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a b s t r a c t

This paper is devoted to moment exponential stability of a class of Markovian switching stochastic
differential equations with impulsive perturbations. Taking into consideration the long time behavior
of the switching device, we derive explicit criteria for stability and instability. The contribution of the
Markovian switching and impulsive perturbations to the stability and instability is revealed.
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1. Introduction

This work focuses on moment exponential stability of a class
f stochastic differential equations (SDEs) with Markovian switch-
ng and impulsive perturbations. The underlying process is a
wo-component process (X(·), α(·)), where X(·) describes the
iffusion behavior with impulsive perturbations while α(·) is a
arkov chain. Recently, the stability of such a class of stochas-

ic processes has been studied in various settings for different
omain of applications. To mention just a few, we refer to [1]
or an intensive reference of impulsive differential equations and
2,3] for modeling and analysis of hybrid systems. Related works
n asymptotic behaviors and stabilization of stochastic hybrid
ystems can be found in [3–8].
Let d,m be positive integers, M = {1, 2, . . . ,m}, R+ = [0, ∞),

nd N = {1, 2, . . . }. Consider the dynamic system in Rd
×M given

y

X(t) = b(X(t), t, α(t))dt + σ (X(t), t, α(t))dw(t), t ≥ 0,
(tk) = Ik

(
X(t−k ), α(t−k )

)
, k ∈ N,

(1.1)

ith initial condition (X(0), α(0)) = (x0, i0), where b(·), σ (·),
nd Ik(·) are suitable functions, w(·) is a Brownian motion, α(·)
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is a finite state Markov chain, {tk}k∈N is a strictly increasing
sequence of positive numbers satisfying limk→∞ tk = ∞, X(t−k ) =

imt→t−k
X(t), and α(t−k ) = limt→t−k

α(t). We defer the discussion
f the precise formulation and conditions needed to the next
ection. It can be seen that there are impulsive jumps in the
omponent X(·) at time tk for k ∈ N. If Ik(x, i) = x for any (x, i, k) ∈
d

× M × N, then
(
X(·), α(·)

)
is simply a Markovian switching

DE studied in [2,6]. For SDEs under Markovian switching, it
as been demonstrated that although they are similar to SDEs,
hey have some distinct features. With the impulsive perturbation
aken into account, the distinctions are even more pronounced.
owever, the stability analysis for such hybrid systems is much
ore delicate than the impulsive-free case. In particular, one
eeds to treat both possible jumps in α(·) and impulsive jumps
n X(·).

As pointed out in [1,9,10], impulsive perturbations are ob-
erved in information science, electronics, automatic control sys-
ems, computer networking, artificial intelligence, robotics,
elecommunications, population models, neural networks, and
conomics. Many sudden and sharp changes occur instanta-
eously, in the form of impulses, which cannot be well modeled
y using purely continuous or purely discrete descriptions. Thus,
t is important to study impulsive systems. In particular, it is
ritical to know whether the impulsive systems are stable; see
10, Chapter 4] for a detailed discussion concerning population
odels, neural networks, and economic models. Focusing on
q. (1.1), we are interested in the notion of moment expo-
ential stability, which is one of the main issues in stochastic
tability. Under certain conditions, we show that the moment
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xponential stability implies almost sure exponential stability;
ee Theorem 3.13.
In recent years, there have been growing interests devoted to

he study of moment exponential stability analysis of impulsive
ystems. To mention just a few, we refer to [11–14] for mo-
ent stability analysis of impulsive SDEs. The works [15–21]

ocus on moment exponential stability of various forms of impul-
ive stochastic functional differential systems. Moreover, recent
esults on Razumikhin-type theorems for stochastic functional
ifferential equations with Lévy noise and Markov switching and
or impulsive stochastic delay systems are obtained in [22,23].
lthough the stability criteria in the aforementioned papers are
seful, there are certain points that have not been fully investi-
ated. First, we observe that most stability criteria for impulsive
ystems are given in terms of the existence of certain Lyapunov-
ype functions or the existence of certain matrices satisfying a
et of conditions. In practice, it is not easy to construct such
yapunov-type functions or matrices. It is important to construct
erifiable criteria for stability and instability. Second, the contri-
ution of α(·) to the moment exponential stability has not been
xplicitly revealed for impulsive systems. In particular, can the
witching process α(·) make an impulsive system stable if an
mpulsive subsystem is stable while the other subsystems are
nstable? This paper can also be seen as a further step of the
ork [14,21,24]. In [14], the authors studied moment stability of
q. (1.1) while we focus on moment stability with an exponen-
ially fast convergence. In [21], the authors considered moment
tability and moment exponential stability for an extension of
q. (1.1) with delays. However, the work [14] and [21] does not
ddress the two aforementioned points. The paper [24] treats
Markovian switching SDEs with Poisson jumps. However, the

esults in [24] do not work for Eq. (1.1) because of impulsive
erturbations in Eq. (1.1).
Focusing on SDEs with Markovian switching and impulsive

erturbations, our objective is to address the aforementioned
ssues. The novelty of this work lies in the use of the martin-
ale theory and large deviation techniques to establish new and
xplicit criteria for moment exponential stability and instability
f switching impulsive systems. In contrast to the existing litera-
ure, our main contributions in this work can be summarized as
ollows.

(a) We construct general sufficient conditions and explicit cri-
teria for moment exponential stability and instability. These
criteria are verified based on the system coefficients b(·, ·),
σ (·, ·), the impulsive functions Ik(·, ·), a function Λ(·) to
be introduced, and the stationary distribution of α(·). Such
explicit criteria enables us to develop suitable controls for
stabilization; see Examples 3.12 and 4.4. These criteria can
also be used to investigate the stability of various impulsive
systems in population dynamics, neural networks, and eco-
nomic models to mention just a few; see Example 4.6, see
also [10, Chapter 4] for more applications.

(b) We are successful to take into consideration the long time
behavior of the switching device via a function Λ(·) and its
stationary distribution. Thus, we reveal explicitly the impact
of the switching process to the pth moment stability and
instability of impulsive systems under consideration; see
Remarks 3.8 and 3.9.

The rest of the work is organized as follows. Section 2 begins
ith the problem formulation. Section 3 proceeds with several
eneral criteria of the moment exponential stability and instabil-
ty. Section 4 furthers our investigation by establishing explicit
riteria. Finally, the paper is concluded with a conclusion section.
2

2. Formulation

Assume throughout the work that both the Markov chain
α(·) and the d-dimensional standard Brownian motion w(·) are
defined on a complete filtered probability space (Ω,F,P, {Ft})
ith the filtration {Ft} satisfying the usual conditions (i.e., it is
ight-continuous and F0 contains all null sets). Suppose that α(·)
nd w(·) are independent. Moreover, α(·) takes values in M =

1, 2, . . . ,m} with the generator Q = (qij) ∈ Rm×m. The evolution
f α(·) is described by a transition probability specification of the
orm

{α(t + ∆t) = j|α(t) = i, α(s), s ≤ t}

=

{
qij∆t + o(∆t) if i ̸= j,

1 + qii∆t + o(∆t) if i = j.
(2.1)

ote that qij ≥ 0 if i ̸= j and
∑m

j=1 qij = 0 for any i ∈ M.
Let {tk}k∈N be a strictly increasing sequence of positive num-

ers satisfying limk→∞ tk = ∞. For each k ∈ N, the impulsive
unction at time tk is given by Ik : Rd

×M → Rd. The component
(·) of the two-component process

(
X(·), α(·)

)
is given by the

mpulsive SDE

X(t) = b(X(t), t, α(t))dt + σ (X(t), t, α(t))dw(t), t ≥ 0,
(tk) = Ik

(
X(t−k ), α(t−k )

)
, k ∈ N.

