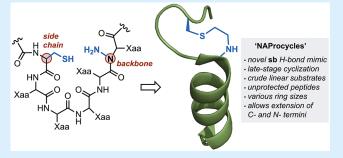


pubs.acs.org/OrgLett Letter

Late-Stage Sidechain-to-Backbone Macrocyclization of *N*-Amino Peptides

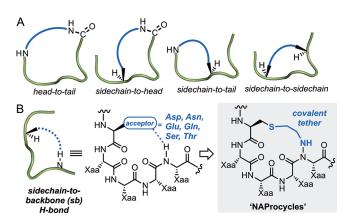
Benjamin M. Rathman and Juan R. Del Valle*

Cite This: Org. Lett. 2022, 24, 1536–1540


ACCESS

Metrics & More

Article Recommendations


Supporting Information

ABSTRACT: Cysteine-containing *N*-amino peptides undergo chemoselective reactions with haloaldehydes to afford ethylene-bridged cyclic peptides. This bis-alkylation strategy provides macrocycles harboring a novel covalent H-bond surrogate. Mimicry of a native sidechain-to-backbone (*sb*) H-bond is demonstrated in the context of a model loop-helix peptide. The described method is amenable to the synthesis of diverse ring sizes from crude unprotected linear substrates under aqueous conditions.

acrocyclization is now a mainstay of peptidomimetic drug design owing to the conformational restriction, improved proteolytic stability, and often superior pharmacokinetic properties of cyclic peptides relative to their linear counterparts. Peptide macrocycles can be designed to mimic the biologically active conformations of lead sequences, resulting in enhanced target binding and selectivity. Diversity-oriented cyclization strategies, where a common linear substrate gives rise to a library of peptide macrocycles, have also been widely employed in screening campaigns. Such compounds continue to find widespread utility as ligands for expansive and shallow protein surfaces that are difficult to target with small molecules. New synthetic methods to introduce covalent tethers into polypeptides remain highly desirable.

While several synthetic approaches toward peptide macrocycles have been reported, the majority result in head-to-tail, sidechain-to-head or tail (lariat-type), or sidechain-to-sidechain modes of cyclization (Figure 1A).3 Less attention has been paid to sidechain-to-backbone (sb) tethering, presumably due to challenges associated with installing reactive handles on internal amides within a chain.^{3d,4} Our group was particularly interested in addressing this gap since sb H-bonds are commonly encountered in folded peptides and proteins.⁵ These motifs feature the interaction between a backbone amide donor and a sidechain acceptor, typically from Asx, Glx, Ser, or Thr. We envisioned that replacing this H-bond with a covalent surrogate would result in a novel class of constrained peptide macrocycles (Figure 1B). Here, we report a versatile method to tether the Cys sidechain and the backbone amide substituent within N-amino peptides (NAPs). These macrocycles (termed "NAProcycles") can be formed from crude unprotected linear substrates and incorporate an internal sb

Figure 1. (A) Common modes of peptide macrocyclization. (B) Sidechain-to-backbone (*sb*) H-bonds within peptides and proteins and the structure of *N*-amino peptide macrocycles (NAProcycles).

peptide constraint, thus allowing the extension of both the Cand N-termini.

We previously showed that backbone *N*-aminated peptides exhibit conformational characteristics distinct from their alkylated (peptide tertiary amide) counterparts. In contrast to *N*-methyl peptides, the hydrazide bonds in NAPs retain an almost native-like preference for the *trans*-amide geometry and can engage in intra-residue H-bonds that stabilize extended

Received: January 19, 2022 Published: February 14, 2022

Scheme 1. Synthesis of Linear NAP 3 and Screening of Macrocyclization Conditions

conformations.⁶ Moreover, *N*-amino dipeptide building blocks are readily incorporated into peptides by solid-phase peptide synthesis (SPPS) and are highly resistant to the racemization commonly observed during the condensation of *N*-alkylated peptide fragments.⁷ Hydrazides have long been used as reactive handles in aqueous environments, enabling the chemoselective modification of peptides and proteins.⁸ We thus sought to employ the reductive alkylation of the *N*-amino substituent in NAPs in conjunction with Cys sidechain alkylation⁹ to provide a novel *sb* H-bond surrogate.

