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Abstract
Premise: Angiosperm leaves present a classic identification problem due to their
morphological complexity. Computer‐vision algorithms can identify diagnostic
regions in images, and heat map outputs illustrate those regions for identification,
providing novel insights through visual feedback. We investigate the potential of
analyzing leaf heat maps to reveal novel, human‐friendly botanical information with
applications for extant‐ and fossil‐leaf identification.
Methods: We developed a manual scoring system for hotspot locations on published
computer‐vision heat maps of cleared leaves that showed diagnostic regions for family
identification. Heat maps of 3114 cleared leaves of 930 genera in 14 angiosperm
families were analyzed. The top‐5 and top‐1 hotspot regions of highest diagnostic
value were scored for 21 leaf locations. The resulting data were viewed using box plots
and analyzed using cluster and principal component analyses. We manually identified
similar features in fossil leaves to informally demonstrate potential fossil applications.
Results: The method successfully mapped machine strategy using standard botanical
language, and distinctive patterns emerged for each family. Hotspots were
concentrated on secondary veins (Salicaceae, Myrtaceae, Anacardiaceae), tooth apices
(Betulaceae, Rosaceae), and on the little‐studied margins of untoothed leaves
(Rubiaceae, Annonaceae, Ericaceae). Similar features drove the results from
multivariate analyses. The results echo many traditional observations, while also
showing that most diagnostic leaf features remain undescribed.
Conclusions: Machine‐derived heat maps that initially appear to be dominated by
noise can be translated into human‐interpretable knowledge, highlighting paths
forward for botanists and paleobotanists to discover new diagnostic botanical
characters.
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Computer vision algorithms categorize complex patterns,
often with a capacity far beyond humans (Gouveia et al.,
1997; Linsley et al., 2021), and heat maps can be generated
from experimental output to visualize diagnostic regions
that were not previously noticed (Lapuschkin et al., 2019;
Miao et al., 2019; McGrath et al., 2021 [Preprint]). These
visualizations are important for interpreting machine‐
learning results and guiding human users to discover novel
information. Leaves contain immense morphological dis-
parity and are widely acknowledged to store unharnessed
phylogenetic information (Doyle, 2007; Little et al., 2010;
Feild et al., 2011; Seeland et al., 2019); they are the most

abundant macroscopic plant organ, both today and in the
fossil record (Wilf, 2008). Hickey and Wolfe (1975)
surveyed angiosperm leaf architecture variation, but their
study preceded the reorganization of the angiosperm
phylogeny due to molecular data (Angiosperm Phylogeny
Group, 1998, 2016; Doyle, 2007; Leebens‐Mack et al., 2019).
Despite the significant work that has been done on many
groups, most of the more than 400 angiosperm families lack
informative leaf architecture characters that could be used
for fossil or field identification (Wilf, 2008). Abundant
evolutionary dark data is stored in the millions of fossil
leaves already in the world's museums that have dubious or
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unassigned taxonomy (Dilcher, 1974; Crane et al., 2004;
Marshall et al., 2018).

Computer vision has been used extensively for plant
identification, although most efforts have focused on the
species level; more work on higher taxa would benefit
evolutionary interpretations and paleobotanical applications
because nearly all fossil species are extinct. Artificial
intelligence (AI) can successfully identify species from
images of live plants (Kumar et al., 2012; Joly et al., 2016;
Tcheng et al., 2016; Rzanny et al., 2019; Champ et al., 2020;
Minowa and Nagasaki, 2020; Unger et al., 2020) and
herbarium sheets (Belhumeur et al., 2008; Unger et al., 2016;
Carranza‐Rojas et al., 2017; Little et al., 2020; Romero et al.,
2020). Machine learning identification of extant and fossil
pollen at the species level has advanced significantly
(Punyasena et al., 2012; Tcheng et al., 2016; Romero et al.,
2020; White, 2020). Automated species identification of leaf
images, in particular, is a well‐studied problem in computer
vision (Im et al., 1998; Wu et al., 2007; Nam et al., 2008;
Park et al., 2008; Caballero and Aranda, 2010; Bama et al.,
2011; Hu et al., 2012; Laga et al., 2012; Larese et al., 2012;
Mouine et al., 2012; Priya et al., 2012; Charters et al., 2014;
Larese et al., 2014a, b; Jamil et al., 2015; Mata‐Montero and
Carranza‐Rojas, 2015, 2016; Zhao et al., 2015; Grinblat et al.,
2016; Larese and Granitto, 2016; Carranza‐Rojas, Mata‐
Montero et al., 2018; Wäldchen and Mäder, 2018; Wäldchen
et al., 2018; Almeida et al., 2020; Banerjee and Pamula, 2020;
Bryson et al., 2020; Pryer et al., 2020; Soltis et al., 2020;
Mukherjee et al., 2021; Zhou et al., 2021). However, there
have been few efforts to unpack the diagnostic features
revealed from AI for the benefit of botanists. Most
computer‐vision studies on leaves produce black‐box
results, that is, without visualizations or interpretations of
diagnostic regions. Visualizations such as heat maps
(Figure 1; Lu et al., 2012; Lee et al., 2015, 2017; Wilf
et al., 2016; Champ et al., 2020; Vizcarra et al., 2021) provide
botanists with the potential to understand which leaf
features are driving identification. Heat maps allow bota-
nists to learn from artificial intelligence, and they provide a
novel, but so far apparently unused, pathway to generate
potential new taxonomic characters and visual guidance for
the identification of extant and fossil leaves.

Field guides and botany courses often emphasize family‐
level identification as a traditional starting point, and they
incorporate leaf‐architecture characters to a variable extent.
A few guides and systematic works are well known for their
use of fine foliar features to recognize plant families
(Gentry, 1993; Soepadmo et al., 2000; Keller, 2004; Simpson,
2010; Kubitzki and Bayer, 2013). Flowers and other
reproductive organs—the regions that contain the most
well‐defined taxonomic features (Cronquist, 1981; Rzanny
et al., 2019; Seeland et al., 2019)—are ephemeral and often
physically inaccessible, which is why vegetative characters
are often needed to identify plants out of season (Gentry,
1993). A small but growing number of computer‐vision
studies have successfully identified extant foliage and other
organs at the family level (Wilf et al., 2016; Schuettpelz

et al., 2017; Carranza‐Rojas, Joly et al., 2018; Seeland et al.,
2019). Paleobotany also requires a family‐level approach
because most fossil angiosperm leaves belong to extinct
species and genera from extant families (Wilf, 2008; Wilf
et al., 2016).

Wilf et al. (2016) used a machine‐learning approach
known as sparse coding and trained a support vector
machine (SVM) to identify cleared leaves at the family level
with 72% overall accuracy (vs. chance accuracy of 5.6%,
from 19 families studied using 7597 cleared leaves). The
algorithm learned diagnostic features to identify families
that have virtually no known leaf‐architecture characters
with very high accuracy, for example, 90% of Rubiaceae.
The algorithm learned entirely from local, small‐scale
(16 × 16 pixels, from images rescaled to 1024 pixels in
longest dimension) sample crops of the leaf images,
providing a wealth of new information about fine leaf
features; thus, the method cannot evaluate many of the
larger‐scale holistic patterns that botanists traditionally use.
A heat‐mapping algorithm coded the diagnostic significance
(classifier weight) for correct computer‐vision identification
to family of each small image crop directly on the cleared‐
leaf images. Briefly, the locations and intensities that
corresponded to the maximum classifier weights associated
with individual features are shown using red saturation
(Figure 1). In other words, the redder the heat‐map square,
the more important the corresponding leaf region was for
placing the individual cleared leaf in its correct plant family.
Most locations have zero value because only the most
representative crops are used by the classifier. The initial
study (Wilf et al., 2016) also provided a brief qualitative
analysis of the leaf architectural features highlighted in the
heat maps.

