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1. Introduction

This work focuses on moment exponential stability of a class
of stochastic differential equations (SDEs) with Markovian switch-
ing and impulsive perturbations. The underlying process is a
two-component process (X(-), «(-)), where X(-) describes the
diffusion behavior with impulsive perturbations while «(-) is a
Markov chain. Recently, the stability of such a class of stochas-
tic processes has been studied in various settings for different
domain of applications. To mention just a few, we refer to [1]
for an intensive reference of impulsive differential equations and
[2,3] for modeling and analysis of hybrid systems. Related works
on asymptotic behaviors and stabilization of stochastic hybrid
systems can be found in [3-8].

Let d, m be positive integers, M = {1, 2, ..., m}, R, = [0, c0),
and N = {1, 2, ...}. Consider the dynamic system in R? x M given
by

dX(t) = b(X(t), t, a(t))dt + o (X(t), t, a(t))dw(t),
X(t) = L(X(t), ety ), k€N,

K

with initial condition (X(0), (0)) = (x°,i°), where b(-), o(-),
and Ii(-) are suitable functions, w(-) is a Brownian motion, «(-)

>
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is a finite state Markov chain, {ty}ren is a strictly increasing
sequence of positive numbers satisfying limy_, tx = 00, X(t, ) =
lim,_, - X(t), and a(t, ) = limHt; a(t). We defer the discussion
of the<precise formulation and conditions needed to the next
section. It can be seen that there are impulsive jumps in the
component X(-) at time ¢t for k € N. If [,(x, i) = x for any (x, i, k) €
R? x M x N, then (X(-), a(-)) is simply a Markovian switching
SDE studied in [2,6]. For SDEs under Markovian switching, it
has been demonstrated that although they are similar to SDEs,
they have some distinct features. With the impulsive perturbation
taken into account, the distinctions are even more pronounced.
However, the stability analysis for such hybrid systems is much
more delicate than the impulsive-free case. In particular, one
needs to treat both possible jumps in «(-) and impulsive jumps
in X(-).

As pointed out in [1,9,10], impulsive perturbations are ob-
served in information science, electronics, automatic control sys-
tems, computer networking, artificial intelligence, robotics,
telecommunications, population models, neural networks, and
economics. Many sudden and sharp changes occur instanta-
neously, in the form of impulses, which cannot be well modeled
by using purely continuous or purely discrete descriptions. Thus,
it is important to study impulsive systems. In particular, it is
critical to know whether the impulsive systems are stable; see
[10, Chapter 4] for a detailed discussion concerning population
models, neural networks, and economic models. Focusing on
Eq. (1.1), we are interested in the notion of moment expo-
nential stability, which is one of the main issues in stochastic
stability. Under certain conditions, we show that the moment
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exponential stability implies almost sure exponential stability;
see Theorem 3.13.

In recent years, there have been growing interests devoted to
the study of moment exponential stability analysis of impulsive
systems. To mention just a few, we refer to [11-14] for mo-
ment stability analysis of impulsive SDEs. The works [15-21]
focus on moment exponential stability of various forms of impul-
sive stochastic functional differential systems. Moreover, recent
results on Razumikhin-type theorems for stochastic functional
differential equations with Lévy noise and Markov switching and
for impulsive stochastic delay systems are obtained in [22,23].
Although the stability criteria in the aforementioned papers are
useful, there are certain points that have not been fully investi-
gated. First, we observe that most stability criteria for impulsive
systems are given in terms of the existence of certain Lyapunov-
type functions or the existence of certain matrices satisfying a
set of conditions. In practice, it is not easy to construct such
Lyapunov-type functions or matrices. It is important to construct
verifiable criteria for stability and instability. Second, the contri-
bution of «(-) to the moment exponential stability has not been
explicitly revealed for impulsive systems. In particular, can the
switching process «(-) make an impulsive system stable if an
impulsive subsystem is stable while the other subsystems are
unstable? This paper can also be seen as a further step of the
work [14,21,24]. In [14], the authors studied moment stability of
Eq. (1.1) while we focus on moment stability with an exponen-
tially fast convergence. In [21], the authors considered moment
stability and moment exponential stability for an extension of
Eq. (1.1) with delays. However, the work [14] and [21] does not
address the two aforementioned points. The paper [24] treats
a Markovian switching SDEs with Poisson jumps. However, the
results in [24] do not work for Eq. (1.1) because of impulsive
perturbations in Eq. (1.1).

Focusing on SDEs with Markovian switching and impulsive
perturbations, our objective is to address the aforementioned
issues. The novelty of this work lies in the use of the martin-
gale theory and large deviation techniques to establish new and
explicit criteria for moment exponential stability and instability
of switching impulsive systems. In contrast to the existing litera-
ture, our main contributions in this work can be summarized as
follows.

(a) We construct general sufficient conditions and explicit cri-
teria for moment exponential stability and instability. These
criteria are verified based on the system coefficients b(-, -),
o(-,-), the impulsive functions (-, -), a function A(-) to
be introduced, and the stationary distribution of «(-). Such
explicit criteria enables us to develop suitable controls for
stabilization; see Examples 3.12 and 4.4. These criteria can
also be used to investigate the stability of various impulsive
systems in population dynamics, neural networks, and eco-
nomic models to mention just a few; see Example 4.6, see
also [10, Chapter 4] for more applications.

(b) We are successful to take into consideration the long time
behavior of the switching device via a function A(-) and its
stationary distribution. Thus, we reveal explicitly the impact
of the switching process to the pth moment stability and
instability of impulsive systems under consideration; see
Remarks 3.8 and 3.9.

The rest of the work is organized as follows. Section 2 begins
with the problem formulation. Section 3 proceeds with several
general criteria of the moment exponential stability and instabil-
ity. Section 4 furthers our investigation by establishing explicit
criteria. Finally, the paper is concluded with a conclusion section.
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2. Formulation

Assume throughout the work that both the Markov chain
o(-) and the d-dimensional standard Brownian motion w(-) are
defined on a complete filtered probability space (£2, F, P, {F;})
with the filtration {F;} satisfying the usual conditions (i.e., it is
right-continuous and Fy contains all null sets). Suppose that «(-)
and w(-) are independent. Moreover, «(-) takes values in M =
{1,2, ..., m} with the generator Q = (q;;) € R™*™. The evolution
of «(-) is described by a transition probability specification of the
form

Pla(t + At) = jla(t) =i, afs), s < t}
qij At 4 o( At)
1+ gii At 4 o(At)

if i#], 2.1)
if i=j.
Note that g;; > 0if i # jand )_;", g = 0 for any i € M.