To screen for optimal macrocyclization conditions, we prepared a linear test substrate where the reactive Cys and Naminoalanine (aAla) handles were spaced four residues apart. We also included nucleophilic sidechains in our sequence (Arg, Lys, and Tyr) in addition to a free N-terminus to establish functional group tolerance in the alkylation and reduction steps. The required N-aminated building block for peptide synthesis was prepared by reacting 1 with t-butyl-diethyloxaziridinetricarboxylate (TBDOT), followed by condensation with Fmoc-Ala-Cl and hydrogenolysis of the benzyl ester (Scheme 1).10 Dipeptide derivative 2 was incorporated into the linear peptide by conventional Fmoc SPPS on Rink amide MHBA resin (HATU/NMM condensations). TFA-mediated cleavage and deprotection provided NAP 3, which was purified by preparative RP-HPLC and aliquoted to screen the cyclization conditions.

Treating 3 with 2.5 equiv of chloroacetaldehyde in aq. NH₄HCO₃/MeCN (pH 8) resulted in its full conversion to the Cys-alkylated intermediate 4 within 1 h, as judged by LCMS. We then adjusted the reaction mixture to pH 2 using TFA, which resulted in the formation of cyclic hydrazone 5 (Figure 2). Excess solid NaBH₃CN was added to the mixture to provide hydrazide 6 as the major product. When the cyclization was carried out at a 20 mM substrate concentration, we observed a significant amount of dimeric species 7 in addition to a minor amount of the acyclic alcohol 8. Decreasing the peptide concentration to 1 mM provided the highest proportion of NAProcycle 6 relative to the byproducts. Attempts to carry out the reduction step at a higher pH (4.5 or 8.0) resulted in poor conversion and less favorable product ratios. No cyclization was observed when the linear substrate lacked an N-amino substituent (compound S1, Supporting Information), thus confirming that amine groups are not competent nucleophiles under the reaction conditions.

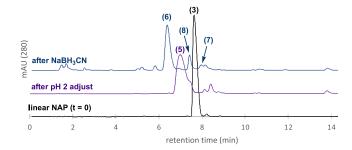


Figure 2. RP-HPLC spectra after hydrazone formation and reduction.

To evaluate the scope of macrocyclization with respect to ring size, we varied the position of the reactive Cys and aAla residues. We also carried out cyclizations using crude linear substrates to improve the overall efficiency. Figure 3 depicts NAProcycles prepared from crude peptides directly following cleavage from the resin. In addition to the 20-membered ring in compound 6, we synthesized 17- and 14-membered NAProcycles (9 and 10, respectively) in good overall yields based on the initial resin loading. In contrast, 11-membered NAProcycle 11 was obtained in only trace amounts following repeated RP-HPLC purifications. In this case, we observed poor conversion to the cyclic hydrazone intermediate by LCMS following the adjustment to pH 2 (prior to reduction). The S-alkylated linear byproduct and macrocyclic dimer were major products, presumably due to the ring strain associated with the high content of sp²-hybridized atoms within the 11membered transition state. Peptide 12 was designed to mimic a sb H-bond in which the amide donor is N-terminal to the acceptor. This 16-membered NAProcycle was formed in a 19% overall yield based on resin loading. Finally, we reacted 3 with p-chloromethybenzaldehyde in place of chloroacetaldehyde to afford macrocycle 13. Although the overall isolated yield was lower relative to that of 6, this result demonstrates the ability to introduce linker diversity through variation of the biselectrophile reagent.

A key feature of NAProcycles is the presence of a backbone H-bond surrogate within a peptide that extends further in both the C and N directions. This may be particularly useful for mimicking H-bonds that bridge secondary structures. In folded proteins, α -helix N-caps are prevalent motifs that often feature a sidechain H-bond acceptor situated N-terminal to the helix. ¹¹

Figure 3. NAProcycles synthesized from crude linear substrates (with isolated overall yields following RP-HPLC purification).

This acceptor can interact with the otherwise "unsatisfied" amide donors at the start of the helix while also imposing a conformational constraint amenable to helix formation. Though most helix N-caps involve smaller H-bonded cyclic motifs (i.e., Asx or ST turns),¹² a cursory inspection of high-resolution protein structures in the Protein Data Bank (PDB) reveals several larger loop-helix sb macrocycles. We identified, for example, a 20-membered sb H-bond in the X-ray crystal structure of VP40, a viral matrix protein whose assembly plays a critical role in the budding of mature virions. ¹³ Here, a Gln sidechain engages the first amide NH of the α 2 helix (Figure 4). We sought to demonstrate the utility of our approach by

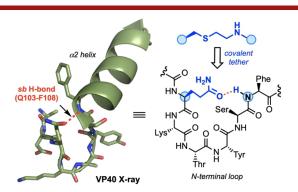
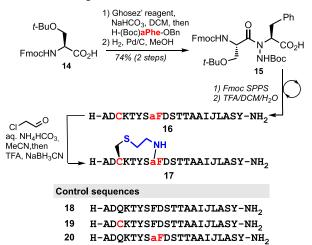



Figure 4. C20 sb H-bond in the α 2 helix of VP40 (PDB 4LDB).

replacing the native Q103-F108 sb H-bond with a covalent tether. We thus designed a model peptide that includes five residues from the N-terminal loop of VP40 in addition to the $\alpha 2$ helix residues.