(2.2)

with initial condition
(
X(0), α(0)

)
= (x0, i0) ∈ Rd

× M, b :

Rd
×R+ ×M → Rd, σ : Rd

×R+ ×M → Rd×d. For convenience,
let t0 = 0.

Notation. For two real numbers c1, c2, c1∧c2 denotes min{c1, c2}.
For a matrix A ∈ Rd1×d2 , A⊤ denotes its transpose. For a matrix
A ∈ Rd×d, its trace norm is given by |A| =

√
tr(AA⊤), while

Id denotes the d × d identity matrix. For x = (x1, . . . , xd)⊤ ∈

Rd, its Euclidean norm is denoted by |x| =
(∑d

i=1 x
2
i

)1/2. For
any symmetric matrix A ∈ Rd×d, Λmax(A) and Λmin(A) denote
its largest eigenvalue and smallest eigenvalue, respectively. Let
ρ(A) = max{

⏐⏐Λmax(A)
⏐⏐, ⏐⏐Λmin(A)

⏐⏐}.
The operator G associated with the process (X(t), α(t)) is given

as follows. Suppose V : Rd
× R+ × M → R and V (·, ·, i) ∈

C2,1(Rd
× R+) for each i ∈ M. Then

(GV )(x, t, i)= Vt (x, t, i) + b⊤(x, t, i)Vx(x, t, i)

+
1
2
tr
(
σ⊤(x, t, i)Vxx(x, t, i)σ (x, t, i)

)
+ (QV )(x, t, i),

here Vt (·) = ∂V/∂t , Vx(·, t, i) and Vxx(·, t, i) denote the gradient
and Hessian matrix of V (·, t, i), respectively, and (QV )(x, t, i) =

j∈M qijV (x, t, j). Since Q is the generator of α(·),
∑

j∈M qij = 0
or any i ∈ M. It follows that

QV )(x, t, i) =

∑
j∈M,j̸=i

qij
(
V (x, t, j) − V (x, t, i)

)
for (x, t, i) ∈ Rd

× R+ × M.

The standing assumption is given below.

(A) (a) We have

b(0, t, i) = σ (0, t, i) = 0 for all (t, i) ∈ R+ × M.

(b) For any real number T > 0 and k ∈ N, there exists a
positive number KT ,k such that for all t ∈ [0, T ], i ∈ M, and
all x, y ∈ Rd with max{|x|, |y|} ≤ k,

|b(x, t, i) − b(y, t, i)|2 + |σ (x, t, i) − σ (y, t, i)|2 ≤ KT ,k|x − y|2.

Also there exists a constant K0,0 > 0 such that

x⊤b(x, t, i) + |σ (x, t, i)|2 ≤ K0,0(1 + |x|2) for all
d
(x, t, i) ∈ R × R+ × M.
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(c) There exist positive constants γk and γ̃k for k ∈ N such
that

γk|x| ≤
⏐⏐Ik(x, i)⏐⏐ ≤ γ̃k|x| for (x, i) ∈ Rd

× M, k ∈ N.

(d) The Markov chain α(t) is irreducible; that is, the system
of equations

νQ = 0,
∑
i∈M

νi = 1

has a unique solution ν = (ν1, . . . , νm) satisfying νi > 0 for
each i = 1, 2, . . . ,m.

Remark 2.1. Assumption (A)(a) indicates that the process X(t) ≡

0 is a trivial solution of Eq. (2.2). Under assumption (A), with
the same method as in [2,6], we can show that for each initial
condition (x0, i0) ∈ Rd

× M, the system given by Eq. (2.1) and
Eq. (2.2) has a unique strong solution

(
X(·), α(·)

)
satisfying X(0) =

x0, α(0) = i0. The sample paths of
(
X(·), α(·)

)
are right continuous

and have left limits. Moreover, the solution
(
X(·), α(·)

)
is global;

that is, it is defined for any t ≥ 0. Then assumption (A)(c)
guarantees the nonzero property; that is, if x0 ̸= 0, then

P
(
X(t) ̸= 0 for all t ≥ 0

)
= 1.

It enables us to work with the functions that are twice contin-
uously differentiable in Rd

\ {0}. Moreover, for any T > 0, X(·)
satisfies

E
[
sup

0≤t≤T
|X(t)|p

]
< ∞ for any p > 0;

see [2, Theorem 3.24] and [3, Proposition 2.3]. Assumption (A)(d)
is related to the long time behavior of the switching device.

Now we state the definition of pth moment exponential sta-
bility and instability for switching SDEs with impulsive perturba-
tions for a positive number p.

Definition 2.2.

(a) The trivial solution of Eq. (2.2) is said to be pth moment
exponentially stable if there are positive constants β and K
such that

E
⏐⏐X x0,i0 (t)

⏐⏐p ≤ Ke−βt
⏐⏐x0⏐⏐p for any t ≥ 0, (x0, i0) ∈ Rd

×M.

(b) The trivial solution of Eq. (2.2) is said to be pth moment
exponentially unstable if there are positive constants β and
K such that

E
⏐⏐X x0,i0 (t)

⏐⏐p ≥ Keβt
⏐⏐x0⏐⏐p for any t ≥ 0, (x0, i0) ∈ Rd

× M.

3. General criteria for moment exponential stability and insta-
bility

To prepare for the development in this section, we state the
definition of Λ : Rm

→ R; see [24, page 2598]. We refer to
[24, Appendix A], [25, page 136–137], and [26, page 22] for
details.

Definition 3.1. Let P be the set of all probability vectors on the
state space M. Denote

I(p) = − inf
u1>0,...,um>0

∑
i,j∈M

piqijuj

ui
,

here p = (p1, . . . , pm) ∈ P is a probability vector. For η =

η1, . . . , ηm)⊤ ∈ Rm, define

(η) = sup
p∈P

(∑
ηipi − I(p)

)
.

i∈M p

3

emark 3.2. Let η = (η1, . . . , ηm)⊤ ∈ Rm. Throughout this paper,
ηα(t)}t≥0 is a process defined by ηα(t) = ηi if α(t) = i ∈ M. Thus,
α(t) takes values in {η1, . . . , ηm}. It is proved that

(η) = lim
t→∞

1
t
ln
{
E
[
e
∫ t
0 ηα(s)ds

]}
;

see [27, Lemma A.3]. Moreover,
∑

i∈M νiηi ≤ Λ(η) ≤ maxi∈M ηi.
As recognized in [24,27], Λ(·) will play an important role in inves-
tigating the pth moment exponential stability of hybrid systems.

Theorem 3.3. Assume (A). Let V : Rd
→ R be a twice continuously

differentiable on Rd
\ {0} satisfying c1|x|p ≤ V (x) ≤ c2|x|p for all

x ∈ Rd, where c1 and c2 are two positive numbers. Suppose that
there exist ηp = (ηp,1, ηp,2, . . . , ηp,m)⊤ ∈ Rm and a sequence of
positive numbers {δk}k∈N such that

(GV )(x, t, i) ≤ ηp,iV (x) for all (x, t, i) ∈ Rd
× R+ × M, x ̸= 0

(3.1)

and

V (Ik(x, i)) ≤ |δk|
pV (x) for all (x, i) ∈ Rd

× M, k ∈ N. (3.2)

Suppose that β is a positive number and

Λ(ηp) + lim sup
t→∞

[1
t

∑
j:tj≤t

p ln |δj|

]
< −β. (3.3)

hen the trivial solution of Eq. (2.2) is pth moment exponentially
stable. Moreover, there is a positive number K such that

E
⏐⏐X x0,i0 (t)

⏐⏐p ≤ Ke−βt
⏐⏐x0⏐⏐p for any t ≥ 0, (x0, i0) ∈ Rd

× M.

