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ABSTRACT. The geometric naturality of Schubert polynomials and their combinatorial
pipe dream representations was established by Knutson and Miller (2005) via antidiagonal
Grobner degeneration of matrix Schubert varieties. We consider instead diagonal Grobner
degenerations. In this dual setting, Knutson, Miller, and Yong (2009) obtained alternative
combinatorics for the class of “vexillary” matrix Schubert varieties. We initiate a study of
general diagonal degenerations, relating them to a neglected formula of Lascoux (2002) in
terms of the 6-vertex ice model (recently rediscovered by Lam, Lee, and Shimozono (2018)
in the guise of “bumpless pipe dreams”).

1. INTRODUCTION

Let F,, be the complex flag variety, the parameter space for complete flags of nested vector
subspaces of C". The Schubert cell decomposition of F,, yields a distinguished Z-linear basis
for the cohomology ring H*(F,,). On the other hand, A. Borel [Bor53] presented this ring as

H*(F,) & Z[xy, ..., x,]/1,

where [ is the ideal generated by the nonconstant elementary symmetric polynomials.

It is natural to desire polynomial representatives for the Schubert basis with respect to
this presentation. Building on work of I. Bernstein, I. Gelfand, and S. Gelfand [BGGT73],
A. Lascoux and M.-P. Schiitzenberger [LS82] introduced Schubert polynomials. These are
combinatorially well-adapted coset representatives for images of Schubert cohomology classes
under the Borel isomorphism. In fact, Lascoux and Schiitzenberger introduced more general
double Schubert polynomials that represent Schubert classes in the T-equivariant cohomology
of F, (where ' C GL,(C) is the group of invertible diagonal matrices).

Since their introduction, (double) Schubert polynomials have become central objects in
algebraic combinatorics (see, e.g., [BJS93, FS94, HPSW20, Len04, Mac91]). They have also
been interpreted through the geometry of degeneracy loci and used to unify many classical
results in that area [Ful92, FP98]. A. Knutson and E. Miller [KM05] gave an alternative
geometric justification for the naturality of Schubert polynomials by Grobner degeneration
of certain affine varieties. Moreover, they recovered aspects of the combinatorics of Schu-
bert polynomials through this geometry, including identifying irreducible components of the
degeneration with the pipe dreams of earlier combinatorial formulas [BB93, FK94|. This
explicit degeneration demonstrates the geometric naturality of pipe dream combinatorics.

Lascoux [Las02] introduced an alternate combinatorial model for (double) Schubert poly-
nomials using states of the square-ice (“6-vertex”) model from statistical physics. (For
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background and history of these ideas, see, e.g., [Bax82, Bre99, EKLP92, Kup96, RR86].)
Recently, T. Lam, S.-J. Lee, and M. Shimozono [LLS18] rediscovered this Schubert polyno-
mial model and gave a cleaner description in terms of bumpless pipe dreams. The connection
between [LLS18] and [Las02] is detailed in [Wei20].

Although both ordinary pipe dreams and bumpless pipe dreams compute the same double
Schubert polynomials and appear superficially similar, they compute these polynomials in
fundamentally different ways. In particular, (except in trivial cases) no weight-preserving
bijection exists between these two sets. In light of this fact, the geometric content of bumpless
pipe dreams and Lascoux’s ice formula remains unclear.

Example 1.1. Let w be the permutation 2143 € S;. The three ordinary pipe dreams

) ) ) )
Jrer fJJrJ j
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for this permutation present the corresponding double Schubert polynomial as

Gy = (z1 —y1)(@3 —y1) + (1 — 1) (T2 — 42) + (21 — Y1) (21 — ¥3).

There are also three bumpless pipe dreams

( ( (
. s ) . — -
[ [ [

for w. These give a presentation of the same double Schubert polynomial as

Guw = (z1 —y1)(ws —y3) + (1 — 1) (w2 — Y1) + (1 — 1) (T1 — ¥2).

Note that although these expressions are necessarily equal, this equality is only apparent
after significant factoring and reorganizing. In particular, there is no weight-preserving way
to match up the terms of the two summations. %

In Lie-theoretic terms, one may identify JF, with the homogeneous space GL,(C)/B,
where B denotes the Borel subgroup of invertible upper triangular matrices. Pulling back
a Schubert cell in F,, to GL,(C), we may then consider its closure in the affine space of all
n x n complex matrices. W. Fulton [Ful92] showed that these matriz Schubert varieties are
irreducible, gave set-theoretic defining equations for them, and showed that these equations
define reduced schemes. The key observation of Knutson and Miller is that these Fulton
generators form a Grobner basis under any antidiagonal term order (that is, any term order
under which the initial term of each minor of a generic matrix is the product of the entries
along its main antidiagonal).

It is at least as natural to consider the dual notion of diagonal term orders (that is, term
orders where initial terms of minors are products along main diagonals). For example, much
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of the commutative algebra literature on determinantal ideals and generalizations focuses on
this case (e.g., [Stu90, GM00, BC03]). Indeed, Knutson and Miller first tried unsuccessfully
to carry out their program in this context before they realized that the antidiagonal term
orders were more amenable to their approach.

The geometry of diagonal degenerations, in fact, is more complicated than the antidiagonal
case. In general, the Fulton generators are not a Grobner basis with respect to diagonal term
orders. In [KMY09], it was shown that Fulton generators are diagonal Grébner exactly for
the class of matrix Schubert varieties called vexillary. For general matrix Schubert varieties,
the diagonal Grébner degenerations can even fail to be reduced. Moreover, in the nonreduced
case, different diagonal term orders can yield distinct scheme structures on the limiting space
of the degeneration.

