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Abstract
Images can give us insights into the contex-
tual meanings of words, but current image-
text grounding approaches require detailed an-
notations. Such granular annotation is rare,
expensive, and unavailable in most domain-
specific contexts. In contrast, unlabeled multi-
image, multi-sentence documents are abun-
dant. Can lexical grounding be learned from
such documents, even though they have sig-
nificant lexical and visual overlap? Work-
ing with a case study dataset of real estate
listings, we demonstrate the challenge of dis-
tinguishing highly correlated grounded terms,
such as “kitchen” and “bedroom”, and intro-
duce metrics to assess this document similarity.
We present a simple unsupervised clustering-
based method that increases precision and re-
call beyond object detection and image tag-
ging baselines when evaluated on labeled sub-
sets of the dataset. The proposed method
is particularly effective for local contextual
meanings of a word, for example associat-
ing “granite” with countertops in the real es-
tate dataset and with rocky landscapes in a
Wikipedia dataset.

1 Introduction

Multimodal data consisting of text and images
is not only ubiquitous but increasingly diverse:
libraries are digitizing visual-textual collections
(British Library Labs, 2016; The Smithsonian,
2020); news organizations release over 1M images
per year to accompany news articles (The Asso-
ciated Press, 2020); and social media messages
are rarely sent without visual accompaniment. In
this work, we focus on one such specialized, multi-
modal domain: New York City real estate listings
from the website StreetEasy.

To effectively index image-text datasets for
search, retrieval, and other tasks, we need algo-
rithms that learn connections between modalities,
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Figure 1: We identify domain-specific associations
between words and images from unlabeled multi-
sentence, multi-image documents.

doing so from data that is naturally abundant. In
documents that contain multiple images and sen-
tences, there may be no explicit annotations for
image-sentence associations or bounding box-word
associations. As a result, existing image caption-
ing/tagging methods are difficult to adapt to un-
labeled multi-image, multi-sentence documents.
Indeed, most prior image captioning work has fo-
cused on rare and expensive single-image, single-
caption collections such as MSCOCO, which fo-
cuses on literal, context-free descriptions for 80 ob-
ject types (Lin et al., 2014). Similarly, off-the-shelf
object detectors may not account for contextual
factors: to an ImageNet classifier, “pool” refers
to a pool table (Russakovsky et al., 2015). In the
specialized real estate context, “pool” commonly
refers to a swimming pool.
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bananas hanging from a stall in a 
produce market

a blue umbrella and a black backpack 
on the ground

a bunch of birds that are on a big rock StreetEasy

MSCOCO

RQADIY

LonelyPlanetStory-SIS

Story-DII

The apartment features a private balcony, 
dark hardwood floors and stunning floor-to-
ceiling windows. The separate kitchen 
comes with a deluxe appliance package. 
There is also a washer.

The entire main floor is an open living area 
complete with half bath, a refined and 
stunning kitchen. Pass through the kitchen 
onto an ample patio, which overlooks the 
idyllic garden.

Large bedroom, kitchen, updated modern 
bathroom. Close to bike and subway.

StreetEasy datasetMSCOCO
More similar imagesMore distinct images
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Figure 2: Documents in the StreetEasy dataset are much more visually similar to each other than documents in
seven multimodal image-text datasets spanning storytelling, cooking, travel blogs, captioning, etc. (Lin et al., 2014;
Huang et al., 2016; Yagcioglu et al., 2018; Hessel et al., 2018, 2019; Nag Chowdhury et al., 2020). Examples from
StreetEasy show that words like “kitchen” are frequent and grounded. Black lines represent 99.99% CI.

Consider the task of lexical grounding: given
a word, which images in the corpus depict that
word? Consider the difficulty in learning a visual
grounding for “kitchen” in StreetEasy. First, docu-
ments are multi-image, multi-sentence rather than
single-image, single-sentence. Second, almost all
documents picture a kitchen, a living room, and
a dining room. Finally, “kitchen” co-occurs with
more than two-thirds of all images, the majority of
which are not kitchens. Is this task even possible?