Proof. We divide the proof into two steps.
Step 1. In this step, we work with a fixed value of k ∈ N.

Let (x0, i0) ∈ Rd
× M. Without loss of generality, we suppose

x0 ̸= 0. For notational simplicity, we denote X(t) = X x0,i0 (t) and
α(t) = αi0 (t). Let {τn}n be the sequence of stopping times defined
by

τn = inf{t ≥ tk−1 : |X(t)| ≥ n} ∧ tk for n ∈ N.

hen τn → tk as n → ∞ almost surely since the process X(·)
s a global solution of Eq. (2.2). By the Itô formula, we obtain for
∈ [tk−1, tk) that

xp
(
−

∫ t∧τn

tk−1

ηp,α(s)ds
)
V
(
X(t ∧ τn)

)
= V

(
X(tk−1)

)
+

∫ t∧τn

tk−1

exp
(
−

∫ s

tk−1

ηp,α(u)du
)

×

[
−ηp,α(s)V

(
X(s)

)
+ (GV )(X(s), s, α(s))

]
ds

+M(t ∧ τn),

(3.4)

here

(t) =

∫ t

tk−1

exp
(
−

∫ s

tk−1

ηp,α(u)du
)
Vx
(
X(s)

)
σ
(
X(s), s, α(s)

)
dw(s),

t ∈ [tk−1, tk).

y (3.4) and assumption (3.1), we have

xp
(
−
∫ t∧τn
tk−1

ηp,α(s)ds
)
V
(
X(t ∧ τn)

)
≤ V

(
X(tk−1)

)
+ M(t ∧ τn).

(3.5)

Let Dt be the σ -algebra generated by {α(u), w(s) : 0 ≤ u, 0 ≤

≤ t} ∪ F0. In other words, Dt is generated by the whole

rocess {α(s) : 0 ≤ s < ∞}, {w(s) : s ∈ [0, t]}, and F0. By
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28, Chapter 1, Thm. 31], the filtration {Dt} is right continuous
nd thus it satisfies the usual conditions. Moreover, M(t) is a local

martingale with respect to the filtration {Dt} for t ∈ [tk−1, tk);
see [29, Theorem 4.2.12]. Note also that X(tk−1) is measurable
with respect to Dtk−1 . Thus,

E
[
V
(
X(tk−1)

)⏐⏐Dtk−1

]
= V

(
X(tk−1)

)
, E

[
M(t ∧ τn)

⏐⏐Dtk−1

]
= 0 for t ∈ [tk−1, tk).

This together with (3.5) implies

E
[
exp

(
−

∫ t∧τn

tk−1

ηp,α(s)ds
)
V
(
X(t ∧ τn)

)⏐⏐⏐Dtk−1

]
≤ V

(
X(tk−1)

)
.

Letting n → ∞ yield

E
[
exp

(
−

∫ t

tk−1

ηp,α(s)ds
)
V
(
X(t)

)⏐⏐⏐Dtk−1

]
≤ V

(
X(tk−1)

)
. (3.6)

Recall that Dtk−1 is the σ -algebra generated by {α(u), w(s) : 0 ≤

u, 0 ≤ s ≤ tk−1} ∪ F0. Hence, exp
(
−
∫ t
tk−1

ηp,α(s)ds
)
is measurable

with respect to Dtk−1 . As a result,

E
[
exp

(
−

∫ t

tk−1

ηp,α(s)ds
)
V
(
X(t)

)⏐⏐⏐Dtk−1

]
= exp

(
−

∫ t

tk−1

ηp,α(s)ds
)
E
[
V
(
X(t)

)⏐⏐⏐Dtk−1

]
. (3.7)

It follows from (3.6) and (3.7) that

E
[
V
(
X(t)

)⏐⏐⏐Dtk−1

]
≤ V

(
X(tk−1)

)
exp

(∫ t

tk−1

ηp,α(s)ds
)

for t ∈ [tk−1, tk). (3.8)

In view of (3.2), we obtain

E
[
V
(
X(tk)

)⏐⏐Dtk−1

]
≤ |δk|

pE
[
V
(
X(t−k )

)⏐⏐Dtk−1

]
≤ |δk|

pV
(
X(tk−1)

)
exp

(∫ tk

tk−1

ηp,α(s)ds
)
.

(3.9)

Step 2. To proceed, we note that (3.8) and (3.9) hold for any
k ∈ N. Letting k = 1 in (3.9) yield

E
[
V
(
X(t1)

)⏐⏐D0
]

≤ V (x0) exp
(∫ t1

0
ηp,α(s)ds

)
|δ1|

p. (3.10)

Since D0 ⊂ Dt1 , then

E
[
V
(
X(t2)

)⏐⏐D0
]

= E
[
E
[
V
(
X(t2)

)⏐⏐Dt1

]⏐⏐⏐D0

]
. (3.11)

Letting k = 2 in (3.9) yield

E
[
V
(
X(t2)

)⏐⏐Dt1

]
≤ V

(
X(t1)

)
exp

(∫ t2

t1

ηp,α(s)ds
)
|δ2|

p. (3.12)

It follows from (3.10), (3.11), and (3.12) that

E
[
V
(
X(t2)

)⏐⏐D0
]

≤ V (x0) exp
(∫ t2

0
ηp,α(s)ds

)
|δ2|

p
|δ1|

p.

By induction, we arrive at

E
[
V
(
X(tk)

)⏐⏐D0
]

≤ V (x0) exp
(∫ tk

0
ηp,α(s)ds

) k∏
j=1

|δj|
p,

which implies that

E
[
V
(
X(tk)

)]
≤ V (x0)E

[
exp

(∫ tk

0
ηp,α(s)ds

)] k∏
j=1

|δj|
p for k ∈ N.

(3.13)
 s

4

In view of (3.8) and (3.13), we have

E
[
V
(
X(t)

)]
≤ V (x0)E

[
exp

(∫ t

0
ηp,α(s)ds

)] k∏
j=1

|δj|
p

for t ∈ [tk, tk+1).

Thus,

E
[
V
(
X(t)

)]
≤ V (x0)E

[
exp

(∑
j:tj≤t

p ln |δj| +

∫ t

0
ηp,α(s)ds

)]
for t ≥ 0.

ince

lim sup
t→∞

1
t
lnE

[
exp

(∑
j:tj≤t

p ln |δj| +

∫ t

0
ηp,α(s)ds

)]
= Λ(ηp) + lim sup

t→∞

[1
t

∑
j:tj≤t

p ln |δj|

]
< −β,

here is a positive number K such that[
|X(t)|p

]
≤ Ke−βt

|x0|
p

for all t ≥ 0, (x0, i0) ∈ Rd
× M.

he conclusion follows. □

emark 3.4. In the statement of Theorem 3.3, we state a list of
everal assumptions under which the trivial solution of Eq. (2.2)
s pth moment exponentially stable. These assumptions are based
n the existence of a Lyapunov function V (·) and the sequence
Ik(·)} satisfying (3.1), (3.2), and (3.3). In the next section, explicit
riteria are established for common/practical classes of impulsive
ystems; see Theorems 4.1, 4.2, and 4.5.
Assume that supk∈N(tk − tk−1) < ∞. Then (3.3) is equivalent

o

(ηp) + lim sup
k→∞

1
tk

[ k∑
j=1

p ln |δj|

]
< −β. (3.14)

In order to verify (3.14), a sufficient condition is

p ln |δk| < −
(
β + Λ(ηp)

)
(tk − tk−1) for k ≥ k0,

where k0 is a positive integer; that is,

|δk| < exp
(
−

(
β + Λ(ηp)

)
(tk − tk−1)

p

)
for k ≥ k0.