In this paper, we return to the diagonal setting. Despite the additional geometric compli-
cation, we propose that diagonal Grobner degenerations naturally give rise to bumpless pipe
dreams in an exactly analogous fashion to how antidiagonal degenerations yield ordinary
pipe dreams. Our main conjecture is the following:

Conjecture 1.2. Let init(X,,) be the Gréobner degeneration of a matriz Schubert variety
with respect to any diagonal term order. The irreducible components of init(X,), counted
with multiplicities, naturally correspond to the bumpless pipe dreams for the permutation w.

In particular, Conjecture 1.2 implies that, although different choices of diagonal term
orders may yield degenerations to distinct schemes, the reduced irreducible components of
the degeneration and their multiplicities do not depend on such a choice. The vexillary case
of Conjecture 1.2 follows from [KMY09] and results in [Wei20]. Our main result is to prove
Conjecture 1.2 for a larger class of permutations, called banner permutations, extending the
vexillary case. For these permutations, we are able to exhibit explicit diagonal Grobner bases
by modifying the Fulton generators in an appropriate fashion.

Theorem 1.3. If w is a banner permutation, then the CDG generators for X,, are a diag-
onal Grébner basis. The irreducible components of init(X,,), counted with multiplicities,
naturally correspond to the bumpless pipe dreams for the permutation w.

The precise definition of banner permutations appears in Sections 6, while the CDG gen-
erators are defined for general w in Section 3.

The recursive arguments in [KMO05] rely on the authors introducing and developing the
combinatorics of a new mitosis recursion for ordinary pipe dreams (see also, [Mil03]). In con-
trast, bumpless pipe dreams appear well-adapted to the simpler and more classical transition
formula of Lascoux and Schiitzenberger [LS85] (see also, [Mac91]). Our proof of Theorem 1.3
relies heavily on this latter recursion. Recently, Knutson [Knul9] has developed a dual no-
tion of cotransition, allowing him to simplify antidiagonal arguments of [KMO05] in a similar
fashion to the arguments here.

We believe that Theorem 1.3 holds in somewhat more generality than proved in this paper
(see Conjecture 7.1) and we have hope that Theorem 1.3 can be thus extended using similar
techniques to those employed here. However, we do not know a description of diagonal
Grobner bases in the most general case. Indeed, since different choices of diagonal term
order can lead to different initial ideals, it is not guaranteed that there exists an explicit
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uniform description of Grobner bases for all diagonal orders. Nonetheless, Conjecture 1.2
is supported by calculations in such cases. By computer, we have systematically verified
Conjecture 1.2 through the symmetric group S; for one choice of diagonal term order, as
well as in a variety of other experiments for larger permutations and for other diagonal term
orders.

Organization: In Section 2, we recall necessary background information. In Section 3, we
introduce generators for Schubert determinantal ideals, which we call the CDG generators.
These are a modification of the more standard Fulton generators. Section 4 introduces a
block construction for partial permutations and develops its combinatorics. In Section 5, we
introduce block predominant permutations and establish a recurrence for certain monomial
ideals constructed from CDG generators. We apply this recurrence in Section 6 to prove
Theorem 1.3. In Section 7, we make some conjectures and remarks regarding extensions and
applications of Theorem 1.3.

2. BACKGROUND

2.1. Combinatorics of permutations. Define [n] = {1,2,...,n} and let S, denote the
symmetric group on [n|. Each permutation w € S, is determined by its one-line notation
wiwy . .. w, where w; = w(i). The Rothe diagram of w is the set

Do = {(i.4) € [n] x [n] : w(i) > j,w™'(j) > i}.

We visualize D,, as a subset of [n] x [n] by placing e in (i, w(7)) for each i € [n], then drawing
lines below and to the right of each e. Then D, is the complement of the marked boxes.
For example, Dyo153 is {(1,1),(1,2),(1,3),(2,1), (4,3)}, which can be visualized as

The essential set of w is
Ess(w) = {(i,7) € D : (i +1,7),(4, 7+ 1) € Du}.
These are the maximally southeast cells in each connected component of D,,. For instance,
Bss(42153) = {(1,3), (2, 1), (4,3)}.
The ith row of D, is
{j €n]:(i,j) € Du}.

A permutation is vexillary if its rows are totally ordered by inclusion. For example, 42153
is not vexillary, as neither of rows 2 and 4 is contained in the other. The Lehmer code
of a permutation w is the sequence c(w) = (cy,...,¢,) where ¢; is the cardinality of the

ith row of D,. A permutation w is dominant if c(w) is weakly decreasing. For example,
c(42153) = (3,1,0,1,0), so 42153 is not dominant.
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To every permutation w € S,,, we associate a rank function r, : [n] X [n] — Z, where
rw(i,7) = #{k < i w(k) <}

For v,w € S,, we say v < w in Bruhat order if r, (i, j) > r, (¢, j) for all 4, j € [n]. We write
< for the covering relation in Bruhat order.

A partial permutation is a 0—1 matrix with at most one 1 in each row and each column.
The definitions of Rothe diagrams, essential sets, Lehmer codes, and rank functions naturally
extend to partial permutations. Let M,, ,, denote the set of m x n matrices over C and define
M, = M, ,. An m x n partial permutation w € M,,,, can be (uniquely) completed to a
permutation matrix w € Myax {m,n}- This completion respects diagrams and essential sets.

