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ABSTRACT
Collaborative perception enables autonomous driving vehicles to
share sensing or perception data via broadcast-based vehicle-to-
everything (V2X) communication technologies such as Cellular-
V2X (C-V2X), hoping to enable accurate perception in face of inac-
curate perception results by each individual vehicle. Nevertheless,
the V2X communication channel remains a significant bottleneck
to the performance and usefulness of collaborative perception due
to limited bandwidth and ad hoc communication scheduling. In
this paper, we explore challenges and design choices for V2X-based
collaborative perception, and propose an architecture that lever-
ages the power of edge computing such as road-side units for cen-
tral communication scheduling. Using NS-3 simulations, we show
the performance gap between distributed and centralized C-V2X
scheduling in terms of achievable throughput and communication
efficiency, and explore scenarios where edge assistance is beneficial
or even necessary for collaborative perception.
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1 INTRODUCTION
Autonomous driving vehicles (ADVs) are expected to be central to
intelligent transportation systems (ITSs) and smart cities. ADVs
utilize on-board sensors such as cameras and LiDARs to sense
and perceive the surrounding environment, and make real-time
safety-critical driving decisions without or with minimal human
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intervention. Recent advances in ADVs promise to eliminate acci-
dents, reduce emission, and enhance transportation efficiency [21].
Wide deployment of ADVs expects to achieve over $800 billion
annual social benefits by 2025 due to improved road safety, reduced
congestion and decreased energy consumption [21].

While promising, the current ADV design is limited by inaccu-
racy of sensors and real-time inference models, insufficient compu-
tation power, and incomplete information on road conditions due
to limited sensing range and blockage. Collaborative perception, as
a method of data sharing and fusion between ADVs, is a promising
technology and a major recent research thrust for addressing these
issues [13]. In collaborative perception, vehicles broadcast sensing
and perception data via vehicle-to-everything (V2X) communica-
tions, and each vehicle fuses received data with its own perception
data to improve accuracy and remove blind spots. Recent studies
show that collaborative perception can complement on-board sen-
sors and extend the awareness range of vehicles [19], especially in
complex road conditions where blockage of view is common [12].

Despite its benefits, collaborative perception can drastically in-
crease communication load and overhead in V2X communications,
and is subject to the channel capacity of the V2X technology applied.
Insufficient communication resources not only degrade collabora-
tive perception performance in terms of accuracy and latency, but
also affect other vehicular applications such as collaborative maneu-
vering, route planning and entertainment. This is especially true in
congested urban scenarios where many vehicles may compete to
communicate in an ad hoc manner, leading to severe interference
that further degrades the resources for effective transmissions.

This paper studies the communication issues for collaborative
perception. Focusing on Cellular-V2X (C-V2X) standardized by
3GPP [1], we develop NS-3 simulations to show the performance of
centralized versus ad hoc C-V2X communications for collaborative
perception. Further, we investigate edge-assisted C-V2X broadcast
scheduling as an alternative to the default C-V2X ad hoc mode,
and show that in urban scenarios with heavy load, edge-assisted
scheduling can achieve over 60% effective throughput improvement,
while significantly reducing the amount of ineffective transmissions
due to collision and packet losses. Based on the simulations, we
discuss design challenges of V2X-based collaborative perception,
and suggest directions where further investigation is needed for
enabling practical collaborative perception in autonomous driving.

2 BACKGROUND FOR V2X-BASED
COLLABORATIVE PERCEPTION

2.1 Collaborative Perception
Collaborative perception refers to the ability for vehicles to ex-
change their sensing and perception data, and merge the local
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Figure 1: Collaborative perception example: two vehicles
share sensory data to remove blind spots of each other, based
on commonly visible (co-visible) objects in their views [12].

view of each vehicle with the received views of other vehicles for
more accurate perception and better decision making, as shown
in Fig. 1. It enables shared awareness of the surrounding environ-
ment by extending each vehicle’s perception ranges, compensating
for sensor/perception deficits, and removing blind spots. Tasks
that can be performed via collaborative perception include object
detection [12], lane detection [11], localization [17], real-time map-
ping [14], etc. In many existing methods, raw sensory data obtained
from on-board sensors of a vehicle (e.g., camera and LiDAR images)
are directly shared to near-by vehicles via V2X broadcast communi-
cations, along with the sending vehicle’s metadata such as location,
velocity and orientation. Each receiving vehicle then merges the
received data with its own data via an on-board data fusion unit,
to derive the merged view including the objects, their relative lo-
cations, and mapping to 3D physical space. To ensure accurate
mapping from the received view to the local view, processes such
as correspondence identification [12] are employed at each vehicle.