Theorem 3.5. Assume (A). Let V : Rd
→ R be a twice continuously

differentiable on Rd
\ {0} satisfying c1|x|p ≤ V (x) ≤ c2|x|p for all

∈ Rd, where c1 and c2 are two positive numbers. Suppose that
here exist ηp = (ηp,1, ηp,2, . . . , ηp,m)⊤ ∈ Rm and a sequence of real
numbers {δk}k∈N such that

(GV )(x, t, i) ≤ ηp,iV (x) for all (x, t, i) ∈ Rd
× R+ × M, x ̸= 0

(3.15)

and

V
(
Ik(x, i)

)
≤ |δk|

pV (x) for all (x, i) ∈ Rd
× M, k ∈ N. (3.16)

Suppose that∑
i∈M

νi

[
ηp,i + lim sup

t→∞

(1
t

∑
j:tj≤t

p ln |δj|

)]
< 0. (3.17)

Then the trivial solution of Eq. (2.2) is p̃th moment exponentially
table for some p̃ > 0.
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P

w

roof. Let γ ∈ (0, 1) and consider the function Vγ (x) = |V (x)|γ

for x ∈ Rd. Then in view of (3.15), we have

(GVγ )(x, t, i)= γ |V (x)|γ−1(GV )(x, t, i) −
γ (1 − γ )

2
× |V (x)|γ−2

⏐⏐Vxx(x)σ (x, t, i)
⏐⏐2

≤ γ |V (x)|γ−1ηp,iV (x)
= γ ηp,iVγ (x) for (x, t, i) ∈ Rd

× R+ × M, x ̸= 0.

(3.18)

By virtue of [24, Lemma 3.5], we have

lim
γ→0

Λ(γ ηp)
γ

=

∑
i∈M

νiηp,i. (3.19)

In view of (3.17) and (3.19), there exists γ0 > 0 such that∑
i∈M

νi

[
Λ(γ0ηp) + lim sup

t→∞

(1
t

∑
j:tj≤t

(γ0p) ln |δj|

)]
< 0. (3.20)

Let p̃ = γ0p. By virtue of Theorem 3.3, (3.18), and (3.20), the
trivial solution of Eq. (2.2) is p̃th moment exponentially stable.
The conclusion follows. □

Theorem 3.6. Suppose tk = Tk for some T > 0. Let V : Rd
→ R

be a twice continuously differentiable on Rd
\ {0} satisfying c1|x|p ≤

V (x) ≤ c2|x|p for any x ∈ Rd, where c1 and c2 are two positive
numbers. Suppose (3.1) is satisfied and there exist positive numbers
δp,i (i ∈ M) such that

V (Ik(x, i)) ≤ δp,iV (x) for all (x, i) ∈ Rd
× M, k ∈ N. (3.21)

If
∑

i∈M

(
ln |δp,i| + ηp,iT

)
νi < 0, then the trivial solution of Eq. (2.2)

is p̃th moment exponentially stable for some p̃ > 0.

Proof. Let F2 be the filtration generated by {α(t), t ≥ 0} and
F2,t the filtration generated by {α(s), 0 ≤ t ≤ s}. From the proof
of Theorem 3.3, we have

E
[
V (X(t))

⏐⏐F2
]

≤ V (x0)
[
exp

([t/T ]∑
k=1

ln |δp,α(Tk)| +

∫ t

0
ηp,α(s)ds

)]
for t ≥ 0.

Then, an application of Jensen’s inequality yields

E
[
V θ (X(t))

⏐⏐F2
]

≤ V θ (x0)
[
exp

(
θ

[t/T ]∑
k=1

ln |δp,α(Tk)| + θ

∫ t

0
ηp,α(s)ds

)]
for t ≥ 0, θ ∈ (0, 1). (3.22)

Due to the ergodicity of the Markov chains {α(t), t ≥ 0} and
{α(kT ), k ∈ N}, we have

lim
n→∞

1
n
Ei

(
n∑

k=1

ln |δp,α(Tk)| +

∫ nT

0
ηp,α(s)ds

)
= λ < 0,

where Ei indicates the initial value α(0) = i. Then, there exists
n∗ > 0 such that

Ei

(
n∗∑
k=1

ln |δp,α(Tk)| +

∫ n∗T

0
ηp,α(s)ds

)
≤

λn∗

2
< 0
for any i ∈ M.

5

Then, as a result of a property of Laplace’s transformation, see [7,
Lemma 3.4], we have

Ei exp

{
θ

(
n∗∑
k=1

ln |δp,α(Tk)| +

∫ n∗T

0
ηp,α(s)ds

)}

≤ ρ := exp
{

λn∗

4

}
< 1 for any i ∈ M.

Because of the Markov property of {α(t), t ≥ 0} and {α(kT ), k ∈

N}, we have

Ei exp

{
θ

(
2n∗∑
k=1

ln |δp,α(Tk)| +

∫ 2n∗T

0
ηp,α(s)ds

)}

=Ei

[
Ei

(
exp

{
θ

(
2n∗∑

k=n∗+1

ln |δp,α(Tk)| +

∫ 2n∗T

n∗T
ηp,α(s)ds

)} ⏐⏐⏐F2,n∗T

)

× exp

{
θ

(
n∗∑
k=1

ln |δp,α(Tk)| +

∫ n∗T

0
ηp,α(s)ds

)}]

=Ei

[
Eα(n∗T ) exp

{
θ

(
n∗∑
k=1

ln |δp,α(Tk)| +

∫ n∗T

0
ηp,α(s)ds

)}

× exp

{
θ

(
n∗∑
k=1

ln |δp,α(Tk)| +

∫ n∗T

0
ηp,α(s)ds

)}]

≤ Ei

[
ρ exp

{
θ

(
n∗∑
k=1

ln |δp,α(Tk)| +

∫ n∗T

0
ηp,α(s)ds

)}]
≤ρ2.

Continuing this process, we obtain that

Ei exp

{
θ

(
ℓn∗∑
k=1

ln |δp,α(Tk)| +

∫ ℓn∗T

0
ηp,α(s)ds

)}
≤ ρℓ, ℓ ∈ N.

(3.23)

Because of the boundedness of ln |δp,i| and ηp,i for i ∈ M, there
exists a constant independent Cn∗ of t such that if ℓn∗T ≤ t <

(ℓ + 1)n∗T for some ℓ ∈ N, we have

exp
{
θ

([t/T ]∑
k=1

ln |δp,α(Tk)| +

∫ t

0
ηp,α(s)

)}

≤ Cn∗ exp
{
θ

( ℓn∗∑
k=1

ln |δp,α(Tk)| +

∫ ℓn∗T

0
ηp,α(s)ds

)}
. (3.24)

It follows from (3.22), (3.23), and (3.24) that

E[V θ (X(t))] ≤ Cn∗V θ (x0)ρ[t/(n∗T )].

Since ρ < 1, we easily obtain the p̃th moment exponential
stability of the system, where p̃ = θp for some small θ > 0. □

Remark 3.7. Assume that supk∈N(tk − tk−1) < ∞. Then (3.17) is
equivalent to∑
i∈M

νiζi + lim sup
k→∞

1
tk

[ k∑
j=1

ln |δj|

]
< 0, (3.25)

here ζi = ηp,i/p for i ∈ M. In order to verify (3.25), a sufficient
condition is

ln |δk| < −

(∑
νiζi

)
(tk − tk−1) for k ≥ k0,
i∈M
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here k0 is a positive integer; that is,

δk| < exp
(
−

(∑
i∈M

νiζi

)
(tk − tk−1)

)
for k ≥ k0.

Remark 3.8. The associated switching SDE with no impulsive
perturbations of X(·) is given by

dX̃(t) = b(̃X(t), t, α(t))dt + σ (̃X(t), t, α(t))dw(t), t ≥ 0.