2.2. Matrix Schubert varieties. Let Z = (zij),-e[m}vje[n] be a matrix of distinct indeter-
minates and let R = C[Z]. We identify M,,,, with the mn-dimensional affine space Spec R.
For A € M, and I,J C [n], let A; ; = (a;;)ier jes. Then the matrix Schubert variety for
w € S, is the affine variety

X, = {A € M, : rank(Aj ;) < ro(i,j) for all 4,5 € [n]}.
Let

I, = {(ry(i, j) + 1)-size minors in Zy; :4,j € [n]) C R

be the Schubert determinantal ideal. It is easy to see that X, is the vanishing locus of
the ideal I,,. Indeed, Fulton [Ful92, Proposition 3.3] showed that I, is prime, so

X, = Spec R/ 1,

as reduced schemes. Moreover, he established that it is enough to consider the smaller
generating set of [,:

(2.1) L, = {(ru(i, j) + 1)-size minors in Zp) ;) : (i,7) € Ess(w)).

The minors in Equation (2.1) are called the Fulton generators of [,,.
For example, suppose w = 42153. Then the Fulton generators of I, are

211 R12 213| |11 212 213| [R11 R12 13| |[R21 R22 223
(2.2) 211, 212, 213, 221, |%21 %22 Z23|, |%21 222 Z93|, 231 232 Z33|, 231 232 233
231 232 R33| |R41 R42 43| [R41 R42 R43| |[R41 R42 243

Following Equation (2.1), we also define matrix Schubert varieties in M, ,, indexed by
partial permutations. See [MS04, Chapter 15] for more details.

2.3. Bumpless pipe dreams. Following [LLS18], a bumpless pipe dream is a tiling of
the n x n grid with the six tiles pictured below,

(2.3) . »

so that there are n pipes which

(1) start at the right edge of the grid,
(2) end at the bottom of the grid, and
(3) pairwise cross at most one time.
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If P is a bumpless pipe dream, we define a permutation w by setting w(i) to be the column
in which the ith pipe exits (labeling rows from top to bottom). Write BPD(w) for the set of
bumpless pipe dreams for w. The diagram of P is

D(P) :={(4,7) : (4,7)is a blank tile in P}.

Each bumpless pipe dream has an associated weight wt(P) = H (i — yj).
(i,)€D(P)
Lam-Lee—Shimozono showed that the double Schubert polynomial &, (x;y) can be ex-
pressed as a sum over bumpless pipe dreams.

Theorem 2.1 ([LLS18, Theorem 5.13]).
Gu(xy)= Y wi(P).
PEBPD(w)

For our purposes, we take this theorem to be the definition of the double Schubert poly-
nomial; the single Schubert polynomial is obtained from this by setting all y variables to 0.
For example, the bumpless pipe dreams for w = 42153 are (ignore the colors for now)

s e s

(2.4) ( ( (

Hence,

Samss(x: ) = (21 — 1) (@1 — 1) (@1 — y5)(@2 — 1) (m o)+ (3 — 1) + (1 — y2>).

The Rothe bumpless pipe dream of w is the (unique) bumpless pipe dream P, that

has a Ld tile in position (7, w(i)) for all ¢ and contains no P tites. Tt is the only bumpless
pipe dream P € BPD(w) satisfying D(P) = D,,. For example, the first bumpless pipe dream
in (2.4) is the Rothe bumpless pipe dream of 42153.

There are natural local moves on bumpless pipe dreams called droops that preserve the

permutation. A droop is performed on a pair IE at (i, 7) and D at (k,0) where i < k,j </{

by placing D at (i, 7), placing E at (k,¢) and modifying the pipe originally passing through
(1,7) so that it passes through (k, ¢) instead. A droop is permissible if (7, j) is the only place
a pipe bends within the rectangle [i, k| x [j,¢]. For an example, see Equation (2.4), where
the bolded blue and red pipes in the diagram on the left correspond to available droops.

Proposition 2.2 ([LLS18, Proposition 5.3]). Let w be a permutation. Every P € BPD(w)
can be obtained from P, by a sequence of droops.

We will also need to consider bumpless pipe dreams for partial permutations. Let w €
M, » be a partial permutation and w its completion to a permutation. We define

BPD(w) = {P |,nxn: P € BPD(0)},
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where P |,,x, denotes the restriction of P to its first m rows and n columns. Note droops
only modify positions weakly northwest of cells in the Rothe diagram of w. Therefore,
Proposition 2.2 shows we can reconstruct P from P |,,«, since they are connected to P, and
Py |mxn, respectively, by the same sequence of droops.

2.4. The transition formula. (Double) Schubert polynomials satisfy a recurrence called
transition. Let ¢;; be the transposition (i j) € S,. For v € S,, and r € [n], we define

Iv,ry={i<r:v<woty} and ®(v,r)={vt;, i€ I(v,r)}.

An inversion in w € S, is a pair (7, j) such that ¢ < j and w(i) > w(j). Lexicographic
order on inversions of w is given by (i1, j1) > (42, j2) if 71 > iy or if 41 = iy and j; > jo.
Theorem 2.3 (Equivariant Transition, [KV97, Proposition 4.1]'). Let w € S, with lexico-
graphically largest inversion (r,w™'(s)) and let v = wt,,~1(5). Then v <w and

6w = (xr - ys>6v + Z Gu
ued(v,r)

This result is a straightforward consequence of the equivariant Monk’s rule, which deter-
mines the equivariant cohomology of F,,.
The combinatorics of bumpless pipe dreams is compatible with transition.

Lemma 2.4. There is a bijection
U:BPD(v)U | BPD(u)— BPD(w)
ued(v,r)
so that
D(P)u{(r,s)} ifP € BPD(v)and
D(P) otherwise.