Here, we present a quantitative analysis of the
locations of diagnostic regions for family‐level identifi-
cation, as shown in the heat maps from Wilf et al.
(2016). We attempt to decode the machine‐learning
algorithm's family‐level identification of cleared leaves
through location‐mapping the hottest hotspots. This is,
to our knowledge, the first attempt to back‐translate and
interpret computer‐vision heat maps into botanical
language. We developed a manual scoring system for
the most‐diagnostic regions—the most‐saturated red
hotspot squares (Figure 1)—in the families with large
numbers of published heat maps and scored the squares
for a set of leaf architectural features (Table 1; following
Ellis et al., 2009). This novel method can be used to
interpret computer‐vision heat maps using ordinary
botanical descriptors and to begin the process of
converting some computer‐vision signals into human‐
friendly characters. Although the majority of the
patterns identified by the machine‐learning algorithm
probably cannot be extracted and translated into
botanical characters, even a handful of new characters
obtained from the analysis of heat‐map locations could
unlock significant new botanical information from
angiosperm leaf architecture.
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MATERIALS AND METHODS

We analyzed the previously published heat maps from the
computer‐vision experiments of Wilf et al. (2016)
(Figure 1). We scored all families with over 50 heat maps
available each, totaling 3114 leaves from 14 families and
ca. 930 genera. For simplicity, we use “leaves” to refer to
both leaves and leaflets. In each heat map, the red
intensities of each square represent the diagnostic value
of the respective small region of the leaf for correct family
placement (Figure 1). All published heat maps used here,

placed by Wilf et al. (2016) on Figshare (https://doi.org/
10.6084/m9.figshare.1521157.v1), were generated from
prepared images of the Jack A. Wolfe contribution to
the National Cleared Leaf Collection (NCLC‐W), as
described by Wilf et al. (2016); NCLC‐W is housed in
the Division of Paleobotany, Smithsonian National
Museum of Natural History, Washington, D.C. Images
and voucher data from the collection can be viewed
online at the Cleared Leaf Image Database website (www.
clearedleavesdb.org; Das et al., 2014; higher‐resolution
images are available via Wilf et al., 2021).

F IGURE 1 Representative heat maps (Wilf et al., 2016) with top‐5 squares marked, showing variation in leaf architecture and hotspot locations. Yellow
circles, top‐1 squares; blue circles, the other four. Top row, left to right: Fitzalania heteropetala (NCLC‐W catalog no. 14543), Meiogyne maclurei (3997),
Betula utilis (8529), Alnus trabeculosa (6718), Comarostaphylis discolor (3775), Psammisia hookeriana (13044). Middle row, left to right: Fagus longipetiolata
(1412), Quercus mohriana (10721), Apeiba tibourbou (1388), Tilia perneckensis (16082), Callistemon citrinus (12413), Myrtus lutescens (10109). Bottom row,
left to right: Crataegus mexicana (11979), Sorbaria stellipila (8806), Chomelia protracta (5586), Faramea anisocalyx (7375), Acer sieboldianum (1220),
Dipteronia sinensis (1134). For example, using Table 1, the top‐1 square in the top‐left heat map would receive a score (of 1) both for margin of the basal
25% of the blade and for tertiary veins, with all other features scoring as zero.
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Using Adobe Acrobat Pro DC (continuous release
versions; Adobe Inc., San Jose, CA, USA), we manually
selected the top‐1 and top‐5 squares with the highest red
intensities for each heat map. We found selection by eye to
be more accurate in practice than digital tools such as the
Adobe Photoshop eyedropper tool. Although an automated
machine ranking and markup could have been generated
here from the primary data, we are convinced that our
manual markup and the repeated observations involved
allowed us to develop a more useful scoring system. The
data were scored in two versions: the top‐5 squares,
manually marked in blue circles, and, of those five, the
top‐1 square, manually marked in yellow circles (Figure 1).

The 14 families—Anacardiaceae, Annonaceae, Apocyna-
ceae, Betulaceae, Celastraceae, Ericaceae, Fabaceae, Fagaceae,
Malvaceae, Myrtaceae, Rosaceae, Rubiaceae, Salicaceae, and
Sapindaceae—in nature include ca. 71,000 extant species, or ca.
20% of all angiosperm species, following The Plant List (http://

www.theplantlist.org). Wilf et al. (2016) placed the cleared leaf
images into their respective, updated families and genera
following APG III (Angiosperm Phylogeny Group, 2009) and
other standard sources, and a handful of corrections were
applied here, namely, the removal of four Nothofagus leaves
from Fagaceae that had been overlooked. No changes in family
placement were warranted here due to subsequent updates to
the angiosperm phylogeny (APG IV; Angiosperm Phylogeny
Group, 2016). Some of these families have well‐studied leaf‐
fossil records, including Anacardiaceae (e.g., Ramírez et al.,
2000; Ramírez and Cevallos‐Ferriz, 2002; Sawangchote et al.,
2009, 2010), Fagaceae (e.g., Manchester and Crane, 1983; Crepet
and Nixon, 1989; Wu et al., 2014; Wilf et al., 2019), Betulaceae
(e.g., Crane, 1981; Sun and Stockey, 1992; Pigg et al., 2003;
Correa‐Narvaez and Manchester, 2021), Malvaceae (e.g.,
Carvalho et al., 2011; Lebreton Anberrée et al., 2015), Myrtaceae
(e.g., MacGinitie, 1969; Manchester et al., 1998; Gandolfo et al.,
2011; Tarran et al., 2018), Sapindaceae (e.g., Manchester, 2001;

TABLE 1 Scoring definitions for hotspot squares.a

Feature Definition

In basal 25% In the first quartile of blade length

Margin of basal 25% Intersecting basal margin

In midsection 50% In the second or third quartiles of blade length

Margin of midsection 50% Intersecting margin of blade midsection

In apical 25% In the fourth quartile of blade length

Margin of apical 25% Intersecting blade apex

Margin of lobe Intersecting margin of leaf lobe

In lobe In leaf lobe

Primary vein Intersecting a primary vein; can include tertiaries but not
secondaries

Primary–secondary Intersecting either a primary and a secondary or a primary and an
intersecondary vein; veins can be intersecting or separate

Secondary vein Intersecting any type of secondary vein, including major, minor,
intramarginal, and interior secondaries, but not a primary vein

Intersecondary vein Intersecting an intersecondary vein but not a primary or
secondary vein

Tertiary vein Intersecting tertiary veins but not lower‐order veins

Tooth apex Intersecting the tooth apex

Tooth sinus Intersecting the tooth sinus

Tooth proximal flank Intersecting the tooth proximal flank but not the apex

Tooth distal flank Intersecting the tooth distal flank but not the apex

Mucro Intersecting a mucronate apex

Petiole insertion On the petiole insertion point

Damaged area On a damaged (ripped, torn, folded, contains holes) section of the
blade

Off leaf Not located on the blade

aSee Materials and Methods section for more details of scoring.
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McClain and Manchester, 2001), Salicaceae (e.g., Manchester
et al., 1986, 2006; Boucher et al., 2003), Fabaceae (e.g., Owens
et al., 1998; Herendeen and Herrera, 2019), and Rosaceae (e.g.,
DeVore et al., 2004; DeVore and Pigg, 2007; Kellner et al.,
2012). Other families in this study have depauperate leaf‐fossil
records and, often, poorly understood leaf architecture,
including Ericaceae (e.g., Jordan et al., 2010), Apocynaceae
(e.g., Del Rio et al., 2020), Annonaceae (e.g., Pirie and Doyle,
2012), Celastraceae (e.g., Bacon et al., 2016), and Rubiaceae
(e.g., Roth and Dilcher, 1979; Dilcher and Lott, 2005; Graham,
2009). Many families with poor leaf‐fossil records are repre-
sented by other organ remains not discussed here (e.g., Friis
et al., 2011; Xing et al., 2016).