Let {ty}ken be a strictly increasing sequence of positive num-
bers satisfying limy_, o, ty = oo. For each k € N, the impulsive
function at time t; is given by Iy : R? x M — RY. The component
X(-) of the two-component process (X(-), a(-)) is given by the
impulsive SDE

dX(t) = b(X(¢), t, ae(t))dt + o (X(t), t, a(t))dw(t),
X(t) = L(X(t), a(ty ), keN.
with initial condition (X(0),2(0)) = (x°,1%) € R x M, b :

RIXRy x M — RY ot R x Ry x M — R, For convenience,
let to = 0.

620 59

Notation. For two real numbers ¢y, ¢3, c; Acy denotes min{cq, ¢;}.
For a matrix A € R%1%% AT denotes its transpose. For a matrix
A e R4 its trace norm is given by |A| = /tr(AAT), while
1; denotes the d x d identity matrix. For x = (xq,...,%3)| €
RY, its Euclidean norm is denoted by |x| = (ZL xiz)l/z. For
any symmetric matrix A € R Ap.(A) and Apin(A) denote
its largest eigenvalue and smallest eigenvalue, respectively. Let
p(A) = max{’Amax(A)‘v |Amin(A)’}-

The operator G associated with the process (X(t), a(t)) is given
as follows. Suppose V : R x Ry x M — R and V(-,-,i) €
C?>Y(R? x R,) for each i € M. Then

(GV)(X, t,1)=Vi(x, t, i)+ b (x, t, i)Vi(x, t, i)
+%tr(ch(x, t, iVi(x, t, D)o (x, t, 1)) + (QV)(x, t, i),

where Vi(-) = aV/0¢t, Vi(-, t, i) and Vi(-, t, i) denote the gradient
and Hessian matrix of V(-, t, i), respectively, and (QV)(x, t,i) =
Y iem 4iV(x, t, J). Since Q is the generator of a(-), 3 jc (G5 = 0
for any i € M. It follows that

@)x 6 i)=Y gy(Vx t.j)— V(x.t, i)
jeM j#i
for (x,t,i)e RY x Ry X M.
The standing assumption is given below.
(A) (a) We have
b(0,t,i)=0(0,t,i)=0 forall (t,i)e Ry x M.

(b) For any real number T > 0 and k € N, there exists a
positive number Kr y such that for all t € [0, T], i € M, and
all x, y € R with max{|x|, |y|} < k.

Ib(x, t, 1) = b(y, t, D> + o (x, £, 1) — oy, t, DI* < Krlx — y|*.

Also there exists a constant Ky ¢ > 0 such that

x"b(x, t, 1)+ |o(x, t,i)* < Koo(1+ |x|*) for all
(x,t,1) e R x Ry x M.
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(c) There exist positive constants y, and ¥ for k € N such
that
elx| < |I(x. D] < Wilxl for (x.i) € R x M, k € N.

(d) The Markov chain «(t) is irreducible; that is, the system
of equations

Su=1
ieM

has a unique solution v = (vq, ..., vy
eachi=1,2,...,m

vQ =0,

) satisfying v; > 0 for

Remark 2.1. Assumption (A)(a) indicates that the process X(t) =
0 is a trivial solution of Eq. (2.2). Under assumption (A), with
the same method as in [2,6], we can show that for each initial
condition (x°,1°) € R? x M, the system given by Eq. (2.1) and
Eq. (2.2) has a unique strong solution (X(-), a(-)) satisfying X(0) =
x%, (0) = i°. The sample paths of (X(-), «(-)) are right continuous
and have left limits. Moreover, the solution (X ), oz(~)) is global;
that is, it is defined for any t > 0. Then assumption (A)(c)
guarantees the nonzero property; that is, if x° # 0, then

]P’(X(t);éo for all tzO):l.

It enables us to work with the functions that are twice contin-
uously differentiable in R? \ {0}. Moreover, for any T > 0, X(-)
satisfies

]E[ sup |X(t)|p] < oo forany p > 0;
0<t<T

see [2, Theorem 3.24] and [3, Proposition 2.3]. Assumption (A)(d)
is related to the long time behavior of the switching device.

Now we state the definition of pth moment exponential sta-
bility and instability for switching SDEs with impulsive perturba-
tions for a positive number p.

Definition 2.2.

(a) The trivial solution of Eq. (2.2) is said to be pth moment
exponentially stable if there are positive constants 8 and K
such that

E|X"O’i0(t)|p <Ke P|x°|” forany t=>0,(x° ) eR?x M.

(b) The trivial solution of Eq. (2.2) is said to be pth moment
exponentially unstable if there are positive constants 8 and
K such that

E!Xxo'io(t)|p > KeP'|x°|” forany t>0,(x"i%) e R x M.
3. General criteria for moment exponential stability and insta-
bility

To prepare for the development in this section, we state the
definition of A : R™ — R; see [24, page 2598]. We refer to
[24, Appendix A], [25, page 136-137], and [26, page 22] for
details.

Definition 3.1. Let P be the set of all probability vectors on the
state space M. Denote

Z ququ

I(p) = — inf

uy>0,.. um>0

where p = (p1, .. ~,pm) € P is a probability vector. For =
(M, ..., nm)" € R™, define
= su —I(p )
peg(z NiPi

iemM
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Remark 3.2. Let y = (11, ..., nm) € R™ Throughout this paper,
{Na)}e=0 1s a process defined by 74y = n; if a(t) =i € M. Thus,
No(t) takes values in {ny, ..., nn}. It is proved that

1 .
A(n) = lim — m[E[e/g na(s)ds]];
t—oo t

see [27, Lemma A.3]. Moreover, ) ,_,, vini < A(1) < MaXie 7.
As recognized in [24,27], A(-) will play an important role in inves-
tigating the pth moment exponential stability of hybrid systems.

