INVOLUTIONS UNDER BRUHAT ORDER AND LABELED MOTZKIN PATHS
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ABSTRACT. In this note, we introduce a statistic on Motzkin paths that describes the rank generating
function of Bruhat order for involutions. Our proof relies on a bijection introduced by P. Biane from per-
mutations to certain labeled Motzkin paths and a recently introduced interpretation of this rank generating
function in terms of visible inversions. By restricting our identity to fixed-point-free (FPF) involutions,
we recover an identity due to L. Billera, L. Levine and K. Mészaros with a previous bijective proof by
M. Watson. Our work sheds new light on the Ethiopian dinner game.

1. INTRODUCTION

Let &, be the symmetric group on n elements, Z,, be the subset of involutions and ZXF¥ (n even)
be the subset of fixed-point-free (FPF) involutions. Bruhat order on the symmetric group (&,,<) is a
graded poset whose rank function counts the number of inversions. The restriction of Bruhat order to
7T and ZFPF | first considered by RW Richardson and T. A. Springer due to their relation with K—orbit
closures [RS90], are also graded partial orders (see [DS01, Inc04]). Let Rz, (g) and Rzrrr(g) be the rank
generating functions of (Z,,, <) and (ZLFF, <), respectively. For M,, the set of Motzkin paths of length n
and p € M, we introduce a generating function H[y;q] in Equation (2.2) satisfying the identity:

Theorem 1.1. For all n € N,

> Hip;q) = Rz, (q),

HEM,

Our proof relies on a bijection due to P. Biane [Bia93] that, as observed in [BBS11], maps involutions to
Motzkin paths with labeled down steps. In [HMP19], Z. Hamaker, E. Marberg and B. Pawlowski introduce
visible inversions as a combinatorial interpretation of rank in (Z,,<). We show H[u;q] counts visible
inversions for the involutions corresponding to u. Similarly, Biane’s bijection maps Z£F¥ to Dy, the set

of Dyck paths with length 2n and labeled down steps. As a consequence, we recover the following identity:

Corollary 1.2. For alln € N,

Z H[6;q) = ¢"Rzrrer(q) = ¢" H[Qk;—l]q.
k=1

6€Dsy,

An equivalent form of Corollary 1.2 (see Equation (3.1)) is [BLM15, Cor. 8|, where a discussion of
related results appears. M. Watson gives a bijective proof [Wat14], but his argument is more involved
than ours since it proves a stronger statement. He introduces a partial order on full rook placements
for certain diagrams and shows it is isomorphic to Bruhat order on ZF'PF using his bijection. In fact,
Watson’s bijection is equivalent to Biane’s when restricted to Z¥'FF, and his approach can be extended to
7, as explained in Section 4.1. In Section 4.2 we observe that the bijection in [BLM15], which is not used
directly in their proof of Corollary 1.2, is also equivalent to Biane’s when restricted to Z& F¥. Their proof
arises from combinatorics related to the Ethiopian dinner game introduced in [LS12], and we explain how
to interpret Corollary 1.2 in this context.

Acknowledgements: The authors thank Oliver Pechenik, Nathan Reading and Vic Reiner for helpful
conversations and encouragement and Marilena Barnabei for suggestions improving our exposition. This
work was partially supported by NSF grant DMS-2054423.

Date: June 10, 2021.



2 M. COOPMAN AND Z. HAMAKER

2. COMBINATORIAL STRUCTURES

2.1. Permutations, Bruhat order, and visible inversions. Let &,, be the set of permutations from
[n] ={1,2,...,n} to itself. All elements of &,, can be written as a product of disjoint cycles. For w € &,
let Inv(7) = {(i,7) € [n]> | i < j and (i) > 7(j)} be the set of inversions of m and ¢(7) = [Inv(7)|.
Bruhat order (&,,<) is a partial order defined as the transitive closure of the relations: 7 < (i j)7 if
(i j)m) = £(m) + 1 with (i j) € &,,. The rank function of Bruhat order is /.