Unlike raw data sharing, recent studies show that sharing only
representations of raw data can reduce communication overhead
and improve latency performance [12]. For instance, by only shar-
ing perceived features (e.g., color, shape and size) and/or 3D loca-
tions of objects, collaborative 3D localization can be achieved with
high accuracy but magnitudes of reduction in communication over-
head [12]. Moreover, unlike raw data which cannot be sliced and
partially utilized, representation data such as object features can
be selectively transmitted and utilized to further reduce communi-
cation load. For instance, in uncertainty-aware localization, only
features that contribute to object location inference are needed,
and features of objects with high uncertainties among vehicles
can be prioritized for transmission to improve real-time localiza-
tion accuracy. These properties lend much flexibility to perception-
communication co-design, enabling highly efficient communica-
tion scheduling for the optimal real-time collaborative perception
performance. One caveat for representation sharing is that each
representation may be designed for a specific task (e.g., localization,
mapping, etc.), and hence more than one type of representation
may need to be sent in each round to carry out all needed tasks.

2.2 V2X Communications
Communication design is foundational to the performance of collab-
orative perception. Recent development in V2X technologies have
started providing support to collaborative perception use cases. The
European Telecommunications Standards Institute (ETSI) and the
Society of Automotive Engineers (SAE) have both recently launched

standardization efforts for collaborative perception services [9, 18].
For instance, the ETSI ITS technical committee has finalized a Tech-
nical Report for Collective Perception Service (CPS) [9], which
includes the definition of higher-layer Collective Perception Mes-
sage (CPM) formats to be used in the ETSI ITS-G5 communication
technology [7]. ITS-G5 is a European Standard for V2X communi-
cations based on IEEE 802.11p Wireless Access in Vehicular Envi-
ronments (WAVE) and IEEE 1609; the US counterpart is Dedicated
Short-Range Communication (DSRC) [20], a project led by the US
Department of Transportation. Both use the same spectrum in the
5.9GHz band, which is the official ITS spectrum in most countries.

A new V2X standardization effort is Cellular-V2X (C-V2X) led by
The 3rd Generation Partnership Project (3GPP) [1]. While ITS-G5
and DSRC are both based on IEEE 802.11 wireless local area network
(WLAN) technology, C-V2X utilizes 3GPP 4G Long-Term Evolution
(LTE) and 5G New Radio (NR) standards for V2X communications.
It uses the same 5.9GHz band as ITS-G5 and DSRC. As of 2021,
C-V2X is expected to replace (or co-exist with) ETSI ITS-G5 and
DSRC, with the US Federal Communications Commission (FCC)
reallocating the 5.9GHz band for DSRC to C-V2X in 2019 [10], and
ETSI approving a new European Standard defining C-V2X as the
access layer technology for ITS devices in 2020 [8]. Study has shown
that C-V2X has superior throughput over IEEE 802.11p in realistic
scenarios [16]. The benefit may specifically come from the access
control algorithm employed in the C-V2X ad hoc mode (Mode 4
in LTE-V2X or Mode 2 in NR-V2X), sensing-based semi-persistent
scheduling (S-SPS), which outperforms Carrier Sensing Multiple
Access (CSMA)-based algorithms employed in IEEE 802.11p [16].

2.3 Motivation of This Paper
Most existing V2X studies focus on the transmission of Collab-
orative Awareness Messages (CAMs), which are short messages
exchanged by vehicles for mutual-awareness of each other’s loca-
tion in tasks such as collision warning or traffic estimation. The
difference between CAMs and CPMs (Collaborative/Collective Per-
ception Messages) is that CAMs contain only metadata about the
vehicle itself (location, velocity, orientation, etc.), while CPMs con-
tain sensory data or data representations obtained by the vehicle.
Both CAMs and CPMs need to be transmitted and received periodi-
cally in real-time, but CPMs are commonly much larger than CAMs,
posing a much larger load on the communication channel with the
same or similar quality-of-service (QoS) requirements as CAMs
including ultra-low latency. Hence serving CPMs is much more
challenging than serving CAMs in V2X. Due to lack of related study,
this paper performs a simulation study on C-V2X for collaborative
perception, and discusses future directions implied by the result.