Proof. This follows by restricting the bijection in [Wei20, Proposition 5.2] to reduced bump-
less pipe dreams. O

Continuing our running example w = 42153, the lexicographically largest inversion is
(r,w™Y(s)) = (4,5), so we have v = wty5 = 42135. Since

®(v,4) = {uY = 43125, u? = 42315},

Lemma 2.4 claims a bijection between BPD(w) and the unions of BPD(u")), BPD(u(?), and
BPD(v). Indeed, in this case, each of these three permutations u*), u® v is dominant and
has a unique bumpless pipe dream:

1We believe this result was known by experts prior, but we are unaware of any explicit earlier reference
in the literature. The ordinary cohomology case appeared first in [LS85].
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(2.5) 0k (] u (] u®: (]

The diagram of the first bumpless pipe dream of (2.4) consists of the diagram of the bumpless
pipe dream for v together with the cell (r,s) = (4,3). The diagram of the second bumpless
pipe dream of (2.4) is that of u(®, while the diagram of the third is that of u(®).

We will use a diagrammatic interpretation of transition, described by Knutson and Yong
in [KY04, Section 2]. For w € S,, the maximal corner of w is the lexicographically
maximal cell (r; s) in D,,. Amongst the o’s in D,, that are northwest of the maximal corner,
we call the ones that are maximally southeast pivots. For (7, j) a pivot of w, the marching
operation is a two-step procedure on D,,. First remove the lines emanating from the e at
(,7). Next, for every cell in D,, in the rectangle with corners (7, j) and (7, s), move that cell
strictly to the northwest in the unique way such that each cell fills a position vacated either
by the removed lines or by another cell. The resulting diagram is D, for some u € S,,, and

we say w — u. The following lemma is implicit in [KY04, Section 2].

Lemma 2.5. Let w € S,, with mazimal corner (r,s) and v = Wtyy-1(5). Then the pivots of
w are {(i,w(i)) : 1 € I(v,r)} and

(v, r) = {u? :w Lu fori e I(v,r)}.

2.5. Grobner bases. Recall R = C[Z]. A monomial order is a linear ordering on mono-
mials in R such that, for any monomials m, n, and p, we have

e m < n if and only if mp < np and
e m < mp.

Fix a monomial order on R. Given f € R its initial term init(f) is the term whose
monomial is largest with respect to the order. For a set of polynomials F', we define
init(F) = {init(f) : f € F'}. If F is an ideal, then init(F’) is called the initial ideal of
F. If X = Spec(R/I), the initial scheme init(X) is Spec(R/init([)).

A diagonal term order on R is a monomial order so that the initial term of any minor
of Z is the product of the entries on its main diagonal. An antidiagonal term order is a
monomial order so that the initial term of any minor of Z is the product of the entries on
its main antidiagonal.

A Grobner basis of an ideal [ is a subset G such that init(G) = init(l). If G is a
Grobner basis for I, then I = (G). Moreover, every ideal I C R admits a finite Grébner
basis. A Grobner basis for a diagonal (resp. antidiagonal) term order is called a diagonal
(resp. antidiagonal) Grobner basis. A subset G of an ideal I is a universal Grobner basis
if it is a Grobner basis for I with respect to all monomial orders.



GROBNER GEOMETRY OF SCHUBERT POLYNOMIALS THROUGH ICE 9

2.6. Equivariant cohomology. We need some basic notions of equivariant cohomology.
Although in general, equivariant cohomology can be quite complicated, in our setting it
is easy to describe axiomatically. We will recall the properties that we will use. For an
elementary but more thorough introduction to equivariant cohomology, see [Mac07].

Consider the algebraic torus 7' C GL,(C) of invertible diagonal matrices and its Lie
algebra t of all n x n diagonal matrices. There is a natural left action of 7" x T" on Spec R
given by scaling rows and columns separately:

(t,7) - M =tM7".

Now, Spec R has a (T x T)-equivariant cohomology ring Hryr(Spec R). Since Spec R is
contractible, we have from the definition of equivariant cohomology that

Hrr(Spec R) & Hrwr(pt) = O @ ) 2 Ly, ... 201, - -, Yol

Every setwise-stable subscheme X C Spec R has an equivariant class [X]rxr, which under
the above correspondence, we may identify with an integral polynomial in 2n variables. For
B C [n] x [n], let Cg be the coordinate subspace Spec(R/(z; : (1,7) & B)).

For our purposes, it is enough to note that equivariant classes in Hryr(Spec R) satisfy
the following three properties:
Normalization: For any coordinate subspace Cp, we have

[Cslrxr = H (i — y5)-

(4,5)€B
Additivity: For any X C Spec R,

[(X]rxr = Zmlﬂtxj (X) [Xjlrxr,

where the sum is over the top-dimensional components of X and multy (X) denotes the
multiplicity of X along the reduced irreducible variety Y. In particular, if X = (J", X;, is
a reduced scheme, then

[X]TXT = Z [Xj]TxTy

J

summing over components X; with dim X, = dim X.
Degeneration: If init(X) is a Grobner degeneration of X with respect to any term order,
then

[X]TXT = [init(X)]TxT.

For any X and any term order, we have by definition that init(X) is cut out of Spec R
by a monomial ideal. Hence, init(X) is always a (schemy) union of coordinate subspaces,
and its equivariant class may be computed by Additivity and Normalization. Thus, the
equivariant class of any X C Spec R may be computed from these three properties, given a
sufficiently good description of the initial scheme init(X).

One of the key results of [KMO05] is the following.

Theorem 2.6 ([KMO05, Theorem Al). For any permutation w, the matriz Schubert variety
X, satisfies
[Xw]TXT - Gw(x; Y)
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3. CDG GENERATORS

For A an integer partition, let Z* be the matrix obtained from Z = (z;;) by specializing
2 to 0 for all (7, j) € A\. The dominant part of the Rothe diagram D, is the set

Dom(w) = {(i,7) € Dy : 14(i,7) = 0}.
The cells of Dom(w) make up the Young diagram of a partition A and we identify Dom(w)
with this partition. Define Ess'(w) = Ess(w) — Dom(w). For example, with w = 42153
we have Dom(w) = {(1,1),(1,2),(1,3),(2,1)}, which we identify with the partition (3,1).
Furthermore, Ess'(w) = {(4, 3)} and

0O 0 0
Z(3,1) o 0 222 293
%31 %32 233
R4l 242 243

Let
G = U {minors of size r,(i,7) + 1 in ZE‘E(M)} ,
(4,9)
where the union is over cells (4, j) € Ess'(w). Then I,, is generated by
Gw =G, U{zj: (i,j) € Dom(w)}.