Theorem 3.3. Assume (A). Let V : RY — R be a twice continuously
differentiable on RY \ {0} satisfying c;|x|P < V(x) < c;|x|P for all
x € RY, where ¢, and ¢, are two positive numbers. Suppose that
there exist 1, = (Np.1, Mp.2> - --» Mpm)| € R™ and a sequence of
positive numbers {8y }ken Such that

(GV)(x, t, i) < mpiV(x) forall (x,t,i) € R x Ry x M,x #0

(3.1)
and
V(x, 1) < |8PV(x) forall (x,i) e RY x M, k € N. (3.2)
Suppose that B is a positive number and
A(np) +hmsup[ Zplnw |] < —B. (3.3)

=t

Then the trivial solution of Eq. (2.2) is pth moment exponentially
stable. Moreover, there is a positive number K such that

E|X*0*i0(t)|p < Ke‘f”|x°|p forany t>0,(x%i% eR?x M.

Proof. We divide the proof into two steps.

Step 1. In this step, we work with a fixed value of k € N.
Let (x°,1°) € RY x M. Without loss of generality, we suppose
x® = 0. For notational simplicity, we denote X(t) = X"O*io(t) and
a(t) = aio(t). Let {t,}, be the sequence of stopping times defined
by
T, = inf{t > t,_¢

X)) =n} Aty for neN.

Then 7, — t, as n — oo almost surely since the process X(-)
is a global solution of Eq. (2.2). By the Itd formula, we obtain for
t € [ty_1, t) that

exp(_f n ﬂp,a(s)ds)v(x(f A ) = V(X(t1)

k—1

tATh N
+ / EXp(— / np,a(u)du) (34)
t t]

—1 k—1
X [~V (X(5) + (GVIX(5), 5, a(s) |ds
+M(t A Tn),
where

t S
M(t) = / exp(— / np,a(u)du)vx(X(s))a(X(s),s,a(s))dw(s),

te—1 te—1
t € [te—1, te).

By (3.4) and assumption (3.1), we have

exp (= [i"" Mpatods )V (X(e A 7)< V(X(t1)) + M(EA 7).
(3.5)

Let D, be the o-algebra generated by {«(u), w(s): 0 <u,0 <
s < t} U F. In other words, D; is generated by the whole
process {a(s) : 0 < s < oo}, {w(s) : s € [0,t]}, and Fy. By
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[28, Chapter 1, Thm. 31], the filtration {D;} is right continuous
and thus it satisfies the usual conditions. Moreover, M(t) is a local
martingale with respect to the filtration {D;} for t € [t;_1, tk);
see [29, Theorem 4.2.12]. Note also that X(t;_;) is measurable
with respect to Dy, ,. Thus,

E[V(X(tk-1))| Dy, ] = V(X(te-1)), E[M(t A 10)| Dy, ]
=0 for t € [ty_1, tg).
This together with (3.5) implies

efow(- |

k—1

tATh

Mt ds)V (X(E A7) [P, | = V(X(81).

Letting n — oo yield

efo(- |

k—1

t

n,,,a(s)ds)v(X(r))‘DtH] < V(X(ter).- (36)

Recall that Dy, , is the o-algebra generated by {a(u), w(s) : 0 <
u,0 <s <t,1}UF. Hence, exp(—
with respect to Dy, ,. As a result,

cfoo(- |

k—1

= exp(— /t‘t np,a(s)ds>]E[V(X(t))

6) and (3.7) that

t .
S np,a(s)ds) is measurable

t

np,a(s)ds) V(X(t)) ‘Dt,H ]

‘Dt,(_l]. (37)

It follows from (3.

E[V(X(t))‘l)[,(_l] < V(X(te-1)) exp(/

np,a(s)ds)
tk—1

for t e [ty_1, ty). (3.8)

t

In view of (3.2), we obtain
E[V(X(tk))bfkfl]f |8k|pE[V(X(tI:))‘ka4]
< 18PV (xtt ) exp( |

fe—1

k

3.9
np,a(s)ds) . ( )

Step 2. To proceed, we note that (3.8) and (3.9) hold for any
k € N. Letting k = 1 in (3.9) yield

E[V(X(e0)[Po] = V() exp( /0 ! patsdS) 1817 (3.10)
Since Dy C Dy,, then

B[V (X(2)) Do) = E[E[V (X(t2)) [, ] | o] (3.11)
Letting k = 2 in (3.9) yield

E[V(X(8))| Dy, ] < V(X(t1) exp( /t :2 np,a(s)ds)mzv’. (3.12)

It follows from (3.10), (3.11), and (3.12) that

5}
E[V(X(t2))|Do] < V(XO)EXP(/ Up,a(s)d5)|52|p|51 IP.
0

By induction, we arrive at

i k
[V (x(00) [2o] < Vi exp( [ mpoinds) [ 151
=1

which implies that

k

tk
E[V(X(t))] < V(xo)]E[exp(/ npqa(s)ds)] H 8P for k € N.
0

j=1
(3.13)
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In view of (3.8) and (3.13), we have

¢ k
E[V(X(1)] < V(XO)E[exp(/ np,a(s)ds)} 1_[ 18;1P
0 .
Jj=1
for t e [ty, tip1)
Thus,
t
E[V(X(D)] < V(xo)]E[exp(Zpln 181 +/ np,a(s)ds)]
Jjst 0
for t>0.
Since
t
lim sup — lnE[exp<Zpln|8 | +/ np_a(s)ds>]
t—00 =t 0
1
=A + lim su [f ln5-]<— ,
(1rp) + lim sup tﬂqu 51| < -8
i<

there is a positive number K such that

E[IX(t)P] < Ke P'1x°f forall t>0,(x° % e R x M.

The conclusion follows. O

Remark 3.4. In the statement of Theorem 3.3, we state a list of
several assumptions under which the trivial solution of Eq. (2.2)
is pth moment exponentially stable. These assumptions are based
on the existence of a Lyapunov function V(-) and the sequence
{Ix(-)} satisfying (3.1), (3.2), and (3.3). In the next section, explicit
criteria are established for common/practical classes of impulsive
systems; see Theorems 4.1, 4.2, and 4.5.