A permutation 7 is an involution if 72 = id,,, and is fized-point-free (FPF) if 7(i) # i for all i € [n]. Let
T,, be the set of involutions of size n and ZZ, ¥ be the set of FPF involutions of size 2n. Bruhat order induces
partial orders on Z,, and ZZ F¥ (see Figure 1). For o € Z,,, define Cyc(o) = {(i,7) € [n]x [n] : i < j = o (i)},
¢(0) = |Cyc(o)| and
and OFPF =) _¢= %, respectively.

Proposition 2.1 ([Inc04, Thm. 5.2] and [DS01, Thm. 1.3]). Both (Z,,<) and (ZLFF, <) are graded posets
with respective rank functions ¢ and 0FPF

é:€+c

Note that /FPF is well-defined for o € Z,, where it is studied in [DS01]. See Equation (4.2) for further
discussion. When 7 € ZEFF | we have ¢(r) = n so (FPF (1) = (1) —n = w.

For m € &, say an inversion (i, j) € Inv(r) is visible if 7(j) < min(é,7(7)). Let Inv(w) be the set of
visible inversions for , respectively. For example, with o = (1,5)(2)(3,6)(4) = 526413, we have

Inv(0) = {(1,5).(2.5). (3,5), (3.6). (4.5), (4,6)}  while Inv(0) =Tv(o) U {(L,2). (1,4), (L,6), (3. 4)}.
Since ¢(0) = 2, we see {(0) = 1082 — 6 = |I/n;(cr)| Note Cyc(o) C I/rR/(a) for all o € Z,,.

Proposition 2.2 ([HMP19, Lem. 4.11]). For o € Z,, we have
i(0) = |Inv(0)| hence (FPF (o) = [Tnv(o) \ Cyc(o)|.

For (P, <) a graded poset with rank function r, let Rp(q) = > cp q"?) be the rank generating function
of P. By Proposition 2.1, we have

(2.1) Rr, (@)=Y ¢ and Ryre(q)= . ¢ @.

o€, TeTfPF

Forn > 1, let [n], = 11_7‘1;. Using induction, it is easy to show that Rzrrr(q) = [1_ [2k—1], == [2n—1],!!,

but Rz, (¢) does not have a simple closed form. However, it can be efficiently computed using the recurrence

Rz,(q) = Rz,_,(q) +q[n — 1],Rz,_,(q).

2.2. Labeled Motzkin path, statistics and bijections. Recall a Motzkin path of length n is a lattice
path from (0,0) to (n,0) consisting of up steps U = (1,1), down steps D = (—1,1), and horizontal steps
L = (0,1) that does not go below the x-axis. Let M,, be the set of Motzkin paths of length n. For u € M,,,
the height of the ith step is the larger of the step’s y-coordinates, denoted h;(u).

For our purposes, a labeled Motzkin path is a Motzkin path p = p; ... pu, where each down step p; = D
is labeled with an integer \; € [h;(n)]. Let MZ be the set of labeled Motzkin paths of length n. As
observed in [BBS11], the bijection in [Bia93] restricts to a simple bijection ¢ : Z,, — MZL. For o € T,,, let
W= 41 ... by With

U i<o(i)
wi=<s L i=0(i).
D i>o(i)

When p; = D, let \; be the number of integers j > 4 such that 7(j) < 7(i) and define ¢(o) = (u, A). Note
that this description deviates from Biane’s, in that his Motzkin paths receive two labels at every horizontal
and down step. For involutions, the double labels are redundant: down steps are labeled twice by the same
value and horizontal steps are labeled twice by their heights.
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(14)(23)
(14)(2)3) (13)(24)

FIGURE 2. The labeled Motzkin path corresponding to o = (1 10)(2 4)(3)(5 9)(6 11)(7)(8).