Our first contribution is to map out a landscape
of multimodal datasets, placing our real estate case-
study in relation to existing corpora. We opera-
tionalize this notion in Figure 2 by plotting average
across-document visual+textual similarity for our
StreetEasy case study compared to several existing
multimodal corpora;1 indeed, images in StreetEasy
have very low diversity compared to other corpora.
As a result of this self-similarity, in §3, we find that
image-text grounding is difficult for off-the-shelf
image tagging methods like multinomial/softmax
regression, which leverage variation in both lexical
and visual features across documents.2

Our second contribution is a simple but per-
formant clustering algorithm for this setting,
EntSharp.3 We intend this method to learn
from 〈image,word〉 co-occurrences collected from
multi-image, multi-sentence document collections.

1We compute text similarity between documents with a
length-controlled version of word mover’s distance (WMD)
(Kusner et al., 2015) on word2vec token features. We compute
visual similarity between documents with “image mover’s”
distance, which is identical to WMD, but with a CNN feature
for each image. More details are given in Appendix A.

2Existing unsupervised approaches for this setting (Hes-
sel et al., 2019; Nag Chowdhury et al., 2020) learn within-
document matchings of whole sentences/paragraphs, we learn
cross-document matchings of word types to images.

3Code is at https://github.com/gyauney/
domain-specific-lexical-grounding.

The training process iteratively “sharpens” the esti-
mated Pr(word | image) distributions so that words
“compete” to claim responsibility for images. We
show that EntSharp outperforms both object de-
tection and image tagging baselines at retrieving
relevant images for given word types. We then qual-
itatively explore EntSharp’s predictions on both
StreetEasy and a multimodal Wikipedia dataset
(Hessel et al., 2018). The algorithm is often able
to learn corpus specific relations: as shown in Fig-
ure 1, in the context of NYC real estate, “chrysler”
refers to a prominent building and “granite” to a
kitchen surface, while in Wikipedia the same words
are grounded in cars and rocky outcroppings.

Related work. Learning image-text relation-
ships is central to many applications, including
image captioning/tagging (Kulkarni et al., 2013;
Mitchell et al., 2013; Karpathy and Fei-Fei, 2015)
and cross-modal retrieval/search (Jeon et al., 2003;
Rasiwasia et al., 2010). While most captioning
work assumes a supervised one-to-one corpus, re-
cent works consider documents containing multiple
images/sentences (Park and Kim, 2015; Shin et al.,
2016; Agrawal et al., 2016; Liu et al., 2017; Chu
and Kao, 2017; Hessel et al., 2019; Nag Chowdhury
et al., 2020). Furthermore, compared to crowd-
annotated captioning datasets, web corpora are
more challenging, as image-text relationships of-
ten transcend literal description (Marsh and White,
2003; Alikhani and Stone, 2019).

2 Task and Models

We consider a direct image-text grounding task: for
each word type, we aim to retrieve images most-
associated with that word. Models are evaluated by
their capacity to compute word-image similarities
that align with human judgment.

https://github.com/gyauney/domain-specific-lexical-grounding
https://github.com/gyauney/domain-specific-lexical-grounding


EntSharp. For each image in a document we it-
eratively infer a probability distribution over the
words present in the document. During training,
these distributions are encouraged to have low en-
tropy. The output is an embedding of each word
into image space: the model computes word-image
similarities in this joint space. This can be thought
of as a soft clustering, such that each word type is
equivalent to a cluster but only certain clusters are
available to certain images. This approach could
also be situated within the framework of multiple-
instance learning (Carbonneau et al., 2018).