3 PRELIMINARY SIMULATION RESULTS
3.1 Sensing-based Semi-Persistent Scheduling
S-SPS is the access control algorithm used in the C-V2X ad hoc
mode (LTE-V2X Mode 4 and NR-V2X Mode 2). Let 𝑉 be a vehicle
scheduling to transmit at time𝑇 . A resource is defined as a subframe
(1ms) in the time domain, and a subchannel consisting of a certain
number of Physical Resource Blocks (PRBs) in the frequency do-
main. Below we describe this algorithm in the high level, omitting
protocol details and differences between LTE-V2X and NR-V2X:
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(1) 𝑉 defines a Selection Window of size𝑊 based on its latency
requirement and traffic periodicity (e.g.,𝑊 =100ms). It then
identifies all resources within the Selection Window starting
from 𝑇 as candidate resources (CRs).

(2) 𝑉 then defines a Sensing Window with size𝑊 ′ = 𝑁 ×𝑊 =

1000ms, starting from time𝑇−𝑊 ′ until𝑇−1.𝑉 excludes all CRs
that have been scheduled for transmission by other vehicles,
or that have sensed average Reference Signal Received Power
(RSRP) above a given threshold, in its Sensing Window. The
average is taken over all 𝑁 resources in the Sensing Window
that has the same index as the CR in the Selection Window.
If remaining CRs are below 20% of the total CRs in Step (1),
this step is repeated with a 3dB-higher RSRP threshold.

(3) From the CRs remaining in Step (2), 𝑉 picks the 20% CRs
with the lowest average Received Signal Strength Indicator
(RSSI).𝑉 randomly selects 1CR to transmit its current packet.
Also, 𝑉 randomly generates a Reselection Counter (RS) 𝑅 in
a specific range based on𝑊 and its traffic periodicity, and
reserves the picked CR for the next 𝑅 Selection Windows.

After the resource is picked and reserved with the RS 𝑅, 𝑉 can use
the same resource for transmission in the next 𝑅 windows, each
deducting 𝑅 by 1. The reservation is broadcast to all vehicles via
Sidelink Control Information (SCI) messages sent along with each
data packet. When 𝑅 becomes 0, 𝑉 can keep the current schedule
with probability of 𝑃 and a new RS 𝑅, or re-run the algorithm to
reserve a new resource with (1 − 𝑃) probability; by default 𝑃 = 0.8.

This algorithm works well with short CAM messages, as 1 reser-
vation is commonly sufficient for transmitting a periodic CAM of
each vehicle [5]. Simulations have shown that C-V2X can support
hundreds of vehicles for CAM transmission with negligible colli-
sion (<5%) [5]. For CPM, however, each vehicle may need to reserve
many resources within one Selection Window to accommodate the
large data size. Inevitably, this will increase collision, and lower the
number of collaborative perception vehicles supported by C-V2X.

3.2 Scheduling Algorithm Implementation
To perform the simulation study, we extended an existing LTE-V2X
Mode 4 simulator in NS-3 [5] to our target scenario. We modified
the simulator to schedule for more than 1 packets in a Selection
Window, based on the per-vehicle CPM data size. This enforces the
real-time requirement for CPM that each message should be sent
and received within a given deadline (e.g., 100ms). Each packet is
scheduled based on the S-SPS algorithm with no resource overlap
with other packets of the vehicle. We assume each vehicle chooses
a subchannel length that maximizes the bits-per-PRB that can be
transmitted in one subframe according to [2], which in most cases
corresponds to all available PRBs when the data size is large.

