + [ha(1)]) < K|, (5.9)

t>0

for some non-random constant K.
Hence, for some positive constants », K1 and K7, there exists #yp > 0 such that
t > ty implies

E,L(A(t) — A1) < —0E,(A(t) — A(1)> + K1e "B, |A(r) — A1)

G(1) LYo 2 s
(b+5(t)+b+1)A(t) b1 OA0]

+ Kye "'E,

It is clear that E,A(1)? is uniformly bounded for u € D° and, by Lemma 5.1 with
slight modification, so is E, A(t)%. Hence both E, |A(r) — A(7)| and E,, (A(t) A(¢)) are
uniformly bounded. Thus

EyL(A(1) — A(1))> < —0E,(A(t) — A())* + Kze "

for all t > 9 and some positive constant K3. Let 0 < 6y < min{#, r}, then for all
t>0

EL (%' (Aw) = A1))?) = &' [60B. (A1)~ A1) ~0E, (A1)~ A1)+ Kze ™"

< Kz~ =0,
Again by Itd’s formula,
t
Ee (A1) — A1) = &Y, (A©0) - A(0)* +E, / £ (e (A(s) — A®)?)
0

t
< E,(A®0) — A(0)% + K3/ o r=00)s g ¢
0

= E,(A(0) — A(0))> + K3 [1 _ef(rfeo)l:l’
o

which follows that E, (A(r) — A(t))2 < I£4e’90t for all + > 0 and for some positive
constant K4. By Holder’s inequality, E,|A(t) — A(1)| < /Kge %"/ forall t > 0.
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Now we have for any n > 1

/ L(A(s) — A(s))ds

E, sup [A@t) — A@W)| <E,A®n) — A(n)| +E, sup
te[n,n+1] eln,n+1]

! A)G(s)  A(s)
f B (b+6(s) - b+1>dwl(s) '

+E, sup
te[n,n+1]

When n > tg, for some positive constant K5

E, sup

teln,n+1]

n+l1
<E, /
n

ak [+ n+1
< P e Sds + \/K4/ e~ 05/2q5 < Kse 00/,
n

n+1 _ 5
<E, / \LCA(s) — A(s))lds

t
/ L(A(s) — A(s))ds

a@(s) a

b+G(s) b+1

n+l 5
ds —HEM/ |[A(s) — A(s)|ds

On the other hand, by the Burkholder—Davis—Gundy inequality (Revuz and Yor 1999,
p- 160), there is a positive constant C > 0 such that

/’T Z(s)@(s)_ A(s) AWL)
"\boxce) b+1)

E, sup
te[n,n+1]

n+l [ Ar\ A 2
< CuE, / A(S)E(S) _A®) ds
\ b+G(s) b+1

ntl G(s) 1 1 — - g
=CnE, /n |:A(s) <b oo T 1) + b 1(A(s) — A(s)):| ds
n+1 5 E(S) 1 2
2 |E, A — — d
< CT]\/_ fn (s) <b n G(s) b I 1 N

n+l (A _ A 2
cui B, / <M) s
i b+1

C

b1
for some positive constant Kg. Thus for all n > 0 we get

E, sup [A(r) — A(t)] < Kqe 0"/2
teln,n+1]
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for some constant K7 > 0. Then the Markov’s inequality implies for all n > 0

P, sup |Z(r>—/i(r>|ze—"°"/4}se%"/“ﬂau sup A1) — A(1)| < Kqe~ /4,
teln,n+1] teln,n+1]

Since Y K7(e~%/*)" < 00, Borel-Cantelli’s lemma implies with probability 1 there
n>0
exists a ng such that for all n > ny we get

sup  |A(t) — A(r)| < e~ Pon/4,
te[n,n+1]

Hence |A(1) — A(7)| — Oa.s. Itis obvious that P, {&, = oo} > 1 —gand A(t) = A(¢)
for any t > 0 if & = oo. Since ¢ > 0 is chosen arbitrarily, we can easily obtain the
desired result. O

Remark 5.1 Since 7 is the invariant measure of (5.4), it follows from the strong law
of large numbers that for a.s.

t o0
lim lE/ A(s)ds=/ Ay =P~ _¢
0 0

t—o00 t a—1 b+1
and
1 t 0o ~ ﬁZ 2a?
lim —-E / A?(s)ds = / A’ (dA) = = 5.
i~ Jo 0 (@—D@—2) 20+ 1)?—1;

We can see that uy := 81 x 7w X §g is the unique invariant measure of U (¢) on the set
{u=(G,A,N): N =0} where §g, §; are the Dirac measures with mass at 0 and 1
respectively.