We call this set G,, of polynomials the CDG generators of the Schubert determinantal
ideal I, (after the authors of [CDNG15] who studied similar generators in a related context).
We are interested in when G, is a diagonal Grobner basis for [,,; in this case, we say that w

and I, are CDG. Note that if w is CDG, then init([,) is reduced, since the initial terms
of the polynomials in GG,, are all squarefree.

Example 3.1. Let w = 42153. Then the CDG generators of [, are

(3'1) 211, 212, 213, 221, 222233241 T 223231242 — 222231243 — 223232241 -

Notice that this generating set is much smaller than the corresponding set of Fulton gener-
ators from (2.2). O

In Sy, one can check that all permutations are CDG. In S5, 13254 and 21543 are the only
permutations which are not CDG. Notice in particular that Dom(13254) = §), so the CDG
generators are simply the Fulton generators in this case.

We now observe a special class of permutations that are CDG, and indeed whose CDG
generators are universal Grobner.

Proposition 3.2. Fiz w € S, so that there is a unique (e1,e5) € Ess'(w). Furthermore,
assume that r,(e1,e3) = min{ey,es} — 1. Then G, is a universal Grébner basis for the
Schubert determinantal ideal I,,.

Proof. Fix a monomial order on R. It follows from [CDNG15, Theorem 4.2] that the maximal

minors of Z2°m®)
[e1],[e2]

of {2;j : (i,7) € Dom(w)} and G/, share no variables, concatenating these two sets produces
a universal Grobner basis for I,,. ]

are a universal Grobner basis for the ideal they generate. Since elements
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Example 3.3. Continuing our running example, let w = 42153. Since |Ess'(w)| = {(4,3)}
and 7,(4,3) = 2, the generators in Equation (3.1) are a universal Grobner basis for I,, by
Proposition 3.2. &

In the remainder of the paper, all term orders are assumed to be diagonal, unless otherwise
specified.

4. BLOCK SUM CONSTRUCTION

In this section, we define a construction that builds a partial permutation out of two
partial permutations. Its existence is encoded in the following lemma.

Lemma 4.1. Let u and v be partial permutations. There is a unique w € So, so that

all boxes D(U)

D(w) =

D(u)

Proof. If we can construct a partial permutation w with D(w) as desired, there is a unique
way to extend this partial permutation to w € S.. Since elements of S, are determined by
their diagrams, this implies that such a w is unique.

v

Viewing u and v as partial permutation matrices, let w® = [ 2 0

} . Note that

all boxes D(U)
D(wW) =

D(u) | DM

where DM is some subdiagram. If DM is empty, we see w(!) is the desired partial permu-
tation. Otherwise, let (4,7) be the minimal cell of D™ (lexicographically). Then the ith
row and jth column of w) are zero vectors, so we can construct a new partial permutation
w? = wW + E(i, ) where E(i,j)u = (i.j)=(k,1)- Note that

all boxes D(U)
D@w®) = ,

D(u) | D@

where D C DM and the ith row of D(w®) is empty. Since D) has finitely many rows, by
iterating this procedure we can remove every cell of D) to obtain some partial permutation
w with the desired diagram. O

Definition 4.2. Given partial permutations v and v with n and m rows respectively, the
block sum of u and v, denoted u H v, is the unique partial permutation with n 4+ m rows
constructed as in Lemma 4.1.
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For u and v partial permutations, we can easily understand many properties of v H v in
terms of u and v. For our purposes, we need to understand how block sums interact with
bumpless pipe dreams and Grobner bases for associated Schubert determinantal ideals.

Lemma 4.3. For u,v partial permutations and w = uBv, there is a bijection from BPD(u) X
BPD(v) to BPD(w) mapping the pair (By, B,) to a bumpless pipe dream B, satisfying

all bozes D(Bv)

D(B,) =

D(B.)

Proof. Recall that the Rothe bumpless pipe dream P, of a permutation 7 is the unique
bumpless pipe dream satisfying D(P,) = D(w). Our bijection will map (P,, P,) to P,. Note
that

all boxes Pv

(4.1) P, =

P, U only wires

Let ¢, and ¢, be sequences of droop moves satisfying ¢,(P,) = B, and ¢,(P,) = B,.
We obtain B, from P, by applying ¢, and ¢, to the copies of P, and P, in P,. By
Proposition 2.2, this map is well-defined and injective. To see it is surjective, observe that
the “all boxes” region of P, is invariant under droop moves and prevents droop moves from
occurring outside of the regions containing P, and P,. 0

We remark that the bijection in Lemma 4.3 is equivalent to mapping (B,, B,) to the
bumpless pipe dream obtained by replacing P, with B, and P, with B, in (4.1).

010

Example 4.4. Letu= |1 0 0f,v= [(1) 8} , and w be the permutation associated to the
000

partial permutation v Hv. The permutation matrix for w is

0 0 0 1 0 0]
0

_ o O O
o O O

0
0
0
0

OO = O

oo = O
_ o o OO

0 000

Taking the bumpless pipe dreams for v and v pictured below,

-
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we glue and obtain a bumpless pipe dream for w:

(
J

(
)

(

Pipes in the Rothe pipe dream P,, that cannot be modified by droops are pictured in gray. <
For z;; an indeterminate, let
Zita j 1fz+a§m Zi j+b lfj+b§n
2ij) 1= and  —p(zi5) =
Vo) {0 otherwise o{25) 0 otherwise.