For each leaf, the top‐5 and top‐1 square locations were
scored using a system we developed (Table 1) based on the
definitions of the Manual of Leaf Architecture (Ellis et al.,
2009). Criteria for the scoring definitions (defined in
Table 1) included leaf locations that are unambiguous,
likely to be preserved in the fossil record, and rapidly
scorable to handle thousands of heat maps in a reasonable
amount of time. The 21 scoring definitions, defined in
Table 1 and scored as presence–absence, are divided into
location categories for the base, apex, or midsection (rest)
of the blade; venation features; tooth and other margin
features; and noise. The three noise scores report whether
the hotspot square is at the petiole insertion, off the leaf, or
on a damaged section of the leaf. Due to irregular
preservation of petioles in the cleared‐leaf collection used,
the petioles were previously removed digitally from the
cleared leaf images (Wilf et al., 2016), and thus, any signal
at the petiole insertion is probably artifactual. Leaf damage
includes both natural (insect and fungal damage obliterat-
ing parts of leaves) and human (mounting issues,
crystallization, and bubbles in mounting medium, breaks)
causes. These features do not directly represent leaf
architecture and thus were not used in quantitative
analyses. We aimed to reduce overlaps in the scores and
related ambiguities by increasing the restriction criteria
where needed (Table 1). For example, almost any area of
most leaves has tertiary veins, sometimes joining lower‐
order primary or secondary veins within a small selected
area and in other cases not. Therefore, we only scored
tertiary veins if the hotspot did not also include a primary,
secondary, or intersecondary vein. Hotspots with both
primary and secondary veins (or primary and interse-
condary) were scored as primary–secondary, and hotspots
with both secondary and intersecondary veins were scored
only as secondary veins. Similarly, hotspots intersecting
both a tooth apex and flank were scored for the tooth apex.

For consistency, if a hotspot square was in any way
touching the margin of the leaf, its location was scored as on
the margin, no matter the percentage of square touching the
margin. Lobes and teeth were demarcated with straight lines
from sinus to sinus, following the methods of Huff et al.
(2003). Basal lobes were demarcated by a perpendicular line
across the lobe's primary vein from the lobe's apical sinus,
and the lobes of bilobed leaves were demarcated with a line

perpendicular to the midvein terminus. The annotated heat
maps show marked lobes, when present, and horizontal
lines indicate the basal and apical quarters of the leaf. Basal
extensions, like those in leaves of many Bauhinia spp.
(Fabaceae), are not traditionally considered lobes (Ellis
et al., 2009) and were not scored as such. We also recorded
additional general information, including the percentages of
toothed leaves, lobed leaves, and leaves with mucros for
each family (Table 2). We note that the red intensity of the
hottest heat‐map squares varies by family, with some (such
as Salicaceae or Betulaceae) having more saturated top‐5
squares compared with other families (such as Sapindaceae,
Rubiaceae, or Apocynaceae; see Figure 1). However, this
pattern seems only to indicate the evenness of the
distribution and does not seem to be related to machine‐
learning accuracy.

The procedure resulted in two presence–absence matrices of
scores (i.e., using the terms in Table 1) by specimen for each
family, one matrix each for top‐1 and top‐5 squares, totaling 28
submatrices. We also tabulated the total number of top‐5
hotspot squares on teeth, the mean scores for hotspots on
toothed vs. untoothed leaves, and the means for lobed vs.
unlobed leaves for each family. These matrices and the
annotated heat maps can be accessed on Figshare (see Data
Availability) at https://10.6084/m9.figshare.17010020. The
presence–absence data were analyzed through family‐level basic
statistics (mean, median) for the top‐5 and top‐1 matrices (see
Data Availability), visualized using box plots, and analyzed
using multivariate ordinations and cluster analyses. BoxPlotR
software was used to construct the boxplots (http://shiny.
chemgrid.org/boxplotr; Spitzer et al., 2014).

For multivariate analyses, principal component (PC),
principal coordinate (PCo), and nonmetric multidimensional
scaling (NMDS) plots and unweighted pair group method with
arithmetic averages (UPGMA) cluster analyses were generated
from the median scores for the top‐5 matrix and the mean
scores for the top‐1 matrix for each family (using Euclidean
distance measures; other distance measures and linkage
strategies gave very similar results). The median values for the
top‐5 matrix were used to reduce left skewing due to zero values
for most scores. To gauge how ordination space varies within
families, a separate PCA was conducted for the mean top‐5
scores of genera with five or more scored heat maps each. The
five heat‐map cutoff eliminated many outlier scores of under-
sampled genera. Statistical analyses were conducted using
Paleontological Statistics Software (PAST; Hammer et al.,
2001; available at https://www.nhm.uio.no/english/research/
infrastructure/past). Minimal differences were usually observed
between PCA, PCoA, and NMDS plots. We present PCA plots
here, primarily because the method provides vector biplots
through PAST that are easily interpreted. To minimize clutter,
we removed generic and leaf‐architecture vectors that plotted
near the origin from the PCA plots.

For informal demonstrative purposes, we searched
manually for possible analogs of the most significant
hotspot features in a few fossil leaves of the respective
families. No published computer‐vision algorithms can
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F IGURE 2 Box plots of top‐5 scores by family for each of 21 leaf locations (Table 1). Thick bars, medians; box limits, 25th and 75th percentiles;
whiskers, 1.5 times the interquartile range; dots, outliers; crosses, means. The sample size per family is five times the number of heat maps (Table 2). Box fills
alternate white and gray for visual clarity only; no statistical differences are indicated by the fills. See Data Availability for top‐1 box plots.
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identify fossil leaves yet, and no computer‐vision algorithms
were used to find these examples. The examples were found
by visually inspecting an open‐access image database of
vetted fossil leaves identified at the family level (Wilf
et al., 2021).

RESULTS

Our analyses found distinctive location signals for leaf
hotspots in each family, summarized below by family and
illustrated in the box plots (Figure 2; see Data Availability)
and selected annotated heat maps (Figure 3; see Data
Availability). Univariate and multivariate analyses show
similar leaf architecture features as significant; the strongest

signals come from locations on apical and basal margins,
secondary veins, and tooth apices (Figures 2–5). Compara-
ble locations to those highlighted with the hotspots on the
modern leaves can be identified in some fossil representa-
tives from visual observations (Figure 6). Scores are
reported below as the within‐family means for the top‐1
(out of 1.0 possible) or top‐5 (out of 5.0 possible) matrices.
All summary statistics are archived (see Data Availability).

Anacardiaceae

The highest score for Anacardiaceae was hotspot squares on
secondary veins, as seen in both top‐5 (mean score of 2.2 out of
5.0; Figures 2 and 3; see Data Availability) and top‐1 (mean

F IGURE 3 (See caption on next page)
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score of 0.6 out of 1.0; see Data Availability) squares and
exemplified in Anacardium and Buchanania (see Data
Availability). In this family, scores are also high on the blade
midsection (i.e., the remaining 50% of the lamina after
excluding the basal and apical 25%, see Table 1; top‐5 and
top‐1 squares) and basal 25% margin (top‐5 of 1.2).
Anacardiaceae are known to have unusual tertiary veins (Wolfe
and Wehr, 1987; Martínez‐Millán and Cevallos‐Ferriz, 2005;
Andrés‐Hernández and Terrazas, 2009; Mitchell and Daly,
2015); however, the tertiary vein score for Anacardiaceae (top‐5
and top‐1) is average among the families sampled (see Data
Availability). Some tertiary‐vein signal is probably present in the
hotspot squares that contain both secondary (or primary) and
tertiary veins, which in our system are scored for the secondary
(primary) vein (Table 1; see Materials and Methods). Only
16.8% of the Anacardiaceae leaves analyzed were toothed
(Table 2). All tooth‐location scores were low, even when
analyzing only toothed leaves (see Data Availability). Across all
14 families, Anacardiaceae has the third‐highest scores for both
the hotspot squares in the midsection (top‐5) and those on the
secondary veins (top‐5 and top‐1), similar to Celastraceae and
Myrtaceae for those locations.

Annonaceae

As a completely untoothed and unlobed family, Annonaceae
scores are restricted to location and venation (Table 2). All
Annonaceae leaves scored seem to have brochidodromous
secondary veins. The highest scores within Annonaceae are for

the basal margin (top‐5 of 2.3; for example, Cyathostemma),
midsection margin (top‐1 of 0.4), and tertiary veins (top‐5 of
1.2; top‐1 of 0.4; Figure 3). Although below‐average in
frequency, hotspots on secondary veins are always on
secondaries that end in brochidodromous loops or on the
loops themselves. Compared with other families, Annonaceae
has the third‐highest primary vein scores (top‐1 of 0.2) and
highest tertiary‐vein score (top‐1 of 0.4).