E. To give an idea how to determine the long term behavior of (2.1), we look at the
Lyapunov exponents of 1¢1. Now, from the first equation of (2.1),

t
ln?(t) _ lnGt(O) n %/ r(1 — G(s) — N(s))ds.
0

When the solution U () is close to the support of 11 for a long time, GO can be

t
approximated by the average with respect to (1

Ar(uer) 1=/ r1—G—-Nydu, =r,
aD

which is the Lyapunov exponent of the ergodic invariant measure 1 along the solution
component G. Since A1(u1) = r > 0, the ergodic invariant measure (1 is always a
repeller.
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By the third equation of (2.1), using It6’s formula we get

InN(7r) InN(0)
t ot

1! 72 1 [t
+ —/ CA(s) —d — 2 A%(s) | ds + —/ 1 A(s)dWa(s).
t Jo 2 t Jo

If the solution U (¢) is close to the support of u, for a long time, and

In N(t)

In N (0)
t

1 fo 12 A(s)d W>(s) approximate zero for ¢ large enough while
1mated by the average with respect to u;

2 22
T T
A3(2) ¢=/ cA—d— 2A? duz=i—d— 24
aD 2

can be approx-

b+1 20+ 12—}’

which is the Lyapunov exponent of the ergodic invariant measure 1, along the solution
component N (¢). Let

X—A,( )_ ac T22a2
= Az(p2 =T 2(b—|—1)2—112'

When A < 0, N(t) approaches O a.s. By the same argument as in Sect. 3, G(¢)
approaches 1 a.s. and the occupation measure of A(¢) converges weakly to 7 a.s. due
to Claim 5.1. Hence p» is a local attractor. When A > 0, o becomes a repeller. In
fact, our main theorem 2.2 claims that if A < O then u; is a global attractor and if
A > 0 then the solution does not converge to 7 a.s.

5.3 Proof of the main theorem 2.2

It is ready now to give the detailed proof of the main theorem 2.2.

Case 1. Assume that o < 0. By Theorem 5.1, there are only two ergodic invariant
measures for the process (G(t), A(¢), N(t)) on the boundary d D, which are u; =
85 x 85 x &5 and p = 87 x 7 x &. Notice that

/ (cA—d—15A%)2)dp = —d < 0,
3D
/ (cA—d—15A%/2)dps = A < 0.
3D
Applying It6’s formula for N7 (0 < g < 1)
d(N?) = gN1 [cA —d+ = (q - D1y Az] dt + quuNTA dW,. (5.10)

Forg = 1,let M > 0 such that L(v/N) < —v/Nif A > M. Set H = sup[cA —d —
A>0

172A%), then H > 0 and L(¥/N) < H+/N for all N > 0. Now let n* > 8(H + 1),
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and define the family of occupation measures

l t
Iy () := ;/0 P, {U(s) € -}ds.

By the Fubini—Tonelli’s theorem (Revuz and Yor 1999, p. 160),

1
/ (cA —d — 13 A/2)T1*(dv) f (cA—d— 22A2/2); / P, {U(s) € dv}ds
D D 0

t
1/ U (cA—d—T13A%)2)P,{U(s) € dv}:| ds
t Jo L/p
t
- % / E,(cA(s) —d — T3 A%(s)/2)ds.
0

Due to Lemma 5.1, when the initial value u = (G, A, N)isin{G > 0,A >0, N =
0} C 9D suchthat G < 1and A < M, we have

1 t
sup —/ Eu(cA(s) —d — 13 A%(s)/2)ds < .
A<M,t>0 0

This means that {IT}};>¢ is tight in d.D. Then there is a sequence {fx}x>1 such that
fx 1 oo and ITj converges weakly to some invariant measure of U (7) supported by
{G > 0,A > 0, N = 0}. But, since puy is the unique ergodic invariant measure on
there, by lemma 3.4 in Hening and Nguyen (2018),

Tk

1
lim — | E,(cA(s) —d — 15 A(s)/2)ds = / (cA—d—15A%/2)dps = A < 0.
0 aD

k—o00 T

Use the argument as in Lemma 4.1 in Hening and Nguyen (2018), we can show that
thereisa 7* > 0 such that for any initial value u = (G, A, N) € (0, 1] x (0, M] x {0}
and forall T > T*

T
]Eu/ [cA(t) —d — 122A2(t)/2]dt < }‘Z_T
0

Because of the Feller propery of U (¢) [see Remark 3.1 in Hening and Nguyen (2018)],
and the uniform boundedness of £, A>*” by Lemma 5.1, we get