Assume that supycy(tk — tk—1) < oo. Then (3.3) is equivalent
to

A(np) +11msup [Zplnw |]< —B. (3.14)

In order to verify (3.14), a sufficient condition is
pln|s] < —(B+ A(ny))(tk — te1) for k> ko,
where kg is a positive integer; that is,

(B + Alnp)(t — te1)
p

18] < exp(— ) for k> ko.

Theorem 3.5. Assume (A). Let V : RY — R be a twice continuously
differentiable on RY \ {0} satisfying c;|x|P < V(x) < c,|x|P for all
x € RY where ¢y and c, are two positive numbers. Suppose that
there exist np = (Mp,1, Mp,25 - - - » np,m)T € R™ and a sequence of real
numbers {8y }ken Such that

(GV)(x, t, i) < mpiV(x) forall (x,t,i)eRI xRy x M,Xx#0

(3.15)
and
V(I(x, 1)) < [8[PV(x) forall (x,i)eR? x M, keN. (3.16)
Suppose that

(3.17)

1
i i + limsu (7 In 8)] 0
> o[+ lim sup tjzmﬁp 51) ] <
tj<

ieM

Then the trivial solution of Eq. (2.2) is pth moment exponentially
stable for some P > 0.
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Proof. Let y € (0, 1) and consider the function V,(x) =
for x € RY. Then in view of (3.15), we have

v

PV Ve, &) — L)
X VOO 2| Vie(®)or (x, €, i)
< yIVE)I piV(x)

=ynpiVy(x) for (x,t,i)e RY x Ry x M, x # 0.

(GVy )x, t,i)=

(3.18)
By virtue of [24, Lemma 3.5], we have
A
lim A0) _ > vt (3.19)
y—0 Y h
iemM
In view of (3.17) and (3.19), there exists 3 > 0 such that
. 1
> ul Alyonp) + lim sup<? > (o) inisil) | <0 (3.20)
ieM t=oo jig=<t
Let = yop. By virtue of Theorem 3.3, (3.18), and (3.20), the

trivial solution of Eq. (2.2) is pth moment exponentially stable.
The conclusion follows. O

Theorem 3.6. Suppose ty = Tk for some T > 0. Let V : RY - R
be a twice continuously differentiable on RY \ {0} satisfying c1|x|P <
V(x) < c|x|P for any x € RY, where c; and c, are two positive
numbers. Suppose (3.1) is satisfied and there exist positive numbers
8p,i (i € M) such that

V(Ik(x, 1)) < 8,V(x) forall (x,i)eR?x M, keN. (3.21)

IfZieM (ln 18p,il + np,,'T) v; < 0, then the trivial solution of Eq. (2.2)
is pth moment exponentially stable for some p > 0.

Proof. Let 7, be the filtration generated by {«(t),t > 0} and
F>,¢ the filtration generated by {«(s), 0 < t < s}. From the proof
of Theorem 3.3, we have

[t/T]

E[VX()| 7] < v [exp(z N [8p.a(m)] + / [ np,a(s)ds)]

k=
for t>0.

Then, an application of Jensen’s inequality yields

[t/T]

t
[VQ(X |.7:2] < V&( )[exp(@ Z In |8p,oz(Tk)| =+ 9-[0 r;p’a(s)ds)]
k=1
for t>0,0€(0,1). (3.22)

Due to the ergodicity of the Markov chains {«(t),t > 0} and
{a(kT), k € N}, we have

nlggo nIE <Z I [8p, oo | + / nlLDt(S)dS) =X <0,

where E; indicates the initial value «(0) = i. Then, there exists
n* > 0 such that

n* n*T nt
E; Zln|6p.a(Tk)| +/ Np,as)ds | < 5 < 0
k=1 0

for any i € M.
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Then, as a result of a property of Laplace’s transformation, see |7,
Lemma 3.4], we have

n* n*T
E; exp {9 <Z In |8p,oz(Tk)| + / ﬂp,a(s)d5> }
k=1 0

*

AN
5p:=exp{ n }<1 for any i € M.

Because of the Markov property of {«(t), t > 0} and {«(kT), k €
N}, we have

2n* 2*T
[E; exp {9 <Z In |8p.o(1i0| + / ﬂp,a(s)dS) ]
k=1 0
2n* 25T
ZEi[Ei (exp {9 ( Z In [8p, (1) | +/ . Up,a(s)d5>} ‘]:Z,n*T)
n*

=n*+1

XeXp{ (Zln|5pa(TI<|+f Np,a(s) )}]
—E: a(n*T) €XP (Z In |8p amio | + Tlp, a(s)d5> }

i
xexp[ <Zln|8pa(n<|+/ Mp.a(s) )}

<K [P exp { (Z In [8p (1) | + Up ls) )

<p’.

Continuing this process, we obtain that

£n* n*T
[E; exp {9 (Z I8y, o (1i0)| +/ 77p$a(s)d5>} <p', teN
k=1 0

(3.23)

Because of the boundedness of In |8, ;| and 7, ; for i € M, there
exists a constant independent C,+ of t such that if {n*T <t <
(£ + 1)n*T for some £ € N, we have

[¢/T]
eXp{ <Z In |5p a(Tk) | + / 77p,a(s)>}
0

n*T
< G exp{é‘ (Z In |8y, a(mi| + / r;p_a(s)ds> }
k=1 0

It follows from (3.22), (3.23), and (3.24) that
E[V/(X(O)] < G VI (x0T,

(3.24)

Since p < 1, we easily obtain the pth moment exponential
stability of the system, where p = @p for some small 6 > 0. O

Remark 3.7. Assume that supy(tx — tk—
equivalent to

1) < oo. Then (3.17) is

Z vigi + limsup — (3.25)

iem k—o00

[Z In |5; |]

where ¢; = np;/p for i € M. In order to verify (3.25), a sufficient
condition is

18] < (D2 vidi)(t = ti) for k= ko,

ieM
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where kg is a positive integer; that is,

1861 < exp(— (D2 vidi )t = ti-)) for k= ko.

ieM

Remark 3.8. The associated switching SDE with no impulsive
perturbations of X(-) is given by
a(t))dt + o (X(t), t,

a(t)dw(t), t=>0.