The Ser–aPhe (aPhe = N-aminophenylalanine) dipeptide building block (15) required for NAP synthesis was prepared by a route analogous to that used for 2 (Scheme 2). Fmoc-SPPS, cleavage, and deprotection provided linear aPhe-containing peptide 16, which featured the additional Gln \rightarrow Cys mutation required for cyclization. We also replaced a Met residue within the wt VP40 helix with norleucine to avoid the potential alkylation of the thioether sidechain. Crude NAP 16 was subjected to cyclization with chloroacetaldehyde under our optimized conditions to provide 17 following preparative RP-HPLC purification. We also prepared a series of control

Scheme 2. Synthesis of VP40-Based NAProcycle 17 and linear control sequences^a

 ^{a}J = norleucine and aF = N-aminophenylalanine.

sequences for comparison. Peptide 18 represents the unmutated parent sequence, while peptides 19 and 20 feature a single $Gln \rightarrow Cys$ and $Phe \rightarrow aPhe$ mutation, respectively.

We used circular dichroism (CD) to assess the predominant secondary structure of 16-20 as well as the extent of folding at 75 μ M in 1:1 H₂O/MeCN (peptides 18 and 19 gave turbid mixtures in pure water and required the addition of MeCN to dissolve) (Figure 5). Interestingly, parent peptide 18 exhibited a maximum molar ellipticity at 195 nm and a minimum at 217 nm, clearly indicating a β -sheet conformation. Although VP40₁₀₈₋₁₂₁ is helical in the crystal structure of the dimer, the addition of the N-terminal loop residues in our truncated model peptide appears to promote an alternate sheet-like structure. Peptide 19 also exhibited a β -sheet CD signature, albeit with a less pronounced minima, indicating that a single Gln → Cys mutation does not significantly impact the preferred fold. We observed a clear shift to an α -helix conformation in the case of NAP 20. This dramatic effect suggests that the unsatisfied Phe amide donor in 18 is important for promoting a β -sheet-like fold. We have previously shown that N-amination disrupts canonical H-

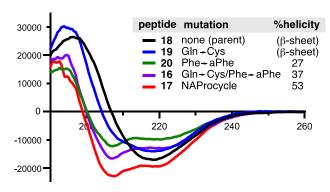


Figure 5. Circular dichroism spectra of 16-20 in 50% MeCN/H₂O.

bonding on the substituted edge, ⁶ likely precluding **20** from adopting such a conformation. We used the mean residue molar ellipticity at 222 nm¹⁴ to determine that **20** was 27% helical in 1:1 H₂O/MeCN. The helicity increased to 37% in the case of linear NAP **16**, which is the precursor to cyclization and harbors both the Gln \rightarrow Cys and Phe \rightarrow aPhe mutations. NAProcycle **17** exhibited the strongest helicity (53%) among all the peptides examined. While *N*-amination was sufficient to induce a conformational switch from β -sheet to α -helix, we were gratified to find that NAProcycle tethering resulted in significant secondary structure stabilization relative to the linear analogues.

In summary, we have described a novel peptide macrocyclization approach based on covalent sidechain-to-backbone tethering. This ethylene bridging strategy leverages the reactivity of hydrazino acid and Cys residues within crude unprotected peptides to provide macrocycles of various ring sizes. Our initial studies suggest that additional macrocycle diversity can be realized through varying the haloaldehyde biselectrophile. The ease of synthesis of linear NAP substrates renders this a particularly useful method for tethering to the peptide backbone. Studies employing NAProcycles as stabilized mimics of protein folds and bioactive peptides are currently underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.2c00204.

Detailed experimental procedures; characterization data for novel compounds; and copies of RP-HPLC, HRMS, and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Juan R. Del Valle – Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States; oocid.org/0000-0002-7964-8402; Email: jdelvalle@nd.edu

Author

Benjamin M. Rathman – Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.2c00204

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Science Foundation (NSF CHE2109008).