Extend these operators to act indeterminate-by-indeterminate on monomials, linearly on
polynomials and pointwise on sets of polynomials.

Lemma 4.5. Let u and v be partial permutations such that uw has b columns and v has a
rows. If F, and F, are Gréobner bases of the Schubert determinantal ideals I, and I, then

(4.2) La(Fy) U —p(Fy) U {zj:1<i<a, 1 <j<b}
1s a Grobner basis for I m,.
Proof. Note that
Lo = (ba(1)) + (=4(L)) + (5 1 1 < i <a, 1< 5 <),

The result then follows from Buchberger’s criterion [CLO07, Theorem 2.6.6], since the great-
est common divisor of any two polynomials from different sets in Equation (4.2) is 1. O

Corollary 4.6. Let u and v be CDG partial permutations. Then uHB v is CDG.

5. MONOMIAL IDEAL RECURRENCES FOR BLOCK PREDOMINANT PERMUTATIONS

5.1. Predominant permutations. We say that a partial permutation w is predominant
if there is a partition A = (A1,..., Ax) so that

c(w) = (A, ., A6, 0,...,0,0,0,...) = \0"¢,

for some h,k,¢ € Z>o. Note that we allow h to be zero, so ¢ can immediately follow A,
even if \p < £. We say a partial permutation is copredominant if it is the transpose
of a predominant permutation. A partial permutation w is block predominant if it is a
block sum of finitely many predominant partial permutations, i.e. if there exist predominant
partial permutations uV, ..., u® so that

w=uV@E. . Bu®.

A predominant permutation is indecomposable if it cannot be written as the permutation
associated to a block sum of predominant partial permutations. A predominant partial
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permutation is indecomposable if its associated permutation is indecomposable. Note
that only identity permutations are simultaneously dominant and indecomposable.

We now establish some notation that will be used for the remainder of this section. Fix
an indecomposable predominant permutation w. Let

A=A =2 \) = (m?,...,mi’“) = Dom(w),

pi =Vt +---+{;, and (r,s) be the maximal corner in w. Here, we allow my, to be zero and
choose ¢} so that r = p, + 1. Since w is indecomposable, m; < s. The pivots of w are

P(Dy) = {(piymi +€;) : 1 <i < k}.

For each 7, let w 25 u® by diagram marching. By Theorem 2.3, for v = Wtyy-1(5) We have
d(v,r) = {u®, ... u®} and

k
Gy = (2, — )8, + Y _ S0
i=1

We now describe the diagrams of the permutations u(? arising via transition.
Lemma 5.1. For 1 <i <k, let S;={s":(r,s') € Dy and m; +{; < s < s}. Then
Dy = (D \{(r,s) : s" € Si}) U{(pi mi + £:)} U{(ps, §') = 8" € Si}.
Proof. The cells removed are precisely those that must be moved by the marching operation.

Since w is predominant, the only vacated cells are the pivot and those to the right of the
pivot that are not crossed out, as described above. O]

As a consequence, the class of block predominant permutations is closed under transition.
Corollary 5.2. Let w be a block predominant permutation with mazimal corner (r,s) and
O(mtyn-1(5),7) = {70, ..., 7™}, Then each 79 is block predominant.

Proof. Write m = w H n’ where w is an indecomposable predominant permutation. Then

each 7 = v B 7’. From Lemma 5.1, we see each u(® is block predominant. O

5.2. Monomial ideal recurrences. For w a permutation, recall that G, is the set of CDG
generators for I,,. We define the monomial ideal

Jy = (init(g) : g € Gy).

Note that, by definition, G, is a Grébner basis for I, if and only if J,, = init(/,). Similarly,
let J{} be the ideal generated by initial terms of non-zero maximal minors in the matrix 2 [?],[ i
By construction,

(5.1) Ju= {2z (i,j) € Dom(w)) + »_  J7o
(i,7)€Ess’ (w)

We will show that transition gives a recurrence on the monomial ideals J, for block
predominant permutations. To do so, we first prove some technical lemmas about the ideals
Jw. Consulting Example 5.6 may help clarify these results and their proofs.

Lemma 5.3. For w a block predominant permutation, J, C J,, and J, C J,u for each 1.
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Proof. The containment .J, C J,, is immediate, since we have D, C D,,. For the containment
Jy C Jym, let Ess'(v) = {(r,p1),..., (r,pn)} with p; <--- < p, and

Ess(v) \ Ess(u”) = {(r,pg), ., (r,pn)} € {(r,my) 1 j > i} U{(r;s = 1)}.
Fix p € {py,...,pn} and let t be the initial term of a minor of size ¢ .= r,(r,p)+1 in Z[%O’E:](U)
For g # 1, we see (1,p,_1) € Ess(u) and

q = Ty (1, pg—1) + 1+ 1,0 (pisp) + 1.
By the pigeonhole principle, this implies t is divisible by an initial term of a generator from
one of (r,ps-1), (pi,p) € Ess(u). When g = 1, every choice of t is the product of a fixed
term and an initial term of a generator from (p;,p) € Ess(u). O

Lemma 5.4. For w a block predominant permutation, we have Jy,/J, = zesJ2 | o 1/ J0.

Proof. By restricting to the block containing the maximal corner, we may assume w is an
indecomposable predominant permutation. By Lemma 2.4, we have D,, = D, U {(r,s)}.