Each image i starts with a fixed feature vector
~i ∈ Rd. Let I be the set of these image embeddings.
For each word w we initialize a cluster centroid
~w ∈ Rd to the average of co-occurring images’
embeddings. Let 1i,w be 1 if image i co-occurs
with word w in any document and 0 otherwise.
Each image ~i is assumed to have a membership
distribution ~pi over words, where ~pi is initially uni-
form over co-occurring words. At each iteration,
cluster centroids are updated to the weighted av-
erage of co-occurring images’ embeddings: ~w :=∑

~i∈I pi(w) ·~i followed by normalization. Each
image’s distribution over clusters is updated by tak-
ing a softmax of the cosine similarity between pairs
of image and word embeddings, first multiplying
similarities by a sharpness coefficient4 equal to
the iteration number, and finally masking for co-
occurrence: pi(w) ∝ 1i,w ·exp

(
sharpness ·(~i · ~w)

)
.

After training, we calculate the cosine similarity
between image embeddings and the learned word-
cluster embedding.

Untrained EntSharp baseline. We consider a
simple averaging baseline, corresponding to the
cluster center initializations of EntSharp: each
word embedding is set to the mean of the features
for all its co-occurring images.

Object detection baselines. We can use Ima-
geNet to identify objects, but most words in the
full vocabulary are not in the ImageNet labels.
We implement two object detection baselines that
map images to object names and then match object
names to words in documents (Hessel et al., 2019).
For each image, we first get the image’s top class
predictions from DenseNet169 (Huang et al., 2017)
pretrained on the ImageNet classification task (Rus-
sakovsky et al., 2015). These predictions are for

4Sharpness is equal to the inverse of softmax temperature;
thus EntSharp equivalently decreases softmax temperature
during training.

a whole image and are restricted to the 1000 Ima-
geNet labels. We bridge the gap between ImageNet
labels and the vocabulary by then creating an image
vector by averaging the word vectors correspond-
ing to these predictions. Finally, for each word in
the full vocabulary, we rank images by the cosine
similarity between the word’s vector and these im-
age vectors. Words are represented in one baseline
by word2vec embeddings (Mikolov et al., 2013)
and in the other by the output of RoBERTa (Liu
et al., 2019) when fed a single token as input.

Image tagging baselines. Inspired by Mahajan
et al. (2018), we implement softmax and multi-
nomial regression models. The former, softmax
regression, takes image features and predicts a dis-
tribution over the words in the vocabulary with a
softmax loss. It computes the word type indicator
vector for each document, i.e., 1 if word w was in
the document else 0, and then `1 normalizes. Multi-
nomial regression computes the word type indica-
tor vector, and—instead of normalizing—computes
the logistic sigmoid loss treating the labels as 0/1
indicators. This is equivalent to training a separate
logistic regression for each word type to predict the
presence/absence of a word type in each document,
given the image features. Both models finally use
the predicted conditional distributions to produce a
ranking of images for each word.

3 Experiments

StreetEasy dataset. The StreetEasy dataset com-
prises 29,347 real estate listings in New York City
in June 2019. Document excerpts are shown in
Figure 2: each consists of both images and English-
language sentences. Documents contain an average
of 128 word tokens and 10 images, for totals of
3,773,608 word tokens and 294,279 images. There
are no image-specific captions or labels. For our
quantitative word-image retrieval evaluations, we
augment StreetEasy with 17,658 human relevance
judgements. After initial experiments, we selected
words with a a variety of frequencies and degree
of lexical/visual overlap with ImageNet categories:
“kitchen” (co-occurs with 200k images), “bedroom”
(175k), “washer” (65k), “outdoor” (50k), “fitness”
(49k), and “pool” (29k). For each of these words of
interest, we labeled a different random 1% subset
of all images (2,943 images each): an image in a
sample was labeled true if it corresponded with any
sense of the associated word and false otherwise.
For each model, we rank images for each query



“kitchen” (18.4% labeled true)

E: 72.9 AUC

W: 52.7 AUC

R: 21.1 AUC

“outdoor” (16.9% labeled true)

E: 68.5 AUC

W: 20.0 AUC

R: 13.2 AUC

“washer” (1.6% labeled true)

E: 70.7 AUC

W: 49.3 AUC

R: 62.1 AUC

“pool” (1.3% labeled true)

E: 49.6 AUC

W: 20.1 AUC

R: 17.2ß AUC

“bedroom” (22.9% labeled true)