(3.26)

Associated with the switching SDE )?( ), there are m SDEs that
mteract~ and switch back and forth. These SDEs are denoted by
XDy, XA, ..., XM(.) and for each i € M, X is given by the
ith subsystem

dXO(t) = bXD(t), t, i)dt + o(XO(¢), t, )dw(t), t>0. (3.27)

By virtue of Theorem 3.3, we have the following assertions on
special cases of Eq. (2.2).

(a) If np; < O, then the trivial solution of the ith subsystem
given by (3.27) is pth moment exponentially stable.

(b) If A(np) < 0, then the trivial solution of the switching SDE
(3.26) is pth moment exponentially stable.

(c) If A(np) + lim supmoo[% Zj:[jstpln|8j|] < 0, then the
trivial solution of the switching SDE with impulsive perturbations
Eq. (2.2) is pth moment exponentially stable.

Thus, Theorem 3.3 and in particular the sufficient condi-
tion (3.3) reveal the contribution to the pth moment exponential
stability of the Markov chain «(-) and the impulsive perturba-
tions.

Remark 3.9. The impulsive switching SDE X(-) can also be viewed
as a set of m impulsive SDEs that interact and switch back and
forth. These impulsive SDEs are denoted by X(V(.), X®)(.), ...,
X)) and for each i € M, X% is given by

dx(¢) = bX(¢), ¢, D)de + o (XO(e), ¢, D)du(t),
X0 = (XV(5;). 1), keN.

Note that )

620 (38

vi = 1and A(cly, +np) = ¢+ A(np), where ¢ is

iemM
areal number and 1,, = (1, 1,...,1)T € R™ It follows that
I [ 1 5]
A(np) +1imsup| = > 7 pln |5
jit<t
A< + lims [1 Z In|$ |]11 )
= 1 u — i .
np t%oop tj,t.<[p ! "
<

By virtue of Theorem 3.3, we have the following assertions on
special cases of Eq. (2.2).

(a) If np; + limsup,_, *[Zj:rjgr pln |5]-|] < 0, then the trivial
solution of the ith subsystem given by (3.28) is pth moment

exponentially stable.
(b) Suppose that (3.1) and (3.2) are satisfied. Suppose that

. 1
Np.i + ll?lsol:p[? Zpln |8j|] <0

j:tjﬁt

for some i; that is, some subsystem given by (3.28) is pth moment
exponentially stable. Then we can choose a Markov chain «(-)
such that the switching SDE with impulsive perturbations (2.2)
is pth moment exponentially stable. To illustrate, we look at the
case m = 2; that is, the state space of Markov chain «(-) is
M = {1, 2}. Let P be the set of all probability vectors on the
state space M. Let p = (py, p2) € P. As in [27, page 1310], we
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plquuj
T - f
(P) u1>10nu2>0 Z
u
—— inf P1q12U2

[ pP1g12 — p2g21 +
uy>0,up>0

—(=p1q12 — p2q21 + valfthzqm
= (VP1Q12 - v132QZ1) .

Note that p, = 1 — py. Thus, for 7,

n Pz‘hlul]
15}

= (np,h 7711,2)T € RZ,
A(np)= sup(1p,1p1 + 1p.2p2 — Z(p))
peP

(\/¢Q12 - \/(1

Suppose 71,1 < 0. Then we can choose a sufficiently large q,; and
a sufficient small qq, such that

1
A limsu [f In 8-] 0
(np) + limsup| - > pIngy| | <

j:[jgt

= sup [ﬂp,ﬂp +1p2(1—¢)— - ¢)QZ1)2]-

¢€[0.1]

as desired.

Next, we provide a sufficient condition for instability.

Theorem 3.10. Assume (A). Let V : RY — R be a twice contin-
uously dlfferentlable on R\ {0} satisfying c1|x|P < V(x) < cy|x|?
for all x € RY, where c¢; and 1 ¢, are two positive numbers. Suppose
that there exist 7, = (np 1:Tp.2s -+ Tp, m)| € R™ and a sequence
of positive numbers {8y }ren Such that

(GV)(x, t,1) > TpiV(x) forall (x,t,i)eRI xRy x M,Xx#0

(3.29)
and
V(I(x, i) = [3°V(x) forall (x,i)eRx M, keN.  (3.30)
Suppose that
~ .1 ~
AGT) + htrgéglf[? Y pin |aj|] ~0 (3.31)

JiG<t

Then the trivial solution of Eq. (2.2) is pth moment exponentially
unstable.

Proof. The proof is a modification of that of Theorem 3.3. We
will provide an outline and skip the details for brevity. We divide
the proof into two steps.

Step 1. In this step, we still work with a fixed value of k.
Let (x°,i°) € RY x M. Let D; be the o-algebra generated by
{o(u), w(s) : 0 < u,0 <s <t} U F. Without loss of generality,
we suppose x° # 0. With the similar arguments as in Step 1 of
the proof of Theorem 3.3, we obtain
t

E[V(X(t)) ]D[,H] > V(X(ti-1)) eXp( / ﬁp.amdS)
te—1
for t e [ti_1, ty). (3.32)
It follows from (3.30) that
E[V(X(tk))’kafl]z |gk|pE[V(X(tI;))|ka4]
(3.33)

> [5k"V (X(tk-1)) EXD(/ Up,a(S)dS)-
t]

k=1

Step 2. To proceed, we note that (3.32) and (3.33) hold for any
k € N. With the similar arguments as in Step 2 of the proof of
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Theorem 3.3, we obtain

k
E[V(X(t))] = V(xo)]E[exp(/ Tip.a(s ds)] H I5;” for k e N.
0

j=1
(3.34)

In view of (3.32) and (3.34), we have

t k
E[V(X(D)] = V(xO)E[exp( /0 ﬁp,a(s)ds)} 1‘[ i
j=1

for t € [tk, tis1).
Thus,

E[V(x(t))] = V(xO)E[exp(Zpln 51 +/O 'ﬁp,a(s)dsﬂ
JG=t

forall t> 0.