T 5 2 AT
IEM/ [cA(t) —d — T3 A%(1)/2]dt < > (5.11)
0

forall T € [T*, n*T*] and for any initial value u = (G, A, N) € (0, 1] x (0, M] x
(0, 8], where § is some positive constant. By (5.10), we get for any g € (0, 1) and
T € [T*, n*T*)

In N4(T) =In N2(0) + g m(T)
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where
T T
m(T) =/ [cA(t)—d—rzzAz(t)/2]dt+/ D AM)dWa(1).
0 0

Let ¢, 7(q) = E, exp{gm(T)}, then standard calculus shows that

d T
‘2” 0) = E,m(T) = E, / [cA(t) —d — T3 A% (1) /2)d1
q 0
and
d? 1
% = E,m* (e D < CEm(T) +E,e2" ™. g €10, 7
q

1

Since EN% < HN%, we have Eue%m(n = w < T Due to Lemma 5.1, we
N2

have Eumz(T) < Kr,m for some constant K depending on 7', M. Then

d? ~ 1
dd;"z’T = Eum*(T)e!™ ") < Ci= C(Krm + "), q €10, 7]

As a result, for any initial value u = (G, A, N) € (0,1] x (0, M] x (0,6], T €
[T*, n*T*], and g € (0, %) sufficiently small, Taylor expansion around ¢ = 0 for
du, T, reads

d¢uT 62 AT 62
T )+ —g><1-""g+ =4
dq ()+2C]_ 4q+2q

dur(@) <1+¢q
For sufficiently small ¢, we have
q q gAT
E,(N(T)/NO)) = Ey explgm(T)} = ¢u.7(q) < 1= o= <1

foru = (G, A, N) € (0, 1]x (0, M]x (0, 8]and T € [T*, n*T*].Since LNZ < —N2
if A > M, we can mimic the argument in Hening and Nguyen (2018, Theorem 5.1)
to show that

E,(Nm*T*)1/N(0)?) < p, forany u = (G, A, N) € (0, 1] x (0, 00) x (0, 8o],
for some &g, and p € (0, 1). Define

N4 (kn*T*) A 88
Y(h) = —————L kel
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Then

gAn*T*

E, (N9 (n*T*) A 87) < E,N?(n*T*) < N%(0) exp { } = N7(0)p.

It follows that E, Y (1) < N9(0) = Y (0), this combined with the Markov property of
U (t) implies that Y (k) is a super-martingale. Now, for € € (0, §p), let . := inf{k €
N: Y(k) > €}, Z(k) := 1y, iy N9 (kn*T*), and By := [kn*T*, (k + 1)n*T*]. By
Lemma 5.2, we have for some positive constant K

E, sup N9(t) < K N1(0). (5.12)
1e[0,n*T*]

By Markov’s property and due to (5.12),

Ey sup 1> N (1) = Ey {1{ﬂe>k}]EU<kn*T*> [ s 1{n5>r}Nq(t)”
teBy tel0,n*T*]

< KBy [13. =iy N (kn*T™)]

< K.p"N(0).

(5.13)

Here the last inequality follows from the fact that Y (¢) is a super martingale. As a
result, we have from applying Markov’s inequality to (5.13) that

Py, { sup 1 =0} N9 (1) > ,ok/z} <P, {sup 1 >0 N(@) > ,ok/z}

teBy teBy

< K.N9(0)p*/2.

Since Z,fi 1 K«N1(0) ,ok/ 2 < 00, Borel-Cantelli Lemma shows that, wpl, there exists
a ko so that k > ko implies 1(;,—o})N?(t) < p*/? for all t € By. As a result,
lim sup,_, o, V() < 0 as. on the event {n, = oo} for a nonrandom

t
positive constant r”. On the other hand, since Y (k) is a super-martingale,

Poine <k} = P{Y (k) > €} < Eui(k) - N4(0)

€
for all £ > 1, and hence P, {n. < oo} < @. Thus

_r”} =Pu{ne =00} >1- Nq<0)~

t €

P, { In(N4(t)) -

We have shown that for any €’ > 0 there exists a §' > 0 so that

In(N(1)) -

N < &' implies P, { ;

—r”} >1—€. (5.14)
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Next, we want to show that for some T > 0

inf P,(G(T) < 1, A(T) <M. N(T) <&} > 0 (5.15)
ue

for any compact set K in D. Indeed, consider the control system associated with (2.1)