Apocynaceae

Apocynaceae, another completely untoothed and unlobed
family, has its highest scores on the basal margin, secondary
veins, and intersecondary veins (Figure 3). The Apocynaceae
location scores are for the basal 25% margin (top‐5 of 1.1; top‐1
of 0.7; see Baissea), the midsection margin (top‐5 of 1.3), and
within the midsection (top‐5 of 1.3). The highest score for
Apocynaceae venation is for secondary veins (top‐5 of 1.3).
Compared with other families, Apocynaceae has the third‐
highest score for primary–secondary intersections (top‐5 of 0.3;
see Chilocarpus) and second‐highest score for intersecondary
veins (top‐5 of 0.3; see Epigynum; highest is Myrtaceae;
Figures 2 and 3).

Betulaceae

Betulaceae is the only family with 100% toothed and
unlobed leaves in the data set; the highest scores for the

F IGURE 3 Selected examples of high‐scoring features. Anacardiaceae. Secondary veins and secondary–tertiary junctions. Top, left to right:
Anacardium humile (NCLC‐W no. 12854), Buchanania arborescens (1758), Cotinus coggygria (4306). Bottom, left to right: Mauria heterophylla (4219),
Metopium brownei (4221), Rhus diversiloba (12870). Annonaceae. Midsection margin, basal margin, brochidodromous secondary loops, tertiary loops:
Malmea depressa (2885), Miliusa campanulata (2453), Miliusa indica (7854), Cyathostemma argenteum (15483), Monanthotaxis cauliflora (5443), Guatteria
ovalifolia (9517), Desmopsis microcarpa (3849), Monanthotaxis trichocarpa (5450). Apocynaceae. Basal margin, primary–secondary intersection,
primary–intersecondary intersection, secondary veins, intersecondary veins: Heterostemma cuspidatum (7433), Baissea axillaris (5108), Chilocarpus decipiens
(2034), Melodinus gracilis (4824), Mascarenhasia lisianthiflora (5118), Melodinus vitiensis (6243), Tabernaemontana hirtula (10131), Epigynum miangayi
(8495). Betulaceae. Tooth apices, secondary veins: Alnus oregana (6710), Alnus trabeculosa (6718), Betula mandshurica (8521), Carpinus pubescens (8497),
Carpinus carpinoides (8492), Betula lutea (11919). Celastraceae. Primary vein, primary–secondary intersection, primary–intersecondary intersection,
secondary veins: Celastrus articulatus (25), Celastrus articulatus (13531), Maytenus tikalensis (5941), Pterocelastrus rostratus (4962), Cheiloclinium
gleasonianum (8252), Hippocratea andina (13608), Salacia laevigata (5960), Schaefferia argentinensis (6141). Ericaceae. Basal margin, teeth, tertiary veins:
Arctostaphylos andersonii (1454), Elliottia bracteata (6888), Gaultheria miqueliana (545), Lyonia lucida (13034), Leucothoe axilllaris (13025), Vaccinium
ciliatum (13112). Fabaceae. Apical margin, mucronate apex, secondary veins, tertiary veins: Acacia californica (10636), Bauhinia divaricata (30212), Crudia
gabonensis (13371), Kunstleria forbesii (9886), Kunstleria ridleyi (9887), Mimosa glaucescens (6377). Fagaceae. Primary veins, tertiary veins, midsection
margin, proximal tooth flanks: Castanea dentata (7101), Castanopsis cuspidata (190), Fagus lucida (8538), Quercus crassipes (14728), Quercus gambelii
(7743), Quercus hui (10785), Quercus libani (10717), Quercus donarium (8549). Malvaceae. Secondary veins, minor secondary veins, intercoastal tertiary
veins, exterior tertiary veins, tooth apices, tooth proximal flanks: Corchorus aestuans (1398), Pterocymbium tinctorium (8051), Microcos paniculata (11502),
Luehea seemannii (3609), Commersonia fraseri (3662), Corchorus orinocensis (3598), Tilia mongolica (391), Tilia noziricola (8636). Myrtaceae.
Primary–secondary intersections, primary–intersecondary intersections, secondary veins, intramarginal secondary veins, and tertiary veins: Eucalyptus
sclerophylla (12430), Marlierea montana (3527), Myrcia affinis (3521), Callistemon lanceolatus (1717), Calycorectes sellowianus (3509), Metrosideros excelsa
(3531), Myrtus seriocalyx (3555), Calyptranthes eugenioides (3511). Rosaceae. Secondary veins, minor secondary veins, tooth apices: Amelanchier candensis
(1098), Exochorda racemosa (1408), Oemleria cerasiformis (1008), Rhodotypos scandens (12645), Sorbus japonica (8671), Crataegus pubescens (11981), Rosa
blanda (12002). Rubiaceae. Apical margin and secondary veins in the midsection: Alibertia nitidula (10178), Neobertiera gracilis (9382), Tricalysia
acocantheroides (5314), Chomelia filipes (5655), Faramea parvibractea (13882), Psychotria longipies (14056). Salicaceae. Secondary vein and midsection:
Abatia stellata (1702), Azara dentata (7953), Salix acutifolia (18102), Salix paradoxa (18143), Salix pseudolapponum (10316), Samyda yucatanensis (7030).
Sapindaceae. Lobes and lobe margin, primary veins, secondary veins, tertiary veins, tooth apex, tooth proximal flank: Acer aff. (8604), Acer caesium (8580),
Acer barbatum (480), Pancovia harmsiana (4897), Acer argutum (8578), Acer sieboldianum (1220), Diploglottis cunninghamii (7084). Noise examples.
Petiole insertion, squares off leaf, damaged regions: Malus toringo (Rosaceae, 8655), Prunus americana (Rosaceae, 7726), Populus brandegeei (Salicaceae,
656), Samyda mexicana (Salicaceae, 2814), Albizia saponaria (Fabaceae, 6366), Glyphaea grewiodies (Malvaceae, 4596).
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family are for leaf margin, secondary veins, and tooth apices
(Figure 3). Almost all the hotspot squares are on the leaf
margins; the highest location scores for the family are on the
apical 25% margin (top‐5 of 2.0; top‐1 of 0.5), followed by
the midsection margin (top‐5 of 2.0; top‐1 of 0.3). The
highest venation scores for Betulaceae are for secondary
veins (top‐5 of 2.8; top‐1 of 0.7; see Betula and Figure 3),
corresponding to hotspots on both major and minor
secondary veins. Betulaceae has very high scores for tooth
apices (top‐5 of 2.7; top‐1 of 0.6; Figures 2 and 3; e.g.,
Alnus), almost always on teeth whose principal veins are
secondary or minor secondary veins, rather than tertiary
veins (Figure 3). Paleobotanists have used Betulaceae teeth
as a distinctive feature when identifying fossil leaves (Hickey
and Wolfe, 1975; Wolfe and Wehr, 1987). Betulaceae also
has the highest score for all families in the midsection
margin (top‐5), apical margin 25% (top‐5 and top‐1), and
secondary veins (top‐1).

Celastraceae

Celastraceae has the highest scores in the midsection,
primary–secondary junctions, and secondary veins but has
low tooth scores (Figure 3; see Data Availability). The
highest location scores within Celastraceae were on the
midsection (top‐5 of 2.4; top‐1 of 0.6) and the basal 25%
margin (top‐5 of 1.2). Secondary veins generated the highest
score for venation (top‐5 of 1.7; top‐1 of 0.4). Although the
Celastraceae image set has one of the highest percentages of
toothed leaves (62%; Table 2), all tooth scores are very low,
similar to Salicaceae (see Data Availability). Compared with
other families, Celastraceae has the highest score for hotspot
squares on primary–secondary vein junctions (top‐5 of 0.5;
top‐1 of 0.2; Figure 3). Primary–intersecondary junctions
constitute a large portion of the primary–secondary
junction score for Celastraceae. However, the intersecond-
ary vein score (top‐5 and top‐1), representing areas with
intersecondaries not at junctions, is low. This result suggests
that the junction characteristics (such as angle and gauge;
e.g., Hippocratea) are more important for identifying
Celastraceae compared with the intersecondary or primary
veins themselves. Compared with other families, Celastra-
ceae also has the highest hotspot score for the midsection of
the blade (top‐5 and top‐1) and the third‐highest score for
primary veins (top‐5 of 0.5; highest is for Fagaceae and
Sapindaceae).