In addition to LTE-V2X Mode 4, we also implemented an edge-
assisted ideal scheduling algorithm for comparison. The ideal algo-
rithm assumes a centralized scheduler based on edge computing
(e.g., at a road-side unit or RSU), and schedules all vehicles within
its range in a round-robin manner based on their data sizes. In case
all vehicles’ total CPM data size is more than that can be accommo-
dated within one Selection Window, the scheduler will instruct all
vehicles to reduce their data sizes to avoid collision while ensuring
timely data sharing. Conceptually, this centralized scheduler can be

Table 1: Default Simulation Parameters
Vehicle Parameters
Number of vehicles (𝑛) 5-20
Update interval (𝑢) / Selection Window 100ms / 96ms
CPM data size 1, 207 to 48, 280 Bytes
Reselection probability (𝑃 ) 0.8
Channel Parameters
Channel bandwidth 10 MHz
PRBs per subchannel / # subchannel(s) 25 / 1
Maximum theoretical bitrate (𝑏) 9.656 Mbps
Channel load factor (𝜙) 20% to 200%

viewed as a specific implementation of the in-coverage, centralized
mode of C-V2X (LTE-V2XMode 3 or NR-V2XMode 1) for broadcast-
based collaborative perception, since no scheduling algorithm for
the centralized mode is defined in the 3GPP releases. The algorithm,
however, can also be implemented at RSUs to focus on local man-
agement with dedicated power control, such as at a junction. We
call this mode Edge-Assisted Broadcast (EAB) in the following.

3.3 Simulation Settings
A 4-way junction is simulated with 2-way static traffic, simulating a
scenario for collaborative blind spot removal as one of themost chal-
lenging scenarios in collaborative perception [12]. Table 1 shows
simulation parameters used. Except those listed, other parameters
are set based on [5]. CPM data size is based on channel load factor
𝜙 as a variable in the simulation, computed as (𝜙 ·𝑏 · (𝑢/1000)/8)/𝑛
bytes (B), i.e., it is equal to 𝜙 times how many bytes each vehicle
could send within one update interval in the ideal schedule. Based
on the default parameters and𝜙 ranging from 20% to 200%, the CPM
data size ranges from 1, 207 to 48, 280 bytes. We note that this is
within the normal range of CPM data sizes based on state-of-the-art
collaborative perception methods: from a most recent work [12],
the data size ranges from 128B (a minimal representation) to 172KB
(a full 180 × 320 raw RGB image). We show four metrics:

• Total effective throughput (TET): total data successfully re-
ceived by all vehicles, divided by the number of vehicles
minus one as the number of intended receivers per message.

• Per-vehicle effective throughput (VET): TET divided by the
number of vehicles, as the average data volume that each
receiver receives from each sending vehicle.

• Packet reception ratio (PRR): fraction of broadcast packets
successfully received by each receiver.

• Collision ratio (CLR): ratio of packets transmitted with over-
lapping PRBs with other packets.

3.4 Simulation Results
Fig. 2 shows preliminary simulation results. In Fig. 2(a), S-SPS (LTE-
V2X Mode 4) has comparable TET to EAB when channel load is
low. When channel load is high (≥ 60%), S-SPS shows degraded
throughput due to resource competition. S-SPS could still improve
its TET until the load becomes excessive (over 100% to 150%), at the
cost of significantly degraded PRR and increased CLR in Figs. 2(c)
and 2(d) respectively. This means that, to achieve a high throughput,
vehicles must sendmore additional data, with a high risk of having a
significant part of the sent data not received by most other vehicles,
i.e., transmission efficiency degrades. After a certain load threshold
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(d) Collision ratio (CLR)
Figure 2: LTE-V2XMode 3 (Edge-Assisted Broadcast, or EAB) versusMode 4 (Sensing-based Semi-Persistent Scheduling, or S-SPS).