Since

lltrgégf* In E[exp(z pln |8 | +/o np,a(s)ds)]

JG=t

A(Tp) +11m1nf[ Zpln|8 |] > 0,

Jigist
there are positive numbers K and 8 such that

E[IX(t)P] = KeP'|X°]° forall t=>0,(x°,{’) e R? x M.

The conclusion follows. O

Remark 3.11. In view of Theorem 3.10 (see also Remark 3.4),
we can construct impulsive perturbations so that the result-
ing switching SDE with impulsive perturbations is pth moment
exponentially unstable even if the system with no impulsive
perturbations is pth moment exponentially stable.

Example 3.12. We discuss the stabilization of switching SDEs
by impulsive perturbations. Suppose the switching SDE (3.26)
is pth moment exponentially unstable. We would like to design
impulsive perturbations so that the resulting impulsive system
(2.2) is pth moment exponentially stable. Moreover, we wish
that the pth moment Lyapunov exponent is not greater than — g,
where $ is a given positive number.

Suppose we can perform impulsive perturbations at the se-
quence of impulsive times {tx}rey and supyen(ty — tke1) < 0.
Theoretically, t; can be arbitrarily large. With Iy(x, i) = &x for k €
N, we proceed to determine the sequence {8y}ken. By Remark 3.4,
we can choose §; such that

(B + Alnp))(te — ti1)
p

By virtue of Theorem 3.3, the impulsive switching SDE (2.2) is
pth moment exponentially stable and the pth moment Lyapunov
exponent is not greater than —g.

[8k] < exp(— ) for keN.

Theorem 3.13. Assume (A), infyen(ty — ti—1) > 0, and there is a
positive constant M such that

|b(x, t,1)| + |o(x, t, )] <M|x| forany (x,t,i)eRY x Ry x M.

Suppose that the trivial solution of Eq. (2.2) is pth moment expo-
nentially stable; that is, there are positive constants B and K such
that

EXC () < ke PO forany t> 0,0, 1) € R x M.
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Then for any (x°, %) € RY x M,

limsup — 1n(|X" g (t)|) < —g as.; (3.35)

t—o00
that is, the trivial solution of Eq. (2.2) is almost surely exponentially
stable.

Proof. The proof is a modification of that of [6, Theorem 3.2].
We will provide an outline and skip the details for brevity. Let
(x°,i%) € RY x M. Let ¢ € (0, B/2) be arbitrary. Let r > 0
be sufficiently small for BMP (P + C,rP/?) < 1, where G, is
the constant given by the well-known Burkholder-Davis-Gundy
inequality (see [2, Theorem 2.13]). Without loss of generality, we
suppose that supgen(ty — tk—1) < r (note that if t > 0 and
t # t, for any k € N, we can treat t as an impulsive time with
Xty = x**°(t7)). For a fixed k € N, we have

dx*"°(¢) = b(x*
t € [tr—1, t).

0 ;0

L), ¢, o ())dt + o (X0, £, o (6))dw(t),

By using the same arguments as those in the proof of [6, Theorem
3.2], we obtain

IE[ sup |X"O*"O(t)|p] < 2K|x°|P3Pe(Pedti1

fe—1=t<ty

Hence,

]P’( sup X)) > e’(ﬂ’z*’)"H/"> < 2K|x°| 3P etk
tg—1=t<ty

Since infyen(ty — ti—1) > 0, D,y %1 < oo. By the Borel-

Cantelli lemma, for almost all w € £2,

sup |XX°.i°(t)| < e~ (B—2e)k—1/p
tg—1 <t<ty

(3.36)

holds for all but finitely many k € N. Thus, there is a function
k:$£2 — Nand an event Qce for which P(£2) = 1 and (3.36)
holds whenever w € 2 and k > k( ). Consequently, for w € 2,
k> k( ),and t € [tr_1, ty),

1 ; — 28t —2¢e)(t —
(o) < — B2 Mo _(B=2eXe=r)
t pt pt
Therefore,
1 ; -2
lim sup - ln(|X"0"0(t)|) < _(B=2¢) as.,
t—o00 p

which gives us (3.35) by letting ¢ — 0. O

4. Explicit criteria for pth moment exponential stability and
instability

In what follows, we apply Theorems 3.3 and 3.5 to find explicit
criteria for stability and instability.

Theorem 4.1. Assume (A) and for each i € M, there exist real
numbers K?, K7, K¢, LY and a sequence of positive numbers {Sy}xen
such that

xTh(x, t,i) < K'|x?,  lo(x, t,0)]* < K7|x?,
w2 .
Lx* < xTo(x 6, 0" < KXY (x| < 8elxl,
forall (x,t,i) € R x R x M, and k € N. Denote for i € M,
p p

PK} + SK7 + S(p—2)tf for pe(0,2),
Np,i =
PP+ 27+ 2o - 27 for p etz ),
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and = 102y -+ > Tpm)| € R™ The following assertions
Np Mp.15 Tp, Mp,

hold.
(a) Suppose that
1
A(np) + lim sup[f Zpln |8j|] <0
t—00 tj't~<[
<

Then the trivial solution of Eq. (2.2) is pth moment exponen-
tially stable.
(b) Suppose that

1 1
E vi<1<ib + K7 — L+ limsup[f E In |8j|]) <0
. 2 t—o00 t ;
ieM Jist

Then the trivial solution of Eq. (2.2) is pth moment exponen-
tially stable for some p > 0.

Proof. (a) Let V(x) = x| for x € RY. In view of Theorem 3.3, it
is sufficient to check that

(GV)(x, t,i) <mpiV(x) forall (x,t,i) € R x Ry x M,x #0.

Indeed, we have

Vi(x) = pIx[P2x,
Vi) = p[IX1P21g + (p — 2)Ix1P*xxT] for x e RY x #0.
Thus,

(GV)x, t, i):p‘x|p72bT(x,t,i)x+ gtr[]x]p 2o(x, t,i)o T (x, ¢, i)]

1 _
+5p(p — 2)tr[|x‘p % To(x, t, i)o T (x ¢, i)]
< |x|"(p1<ib + gK," + g(p - 2)|x|_4|xTcr(x, t, i)|2).

(4.1)

We consider 2 cases.
(i) If p < 2, then we have from (4.1) that

@V t. )= IxP (pK? + DK7 + Bp — 2.
(ii) If p > 2, then we have from (4.1) that
(GVx, £, 1)< |x|"(p1<,-” + gK;’ n g(p - 2K7).