(3.26)

Associated with the switching SDE X̃(·), there are m SDEs that
interact and switch back and forth. These SDEs are denoted by
X (1)(·), X̃ (2)(·), . . . , X̃ (m)(·) and for each i ∈ M, X̃ (i) is given by the
ith subsystem

dX̃ (i)(t) = b(̃X (i)(t), t, i)dt + σ (̃X (i)(t), t, i)dw(t), t ≥ 0. (3.27)

By virtue of Theorem 3.3, we have the following assertions on
special cases of Eq. (2.2).

(a) If ηp,i < 0, then the trivial solution of the ith subsystem
given by (3.27) is pth moment exponentially stable.

(b) If Λ(ηp) < 0, then the trivial solution of the switching SDE
(3.26) is pth moment exponentially stable.

(c) If Λ(ηp) + lim supt→∞

[1
t
∑

j:tj≤t p ln |δj|

]
< 0, then the

rivial solution of the switching SDE with impulsive perturbations
q. (2.2) is pth moment exponentially stable.
Thus, Theorem 3.3 and in particular the sufficient condi-

ion (3.3) reveal the contribution to the pth moment exponential
tability of the Markov chain α(·) and the impulsive perturba-
ions.

emark 3.9. The impulsive switching SDE X(·) can also be viewed
s a set of m impulsive SDEs that interact and switch back and
orth. These impulsive SDEs are denoted by X (1)(·), X (2)(·), . . . ,
(m)(·) and for each i ∈ M, X (i) is given by

X (i)(t) = b(X (i)(t), t, i)dt + σ (X (i)(t), t, i)dw(t), t ≥ 0,
(i)(tk) = Ik

(
X (i)(t−k ), i

)
, k ∈ N.

(3.28)

ote that
∑

i∈M νi = 1 and Λ(c11m + ηp) = c + Λ(ηp), where c is
real number and 11m = (1, 1, . . . , 1)⊤ ∈ Rm. It follows that

(ηp) + lim sup
t→∞

[1
t

∑
j:tj≤t

p ln |δj|

]
= Λ

(
ηp + lim sup

t→∞

[1
t

∑
j:tj≤t

p ln |δj|

]
11m

)
.

y virtue of Theorem 3.3, we have the following assertions on
pecial cases of Eq. (2.2).

(a) If ηp,i + lim supt→∞

1
t

[∑
j:tj≤t p ln |δj|

]
< 0, then the trivial

olution of the ith subsystem given by (3.28) is pth moment
xponentially stable.
(b) Suppose that (3.1) and (3.2) are satisfied. Suppose that

p,i + lim sup
t→∞

[1
t

∑
j:tj≤t

p ln |δj|

]
< 0

or some i; that is, some subsystem given by (3.28) is pth moment
xponentially stable. Then we can choose a Markov chain α(·)

such that the switching SDE with impulsive perturbations (2.2)
is pth moment exponentially stable. To illustrate, we look at the
case m = 2; that is, the state space of Markov chain α(·) is

= {1, 2}. Let P be the set of all probability vectors on the
tate space M. Let p = (p , p ) ∈ P . As in [27, page 1310], we
1 2

6

ave

(p)= − inf
u1>0,u2>0

∑
i,j∈M

piqijuj

ui

= − inf
u1>0,u2>0

[
−p1q12 − p2q21 +

p1q12u2

u1
+

p2q21u1

u2

]
= −(−p1q12 − p2q21 + 2

√
p1q12p2q21)

=
(√

p1q12 −
√
p2q21

)2
.

Note that p2 = 1 − p1. Thus, for ηp = (ηp,1, ηp,2)⊤ ∈ R2,

Λ(ηp)= sup
p∈P

(
ηp,1p1 + ηp,2p2 − I(p)

)
= sup

φ∈[0,1]

[
ηp,1φ + ηp,2(1 − φ) −

(√
φq12 −

√
(1 − φ)q21

)2]
.

uppose ηp,1 < 0. Then we can choose a sufficiently large q21 and
sufficient small q12 such that

(ηp) + lim sup
t→∞

[1
t

∑
j:tj≤t

p ln |δj|

]
< 0,

as desired.

Next, we provide a sufficient condition for instability.

Theorem 3.10. Assume (A). Let V : Rd
→ R be a twice contin-

ously differentiable on Rd
\ {0} satisfying c1|x|p ≤ V (x) ≤ c2|x|p

or all x ∈ Rd, where c1 and c2 are two positive numbers. Suppose
that there exist η̃p = (̃ηp,1, η̃p,2, . . . , η̃p,m)⊤ ∈ Rm and a sequence
of positive numbers {̃δk}k∈N such that

(GV )(x, t, i) ≥ η̃p,iV (x) for all (x, t, i) ∈ Rd
× R+ × M, x ̸= 0

(3.29)

and

V
(
Ik(x, i)

)
≥ |̃δk|

pV (x) for all (x, i) ∈ Rd
× M, k ∈ N. (3.30)

Suppose that

Λ(̃ηp) + lim inf
t→∞

[1
t

∑
j:tj≤t

p ln |̃δj|

]
> 0. (3.31)

hen the trivial solution of Eq. (2.2) is pth moment exponentially
nstable.

roof. The proof is a modification of that of Theorem 3.3. We
ill provide an outline and skip the details for brevity. We divide
he proof into two steps.

Step 1. In this step, we still work with a fixed value of k.
et (x0, i0) ∈ Rd

× M. Let Dt be the σ -algebra generated by
α(u), w(s) : 0 ≤ u, 0 ≤ s ≤ t} ∪ F0. Without loss of generality,
e suppose x0 ̸= 0. With the similar arguments as in Step 1 of
he proof of Theorem 3.3, we obtain[
V
(
X(t)

)⏐⏐Dtk−1

]
≥ V

(
X(tk−1)

)
exp

(∫ t

tk−1

η̃p,α(s)ds
)

for t ∈ [tk−1, tk). (3.32)

t follows from (3.30) that[
V
(
X(tk)

)⏐⏐Dtk−1

]
≥ |̃δk|

pE
[
V
(
X(t−k )

)⏐⏐Dtk−1

]
≥ |̃δk|

pV
(
X(tk−1)

)
exp

(∫ tk

tk−1

η̃p,α(s)ds
)
.

(3.33)

Step 2. To proceed, we note that (3.32) and (3.33) hold for any
∈ N. With the similar arguments as in Step 2 of the proof of
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heorem 3.3, we obtain

[
V
(
X(tk)

)]
≥ V (x0)E

[
exp

(∫ tk

0
η̃p,α(s)ds

)] k∏
j=1

|̃δj|
p for k ∈ N.

(3.34)

In view of (3.32) and (3.34), we have

E
[
V
(
X(t)

)]
≥ V (x0)E

[
exp

(∫ t

0
η̃p,α(s)ds

)] k∏
j=1

|̃δj|
p

for t ∈ [tk, tk+1).