Then
Ess(w) \ Ess(v) = {(r, s)},

$0 Jy/Jy = JN] Ty

Note that z.sJ> | . 1/Jy C Ju/J, by definition. We will show the reverse containment,
which says that JX/J, C z.sJ2 | o 1/ o

We explicitly prove the case r < s. The case where r > s follows from a similar argument.
Here, the generators of J2, have the form m = 2y, ... 2.,. If jy = s, then m € z,.,J> | . ;.
Otherwise, j, < s. Let

m’ = H Zigs

©:3i<jr
som’ | m. We claim (r,j.) € D,, which implies m" is one of the defining generators of .J,,,
and hence the result.

To prove the claim, note that m’ is the initial term of a rank deg(m’) minor. Let p be
maximal such that A, > j, and ¢ be the multiplicity of A, in A\. Necessarily, ¢ + 1 columns
in the minor corresponding to m’ must be in the set {A\,+1 + 1,...,A,}. The (g + 1)st such
column is j, by the definition of m’. Observe that v(p+1) = A\,y1 + ¢ fori € {1,...,q}. By
exhaustion, j, > A\p11 + ¢, so (1, j,) € D,, completing the proof. O

We now establish the key recurrence on the monomial ideals .J,, for block predominant
permutations.

Theorem 5.5. Let w be a block predominant permutation. Then

(5:2) Jo= Lot ()0 (o)

Proof. Note that the maximal corner always occurs in the bottom left block of w, so we
can assume w is predominant. By Lemma 5.3, we see .J, is contained in both sides of
Equation (5.2). Therefore, we need only prove

Ju/To = (Jo + (2s)) /I N (ﬂ Tyt /JU> .

i=1
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By Lemma 5.4, we see Jy,/J, = 2,502 | o 1/Jw, While (J, + (2,4))/Jy = (245)/Jy. Therefore,
the following claim will imply our result:

Claim: For ¢ < k, we have
q
(ur/To =T o1/ o
i=1

We prove the claim by induction on ¢q. For the base case ¢ = 1, recall p; = ¢; and observe
that Ess(u™) \ Ess(v) = {(p1,s)}, so J,/Jy = J),_1/J,. More generally,

Ess(u?) \ Bss(v) C {(pj;mi) +i < j)} U{(ps,s — 1)}

We prove the inductive step by showing both containments. Example 5.6 illustrates these
arguments.

C By Lemma 5.1, the only new essential conditions come from minors corresponding to
entries (p,, m;) € Ess(ul?), which we analyze individually. The initial terms of these

minors are monomials in the defining generators of J /;\qmj, which have support in the

rows p; +1,...,pg. Since J/;\js_l = ﬂgzl J, by inductive hypothesis, we see all of

our generators arising from (p,, m;) are contained in J ’f‘qmj n.Ja which in turn is

pjs—1»
contained in J ,S\qs—r
Since (pg, s — 1) € Ess(u'?)/Ess(v) by Lemma 5.1, we see Jp’\qmj/JU C Jy@/Jy unless

some additional variables z, , are set to zero, in which case Dom(v) C Dom(u(?).
This only happens when ¢, = 1, in which case p,_1 = p, — 1. In this case, all minors
not involving one of these z, ; are in J,« /J,, while those involving them are found

in (2p,5) N J;\q_lsfl C izt Jut-

U

This completes our proof. O

Example 5.6. Consider the permutation w = 67341 10 2589. Applying the Lascoux-
Schiitzenberger transition equations, we have

v = 673419258, ®(w,6) = {ut) = 693417258, u® = 673914258, u'> = 673491258}

with diagrams
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D, = Do =

—e
—e

D,s =

[

The dominant component in these diagrams is A = (52,2%,0') except that Dom(u®®) =
N = (5%,23).

The monomials coming from minors corresponding to the essential boxes (6,2) and (6,4)
are in J,. By Lemma 5.3, J, C J,,, J,0), J,@, J,@, but the reader can also check this directly.
For example, 233245251262 € J,, 1s also in J,a) and is divisible by 251262 € J,2) as well as by
Z51 € .]u(3).

We have J,,/J, = z69J2/J, by Lemma 5.4. By direct observation, J,u/J, = J3x/J,. To
see that (J,m N J,)/J, = Jis, observe that Jjy C J,e by Equation (5.1). The opposite
containment follows since the minors coming from (4,5) € Ess(u®) correspond to J35, while
(J3x N Joy) € Jgs. Next, we show (J,0) N Jye N Jye)/Jy = J2y/Jy. To show the forward
containment, we study (5,2), (5,4), (5,8) € Ess(u®) individually. We have

A A N A N A
‘]52 N J487 J54 N J287 J58 - J58'

Moreover, the only monomials generating .J& that aren’t found in JZ are those involving zs;
and 25y, so we see Jy C J2 + J N Tk %

6. PROOF OF MAIN THEOREM

We will use the following lemma of Knutson and Miller, originally stated in greater gen-
erality. Recall R = C[Z] where Z = (2i;)icm].jen]-

Lemma 6.1 ([KMO05, Lemma 1.7.5]). Let I C R be an ideal such that Spec R/I is stable
under the T x T action. Suppose J C I is an equidimensional radical ideal. If we have the
equality [Spec R/I|rxr = [Spec R/ J]rxr of equivariant cohomology classes, then I = J.

Given a bumpless pipe dream P, write Lp = (z;; : (1,7) € D(P)).

Proposition 6.2. Suppose w is a block predominant permutation. Then
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(1) the CDG generators are a diagonal Grébner basis for I,, and

(2) init(L,) = (] L».
)

PeBPD(w

Proof. We will proceed by induction on the position of the maximal corner of w. Without
loss of generality, we may assume w is predominant.

In the base case, w is dominant and the statement is trivial.

Now assume w is not dominant. Furthermore, assume the statement holds for all block
predominant permutations whose maximal corners occur lexicographically before the pivot
of w.