In any case, we have
(GV)(x, t,i) <npiV(x) forall (xt,i)e RY x Ry X M, x #0,

as desired. The conclusion follows.
(b) follows from Theorem 3.5 and the computations in part
(a). O

Now we focus on linear regime-switching SDEs with impulsive
perturbations. To proceed, recall that for any symmetric matrix
A e R AL (A) and Apmin(A) denote its largest eigenvalue
and smallest eigenvalue, respectively. Let p(A) = max{|Amax(A)|,
‘Amin(A)’}-

Theorem 4.2. Assume (A) and for each i € M, there exist matrices
B(i), C1(1), Co(i)..., C4(i) € R%¢, and a sequence of positive numbers
{8k }ken Such that

b(x, t,i) = B(i)x,

|Ik(X, 1)’ =< (Sklxl

o(x, t, i) = (G, G, ..., Ca(ix),
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for all (x,t,i) € RY x Ry x M, and k € N. Denote fori € M,

p

d
5 Amax( €L G + BT() +B() for pe(0.2)
k=1

p

d
Mpi = QAmax (Z Cy (DC(i) + BT (i) + B(i))

Lo+ )]

for pe[2,00),

and ny = (Mp,1, Mp.2s - - - )T € R™. The following assertions

hold.

) np.m

(a) Suppose that
Alnp) + 111‘1‘1 sup[f Zpln |8; |] < 0.
Jitjst

Then the trivial solution of Eq. (2.2) is pth moment exponen-
tially stable.
(b) Suppose that

d
3 w(% Amax(z GTGD) + B () + B()

ieM k=

+ lim sup[ Z In|é; |]>

t
—00 =t

Then the trivial solution of Eq. (2.2) is pth moment exponen-
tially stable for some p > 0.

Proof. (a) Let V(x) = x| for x € RY. In view of Theorem 3.3, it
is sufficient to check that

(GV)(x, t,1) < mpi(£)V(x) forall (x,t,i)e R? x Ry x M, x # 0.

Indeed, we have

Vi(x) = plx|P2x,
Vi) = p[IXIP %1y + (p — 2)IxIP*xx"] for x e R".
Thus,

(GV)(x, t,i)= ltr(ZxTCk ())Vi(X)Ci( 1)x) (Vx(x))T(B(i)x)

k=1
d TA~Tys . T~Tys 2
) 1 x'C, (D)Ce(i)x B Ix' C, (i)x]
=P {2 §< e )
+xTB(2i)x}.
|x|
(4.2)
We have
1 i XTI ()G (ix  xTB(i)x
24y X1
B 72 xTCl (i) xT (BT (i) + B(i))x
Bl |x|2 2/x)?
(4.3)
T . .
§2|x|2 (ch )Ci(i) (1)+B(l)))x

k=

d
- %Amax(z Gl (Cu(0) + BT (1) + B(i))

k=1
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For a symmetric A € R?*? we have |x"Ax| < p(A)|x|*> for any
x € R%. Thus,

TCT(1xl? T(CTG) + x> 1 2
e = O < o o))

(4.4)
It follows from (4.2), (4.3), and (4.4) that
(GV)x, t,i) < mpiV(x) forall (x,t,i)e R x Ry x M,x #0,

as desired. The conclusion follows.
(b) follows from Theorem 3.5 and the computations in part
(a). O

Using Theorem 3.5 and applying the same steps we did in
Theorems 4.1 and 4.2, we can construct explicit criteria for ex-
ponentially instability. For linear regime-switching SDEs with
impulsive perturbations, we have the following result. We skip
the proof for brevity.

Theorem 4.3. Assume (A) and for each i € M, there exist matrices
B(i), C1(i), Co(i), ..., Ca(i) € R?*%, and a sequence of positive numbers
{8k }ken such that

b(x, t, i) = B(i)x, ~

a(x, £, i) = (Ci(il, Gy, ..., CaliX),  |Ie(x, )] = Sl

for all (x,t,i) € RY x Ry x M, and k € N. Define

d
gAmm (Z Gl (DC(i) + BT (i) + B(i)) for pe[2,00),
k=1
d
i = { 5 Amin (k; G (DG(i) + BT () + B(z))
2 )
+22 5 Sy [ (Gl )+ )|

for pe(0,2),

and 7y = (Wp.1, Tp.2s - - - » Tpm) | € R™. Suppose

~ 1 ~
i) + lim inf Zpln I3, > 0.
Jigst

Then the trivial solution of Eq. (2.2) is pth moment exponentially
unstable.

Example 44. Let «(-) be a Markov chain with state space M =
{1, 2, 3} and generator

-2 1 1
Q= 3 -4 1.
1 1 =2

Consider a three-dimensional stochastic differential equation
with Markovian switching of the form

dX(t) = B(a(t))X(t)dt + C(a(t))X(t)dwi(t), (4.5)

where

-07 -04 21

05 -0.9 -1
1 1.5 -0.7],

0.8 1 1.5

1.5 1 5
B2) = ( 08 17 1 )
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05 05 0
cy=| -02 07 03],

-02 -1 1
-1 08 -02

c2)=( -03 1 05},
05 -1 06

05 05 05
c3)=( -1 01 o04).
07 —05 02

Detailed computation gives us the stationary distribution v =
(7/15,3/15,5/15). Using Theorem 4.3, we have 7;’,,,1 > 0.5p,
Mp2 > 0.01p, 7,35 > 0.48p. Then Z; vifp.i > 0.39p > 0 for
p € (0, 2). Thus, by virtue of Theorem 4.3, the trivial solution of
Eq. (4.5) is not pth moment exponentially stable for any p > 0.
Next, we introduce impulsive perturbations so that the trivial

solution of the resulting system

dX(t) = B(a(t))X(t)dt + C(a(t))X(t)dw1(1),
X(t) = L(X(t), a(ty)), keN.

is pth moment exponentially stable for some p > 0. Let t, = k for
k € N, Iy(x, i) = 8ix where {4} is a sequence of real numbers. We

will apply Theorem 4.2. By virtue of Theorem 4.2 and Remark 3.7,
it is sufficient to have