Thus,

E
[
V
(
X(t)

)]
≥ V (x0)E

[
exp

(∑
j:tj≤t

p ln |̃δj| +

∫ t

0
η̃p,α(s)ds

)]
for all t ≥ 0.

ince

lim inf
t→∞

1
t
lnE

[
exp

(∑
j:tj≤t

p ln |̃δj| +

∫ t

0
η̃p,α(s)ds

)]
= Λ(̃ηp) + lim inf

t→∞

[1
t

∑
j:tj≤t

p ln |̃δj|

]
> 0,

here are positive numbers K and β such that[
|X(t)|p

]
≥ Keβt

|x0|
p

for all t ≥ 0, (x0, i0) ∈ Rd
× M.

he conclusion follows. □

emark 3.11. In view of Theorem 3.10 (see also Remark 3.4),
e can construct impulsive perturbations so that the result-

ng switching SDE with impulsive perturbations is pth moment
xponentially unstable even if the system with no impulsive
erturbations is pth moment exponentially stable.

xample 3.12. We discuss the stabilization of switching SDEs
y impulsive perturbations. Suppose the switching SDE (3.26)
s pth moment exponentially unstable. We would like to design
mpulsive perturbations so that the resulting impulsive system
2.2) is pth moment exponentially stable. Moreover, we wish
hat the pth moment Lyapunov exponent is not greater than −β ,
here β is a given positive number.
Suppose we can perform impulsive perturbations at the se-

uence of impulsive times {tk}k∈N and supk∈N(tk − tk−1) < ∞.
heoretically, t1 can be arbitrarily large. With Ik(x, i) = δkx for k ∈

, we proceed to determine the sequence {δk}k∈N. By Remark 3.4,
e can choose δk such that

δk| < exp
(
−

(
β + Λ(ηp)

)
(tk − tk−1)

p

)
for k ∈ N.

y virtue of Theorem 3.3, the impulsive switching SDE (2.2) is
th moment exponentially stable and the pth moment Lyapunov
xponent is not greater than −β .

heorem 3.13. Assume (A), infk∈N(tk − tk−1) > 0, and there is a
ositive constant M such that

b(x, t, i)| + |σ (x, t, i)| ≤ M|x| for any (x, t, i) ∈ Rd
× R+ × M.

Suppose that the trivial solution of Eq. (2.2) is pth moment expo-
nentially stable; that is, there are positive constants β and K such
that

E
⏐⏐X x0,i0 (t)

⏐⏐p ≤ Ke−βt
⏐⏐x0⏐⏐p for any t ≥ 0, (x0, i0) ∈ Rd

× M.
7

Then for any (x0, i0) ∈ Rd
× M,

lim sup
t→∞

1
t
ln
(
|X x0,i0 (t)|

)
≤ −

β

p
a.s.; (3.35)

hat is, the trivial solution of Eq. (2.2) is almost surely exponentially
table.

roof. The proof is a modification of that of [6, Theorem 3.2].
e will provide an outline and skip the details for brevity. Let

x0, i0) ∈ Rd
× M. Let ε ∈ (0, β/2) be arbitrary. Let r > 0

e sufficiently small for (3M)p
(
rp + Cprp/2

)
< 1

2 , where Cp is
the constant given by the well-known Burkholder–Davis–Gundy
inequality (see [2, Theorem 2.13]). Without loss of generality, we
suppose that supk∈N(tk − tk−1) ≤ r (note that if t > 0 and
t ̸= tk for any k ∈ N, we can treat t as an impulsive time with
X x0,i0 (t) = X x0,i0 (t−)). For a fixed k ∈ N, we have

dX x0,i0 (t) = b(X x0,i0 (t), t, αi0 (t))dt + σ (X x0,i0 (t), t, αi0 (t))dw(t),
t ∈ [tk−1, tk).

By using the same arguments as those in the proof of [6, Theorem
3.2], we obtain

E
[

sup
tk−1≤t<tk

|X x0,i0 (t)|
p]

≤ 2K |x0|
p
3pe−(β−ε)tk−1 .

Hence,

P
(

sup
tk−1≤t<tk

|X x0,i0 (t)| > e−(β−2ε)tk−1/p
)

≤ 2K |x0|
p
3pe−εtk−1 .

ince infk∈N(tk − tk−1) > 0,
∑

k∈N e−εtk−1 < ∞. By the Borel–
antelli lemma, for almost all ω ∈ Ω ,

sup
tk−1≤t<tk

|X x0,i0 (t)| ≤ e−(β−2ε)tk−1/p (3.36)

olds for all but finitely many k ∈ N. Thus, there is a function
: Ω → N and an event Ω̃ ⊂ Ω for which P(Ω) = 1 and (3.36)
olds whenever ω ∈ Ω̃ and k ≥ k̃(ω). Consequently, for ω ∈ Ω̃ ,
≥ k̃(ω), and t ∈ [tk−1, tk),

1
t
ln
(
|X x0,i0 (t)|

)
≤ −

(β − 2ε)tk−1

pt
≤ −

(β − 2ε)(t − r)
pt

.

Therefore,

lim sup
t→∞

1
t
ln
(
|X x0,i0 (t)|

)
≤ −

(β − 2ε)
p

a.s.,

which gives us (3.35) by letting ε → 0. □

4. Explicit criteria for pth moment exponential stability and
instability

In what follows, we apply Theorems 3.3 and 3.5 to find explicit
criteria for stability and instability.

Theorem 4.1. Assume (A) and for each i ∈ M, there exist real
numbers K b

i , Kσ
i , K d

i , L
d
i and a sequence of positive numbers {δk}k∈N

such that

x⊤b(x, t, i) ≤ K b
i |x|2, |σ (x, t, i)|2 ≤ Kσ

i |x|2,
Ldi |x|

4
≤ |x⊤σ (x, t, i)|

2
≤ K d

i |x|4,
⏐⏐Ik(x, i)⏐⏐ ≤ δk|x|,

for all (x, t, i) ∈ Rd
× R+ × M, and k ∈ N. Denote for i ∈ M,

ηp,i =

⎧⎪⎨⎪⎩
pK b

i +
p
2
Kσ
i +

p
2
(p − 2)Ldi for p ∈ (0, 2),

pK b
i +

p
Kσ
i +

p
(p − 2)Kσ

i for p ∈ [2, ∞),

2 2
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a

(

I

(

a

nd ηp = (ηp,1, ηp,2, . . . , ηp,m)⊤ ∈ Rm. The following assertions
hold.

(a) Suppose that

Λ(ηp) + lim sup
t→∞

[1
t

∑
j:tj≤t

p ln |δj|

]
< 0.

Then the trivial solution of Eq. (2.2) is pth moment exponen-
tially stable.

(b) Suppose that∑
i∈M

νi

(
K b
i +

1
2
Kσ
i − Ldi + lim sup

t→∞

[1
t

∑
j:tj≤t

ln |δj|

])
< 0.

Then the trivial solution of Eq. (2.2) is p̃th moment exponen-
tially stable for some p̃ > 0.

Proof. (a) Let V (x) = |x|p for x ∈ Rd. In view of Theorem 3.3, it
is sufficient to check that

(GV )(x, t, i) ≤ ηp,iV (x) for all (x, t, i) ∈ Rd
× R+ × M, x ̸= 0.

Indeed, we have

Vx(x) = p|x|p−2x,

Vxx(x) = p
[
|x|p−2Id + (p − 2)|x|p−4xx⊤

]
for x ∈ Rd, x ̸= 0.

Thus,

(GV)(x, t, i)= p
⏐⏐x⏐⏐p−2b⊤(x, t, i)x +

p
2
tr
[⏐⏐x⏐⏐p−2

σ (x, t, i)σ⊤(x, t, i)
]

+
1
2
p(p − 2)tr

[⏐⏐x⏐⏐p−4xx⊤σ (x, t, i)σ⊤(x, t, i)
]

≤ |x|p
(
pK b

i +
p
2
Kσ
i +

p
2
(p − 2)

⏐⏐x⏐⏐−4⏐⏐x⊤σ (x, t, i)
⏐⏐2).