By induction, we know J, = init([,) and likewise J,u = init([,u) ). Therefore
Jp = (init(l,) + (z.5)) N ﬂ init(1,) by Theorem 5.5
ued(v,r)

= ﬂ Lp+(zs) | N ﬂ ﬂ Lp by inductive hypothesis
)

PeBPD(v) ued(v,r) PEBPD(u

= ﬂ Lp by Lemma 2.4.

PEBPD(w)

By additivity of equivariant classes, we know that

[Spec R/ Jy|rxT = |Spec R/ ﬂ Lp = Z wt(P) = G, (x;y)

PeBPD(w) TXT

(where the last equality is Theorem 2.1).

By Theorem 2.6, [Spec R/I,|rx7 = S (x;y). By degeneration, [Spec R/init(l,)|rxr =
Gu(x;y) as well.

Trivially, J, C init([,). Since J,, is an intersection of primes of the same dimension,
it is equidimensional and radical. Furthermore, Spec R/init(I,) is stable with respect to
the 7" x T action. Therefore by Lemma 6.1, we have J,, = init(/,) and the proposition
holds. O

A similar fact is true for vexillary permutations.

Proposition 6.3. If w is vexillary, then w is CDG. Moreover, in this case, we have

init(I,) = ﬂ Lp.

PEBPD(w)

Proof. Since w is vexillary, the Fulton generators are diagonal Grobner by [KMY09, The-
orem 3.8]. If a defining minor intersects the dominant part of D,,, then so does its main
diagonal. Hence its initial term is a multiple of that variable, and we may remove that equa-
tion from the generating set to obtain a new Grobner basis [CLO07, Lemma 2.7.3]. Thus,
the CDG generators are also diagonal Grébner.

The characterization in terms of bumpless pipe dreams then follows from [KMY09, The-
orem 4.4], as interpreted via bumpless pipe dreams in [Wei20). O
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We say a permutation is banner if it is a block sum of predominant, copredominant,
and vexillary partial permutations. The following theorem is our main result, combining
essentially everything else established in this paper.

Theorem 6.4. Let w be a banner permutation. Then
(1) wis CDG, and
(2) init(lw) = (\pepppw) Lr- In particular, init(l,) is radical.
Proof. For (1), Proposition 6.2 proves the predominant case. The copredominant case follows

by transposition, while the vexillary case is Proposition 6.3. The result follows by Lemma 4.5.
Meanwhile, (2) follows from Proposition 6.2, Proposition 6.3, and Proposition 6.5 below. [J

Proposition 6.5. Let w = «M B---Bu® be a block sum of partial permutations. If
init([u(i)) = m Lp
PEBPD(u(?)
for all i € [k], then

so in particular init(1,) is radical.

Proof. Fix partial permutations u € M,,, and v € M,, .. It is enough to consider the case
when w =uHwv.

Write w for the partial permutation matrix obtained by prepending m rows of 0’s to w.
Likewise, let v be the partial permutation obtained by prepending n columns of 0’s to v.
Observe that

Iy = (2 : (1,) € [m] x [n]) + (I (L)) and [y = (252 (i, ) € [m] x [n]) + (= n(L)).
Therefore I, = Iz + I3, so
init(lz) + init(f3) C init(l,).
Since init(/,) and init([,) are radical, so are init(/;) and init(/;). In particular,

init(Iy) + init(lz) = N Lpup,

P, €BPD(),P,€BPD(?)

= m EP?

PEBPD(w)

with the first equality by hypothesis since D(P;) N D(P,) = [m] x [n] and the second from
Lemma 4.3. Therefore,

Spec R/ ﬂ Lp = Gu(x;y).

PEBPD(w) TxT

Furthermore, init([3)+init(/3) is an equidimensional radical ideal, contained in init(Z/,).
Since
[Spec R/init(Iy)]pr = Guw(x;y)
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as well, we apply Lemma 6.1 to conclude

init(l,)= (] CLp
)

PEBPD(w

and init(/,,) is radical. O

Theorem 6.4 is a special case of Conjecture 1.2, and provides further evidence for the
general statement of the conjecture.

7. FUTURE DIRECTIONS

Theorem 6.4 does not exhaust the set of all CDG permutations. For example, w = 25143
is not banner, but one can compute that its CDG generators are a diagonal Grobner basis
for I,,. We will conjecture a complete characterization of CDG permutations, but first must
recall the notion of pattern avoidance. For a = a;...a, a sequence of distinct integers, let
o(a) = 01 ...0, be the unique permutation in S, so that o; < o; if and only if a; < a; for
all 7, . The permutation w = w; ... w, contains the permutation v = vy ... vy if there is a
subsequence w’' = w, ... w;, of w with o(w’) = v. If w does not contain v, then w avoids v.

We conjecture the following characterization of CDG permutations.

Conjecture 7.1. Let w be a permutation. The CDG generators are a diagonal Gréobner
basis for I, if and only if w avoids all eight of the patterns

13254, 21543, 214635, 215364, 241635, 315264, 215634, 4261735.

We checked that every permutation in Sg avoiding these patterns is CDG. Proving that
the CDG property is governed by pattern avoidance is a question of independent interest.
A corollary of Conjecture 7.1 is the following.

Conjecture 7.2. Suppose S, is a multiplicity-free sum of monomials. Then the CDG
generators are a diagonal Grobner basis for I,,.

Conjecture 7.2 would follow immediately from Conjecture 7.1 by the known pattern char-
acterization of those w in Conjecture 7.2 [FMSD19] (see also [Ten, P0055]).

If Conjecture 1.2 holds, then as a consequence, Spec R/init([,,) is reduced if and only if
each P € BPD(w) has a distinct diagram. Data suggests that this condition is also governed
by pattern containment (see [Hec19)]).
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