[6k] < exp(— Z v,—;“,—) for keN,

ieM

£20, (456)

where

G = %Amax<CT(i)C(i) +B7() +B(i)) for i=1,2,3.
Detailed computations give us ¢; &~ 4.745957, ¢, ~ 2.892707,
’3 ~ 1.572366. Thus, a sufficient condition for moment expo-
nential stability is |§x| < exp(—3.317443) ~ 0.03624539 for k €
N. We apply the Euler-Maruyama method to obtain numerical
solutions of Eqs. (4.5) and (4.6). Fig. 1(a) provides trajectories of
Eq. (4.5) with X(0) = (=2, 0, 2)" and «(0) = 1. Fig. 1(b) presents
trajectories of Eq. (4.6) with X(0) = (=2,0,2)7, «(0) = 1,
8x = 0.03 for any k € N. The figures illustrate the stabilization
effects of impulsive perturbations.

The following result concerns the linear scalar switching dif-
fusion with impulsive perturbations.

Theorem 4.5. Assume (A) and for each i € M, there are real
numbers w;, A;, and a sequence of positive numbers {8y }ken Such that

dX(t) = payX(E)dt + dgyX()dw(t), t=>0, (47)
X(te) = &X(t;), keN. :
Denote
pp—1)
Np.i = Pl + ka
for ie M, np=(77p,1,np,z,...,np$m)T €R™.

Then the following statements hold.

1
(a) If A(np)+lim supt_mo[f 3y p1n |5j|] < 0, then the trivial
solution of Eq. (4.7) is pth moment exponentially stable.

1
(b) If A(n) + lim inft_wo[f Sy pIn |3,-|] > 0, then the trivial
solution of Eq. (4.7) is pth moment exponentially unstable.

I
A 1
Z vi| ui — = + lim sup[f Z In |8]-|] <0,
. 2 t—o0 t !
iemM Jit=t

then the trivial solution of Eq. (4.7) is pth moment exponen-
tially stable for some p > 0.
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100000
1

T EXi(t)
Xo(t)

50000
1

-50000
1

Time

(a)
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— X(1)
Xa(t)

Time

Fig. 1. (a) Trajectories of Eq. (4.5) with X(0) = (-2, 0,2)" and «(0) = 1; (b) Trajectories of Eq. (4.6) with X(0) = (—2,0,2)", «(0) =1, t;y = k and & = 0.03 for any

keN.

Proof. It can be seen that part (a) is a direct consequence of
Theorem 3.3. Part (b) follows from Theorem 3.10. Part (c) is a
consequence of Theorem 3.5. O

Example 4.6. We consider a neural network proposed by Hop-
field [30]

1

d
Ciil,'(f) = ——ui(t) + ZTugj(uJ(t)) for i = 1, 2, ey d, t > O;
j=1

R;
(4.8)

see also [2, Section 10.5]. Here u;(t) represents the voltage on
the input of the ith neuron. Each neuron is characterized by an
input capacitance C; and a transfer function g;(u). The connection
matrix element T; has a value either 1/R; or —1/R;; depending on
whether the noninverting or inverting output of the jth neuron
is connected to the input of the ith neuron through a resistance
Rjj. The parallel resistance at the input of the ith neuron is R;
1/(21.11 |T;l). The function gi(u) is a nondecreasing Lipschitz
continuous function with properties that

ugi(u) > 0, |giu)l < 1A (Bilul) for ueR,

where B; > 0 is the slope of gj(u) at u
rewritten as

0. Eq. (4.8) can be

i(t) = —Fu(t) + Ag(u(t)), (4.9)
where
1 T;i
fi= cp = é u(t) = (uilt), ..., ualt)) ",
F=diaglfi,....fa). A= (apixar &)= (@).....gw)
(4.10)

Neural networks have been successfully employed in various
areas such as pattern recognition, associative memory and combi-
natorial optimization; see [ 10, Section 4.2] and references therein.
In practice, neural networks are subject to various types of noise
and abrupt jumps at certain instants. In [2, Section 10.5], the au-
thors took the white noise and color noise (Markovian switching)
into account. In [9], the authors recognized that many sudden
and sharp changes occur instantaneously, in the form of impulses.
Therefore, the authors proposed and studied neural networks
with impulsive perturbations; see also [10, Section 4.2] and ref-
erences therein for further discussions. Taking into consideration
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noise and impulsive effects, we focus on a stochastic neural
network given by

dX(t) = [—F(a(t))X(t) + A (t))g(X(1))]de
4o (X(t), a(t))dw(t), t=>0,
X(t) = L(X(t), a(ty ), keN.

Here «(-), Ik(-), {tx}ren are defined as in Eq. (2.2) and for each
regime i € M, F(i) and A(i) correspond to F and A in Eq. (4.9),
respectively.

As pointed out in [2,10], it is critical to know whether the
networks are stable or not under perturbations. By using the
results developed in this paper, we can find sufficient conditions
for moment exponential stability of the neutral networks. To
proceed, suppose for each i € M, there exist real numbers A;, wi,
p; and a sequence of positive numbers {8 }ren such that

XT[—F(i)XJrA(i)g(;O] <nlxP ok D < walxl?,
pil® < Ko, D, I )] < Sulil,

(4.11)

for all (x, i) € R? x M and k € N. Suppose that

1 . 1
Z v; ()\i tomi—pit llItIlSo;lP[? Z In lsjl]) =0

ieM ji=t

By Theorem 4.1, the trivial solution of Eq. (4.11) is pth moment
exponentially stable for some p > 0. Moreover, by virtue of
Theorem 3.13, the trivial solution of Eq. (4.11) is almost surely
exponentially stable.

5. Concluding remarks

This paper has been devoted to the study of SDEs with impul-
sive perturbations and Markovian switching. We have established
new explicit criteria for pth moment exponential stability. Stabi-
lization effects of the Markov chain and impulsive perturbations
have been revealed. Stabilization of switching diffusions by addi-
tional impulsive perturbations has been discussed. Although the
paper is devoted to a specific class of switching SDEs, one can
adopt the same approach to treat hybrid systems with impulsive
perturbations.
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