(4.1)

We consider 2 cases.
(i) If p < 2, then we have from (4.1) that

(GV)(x, t, i)≤ |x|p
(
pK b

i +
p
2
Kσ
i +

p
2
(p − 2)Ldi

)
.

ii) If p ≥ 2, then we have from (4.1) that

(GV)(x, t, i)≤ |x|p
(
pK b

i +
p
2
Kσ
i +

p
2
(p − 2)Kσ

i

)
.

n any case, we have

GV)(x, t, i) ≤ ηp,iV (x) for all (x, t, i) ∈ Rd
× R+ × M, x ̸= 0,

as desired. The conclusion follows.
(b) follows from Theorem 3.5 and the computations in part

(a). □

Now we focus on linear regime-switching SDEs with impulsive
perturbations. To proceed, recall that for any symmetric matrix
A ∈ Rd×d, Λmax(A) and Λmin(A) denote its largest eigenvalue
and smallest eigenvalue, respectively. Let ρ(A) = max{

⏐⏐Λmax(A)
⏐⏐,⏐⏐Λmin(A)

⏐⏐}.
Theorem 4.2. Assume (A) and for each i ∈ M, there exist matrices
B(i), C1(i), C2(i),. . . , Cd(i) ∈ Rd×d, and a sequence of positive numbers
{δk}k∈N such that

b(x, t, i) = B(i)x, σ (x, t, i) =
(
C1(i)x, C2(i)x, . . . , Cd(i)x

)
,⏐⏐ ⏐⏐
Ik(x, i) ≤ δk|x|

8

for all (x, t, i) ∈ Rd
× R+ × M, and k ∈ N. Denote for i ∈ M,

ηp,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
2
Λmax

( d∑
k=1

C⊤

k (i)Ck(i) + B⊤(i) + B(i)
)

for p ∈ (0, 2),

p
2
Λmax

( d∑
k=1

C⊤

k (i)Ck(i) + B⊤(i) + B(i)
)

+
p(p − 2)

8
∑d

k=1

[
ρ
(
C⊤

k (i) + Ck(i)
)]2

for p ∈ [2, ∞),

nd ηp = (ηp,1, ηp,2, . . . , ηp,m)⊤ ∈ Rm. The following assertions
hold.

(a) Suppose that

Λ(ηp) + lim sup
t→∞

[1
t

∑
j:tj≤t

p ln |δj|

]
< 0.

Then the trivial solution of Eq. (2.2) is pth moment exponen-
tially stable.

(b) Suppose that∑
i∈M

νi

(
1
2
Λmax

( d∑
k=1

C⊤

k (i)Ck(i) + B⊤(i) + B(i)
)

+ lim sup
t→∞

[1
t

∑
j:tj≤t

ln |δj|

])
< 0.

Then the trivial solution of Eq. (2.2) is p̃th moment exponen-
tially stable for some p̃ > 0.

Proof. (a) Let V (x) = |x|p for x ∈ Rd. In view of Theorem 3.3, it
is sufficient to check that

(GV )(x, t, i) ≤ ηp,i(t)V (x) for all (x, t, i) ∈ Rd
×R+ ×M, x ̸= 0.

Indeed, we have

Vx(x) = p|x|p−2x,

Vxx(x) = p
[
|x|p−2Id + (p − 2)|x|p−4xx⊤

]
for x ∈ Rd.

Thus,

(GV )(x, t, i)=
1
2
tr
( d∑

k=1

x⊤C⊤

k (i)Vxx(x)Ck(i)x
)

+
(
Vx(x)

)⊤(B(i)x)
≤ p|x|p

{
1
2

d∑
k=1

(x⊤C⊤

k (i)Ck(i)x
|x|2

+ (p − 2)
|x⊤C⊤

k (i)x|2

|x|4
)

+
x⊤B(i)x

|x|2

}
.

(4.2)

We have

1
2

d∑
k=1

x⊤C⊤

k (i)Ck(i)x
|x|2

+
x⊤B(i)x

|x|2

=
1
2

d∑
k=1

x⊤C⊤

k (i)Ck(i)x
|x|2

+
x⊤
(
B⊤(i) + B(i)

)
x

2|x|2

≤
1

2|x|2
x⊤

( d∑
k=1

C⊤

k (i)Ck(i) +
(
B⊤(i) + B(i)

))
x

=
1
2
Λmax

( d∑
C⊤

k (i)Ck(i) + B⊤(i) + B(i)
)

.

(4.3)
k=1
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F
x

0

I

(

a

(

T
p
i
t

T
B
{

b
σ

˜

a

Λ

T
u

E
{

Q

w

d

w

B

B

B

C

˜

or a symmetric A ∈ Rd×d, we have |x⊤Ax| ≤ ρ(A)|x|2 for any
∈ Rd. Thus,

≤
|x⊤C⊤

k (i)x|2

|x|4
=

|x⊤
(
C⊤

k (i) + Ck(i)
)
x|2

4|x|4
≤

1
4

[
ρ
(
C⊤

k (i)+ Ck(i)
)]2

.

(4.4)

t follows from (4.2), (4.3), and (4.4) that

GV )(x, t, i) ≤ ηp,iV (x) for all (x, t, i) ∈ Rd
× R+ × M, x ̸= 0,

s desired. The conclusion follows.
(b) follows from Theorem 3.5 and the computations in part

a). □

Using Theorem 3.5 and applying the same steps we did in
heorems 4.1 and 4.2, we can construct explicit criteria for ex-
onentially instability. For linear regime-switching SDEs with
mpulsive perturbations, we have the following result. We skip
he proof for brevity.

heorem 4.3. Assume (A) and for each i ∈ M, there exist matrices
(i), C1(i), C2(i), . . . , Cd(i) ∈ Rd×d, and a sequence of positive numbers
δ̃k}k∈N such that

(x, t, i) = B(i)x,
(x, t, i) =

(
C1(i)x, C2(i)x, . . . , Cd(i)x

)
,
⏐⏐Ik(x, i)⏐⏐ ≥ δ̃k|x|

for all (x, t, i) ∈ Rd
× R+ × M, and k ∈ N. Define

ηp,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
2
Λmin

( d∑
k=1

C⊤

k (i)Ck(i) + B⊤(i) + B(i)
)

for p ∈ [2, ∞),

p
2
Λmin

( d∑
k=1

C⊤

k (i)Ck(i) + B⊤(i) + B(i)
)

+
p(p − 2)

8
∑d

k=1

[
ρ
(
C⊤

k (i) + Ck(i)
)]2

for p ∈ (0, 2),

nd η̃p = (̃ηp,1, η̃p,2, . . . , η̃p,m)⊤ ∈ Rm. Suppose

(̃ηp) + lim inf
t→∞

1
t

∑
j:tj≤t

p ln |̃δj| > 0.

hen the trivial solution of Eq. (2.2) is pth moment exponentially
nstable.

xample 4.4. Let α(·) be a Markov chain with state space M =

1, 2, 3} and generator

=

⎛⎝ −2 1 1
3 −4 1
1 1 −2

⎞⎠ .

Consider a three-dimensional stochastic differential equation
ith Markovian switching of the form

X(t) = B
(
α(t)

)
X(t)dt + C

(
α(t)

)
X(t)dw1(t), (4.5)

here

(1) =

( 2 1 1.2
− 0.8 4.5 −0.2
1 0.5 3

)
,

(2) =

( 1.5 1 0.5
0.8 1.7 1

− 0.7 −0.4 2.1

)
,

(3) =

( 0.5 −0.9 −1
1 1.5 −0.7

)
,

0.8 1 1.5
9

(1) =

( 0.5 0.5 0
− 0.2 0.7 0.3
− 0.2 −1 1

)
,

C(2) =

(
−1 0.8 −0.2

− 0.3 1 0.5
0.5 −1 0.6

)
,

C(3) =

( 0.5 0.5 0.5
− 1 0.1 0.4
0.7 −0.5 0.2

)
.

Detailed computation gives us the stationary distribution ν =

(7/15, 3/15, 5/15). Using Theorem 4.3, we have η̃p,1 ≥ 0.5p,
ηp,2 ≥ 0.01p, η̃p,3 ≥ 0.48p. Then

∑3
i=1 νĩηp,i ≥ 0.39p > 0 for

p ∈ (0, 2). Thus, by virtue of Theorem 4.3, the trivial solution of
Eq. (4.5) is not pth moment exponentially stable for any p > 0.