For (u,\) € ME with = iy ... py,, define

Aifp) =1 p; =D -

Hi(u, \) = { and  H(u,A) = > Hi(p,N).
hi(e) i # D P
Next, define
(2.2) Hipql= Y. g7V,
Ar(p, ) EM
Alternatively, with
h; ;=D L
(2.3) Hilp; q] = {([]hi((f))]q Zfse , we have H[u;q) = [ ] Hilw: d].
=1

Note H|[u;1] counts the number of labelings A for p. Define H;[u;q] and H|u; q] analogously, omitting a

factor of ¢ on each upstep u; = U. For example, with (u, A) as in Figure 2, we have H(u, A\) = 18 and
{Hilw: g} ity = {0, 1+ 4.¢°.¢% ¢, ¢, 1+ 9+ ¢ 1+ ¢, 1},

so Hu;q) = ¢**(1 4+ ¢)*(1+ g+ ¢%) and Hlu; q = ¢"*(1+ ¢)*(1 + ¢ + ¢*).

A Dyck path is a Motzkin path without any horizontal steps. Necessarily, Dyck paths are always of even
length. Let Dy, be the set of Dyck paths of length 2n. By restricting ¢ to ZE | we obtain a bijection
between ZZPF and labeled Dyck paths of length 2n, which are also known as Hermite histories. This
restriction is well known when viewing Z& P as the set of perfect matchings of the complete graph Ko,,.
Since Dyck paths of length 2n always have n down steps, we have H|[u;q] = ¢"H|[u; q].

3. PROOF OF MAIN RESULTS

Proof of Theorem 1.1. Let o € Z,, and (p, ) = ¢(o). We split I/n;(a) into 2 disjoint classes S and Ss.
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Class 1: S = {(4,7) € Inv(0) | i < (i)}
Fix s € [n] such that s < o(s). The number of integers ¢ such that (s,t) € S; is equal to the number of
(u,t) € Cyc(o) such that u < s < t. As s corresponds to a horizontal or up step in p, hs(u) counts the
number of up steps in excess of the number of down step among the first s steps. Through the bijection ¢,
hs(p) counts the number of (u,o(u)) € Cyc(o) such that u < s < o(u). Thus, |S1] is equal to the sum of
the heights of all horizontal a/n\d up steps of u.

Class 2: : Sy ={(4,j) € Inv(o) | i > o(i)}.
As before, fix s € [n] such that s > o(s) and count the number of integers ¢ such that (s,t) € S. This
requires counting the number of (u,t) € Cyc(o) such that u < o(s) < s < t. Note that the weak inequality
is changed to strict as s < t. As s corresponds to an down step in u, the s-th step is labeled by some
integer 1 < A\; < hs(p). Note that \g refers to the number of integers ¢ > s such that o(t) < o(s). Thus,
As — 1 refers to the number of (o(¢),t) € Cyc(o) such that o(t) < o(s) < s < t. Thus, |S2] is equal to the
sum of the labels (minus 1) of all down steps of u.

As a consequence, we see |I/r17/(a)| = H(u, \). Therefore since {(c) = \I/n\v(a)| we have

Rz,(q)= ) Hlud),

HEM
which completes our proof. O

Example 3.1. In Figure 2, o has eighteen visible inversions. The two from Class 2 are (4, 10) and (9, 10),
corresponding to the labels 2 in positions 4 and 9, respectively. The remaining sixteen visible inversions
are from Class 1, and are encoded in the underlying Motzkin path.

One could also derive Theorem 1.1 from [Bia93, §3.2] and Proposition 2.1, but this would require a
non-trivial modification of Biane’s statistics. We prefer a self-contained proof, given its ease and brevity.