REFERENCES

- (1) (a) Vinogradov, A. A.; Yin, Y.; Suga, H. Macrocyclic Peptides as Drug Candidates: Recent Progress and Remaining Challenges. *J. Am. Chem. Soc.* **2019**, *141*, 4167–4181. (b) Morrison, C. Constrained peptides' time to shine? *Nat. Rev. Drug Discovery* **2018**, *17*, 531–533. (c) Bock, J. E.; Gavenonis, J.; Kritzer, J. A. Getting in Shape: Controlling Peptide Bioactivity and Bioavailability Using Conformational Constraints. *ACS Chem. Biol.* **2013**, *8*, 488–499.
- (2) (a) Pelay-Gimeno, M.; Glas, A.; Koch, O.; Grossmann, T. N. Structure-Based Design of Inhibitors of Protein—Protein Interactions: Mimicking Peptide Binding Epitopes. *Angew. Chem., Int. Ed.* **2015**, *54*, 8896—8927. (b) Merritt, H. I.; Sawyer, N.; Arora, P. S. Bent into shape: Folded peptides to mimic protein structure and modulate protein function. *Peptide Science* **2020**, *112*, No. e24145.
- (3) (a) White, C. J.; Yudin, A. K. Contemporary strategies for peptide macrocyclization. *Nat. Chem.* **2011**, *3*, 509–524. (b) Lau, Y. H.; de Andrade, P.; Wu, Y.; Spring, D. R. Peptide stapling techniques based on different macrocyclisation chemistries. *Chem. Soc. Rev.* **2015**, *44*, 91–102. (c) Wu, J.; Tang, J.; Chen, H.; He, Y.; Wang, H.; Yao, H. Recent developments in peptide macrocyclization. *Tetrahedron Lett.* **2018**, *59*, 325–333. (d) Sham, H. L.; Bolis, G.; Stein, H. H.; Fesik, S. W.; Marcotte, P. A.; Plattner, J. J.; Rempel, C. A.; Greer, J. Renin inhibitors. Design and synthesis of a new class of conformationally restricted analogs of angiotensinogen. *J. Med. Chem.* **1988**, *31*, 284–295.
- (4) (a) Vanjari, R.; Eid, E.; Vamisetti, G. B.; Mandal, S.; Brik, A. Highly Efficient Cyclization Approach of Propargylated Peptides via Gold(I)-Mediated Sequential C–N, C–O, and C–C Bond Formation. ACS Central Science 2021, 7, 2021–2028. (b) Pinsker, A.; Einsiedel, J.; Härterich, S.; Waibel, R.; Gmeiner, P. A Highly Efficient Type I β -Turn Mimetic Simulating an Asx-Pro-Turn-Like Structure. Org. Lett. 2011, 13, 3502–3505. (c) Zhang, J.; Mulumba, M.; Ong, H.; Lubell, W. D. Diversity-Oriented Synthesis of Cyclic Azapeptides by A3-Macrocyclization Provides High-Affinity CD36-Modulating Peptidomimetics. Angew. Chem., Int. Ed. 2017, 56, 6284–6288. (d) Rojo, I.; Martín, J. A.; Broughton, H.; Timm, D.; Erickson, J.; Yang, H.-C.; McCarthy, J. R. Macrocyclic peptidomimetic inhibitors of β -secretase (BACE): First X-ray structure of a macrocyclic peptidomimetic-BACE complex. Bioorg. Med. Chem. Lett. 2006, 16, 191–195.
- (5) (a) Vasudev, P. G.; Banerjee, M.; Ramakrishnan, C.; Balaram, P. Asparagine and glutamine differ in their propensities to form specific sidechain-backbone hydrogen bonded motifs in proteins. *Proteins: Struct., Funct., Bioinf.* **2012**, *80*, 991–1002. (b) Escobedo, A.; Topal, B.; Kunze, M. B. A.; Aranda, J.; Chiesa, G.; Mungianu, D.; Bernardo-Seisdedos, G.; Eftekharzadeh, B.; Gairí, M.; Pierattelli, R.; Felli, I. C.; Diercks, T.; Millet, O.; García, J.; Orozco, M.; Crehuet, R.; Lindorff-Larsen, K.; Salvatella, X. Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor. *Nat. Commun.* **2019**, *10*, 2034. (c) Eswar, N.; Ramakrishnan, C. Secondary structures without backbone: an analysis of backbone mimicry by polar side chains in protein structures. *Protein Eng.* **1999**, *12*, 447–455. (d) Eswar, N.; Ramakrishnan, C. Deterministic features of sidechain main-chain hydrogen bonds in globular protein structures. *Protein Eng.* **2000**, *13*, 227–238.
- (6) Sarnowski, M. P.; Kang, C. W.; Elbatrawi, Y. M.; Wojtas, L.; Del Valle, J. R. Peptide N-Amination Supports β -Sheet Conformations. *Angew. Chem., Int. Ed.* **2017**, *56*, 2083–2086.
- (7) (a) Rathman, B. M.; Rowe, J. L.; Del Valle, J. R.. Chapter Nine Synthesis and Conformation of Backbone N-Aminated Peptides. In *Methods in Enzymology*, Vol. 656; Petersson, E. J., Ed.; Academic

Press, 2021; pp 271–294. (b) Kang, C. W.; Sarnowski, M. P.; Elbatrawi, Y. M.; Del Valle, J. R. Access to Enantiopure α -Hydrazino Acids for N-Amino Peptide Synthesis. *Journal of Organic Chemistry* **2017**, 82, 1833–1841.