Ericaceae

Ericaceae is a majority untoothed family (41.0% toothed)
with teeth small to barely noticeable when present (Table 2).
The highest Ericaceae scores are on the basal margin and
tooth apices, for toothed leaves (Figure 3). Most Ericaceae
hotspot squares were found on the basal 25% margin (top‐5
of 1.0; top‐1 of 0.8; see Elliottia) and apical 25% margin
(top‐5 of 1.5; Figure 3). The tertiary vein score is high (top‐5
of 1.7), along with tooth apices (top‐5 of 0.6). Hickey and
Wolfe (1975) noted reticulodromous tertiary veins as
distinctive in Ericaceae. Top‐1 scores have no significant
venation or tooth scores. Although most leaves in the family
do not have teeth, the toothed leaves contain high
frequencies of squares on tooth apices (i.e., Vaccinium).
Ericaceae has the highest score for the basal 25% margin
(top‐1) and tertiary veins (top‐5) for all families.

F IGURE 4 Principal component analyses (PCA) of top‐1 and top‐5 results, with vectors shown for influential leaf locations (Table 1) and the
percentage of variance represented shown on the respective axis. Selected image patches are included as exemplars. (A) Top‐1 analysis for families (means),
with vectors longer than 0.08 shown. Exemplars, clockwise from top center: Tricalysia acocantheroides (Rubiaceae, NCLC‐W no. 5314), Alnus sieboldiana
(Betulaceae, 980), Myrtus seriocalyx (Myrtaceae, 3555), Elliottia bracteata (Ericaceae, 6888). (B) Top‐5 analysis for families (medians), all vectors retained
(some are identical, overlapping, or very short). Exemplars, clockwise from top left: Calycorectes sellowianus (Myrtaceae, 3509), Alnus oregana (Betulaceae,
6710), Lyonia lucida (Ericaceae, 13034), Cyathostemma argenteum (Annonaceae, 15483). (C) Top‐5 analysis of genera with at least five heat maps each
(means), genera less than 0.3 units from origin and vectors shorter than 0.25 units removed. Dashed lines, families with discrete spatial occupation as
labeled: Anacardiaceae, Betulaceae, Celastraceae, Ericaceae, Myrtaceae, Rosaceae. Exemplars, left to right: Maytenus tikalensis (Celastraceae, 5941), Baissea
axillaris (Apocynaceae, 5108), Rosa blanda (Rosaceae, 12002), Carpinus carpinoides (Betulaceae, 8492).

F IGURE 5 UPGMA cluster analysis of the mean top‐1 family scores
using Euclidean distances (y‐axis).
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Fabaceae

Fabaceae has high scores on the blade midsection and apical
margin along with tertiary veins (Figure 3). Fabaceae is one
of the only families with a significant percentage of
mucronate apices in the data set, 30.5% (Table 2). The
sample only includes a handful of toothed or lobed (mostly
bilobed Bauhinia spp.) leaves. Hotspot squares are often
found on the basal 25% margin (top‐5 of 1.3), within the

midsection (top‐5 of 1.3), and the apical 25% margin (top‐5
of 1.2; top‐1 of 0.3; Figures 2 and 3; see Pterocarpus). For
venation, scores for tertiary veins are high (top‐5 of 1.5; top‐
1 of 0.4; Figures 2 and 3). The mucronate apex score is low
in this family (top‐5 of 0.2) due to the high percentage of
leaves lacking mucros, but the feature is probably useful for
identifying leaves when it is present. Fabaceae has the third‐
highest score for the basal 25% margin (top‐5) and tertiary
veins (top‐5).

Fagaceae

Fagaceae has the highest scores on the midsection margin,
primary vein, and tertiary veins (Figure 3). The family has
the second‐highest percentage of lobed leaves at 10.4%,
and 55.6% of the scored cleared leaves are toothed
(Table 2). For location, the highest scores for Fagaceae
are for hotspot squares in the midsection of the leaf (top‐5
of 1.5) and midsection margin (top‐5 of 1.5; top‐1 of 0.5).
For venation, the highest scores are on primary veins (top‐
5 of 1.0; Figure 3; see Castanopsis, Fagus, and Quercus)
and tertiary veins (top‐1 of 0.4; Figure 3). All tooth scores
are low because many leaves are untoothed, but the
highest tooth score is tooth proximal flanks (top‐5 of 0.3;
top‐5 of 0.5 for only toothed leaves; see Data Availability).
Fagaceae has the highest score for the primary veins;
however, the primary–secondary junction score is low
(Figure 2).

Malvaceae

A family with well‐described leaf architecture (Hickey and
Wolfe, 1975; Hickey, 1997; Carvalho et al., 2011), approxi-
mately half the Malvaceae heat maps are of toothed leaves
(Table 2). The highest Malvaceae scores are for squares on
the midsection margin (top‐5 of 1.5), in the midsection
(top‐1 of 0.3), on secondary veins (top‐5 of 1.7; top‐1 of
0.4), on tertiary veins (top‐5 of 1.6; top‐1 of 0.3), and on
proximal tooth flanks (top‐5 of 0.5; Figures 2 and 3; e.g.,
Tilia). Hotspot squares are on both secondary and agrophic
minor secondary veins with high frequency (Figure 3).
Tertiary veins have strong signals on exterior (often tooth
principal veins) and intercostal tertiary veins (those veins
have a relatively consistent angle and gauge). Although the
highest tooth score in Malvaceae is for the tooth proximal
flanks (Figure 2), hotspot squares are also on the tooth apex,
and the overall tooth score is high in Malvaceae (mean score
of 1.0 in top‐5 squares and mean score of 1.7 for top‐5
squares only on toothed leaves; see Data Availability).
Scores are evenly distributed on teeth with secondary and
tertiary principal veins. Across families, Malvaceae has the
highest score for proximal tooth flanks (top‐5 of 0.5; top‐5
of 0.8 for only Malvaceae toothed leaves; see Data
Availability), and the second‐highest score for tertiary veins
(top‐5 of 1.6; highest is Ericaceae).F IGURE 6 (See caption on next page)
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Myrtaceae

Myrtaceae leaves are completely untoothed and unlobed
(Table 2). High scores in the family are for hotspot squares
within the midsection, primary–secondary junctions, second-
ary veins, and intersecondary veins (Figure 3). The highest
Myrtaceae location scores are in the midsection of the blade
(top‐5 of 2.3; top‐1 of 0.4). Although low compared with the
midsection scores, the second‐highest score is for the apical
25% of the leaf (top‐5 of 0.8; top‐1 of 0.2). For venation,
Myrtaceae has high scores on secondary veins (top‐5 of 2.9;
top‐1 of 0.7; Figure 3), intersecondary veins (top‐5 of 0.6; top‐1
of 0.1; see Calyptranthes and Figure 3), and
primary–secondary junctions (top‐5 of 0.4; Figure 3). Similar
to Celastraceae, many of these are primary–intersecondary
junctions (Figure 3). Hotspots are often on thin‐gauged

secondary and intersecondary veins that join a well‐defined
intramarginal vein or on the intramarginal vein itself
(intramarginal veins are scored as secondary veins; Table 1,
Figure 3). The presence of a well‐expressed intramarginal vein
in many Myrtaceae is well known and has long been used by
paleobotanists to help identify fossil myrtaceous leaves
(MacGinitie, 1969; Manchester et al., 1998; Gandolfo et al.,
2011; Tarran et al., 2018). Compared with other families
studied, Myrtaceae has the highest scores for the apical 25% of
the blade (top‐5), secondary veins (top‐5), and intersecondary
veins (top‐5 and top‐1); the second‐highest score for the blade
midsection (top‐5 and top‐1; highest is Celastraceae); and the
third‐highest for primary–secondary intersections (top‐5).