(e.g. 150% channel load), S-SPS further has degrading TET due to
excessive ad hoc competition among vehicles. Meanwhile, EAB
always achieves maximum efficiency regardless of load, and can
fully utilize the channel when the load is highwith close-to-one PRR
and no collision. Regardless of load and scheduling algorithm, more
vehicles broadcasting CPMs lead to lower per-vehicle throughput
in Fig. 2(b). Thus when the spectrum is not enough for all vehicles
to broadcast every piece of data, vehicle/data selection must be
performed to ensure timely updates. In practice, at any time a
mixture of centrally scheduled and ad hoc vehicles will be present,
due to new vehicles arriving in the range of an edge node. Thus
the perceived performance is likely to be a mixture of EAB and
S-SPS shown in the figures. With the edge performing sensing-
based scheduling, we expect that EAB can still greatly improve
communication efficiency and PRR in the mixture case. Overall, the
simulations show the inefficacy of ad hoc scheduling in congested
urban scenarios, and justifies the necessity of edge-based scheduling
for real-time, high-accuracy collaborative perception.

4 EDGE-ASSISTED COLLABORATIVE
PERCEPTION: THE VISION

4.1 Communication-aware Design Challenges
Insufficient data rate: DSRC (IEEE 802.11p) provides a maximum
data rate of 27Mbps [3], and LTE-V2X can support up to 100Mbps
in high mobility scenarios [4]. While NR-V2X with millimeter-wave
(mmWave) bands may achieve multi-Gbps data rates [4], no official
mmWave bands have been licensed for V2X use. For raw data
sharing, the data rate of a single vehicle may range from several
to tens of Mbps depending on the sensor type (e.g., camera versus
LiDAR) and number. Thus even in moderately congested scenarios
with tens of vehicles, the overall data rate would overwhelm the
channel, and scheduling and data selection are needed.

Lack of global view and coordination: Ad hoc scheduling is
a major bottleneck in V2X communications, leading to excessive
collision and low effective throughput as shown in simulations.
Especially in congested urban scenarios, the lack of global coor-
dination and global view-based data selection can lead to highly
ineffective collaborative perception. Edge computing could serve
as such a “global” communication coordinator and view aggregator,
with careful design of the communication and aggregation modules
so as not to further increase overhead and decrease efficiency.

Data redundancy and uncertainty: When many vehicles are
near-by, their views may significantly overlap, with redundant data
about each object. In this case, not all vehicles’ data are needed,
and data deduplication is needed. On the other hand, each vehicle’s
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Figure 3: Edge-assisted collaborative autonomous driving.

data may have uncertainty regarding an object’s type, shape and
location [12], which calls for data selection before transmission to
minimize uncertainty of vehicles’ merged views.

Real-time constraints: In addition to the high data volume,
collaborative perception use cases have stringent real-time require-
ments. Due to vehiclemobility and dynamic environmental changes,
data must be delivered within a time limit (e.g., 100ms-1s [9]) to be
useful to vehicles. Also, the fresher a piece of delivered data, the
more promptly can tasks be performed, which could improve safety
and comfort of autonomous driving. Thus age-of-information (AoI)
could play a key role in optimal communication design.

4.2 Edge-Assisted Collaborative Perception
Based on the challenges, we advocate that edge assistance is criti-
cal to collaborative perception and other ADV applications in real
world. A reference architecture is shown in Fig. 3. Two major com-
ponents of the system are the on-board units including sensory,
perception, collaborative module, and control, and the edge comput-
ing unit residing on RSUs; the two components are aware of each
other and communicate over north/southbound V2X interfaces.
In the edge unit, two control plane layers provide basic functions
shared by different applications. The Edge Data Management mod-
ule collects CPMs (and other data) and builds a global view, with
which data selection, aggregation and deduplication are performed
based on application needs. The Edge-based V2X Communication
module manages broadcast communications for edge- and vehicle-
initiated traffic. Various collaborative applications can be built atop
these two common layers utilizing the provided functions.

4.3 Research Directions
Based on the proposed architecture, we next highlight directions
where research and development is crucially needed to enable high-
performance real-time edge-assisted collaborative perception.
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Direction 1: edge-based communication design. To address
inadequate communication resources and collision, centralized co-
ordination should be conducted by the edge node. Novel resource
management and scheduling are needed to tackle unique challenges
in collaborative perception, including throughput and real-time
requirements, and meanwhile potentially high data redundancy.
AoI-based metrics are important for satisfying the real-time require-
ment. However, existing AoI metrics are application-agnostic and
do not consider characteristics of collaborative perception such
as data redundancy and uncertainty across sources, and diverse
AoI requirements for different objects such as low-mobility pedes-
trian versus high-mobility vehicles. Application-aware metrics are
needed for optimal communication design supporting safety-critical
collaborative perception (and other) applications.