- (8) (a) Bhat, S.; Hwang, Y.; Gibson, M. D.; Morgan, M. T.; Taverna, S. D.; Zhao, Y.; Wolberger, C.; Poirier, M. G.; Cole, P. A. Hydrazide Mimics for Protein Lysine Acylation To Assess Nucleosome Dynamics and Deubiquitinase Action. J. Am. Chem. Soc. 2018, 140, 9478–9485. (b) Huang, Y.-C.; Fang, G.-M.; Liu, L. Chemical synthesis of proteins using hydrazide intermediates. National Science Review 2016, 3, 107–116. (c) Kölmel, D. K.; Kool, E. T. Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis. Chem. Rev. 2017, 117, 10358–10376.
- (9) (a) Peraro, L.; Siegert, T. R.; Kritzer, J. A.. Conformation Restriction of Peptides Using Dithiol Bis-Alkylation. In *Methods in Enzymology*, Vol. 580; Pecoraro, V. L.; Ed.; Academic Press, 2016; pp 303–332. (b) Timmerman, P.; Beld, J.; Puijk, W. C.; Meloen, R. H. Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces. *Chembiochem* 2005, 6, 821–824.
- (10) Sarnowski, M. P.; Del Valle, J. R. N-Hydroxy peptides: solid-phase synthesis and β -sheet propensity. *Org. Biomol Chem.* **2020**, *18*, 3690–3696.
- (11) (a) Aurora, R.; Rosee, G. D. Helix capping. *Protein science: a publication of the Protein Society* **1998**, 7, 21–38. (b) Serrano, L.; Fersht, A. R. Capping and α -helix stability. *Nature* **1989**, 342, 296–299.
- (12) (a) Wan, W. Y.; Milner-White, E. J. A recurring two-hydrogen-bond motif incorporating a serine or threonine residue is found both at alpha-helical N termini and in other situations. *J. Mol. Biol.* 1999, 286, 1651–1662. (b) Doig, A. J.; MacArthur, M. W.; Stapley, B. J.; Thornton, J. M. Structures of N-termini of helices in proteins. *Protein science: a publication of the Protein Society* 1997, 6, 147–155.
- (13) Bornholdt, Z. A.; Noda, T.; Abelson, D. M.; Halfmann, P.; Wood, M. R.; Kawaoka, Y.; Saphire, E. O. Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle. *Cell* **2013**, *154*, 763–774.
- (14) Shepherd, N. E.; Hoang, H. N.; Abbenante, G.; Fairlie, D. P. Single Turn Peptide Alpha Helices with Exceptional Stability in Water. J. Am. Chem. Soc. 2005, 127, 2974–2983.

☐ Recommended by ACS

Extended Solution-phase Peptide Synthesis Strategy Using Isostearyl-Mixed Anhydride Coupling and a New C-Terminal Silyl Ester-Protecting Group for N-Methy...

Akihiro Nagaya, Naoki Nishizawa, et al.

AUGUST 23, 2021

ORGANIC PROCESS RESEARCH & DEVELOPMENT

READ 🗹

Bringing Macrolactamization Full Circle: Self-Cleaving Head-to-Tail Macrocyclization of Unprotected Peptides via Mild N-Acyl Urea Activation

Christine A. Arbour, Jennifer L. Stockdill, et al.

DECEMBER 19, 2018

THE JOURNAL OF ORGANIC CHEMISTRY

READ 🗹

Conversion of "Customizable Units" into N-Alkyl Amino Acids and Generation of N-Alkyl Peptides

Carlos J. Saavedra, Alicia Boto, et al.

MAY 23, 2019

THE JOURNAL OF ORGANIC CHEMISTRY

READ **C**

On-Resin Macrocyclization of Peptides Using Vinyl Sulfonamides as a Thiol-Michael "Click" Acceptor

Bryan P. Sutherland, Christopher J. Kloxin, et al.

NOVEMBER 19, 2018

BIOCONJUGATE CHEMISTRY

READ 🗹

Get More Suggestions >