Rosaceae

Rosaceae scores are highest on secondary veins and tooth
apices (Figure 3). Rosaceae has the second‐highest percentage
(highest is Betulaceae) of toothed leaves, 88.3%, and the
samples are largely unlobed (Table 2). The hotspots are most
often on the margin of the leaf, throughout the margin of the
basal 25% (top‐5 of 1.3; top‐1 of 0.4), the margin of the
midsection (top‐5 of 1.4), and the margin of the apical 25%
(top‐5 of 1.4). It is likely that the basal margin 25% score for
Rosaceae results from the high score for petiole insertion
(top‐5 of 0.7; top‐1 of 0.2), which is a noise character (see
Methods; Table 1; Figure 3). For venation, Rosaceae has high
scores for secondary (top‐5 of 1.7; top‐1 of 0.3) and tertiary
veins (top‐5 of 1.4; Figure 3), as seen in Prunus. Similar to
Betulaceae and toothed Ericaceae, Rosaceae also has very
high scores for tooth apices (top‐5 of 1.8; top‐1 of 0.3;
Figure 3), notably so in Crataegus. However, the machine‐
learning method was able to discriminate between those
families with high accuracy (Wilf et al., 2016), suggesting as‐
yet‐undescribed differences at the family level in tooth‐apex
morphology. Paleobotanists have used the rosid tooth type as
a feature to identify fossil rosaceous leaves (Hickey and
Wolfe, 1975; Wolfe and Wehr, 1987; DeVore et al., 2004;
Kellner et al., 2012). The majority of the hotspots on tooth
apices have secondary or minor secondary principal veins,
but there are still some on teeth with tertiary principal veins.
Rosaceae scores differ from Betulaceae in the high score of
the basal margin and (artifactual) petiole insertion and a
higher frequency of hotspots within the leaf interior on
secondary and tertiary veins. Compared with other families,
Rosaceae has the second‐highest scores for the basal 25%
margin (top‐5; highest is Annonaceae) and tooth apices (top‐
5 and top‐1; highest is Betulaceae) and the third‐highest score
for the apical 25% margin (top‐5).

Rubiaceae

Rubiaceae, a completely untoothed and unlobed family, has
high scores for hotspot squares on the apical margin and
secondary veins (Figure 3). Rubiaceae species have diagnostic

F IGURE 6 Potential fossil analogs of selected heat map features.
Fossils at right were manually marked, based on visual inspection, with
unfilled squares to represent potential regions of similarity to computer‐
vision hotspot locations on cleared leaves from the same family shown at
left. All fossil images are from the open‐access image collection of Wilf
et al. (2021). Anacardiaceae. Hotspots on secondary veins and
secondary–tertiary junctions. Left to right: Astronium graveolens (NCLC‐
W no. 8535), Ozoroa obovata (10067), Anacardiaceae sp. TY203 (Laguna
del Hunco, Chubut, Argentina, Eocene, LH13‐0303b, MPEF‐Pb), Rhus
malloryi (Republic Flora, Washington State, Eocene, DMNH 25283).
Betulaceae. Tooth apices: Alnus oregana (6710), Alnus sieboldiana (980),
Betula leopoldae (Republic Flora, DMNH [Stonerose] E155), Paracarpinus
fraterna (Florissant Fossil Beds, Colorado, Eocene, UCMP 3614). Fabaceae.
Secondary veins and tertiary veins: Crudia gabonensis (13371), Kunstleria
ridleyi (9887), Fabaceae sp. (Laguna del Hunco, LH13‐1173, MPEF‐Pb),
Fabaceae sp. CJ1 (Cerrejón Coal Mine, Guajíra, Colombia, Paleocene,
SGC‐ICP‐10129). Fagaceae. Primary veins, tertiary veins, and midsection
margin: Castanea dentata (7101), Quercus donarium (8549),
Castaneophyllum patagonicum (Laguna del Hunco, MPEF‐Pb 8274),
Fagopsis longifolia (Florissant Fossil Beds, USNM 332356). Malvaceae.
Secondary veins, minor secondary veins, intercoastal tertiary veins, exterior
tertiary veins, tooth apices, and proximal tooth flanks: Microcos paniculata
(11502), Tilia mongolica (391),Malvaciphyllum macondicus (Cerrejón Coal
Mine, SGC‐ICP 1075), Tilia johnsoni (Republic, DMNH 18384).
Myrtaceae. Primary–secondary intersections, primary–intersecondary
intersections, secondary veins, intramarginal secondary veins,
intersecondary veins: Myrcia affinis (3521), Calycorectes sellowianus (3509),
Eucalyptus frenguelliana (Laguna del Hunco, MPEF‐Pb 2329), Myrtaceae
sp. TY041 (Laguna del Hunco, MPEF‐Pb 976a). Rosaceae. Tooth apices,
secondary veins, tertiary veins: Sorbus japonica (8671), Crataegus pubescens
(11981), Prunus gracilis (Florissant Fossil Beds, UCMP 3644), Crataegus sp.
(Florissant, FLFO 006827A). Salicaceae. Secondary veins and
secondary–tertiary junctions: Abatia stellata (7021), Azara dentata (7953),
Populus wilmattae (Bonanza site, Green River Formation, Utah, Eocene,
DMNH 9763), Populus crassa (Florissant Fossil Beds, FLFO 003329A).
Sapindaceae. Secondary veins, tertiary veins, teeth: Pancovia harmsiana
(4897), Acer argutum (8578), Koelreuteria allenii (Florissant Fossil Beds,
FLFO 006223B), Acer florissantii (Florissant Fossil Beds, UCMP 3831).
Repository abbreviations: DMNH, Denver Museum of Nature & Science;
FLFO, Florissant Fossil Beds National Monument, Florissant (Colorado);
MPEF‐Pb, Museo Paleontológico Egidio Feruglio, Trelew (Argentina);
SGC‐ICP, Colombian Geological Survey and Colombian Petroleum
Institute, Bogotá; UCMP, University of California Museum of
Paleontology, Berkeley; USNM, National Museum of Natural History,
Smithsonian Institution, Washington D.C.
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interpetiolar stipules that have long been used for field
identification (Croat, 1978; Gentry, 1993; Simpson, 2010).
Unfortunately, the stipules are not preserved in most fossils
(but see Roth and Dilcher, 1979), leaving Rubiaceae with a
depauperate macrofossil record. The stipules also are not
present in the cleared‐leaf images used here (or in most or all
source slides). The highest hotspot scores in the family are on
secondary veins (top‐5 of 1.6), within the midsection (top‐5 of
1.5), and apical 25% margin (top‐5 of 1.2; top‐1 of 0.7; see
Tricalysia and Figures 2 and 3). Compared with other families,
Rubiaceae has the highest score for the apical 25% margin
(top‐1).

Salicaceae

Salicaceae has unexpectedly low scores for tooth characters,
despite over 60% of the heat maps being of toothed leaves,
no preservation problems observed with the teeth in the
images, and the well‐known association of the family with
the distinctive salicoid tooth type (Figure 2, Table 2; Hickey
and Wolfe, 1975; Manchester et al., 1986, 2006; Boucher
et al., 2003). The highest location score for Salicaceae is
within the blade midsection (top‐5 of 1.4; top‐1 of 0.4),
followed by the basal margin 25% (top‐5 of 1.2) and apical
margin 25% (top‐5 of 1.2). Secondary veins have the highest
venation scores for Salicaceae (top‐5 of 1.7; top‐1 of 0.5; see
Salix and Figure 3). Frequently, the hotspot squares partially
touch the secondary veins or secondary–tertiary junctions
(scored as secondary veins; see Materials and Methods,
Table 1, Figure 3). Across all families, Salicaceae has the
second‐highest score for the blade midsection (top‐1;
highest is Celastraceae).