Direction 2: edge-assisted communication-efficient collab-
orative perception. Application design is also important for effi-
cient and effective collaborative perception. Specifically, application
design should be aware of the limited communication resources,
and should be closely coupled with communication design to pro-
vide efficient transfer of the most critical data for collaborative
perception. For instance, when the data volume for collaborative
perception exceeds the channel capacity, vehicles should collec-
tively select the most important data to transmit, such as data on
the most uncertain objects or areas, or outdated data that require
refreshing. This is best achieved when an edge node can centrally
coordinate data selection and transmission among local vehicles.
Further, the edge node may maintain an aggregated view based on
received data, and also participate in collaborative perception with
its own sensors such as traffic cameras. The design space of joint
edge-vehicle collaboration is huge and requires extensive research.

Direction 3: interplay between collaborative perception
and other applications. In practice, collaborative perception co-
exists with other autonomous driving and ITS functions, including
but not limited to: collaborative awareness [6], collaborative maneu-
vering [15], traffic monitoring/planning, etc. Different applications
have different requirements and criticality levels. These applications
may interact in the data, computing and communication domains.
For instance, collaborative perception may use the same sensory
data as collaborative awareness and traffic monitoring,and all these
services use the same on-board/edge computing resources and com-
munication channel. Application-aware, cross-layer management
of data, computing and communication for ITS applications is an
important direction that requires synthesis of multiple related areas
including but not limited to distributed edge computing, communi-
cation design, network slicing, and performance modeling.

5 CONCLUSIONS
This paper aimed to provide a preliminary study of edge-assisted
collaborative perception in autonomous driving from a V2X com-
munication design perspective. Collaborative perception and V2X
communications were traditionally studied in two separate subar-
eas, and little research has been done on the practical performance
of collaborative perception with current V2X communication pro-
tocols. We showed via preliminary simulations that collaborative
perception with ad hoc V2X broadcast could result in low channel

efficiency, high congestion and low packet reception ratio. Edge-
assisted communication coordination was proposed as a solution
to the inefficiency problem. Still, lack of sufficient communication
resource was identified as a major bottleneck for collaborative
perception applications even with edge coordination, and several
challenges exist for implementing real-time, high-accuracy collab-
orative perception in real-world scenarios. We finally concluded
this paper with several future directions along which research and
development must be conducted to realize practical V2X-based
collaborative perception in autonomous driving.

ACKNOWLEDGMENTS
This research was supported in part by NSF grants 2007391 and
2045539. The information reported here does not reflect the position
or the policy of the funding agency.

REFERENCES
[1] 3GPP TR 36.885 V14.0.0. 2016. Study on LTE-based V2X Services.
[2] 3GPP TS 36.213 V8.8.0. 2009. Physical Layer Procedures.
[3] Jeong-Kyu Bae, Myung-Chul Park, Eun-Ju Yang, and Dae-Wha Seo. 2021. Imple-

mentation and Performance Evaluation for DSRC-Based Vehicular Communica-
tion System. IEEE Access 9 (2021), 6878–6887.

[4] Sherif Adeshina Busari, Muhammad Awais Khan, Kazi Mohammed Saidul Huq,
Shahid Mumtaz, and Jonathan Rodriguez. 2019. Millimetre-wave Massive MIMO
for Cellular Vehicle-To-Infrastructure Communication. IET Intelligent Transport
Systems 13, 6 (jun 2019), 983–990.

[5] Fabian Eckermann, Moritz Kahlert, and Christian Wietfeld. 2019. Performance
Analysis of C-V2X Mode 4 Communication Introducing an Open-Source C-V2X
Simulator. In Proc. IEEE VTC-Fall. 1–5.

[6] ETSI EN 302 637-2 V1.3.1. 2014. Specification of Cooperative Awareness Basic
Service.

[7] ETSI EN 302 663 V1.3.1. 2019. ITS-G5 Access Layer Specification for Intelligent
Transport Systems Operating in the 5 GHz Frequency Band.