Proof of Corollary 1.2. The restriction of ¢ to Z& F¥ maps FPF involutions to labeled Dyck paths of length
2n. For 7 € ZEPF note that ((1) — (FPF(7) = 1(|Cyc(r)| + n) = n. Thus, weighting ZF'PF by ¢ rather
than /FFF results in q"Rzrer(q) as desired. O

If we instead sum over the statistic H|[u; ] defined after Equation (2.3), we obtain
(3.1) > HI[S;q) = Rerrr(q) = [ 12k — 1,

6€D2y k=1

Remark 3.2. An alternate approach to proving Theorem 1.1, used in [Watl4] to prove Corollary 1.2,
is to describe the image of (Z,,<) under ¢. One may show for an arbitrary cover relation 7 < o that
H(¢(o)) = H(¢(7))+ 1. An explicit description of cover relations appears in [Inc04, Tab. 1]. This strategy
is easier to implement for the weak order for involutions, denoted (Z,,, <y ), another partial order introduced
in [RS90] with the same rank generating function Rz, (¢q) but fewer cover relations. Using Figure 4.1, one
can verify for 7 <y o that H(¢(o)) = H(o(7)) +1 .

4. CONNECTIONS TO RELATED WORK

4.1. Watson’s description. We explain the relationship between Corollary 1.2 and [Wat14, Thm. 1]:
n

(4.1) ST @@ 21di(s) — 20 + 1], = [[ 12k = 1,

0€D2y, i€[n] k=1

where d;(4) is the position of the i-th down step in 6. If d;(§) = ', then the height of the ’-th step would
the number of up steps (d;(6) — i) before i’ in excess of the number of down step (i — 1) before ¢'. Thus,
we have that the height of the i-th down step is d;() — 2i + 1, so Equations (3.1) and (4.1) are equivalent.

Watson interprets Equation (4.1) in terms of fully packed rook placements on Young diagrams. These
correspond to labeled Dyck paths as follows. For (6 = 47 ...d25,, A) a labeled Dyck path, the corresponding
Young diagram is cut out by the lattice path from (0,n) to (n,0) whose i-th step is vertical if §; = D and
horizontal if §; = U. Each downward step is associated with a row on the diagram. Starting with the first
downward step, place a rook in the A-th leftmost valid (not in the same column as another rook) spot in
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F1cURrE 3. Cover relations 7 <y o for 7,0 € Z,,, with involutions depicted as partial matchings.

the associated row. To show this is reversible, note that J can be recovered from the shape of the diagram
and the down step labeling can be iteratively recovered by the rooks.

4.2. TFPF and the Ethiopian dinner game. In [BLM15], the authors study the Ethiopian dinner
game. Alice and Bob are sharing a meal with morsels {1,...,2n}. Bob prefers larger-valued morsels, while
Alice prefers larger values 7 for some permutation 7 = 7y ... ma,. The players alternate choice of morsel,
beginning with Alice. The optimal strategy for both players is best explained by describing the reverse order
in which morsels are chosen — Bob chooses the smallest unselected morsel in 77 . . . 7o, then Alice chooses the
leftmost unselected morsel and so on, resulting in an allocation function w : [2n] — {A, B} [KCT71, LS12].

The main result [BLM15, Thm. 1] is a bijection from permutations in Ss, to pairs of labeled Dyck
paths obtained by analyzing the Ethiopian dinner game. Given a permutation 7 = 7y ... ma, with optimal
allocation w, construct the Dyck paths 6(r) = 67'... 04}, and 08 (w) = 0P ...6% ., by setting

54— D w(m)=A and 6P — D w(+1)=Borj=2n+2
! U else, J U else.

Note by construction that 6% = U. For 6 = D and 5;9 =D (j # 2n + 2), define labels A* and A\B by
M@ =1+#{k<i: 0 =D,ngt >77'y and AP()=1+#{>j: 68 =D,mj_1 >m_1}.
For example, with 7 = 94328 10 7516, we have w = AABBAAABBB and

2 7516 3 2 516

(64,04 = . (6B 0B =4
Here, the red integers indicate o; ' for 6 = D and the blue integers indicate o;_; for 6;3 =D.
Let (53, AB) be the lattice path obtained by ignoring the first and last step of 6%.