Sapindaceae

Acer heat maps, comprising more than a third of the
Sapindaceae sample, display a different pattern from other
Sapindaceae leaves, mostly emphasizing the much higher
proportion of lobed leaves in Acer compared with other
Sapindaceae as well as Acer tooth features (Table 3 and Data
Availability). In Acer, the highest location scores are for hotspot
squares on the lobe margin and midsection margin. For non‐
Acer Sapindaceae, the highest leaf location scores are for the
midsection, the midsection margin (like Acer), and the margin
of the apical 25%. For Acer venation, primary, secondary, and
tertiary vein scores are high, and these are often lobe‐forming
veins (Figure 3). Only the secondary vein score is high for non‐
Acer Sapindaceae venation. The Acer score for tooth proximal
flanks is high, and the overall tooth score is more than double
that of non‐Acer taxa; however, the scores are approximately
equal for Acer and non‐Acer heat maps for tooth apices. Overall,
Sapindaceae (incl. Acer) has the highest score on the lobe
margin and the second‐highest score for the primary veins
(Table 3; highest is Fagaceae).

Noise characters

The noise features (hotspots on the digitally clipped
petiole, off the leaf, or on a damaged region) did not seem
to have a significant impact on the results, attesting to low
noise in the system overall as found in the earlier
experiments (Wilf et al., 2016). Rosaceae is the only
family that has a high score for the petiole insertion (top‐
5 of 0.7; top‐1 of 0.2; Figure 3), and Salicaceae is the only
family with a high score for hotspot squares off the leaf
(top‐5 of 0.7; Figure 3). The score for hotspots on
damaged regions of the leaf was low for all families,
ranging from 0.05 (Fagaceae) to 0.9 (Rosaceae) for top‐5
squares.

Multivariate analyses

The multivariate analyses (Figures 4 and 5) show robust
signals from secondary and tertiary veins, several margin
features, and tooth apices, generally coinciding with the
univariate results just described. Although only a few
families sampled here belong in the same order, we note
that there is minimal ordinal grouping of those families in
the PCA or clusters. However, Anacardiaceae and Sapinda-
ceae (Sapindales) cluster together in the top‐1 PCA (not the
cluster analysis), most likely due to the high scores for
secondary veins in both families. Wilf et al. (2016) found
strong identification signals at the ordinal level for cleared
leaves, but that work used more families per order than we
could examine here.

Top‐1 PCA

For the top‐1 PCA (Figure 4A), families scoring high on
dimension 1 have high scores for secondary veins, as seen in
Myrtaceae and Celastraceae, and the secondary vein vector
has significant magnitude and almost parallels dimension 1.
Families scoring in the negative region of dimension 1 have
high scores for the basal margin of the leaf, seen in Ericaceae
and Apocynaceae. Families scoring high on dimension 2
have high scores for the apical margin, with positive scores
for Betulaceae, Rubiaceae, and Rosaceae. Families scoring in
the negative region of dimension 2 have high scores for the
blade midsection, as seen in Celastraceae and Myrtaceae.
Ericaceae and Apocynaceae plot closely together due to the
high frequency of hotspot squares on the basal 25% margin.
Most families plot together in the bottom right corner of
Figure 4A, that is, with high PC1 and low PC2 scores, due to
high scores for secondary veins and the blade midsections.
Annonaceae and Rosaceae plot as intermediaries, having
high scores for basal margin, midsection margin, and
secondary veins. Rubiaceae and Betulaceae are outliers due
to their high scores on the apical margin and, for Betulaceae
only, tooth apices.
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Top‐5 PCA

For the top‐5 PCA (Figure 4B), families scoring high on
dimension 1 all have high scores for tooth apices and the
midsection and apical 25% margin, such as Betulaceae,
Malvaceae, and Rosaceae. The vectors for those features indicate
that they are influential on dimension 1. Families scoring low on
dimension 1 have high scores for squares within the midsection
of the blade, including Myrtaceae and Celastraceae. Families
scoring high on dimension 2, such as Myrtaceae, Celastraceae,
and Anacardiaceae, have high scores for secondary veins and
the blade midsection. Families plotting in the negative region of
dimension 2 have high scores for the basal 25% margin and
tertiary veins, such as Ericaceae, Fabaceae, and Annonaceae.
Most families plot close to the origin, including Fagaceae,
Salicaceae, Apocynaceae, and Sapindaceae. Families with very
high scores for secondary or tertiary veins are outliers, such as
Rosaceae, Betulaceae, Myrtaceae, and Celastraceae. Although
the top‐1 PCA (Figure 4A) is driven strongly by margin and
location vectors, the top‐5 PCA (Figure 4B) is driven by margin,
tooth, and venation vectors (specifically secondary and tertiary
veins, margin, midsection, and tooth apex). In both the top‐1
and top‐5 PCA, Myrtaceae, Rosaceae, Betulaceae, Ericaceae, and
Celastraceae plot near the extremes, but Apocynaceae and
Rubiaceae are also extremes in top‐1 PCA.

Top‐5 PCA for genera

The PCA of top‐5 averages at the genus level (Figure 4C)
has a similar structure to the corresponding family‐level
PCA (Figure 4B), and the vectors conserve nearly identical
directions. The genera of six of the 14 families—
Anacardiaceae, Betulaceae, Celastraceae, Ericaceae, Myrta-
ceae, and Rosaceae—respectively plot closely together in
easily‐defined spaces (Figure 4C, dashed outlines). Fabaceae,
Annonaceae, Apocynaceae, and Rubiaceae have overlapping

and similar ordination space that cannot be easily defined.
Other families plot throughout the ordination with no clear
pattern, such as Salicaceae, Fagaceae, and Malvaceae.

Cluster analysis

The top‐1 cluster dendrogram (Figure 5) follows a similar
pattern to the top‐1 PCA (Figure 4A), in that Rubiaceae and
Betulaceae are outliers and Ericaceae, Apocynaceae, and
Rosaceae cluster together. Ericaceae, Apocynaceae, and
Rosaceae all have high scores for the basal 25% margin,
whereas Betulaceae and Rubiaceae have high apical 25%
margin scores. All other families form a pair of clusters. One
contains families with high scores for secondary veins
(Myrtaceae, Celastraceae, Anacardiaceae, Salicaceae), and
the other has high scores for tertiary veins (Fagaceae,
Annonaceae, Sapindaceae, Malvaceae).

DISCUSSION

Our results show new possibilities for quantitatively
interpreting computer vision signals into human‐friendly
botanical language by mapping, tabulating, and analyzing
the regions of the highest diagnostic value. Although we
took a manual approach to develop this pilot study, part of
the work involved can be automated, such as selecting
regions with the most saturated colors. Our results
demonstrate that computer‐vision heat maps that may, at
first, appear to be all noise in fact provide a new pathway to
uncover diagnostic features that were previously unnoticed
in the complexity of angiosperm leaf architecture. Although
we do not attempt here to define new botanical characters,
our work presents new leads for families with few to no
established leaf‐architectural features and enhances visual
learning of leaf architecture (Figure 3). The heat map
analyses highlight diagnostic information in several leaf
structures, including teeth (Rosaceae, Betulaceae, Ericaceae),
marginal features of untoothed leaves (Rubiaceae, Annona-
ceae, Apocynaceae), and secondary venation (Myrtaceae,
Anacardiaceae, Celastraceae, Salicaceae). Some of the high-
lighted regions appear to correspond to characters used by
botanists and paleobotanists or to qualitative observations
from the original publication of the heat maps (Wilf et al.,
2016). Many others appear to be new observations for the
families (such as the apical margin in Rubiaceae).
Conversely, other traditional leaf architecture characters
(such as the salicoid teeth of Salicaceae; Hickey and Wolfe,
1975) did not correspond to significant signals in our
analyses.