[8] ETSI EN 303 613 V1.1.1. 2019. LTE-V2X Access Layer Specification for Intelligent
Transport Systems Operating in the 5 GHz Frequency Band.

[9] ETSI TR 103 562 V2.1.1. 2019. Analysis of the Collective Perception Service
(CPS).

[10] Federal Communications Commission. 2020. FACT SHEET: Modernizing the 5.9
GHz Band. https://docs.fcc.gov/public/attachments/DOC-367827A1.pdf

[11] Jun Gao, Yi Lu Murphey, and Honghui Zhu. 2018. Detection of Lane-Changing
Behavior Using Collaborative Representation Classifier-Based Sensor Fusion. SAE
International Journal of Transportation Safety 6, 2 (oct 2018), 09–06–02–0010.

[12] Peng Gao, Rui Guo, Hongsheng Lu, and Hao Zhang. 2020. Regularized Graph
Matching for Correspondence Identification under Uncertainty in Collaborative
Perception. In Proc. RSS.

[13] Seong-Woo Kim, Baoxing Qin, Zhuang Jie Chong, Xiaotong Shen, Wei Liu,
Marcelo H. Ang, Emilio Frazzoli, and Daniela Rus. 2015. Multivehicle Cooperative
Driving Using Cooperative Perception: Design and Experimental Validation. IEEE
Transactions on Intelligent Transportation Systems 16, 2 (apr 2015), 663–680.

[14] Qiang Liu, Tao Han, Jiang Linda Xie, and Baekgyu Kim. 2021. LiveMap: Real-Time
Dynamic Map in Automotive Edge Computing. In Proc. IEEE INFOCOM. 1–10.

[15] Vicente Milanés, Javier Alonso, Laurent Bouraoui, and Jeroen Ploeg. 2011. Coop-
erative Maneuvering in Close Environments Among Cybercars and Dual-Mode
Cars. IEEE Transactions on Intelligent Transportation Systems 12, 1 (mar 2011),
15–24.

[16] Rafael Molina-Masegosa, Javier Gozalvez, andMiguel Sepulcre. 2020. Comparison
of IEEE 802.11P and LTE-V2X: An Evaluation With Periodic and Aperiodic
Messages of Constant and Variable Size. IEEE Access 8 (2020), 121526–121548.

[17] Amanda Prorok, Alexander Bahr, and Alcherio Martinoli. 2012. Low-cost Col-
laborative Localization for Large-Scale Multi-Robot Systems. In Proc. IEEE ICRA.
4236–4241.

[18] SAE J2945/8 (Work-in-Progress). 2018. Cooperative Perception System. https:
//www.sae.org/standards/content/j2945/8/

[19] Gokulnath Thandavarayan, Miguel Sepulcre, and Javier Gozalvez. 2020. Cooper-
ative Perception for Connected and Automated Vehicles: Evaluation and Impact
of Congestion Control. IEEE Access 8 (2020), 197665–197683.

[20] US DOT. 2009. IEEE 1609 - Family of Standards for Wireless Access in Vehicular
Environments (WAVE). https://www.standards.its.dot.gov/Factsheets/Factsheet/
80

[21] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. 2020. A
Survey of Autonomous Driving: Common Practices and Emerging Technologies.
IEEE Access 8 (2020), 58443–58469.

https://docs.fcc.gov/public/attachments/DOC-367827A1.pdf
https://www.sae.org/standards/content/j2945/8/
https://www.sae.org/standards/content/j2945/8/
https://www.standards.its.dot.gov/Factsheets/Factsheet/80
https://www.standards.its.dot.gov/Factsheets/Factsheet/80

	Abstract
	1 Introduction
	2 Background for V2X-based Collaborative Perception
	2.1 Collaborative Perception
	2.2 V2X Communications
	2.3 Motivation of This Paper

	3 Preliminary Simulation Results
	3.1 Sensing-based Semi-Persistent Scheduling
	3.2 Scheduling Algorithm Implementation
	3.3 Simulation Settings
	3.4 Simulation Results

	4 Edge-Assisted Collaborative Perception: The Vision
	4.1 Communication-aware Design Challenges
	4.2 Edge-Assisted Collaborative Perception
	4.3 Research Directions

	5 Conclusions
	Acknowledgments
	References