Next, we introduce impulsive perturbations so that the trivial
solution of the resulting system

dX(t) = B
(
α(t)

)
X(t)dt + C

(
α(t)

)
X(t)dw1(t), t ≥ 0,

X(tk) = Ik
(
X(t−k ), α(t−k )

)
, k ∈ N.

(4.6)

is pth moment exponentially stable for some p > 0. Let tk = k for
k ∈ N, Ik(x, i) = δkx where {δk} is a sequence of real numbers. We
will apply Theorem 4.2. By virtue of Theorem 4.2 and Remark 3.7,
it is sufficient to have

|δk| < exp
(
−

∑
i∈M

νiζi

)
for k ∈ N,

where

ζi =
1
2
Λmax

(
C⊤(i)C(i) + B⊤(i) + B(i)

)
for i = 1, 2, 3.

Detailed computations give us ζ1 ≈ 4.745957, ζ2 ≈ 2.892707,
ζ3 ≈ 1.572366. Thus, a sufficient condition for moment expo-
nential stability is |δk| < exp(−3.317443) ≈ 0.03624539 for k ∈

N. We apply the Euler–Maruyama method to obtain numerical
solutions of Eqs. (4.5) and (4.6). Fig. 1(a) provides trajectories of
Eq. (4.5) with X(0) = (−2, 0, 2)⊤ and α(0) = 1. Fig. 1(b) presents
trajectories of Eq. (4.6) with X(0) = (−2, 0, 2)⊤, α(0) = 1,
δk = 0.03 for any k ∈ N. The figures illustrate the stabilization
effects of impulsive perturbations.

The following result concerns the linear scalar switching dif-
fusion with impulsive perturbations.

Theorem 4.5. Assume (A) and for each i ∈ M, there are real
numbers µi, λi, and a sequence of positive numbers {δk}k∈N such that

dX(t) = µα(t)X(t)dt + λα(t)X(t)dw(t), t ≥ 0,
X(tk) = δkX(t−k ), k ∈ N.

(4.7)

Denote

ηp,i = pµi +
p(p − 1)

2
λ2
i

for i ∈ M, ηp = (ηp,1, ηp,2, . . . , ηp,m)⊤ ∈ Rm.

Then the following statements hold.

(a) If Λ(ηp)+ lim supt→∞

[1
t
∑

j:tj≤t p ln |δj|

]
< 0, then the trivial

solution of Eq. (4.7) is pth moment exponentially stable.

(b) If Λ(ηp) + lim inft→∞

[1
t
∑

j:tj≤t p ln |δj|

]
> 0, then the trivial

solution of Eq. (4.7) is pth moment exponentially unstable.
(c) If∑

i∈M

νi

(
µi −

λ2
i

2
+ lim sup

t→∞

[1
t

∑
j:tj≤t

ln |δj|

])
< 0,

then the trivial solution of Eq. (4.7) is p̃th moment exponen-
tially stable for some p̃ > 0.
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Fig. 1. (a) Trajectories of Eq. (4.5) with X(0) = (−2, 0, 2)⊤ and α(0) = 1; (b) Trajectories of Eq. (4.6) with X(0) = (−2, 0, 2)⊤ , α(0) = 1, tk = k and δk = 0.03 for any
∈ N.
X

r

n
r
f
p
ρ
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ρ

f

i

B
e

roof. It can be seen that part (a) is a direct consequence of
heorem 3.3. Part (b) follows from Theorem 3.10. Part (c) is a
onsequence of Theorem 3.5. □

xample 4.6. We consider a neural network proposed by Hop-
ield [30]

iu̇i(t) = −
1
Ri
ui(t) +

d∑
j=1

Tijgj
(
uj(t)

)
for i = 1, 2, . . . , d, t ≥ 0;

(4.8)

see also [2, Section 10.5]. Here ui(t) represents the voltage on
the input of the ith neuron. Each neuron is characterized by an
input capacitance Ci and a transfer function gi(u). The connection
matrix element Tij has a value either 1/Rij or −1/Rij depending on
whether the noninverting or inverting output of the jth neuron
is connected to the input of the ith neuron through a resistance
Rij. The parallel resistance at the input of the ith neuron is Ri =

1/
(∑d

j=1 |Tij|
)
. The function gi(u) is a nondecreasing Lipschitz

continuous function with properties that

ugi(u) ≥ 0, |gi(u)| ≤ 1 ∧
(
βi|u|

)
for u ∈ R,

where βi > 0 is the slope of gi(u) at u = 0. Eq. (4.8) can be
rewritten as

u̇(t) = −Fu(t) + Ag(u(t)), (4.9)

where

fi =
1

CiRi
, aij =

Tij
Ci

, u(t) =
(
u1(t), . . . , ud(t)

)⊤
,

F = diag(f1, . . . , fd), A = (aij)d×d, g(u) =
(
g1(u), . . . , gd(u)

)⊤
,

(4.10)

Neural networks have been successfully employed in various
areas such as pattern recognition, associative memory and combi-
natorial optimization; see [10, Section 4.2] and references therein.
In practice, neural networks are subject to various types of noise
and abrupt jumps at certain instants. In [2, Section 10.5], the au-
thors took the white noise and color noise (Markovian switching)
into account. In [9], the authors recognized that many sudden
and sharp changes occur instantaneously, in the form of impulses.
Therefore, the authors proposed and studied neural networks
with impulsive perturbations; see also [10, Section 4.2] and ref-
erences therein for further discussions. Taking into consideration
10
noise and impulsive effects, we focus on a stochastic neural
network given by

dX(t) =
[
−F (α(t))X(t) + A(α(t))g(X(t))

]
dt

+σ (X(t), α(t))dw(t), t ≥ 0,
(tk) = Ik

(
X(t−k ), α(t−k )

)
, k ∈ N.

(4.11)

Here α(·), Ik(·), {tk}k∈N are defined as in Eq. (2.2) and for each
regime i ∈ M, F (i) and A(i) correspond to F and A in Eq. (4.9),
espectively.

As pointed out in [2,10], it is critical to know whether the
etworks are stable or not under perturbations. By using the
esults developed in this paper, we can find sufficient conditions
or moment exponential stability of the neutral networks. To
roceed, suppose for each i ∈ M, there exist real numbers λi, µi,
i and a sequence of positive numbers {δk}k∈N such that
⊤
[
−F (i)x + A(i)g(x)

]
≤ λi|x|2, |σ (x, i)|2 ≤ µi|x|2,

i|x|4 ≤ |x⊤σ (x, i)|
2
,

⏐⏐Ik(x, i)⏐⏐ ≤ δk|x|,

or all (x, i) ∈ Rd
× M and k ∈ N. Suppose that∑

∈M

νi

(
λi +

1
2
µi − ρi + lim sup

t→∞

[1
t

∑
j:tj≤t

ln |δj|

])
< 0.

y Theorem 4.1, the trivial solution of Eq. (4.11) is p̃th moment
xponentially stable for some p̃ > 0. Moreover, by virtue of

Theorem 3.13, the trivial solution of Eq. (4.11) is almost surely
exponentially stable.

5. Concluding remarks

This paper has been devoted to the study of SDEs with impul-
sive perturbations and Markovian switching. We have established
new explicit criteria for pth moment exponential stability. Stabi-
lization effects of the Markov chain and impulsive perturbations
have been revealed. Stabilization of switching diffusions by addi-
tional impulsive perturbations has been discussed. Although the
paper is devoted to a specific class of switching SDEs, one can
adopt the same approach to treat hybrid systems with impulsive
perturbations.
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