Proposition 4.1. For w € Sy, (62(7),A\) = (6B(n), AB) if and only if = € TLEFF .
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Proof. Let w be the allocation function for m, and write

w (A ={a; < <ap}, wHB)={b < - <b}.
By construction 64 = 67 if and only if both 7(w=*(B) = w~(A4)), hence 7~ (w=(B)) = w(A).
Moreover, A = A if and only if w(b;) < 7(b;) for i < j. This is equivalent to saying 7(a;) = b; and
7(b;) = a;, that is 7 € ZEPF. O

n

We have the surprising but easy consequence that for ZZ F¥

Corollary 4.2. For € TEFF | (1) = (04(1), M) = (6B (1), \P).

Biane’s bijection coincides with theirs.

Call a permutation 7 fair if Alice and Bob eat the same morsels regardless of who chooses first. For a
fixed-point-free involution, Proposition 4.1 implies whenever Alice picks the morsel with value ¢ that Bob

will next pick the morsel at position i. This guarantees any 7 € Z4 PF is fair.

Proposition 4.3. A permutation m € Sa, is fair if and only if 53(7r) is a labeled Dyck path.

Proof. Let a; and b; be the position of the i-th morsel eaten by Alice and Bob respectively. These values
can be recovered from 658 (). Based on the optimal strategy, Alice ate her morsels starting from the right,
S0 a; is the position of the i-th rightmost up step in 6B (). To recover Bob’s moves, start from the leftmost
down step and move right. If a down step is labelled k, match this down step with the k-th leftmost up
step that has not been matched yet. Then b; is the position of the down step matched with the up step at
a;. Note that 65 (m) is a labeled Dyck path if and only if a; is to the left of b; for all i € [n].

Let a; and b, be the position of the i-th morsel eaten by Alice and Bob respectively when Bob
started first. Similar to the Alice-first variant, the optimal strategy is found starting with the last
moves. Suppose that a;,,b;,,...,a;,,,b;,, are equal to their counterparts of the original game. Then aj =
min{ay,b1,...,a;,b;} = min{a;, b;}. Therefore if a} = a; then a; < b;. Now, suppose that a,, by, ..., bit1,a;
are equal to their counterparts. Then b is Alice’s least favorite morsel among {b1, a1, ...,a;-1,b;}, but b; is
known to be Alice’s least favorite morsel in the larger set {as,b1,...,b;,a;}, so b; = b;. Thus by induction

7 is fair if and only if a; < b; for all 4 € [n], which is equivalent to 67 () being a labelled Dyck path. [

Remark 4.4. As a consequence of the crossout procedure in [BLM15], Alice will always eat morsels from
right to left and Bob will always eat morsels from highest to lowest. Therefore, for a fair permutation Alice
and Bob will eat the same morsels in the same order regardless of who chooses first.

Corollary 4.5. The number of fair permutations of length 2n is (2n — 1)!12.

Proof. By Proposition 4.3 and [BLM15, Thm. 1], counting fair permutations is equivalent to counting pairs
of labelled Dyck paths of length n. Setting ¢ = 1 in Corollary 1.2, this is (2n — 1)!!2. O

Call a permutation k-fair if Alice eats all but k of the same morsels when going second. Note the fair
permutations are precisely the O-fair permutation. It would be interesting to study enumerative properties
of k-fair permutations, and structural properties of their corresponding Dyck paths.

4.3. A final identity. The following equation is [DS01, Thm. 1.2] and its translation to Motzkin paths:

n JFPF n — 2c(o ~ n—2s
(4.2) (k)q = Z (q— 1)C(U)q€ (<7)< L C((U))> _ Z (¢— 1)3(“)H[,u;q]< L (M))

o€, HEM, S(:LL)

where s() is the number of down steps in p. The proof of Equation (4.2) follows from generating function
manipulations, and it would be interesting to give a direct combinatorial proof using Motzkin paths.
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