For families with few established leaf‐architecture
characters, such as Celastraceae (Bacon et al., 2016),
Rubiaceae (Graham, 2009), Apocynaceae (Del Rio et al.,
2020), Annonaceae (Pirie and Doyle, 2012), and Ericaceae
(Jordan et al., 2010), the highlighted features (Table 2)
provide new leads for identifying their isolated fossil‐leaf

TABLE 3 Selected top‐5 means comparisons for Acer and non‐Acer
Sapindaceae.a

Feature Acer Non‐Acer All Sapindaceae

Midsection 50% 0.7 1.2 1.0

Margin of midsection 50% 2.0 0.9 1.4

Margin of apical 50% 0.8 1.4 1.2

Margin of lobe 2.0 0.02 0.9

Primary vein 0.8 0.6 0.7

Secondary vein 1.2 1.5 1.4

Tertiary vein 1.4 1.0 1.2

Tooth apex 0.4 0.2 0.3

Tooth proximal flank 0.6 0.1 0.3

Total tooth score 1.3 0.6 0.9

aAcer N = 107, non‐Acer N = 132, all Sapindaceae N = 239.
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representatives. In Celastraceae, features of interest include
the primary–secondary and primary–intersecondary junc-
tions, including the relative gauge and angle of junctions.
Heat‐map signals in Annonaceae include the angle, gauge,
and distance from the margin of the secondary and tertiary
vein loops. We have also extracted new information from
families with well‐understood leaf architecture, such as
Malvaceae, Salicaceae, and Fagaceae. Malvaceae signals
include intercostal tertiary vein gauge and angles, agrophic
secondary vein patterns, and tooth proximal flanks. In
Salicaceae, features of interest include secondary and
tertiary vein gauge and secondary–tertiary junctions and
ramifications. There are also robust signals in the Fagaceae
primary vein, Fabaceae higher order venation, and tooth
apices in Betulaceae, Rosaceae, and Ericaceae.

Distinctive signals are present for leaf margins in most
families, in both toothed and untoothed leaves. In many
highly toothed families, tooth frequency increases toward
the apex of the blade. This observation probably explains
the higher frequency of hotspot squares on the apical
margin relative to the basal margin in Ericaceae,
Betulaceae, and Rosaceae. In Sapindaceae, and to a lesser
extent in Malvaceae, hotspots on teeth are not focused on
a specific region (such as tooth apices in Rosaceae),
producing low mean values across the various tooth
scores (Table 3; see Data Availability). The overall
combined score for hotspots on teeth, however, is not
low for Sapindaceae and Malvaceae, indicating that the
whole tooth structure is important for family‐level
identification (see Data Availability), thus resonating
with traditional analyses (e.g., Hickey and Wolfe, 1975).
For the untoothed families, we suspect that as‐yet not
understood marginal microcurvatures of untoothed
families in Rubiaceae, Apocynaceae, Ericaceae, and
Annonaceae are driving the high frequencies of hotspots
on the margins of the blade. The strong signals for leaf
margins in untoothed leaves emphasize their poorly
understood but clearly significant diagnostic value, which
has been generally overlooked compared with the better‐
understood margins of toothed leaves.

Some of the features identified in this study correspond
to qualitative observations noted in the original publication
of the heat maps (Wilf et al., 2016; Table 2). The importance
of Fagaceae primary veins, Ericaceae teeth, Rosaceae tooth
apices, Rubiaceae and Fabaceae apical margins, Annonaceae
medial margin, secondary and intersecondary veins in
Apocynaceae, and secondary veins in Betulaceae were all
noted from holistic examination in the original study (Wilf
et al., 2016), and our quantitative scoring affirms those
observations. High frequencies of hotspot squares on
Salicaceae and Fagaceae tooth flanks, intersecondary veins
in Betulaceae, and tertiary veins in Anacardiaceae were also
noted qualitatively by Wilf et al. (2016) but did not score
highly here. However, the qualitative observations by Wilf
et al. (2016) were based on visual inspection of the complete
heat maps involving hundreds of sample regions, not

through standardized scoring of the filtered hottest spots as
done here.

Some leaf‐architecture characters that have been used
by botanists to identify fossil leaves for decades seem to
be echoed in the heat maps, when those features are of
similar scale to the small sample squares. The systematic
value of tooth and tooth‐apex fine architecture is long
known (Hickey and Wolfe, 1975). Among families
studied here, Betulaceae, Rosaceae, and Malvaceae teeth
(Hickey and Wolfe, 1975; Wolfe and Wehr, 1987; DeVore
and Pigg, 2007; Carvalho et al., 2011), along with the
Myrtaceae intramarginal vein (MacGinitie, 1969;
Gandolfo et al., 2011), all have well‐known characters.
For example, Carvalho et al. (2011) discussed the malvoid
tooth type (Hickey and Wolfe, 1975), secondary and
tertiary principal veins, and agrophic‐vein branching
patterns that are diagnostic for Malvaceae, all of which
are echoed in the heat maps. On the other hand, the heat
mapping cannot respond to some of the holistic leaf
architecture characters used to identify fossil Malvaceae
leaves, such as actinodromous primary venation (Hickey
and Wolfe, 1975; Hickey, 1997; Carvalho et al., 2011)
because those features are much larger than the sampling
points used in the computer‐vision algorithm. In
Salicaceae, our results indicate that previously unknown
features may have higher diagnostic value than the
salicoid tooth type (Hickey and Wolfe, 1975; Boucher
et al., 2003), although that tooth feature clearly remains
useful for identification. Additionally, families with well‐
defined ordination space for their genera (Figure 4C)—
such as Anacardiaceae, Betulaceae, Rosaceae, Ericaceae,
Celastraceae, and Myrtaceae—could be ripe targets for
further leaf architecture and computer vision studies.
Deep learning algorithms (LeCun et al., 2015; Yosinski
et al., 2015; Serre, 2019; Goh et al., 2021) will presumably
be responsive to diagnostic regions that are larger than
the small sample areas used here, including traditional
whole‐leaf features. Computer vision interpretability is a
new and burgeoning field (Olah et al., 2018; Lapuschkin
et al., 2019; Linsley et al., 2021; McGrath et al., 2021
[Preprint]; Voss et al., 2021) that, coupled with the mass
digitization of herbaria and fossil plant collections, seems
certain to further assist botanists and paleobotanists in
the identification of both fossil and extant leaves (Beaman
and Cellinese, 2012; Page et al., 2015; Hedrick
et al., 2020).

Many hotspot regions that had high scores in our
system are similar to those seen in fossil leaves from the
respective families, showing the potential for direct
applications to the fossil records of the respective
families. As seen in Figure 6, most of the features have
a high likelihood of preservation in the fossil record.
Taken together, our results show that coupling traditional
leaf‐architecture knowledge with artificial intelligence
will lead to improved identification and systematic
understanding of modern and fossil leaves.
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CONCLUSIONS

Computer vision provides a novel approach for improving
understanding of diagnostic features in plant morphology. Here,
we show that the interpretation and quantitative analysis of
computer‐vision heat maps can detect previously unknown leaf‐
architecture signals that could contribute to the development of
new taxonomic characters. This contribution is the first to
quantitively back‐translate heat‐map visualizations to under-
stand and uncover novel leaf architecture signals for family‐level
leaf identification and, to our knowledge, one of the first to do
so for any type of computer heat maps or similar visualizations.
Our scoring system yielded distinctive score combinations for
each family. Diagnostic regions occurred on, as examples,
secondary veins in most families; tooth apices in Rosaceae,
Ericaceae, and Betulaceae; tooth flanks and intercostal tertiary
veins in Malvaceae; primary–secondary junctions in Celastra-
ceae, Myrtaceae, and Apocynaceae; intersecondary veins in
Apocynaceae; and marginal features of untoothed leaves in
Rubiaceae, Annonaceae, Fabaceae, Apocynaceae and Ericaceae
(Table 2, Figures 2 and 3).

Some of the highlighted features are novel, whereas others,
such as the Myrtaceae intramarginal vein and Rosaceae teeth,
echo characters that have been used by botanists and
paleobotanists for decades. Many, but not all, of the findings
quantitatively confirm the initial qualitative observations in the
original publication of the heat maps (Wilf et al., 2016)
(Table 2). The robust signals from marginal microcurvature in
untoothed leaves are a new and promising discovery. Multi-
variate analyses show high family distinctiveness in diagnostic
character combinations. Computer‐vision signals from extant
leaves have the potential to assist in the identification of millions
of unidentified fossil leaves, pending the development of
dedicated fossil‐leaf applications. Machine‐learning visualiza-
tions can be combined with traditional leaf architecture to
provide the opportunity for botanists to learn from computer
vision algorithms, increasing visual integrative learning and
uncovering novel botanical characters that have been hiding in
plain sight.
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