G¢ = rG¢(1 — G¢ — N¢),
aG¢, A ‘L’12 A¢Gé T1A¢,G¢

"Th+Gy, P 2b+Gy?  b+Gy "
2

. T, 5
Ny =cApNy —dNy — ?A¢N¢ + 12A¢ Ny 2,
where ¢(t) = (¢1(), p2(1))T is a piece-wise continuous control. It is clear that

Gy(t) < 1 forall + > 0 and any control ¢. With the controls ¢ () < —H and
(1) < —H for sufficiently large H > 0, we can get Ap(T) < M and Ny(T) < &
for some T > 0. For any compact set K in D, by the support theorem [see Theorem
8.1 p. 518 in Ikeda and Watanabe (1989)],

P, {U(T) € Vy} > 0

for any initial value u = (G, A, N) € K, where Vs = (0, 1] x (0, M] x (0,¢).
Then the uniform bound (5.15) follows from the Feller property of U(¢). In view of
Lemma 5.3, for any initial value u = (G, A, N) in the interior of D, the process
U(t) = (G(t), A(t), N(t)) is recurrent relative to some compact set K in D°. That is,
&r < oo as. forall k > 1 where ¢y =0,

 =inf{t >0:U() € K},
G =inf{t >+ T :U@) € K).
Let Cy := {U(t) ¢ Vs Vit € [&k, Ck+1]1). By (5.15), there is a p* > 0 such that

P(Cy) = p* forall k > 1 and for any initial value u in D°. Using the Strong Markov
Property of the process U (¢), it is easy to show that

P(Mi_Co) <1 —=p")" -0 as n— o0

and hence P (U,‘?‘;l C,f) = 1. This means that for any initial value u in D°, the process
U (r) will eventually enter the set {G < 1, A < M, N < §'} in a finite time with
probability 1. Combining this with (5.14) and using the strong Markov property, we
can conclude that

q
P, {—ln(Nt ) < —r”} >1—¢
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for any €’ > 0 and for any initial value u in D°. Therefore, tlim hN@ 1;’ 0 _’7” <0
— 00

a.s. Using Claim 5.1, we obtain |A(?) — A(#)] = 0 a.s. and hence A(r) converges
weakly to the ergodic invariant measure . Now, the equation of N (¢) implies

. InN@®) . IaN 1 [ 242
lim = lim — 4+ lim - [ [cA(s) —d — 15 A“(s)/2]ds
=00t Jy

t—00 t t—oo

1 t
+ lim —/ T A(s)dWy(s)
t—oo t Jy
1 t
=i+ lim —/ 0 A(s)dWa(s).
t—oo t 0

In view of Theorem 3.4 in Mao (2007), since fot T A(s)dW;(s),t > 0, is areal-valued
continuous local martingale vanishing at t = 0 and

2.2
2a°t;

1 t
lim sup — A% (s)ds = ——— 2 <0
pr/o P =

—0o0

we have
1 t
lim —/ 7 A(s)dWs(s) =0 a.s.
t—oo 0
Thus
In N(¢
lim n (@) =Aa.s.
—00 t

That is N (¢) decays a.s. to 0 exponentially fast with the rate A.

Case 2. Suppose that A > 0 and the initial value u = (G, A, N) € D°. By way of
contradiction, assume that lim sup,_, Eu% fot In(N(s) + 1)ds = 0. By generalized
L’Hospital’s Rule (Lee 1977, p. 28), it implies that liminf; o E, In(N(¥) + 1) =
0. Then Fatou’s lemma implies that [, liminf; .o In(N(z) + 1) = 0 and hence
lim inf;_, 5 In(N () + 1) = 0 a.s. So there exists a sequence of positive real numbers
{tx}r such that ty 1 oo and In(N(#) + 1) — 0 as k — oo a.s. Hence N(¢;) — 0 as
k — oo a.s. By Claim 5.1, G(#x) — 1 a.s. and |A(#) — A(#)| = 0 a.s. This means
the family of occupation measures {H;‘k"(~)}, where uy = U (t), is tight on 9D and
converges weakly to the invariant measure ;. But, using Lemma 5.2 and (Hening
and Nguyen 2018, Lemma 3.4), we get

1
lim —E, In N (%)
k—o00 1k
1 [
= lim f/ Eu(cA(s)—d—rzzAz(s)ﬂ)ds:/ (cA—d—15A%)2)dus=1>0
0 aD
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which contradicts the hypothesis that lim sup,_, o, E, % fot In(N(s)+1)ds = 0. There-
fore, the proof of Theorem 2.2 is completed. O
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