E: 64.3 AUC

W: 39.0 AUC

R: 34.4 AUC

“fitness” (1.8% labeled true)

E: 77.2 AUC

W: 1.5 AUC

R: 2.4 AUC

Figure 3: Top images for EntSharp and object detection baselines on the StreetEasy dataset. Images in each word’s
section come from the same evaluation set, and each row is ranked in decreasing order from left to right. For
example, the three rows in the “kitchen” section are different orderings of the same 2,943 images. Images with
dark blue borders were labeled true with respect to the word, and those with light red borders were labeled false.
E: EntSharp. W: word2vec object detection baseline. R: RoBERTa object detection baseline.

word and calculate the area under the precision-
recall curve (PR AUC: perfect performance is 100,
and random performance is the percentage of im-
ages with true labels). Each of the six evaluation
words co-occurred with only some of their sampled
images, ranging from kitchen (co-occurred with
1,997 images) to pool (310 images). We perform
evaluations on the entire samples of 2,943 images
(not just those that co-occur with each word) in
order to avoid overstating performance.

Experimental details for EntSharp. For each
image, features are extracted from the final pre-
classification layer of DenseNet169 pre-trained on
ImageNet (Russakovsky et al., 2015) and then ran-
domly projected from 1,664 dimensions to 256.5

We use a vocabulary of 7,971 words that occur at
least ten times across this corpus and Wikipedia (to
eliminate misspellings). We run EntSharp for 100
iterations.6 Setups for baselines are comparable,
and more details are available in Appendix C.

5Random projection is a time and memory optimization.
The baseline approaches have access to full feature vectors.

6The average runtime is 198 ± 3.6 minutes on an Intel
Xeon Gold 6134 (3.20GHz) CPU with 512 GB RAM.

Results. As shown in Table 1, EntSharp out-
performs all baselines on PR AUC on all six of
the evaluation words. The uniform initialization
(Untrained EntSharp) is strong for frequent words
(“kitchen”, “bedroom”) but poor otherwise. The
word2vec baseline is also superior to the RoBERTa
baseline in four of six evaluations. The baselines
do best on “kitchen”, “bedroom”, and “washer”.
Table 2 shows the ImageNet object labels associ-
ated with each word in manually selected images.
Though “kitchen” is not a category in the ImageNet
dataset, “microwave”, “refrigerator”, and “dish-
washer” are, and these words are sufficiently close
to “kitchen” to learn an association. Nevertheless,
EntSharp achieves the highest PR AUC even in the
case of “washer”, which is a category learned by
the object detection baselines. EntSharp’s perfor-
mance increase is most pronounced for the words
“outdoor”, “bedroom”, “pool”, and especially “fit-
ness”, which have dissimilar visual manifestations
in StreetEasy and ImageNet.

Qualitatively (Figure 3), we see that EntSharp as-
sociates “bedroom” with empty rooms containing a
door and a window while the word2vec baseline as-



washer kitchen outdoor fitness bedroom pool
Random 1.6 18.4 16.9 1.8 22.9 1.3
word2vec 49.3 52.7 20.0 1.5 39.0 20.1
RoBERTa 62.1 21.1 13.2 2.4 34.4 17.2
Softmax regression 2.0 19.9 21.6 3.9 23.0 13.6
Multinomial regression 1.8 17.4 23.6 8.1 22.8 19.3
Untrained EntSharp 1.0 21.6 10.1 1.4 42.7 1.2
EntSharp 70.7 72.9 68.5 77.2 64.3 49.6

Table 1: Area under the precision-recall curve (AUC)
for each grounding method on each labeled random im-
age subset. Best-in-column is bolded. Random perfor-
mance results in an AUC equal to the percentage labeled
true.

sociates the word with rooms that contain a bed or a
sofa. Similarly, “outdoor” manifests in StreetEasy
as building exteriors, but the RoBERTa baseline
returns images of bike rooms, presumably because
bicycles are usually seen outdoors. In StreetEasy
the word “pool” more frequently refers to swim-
ming pools rather than the billiards tables seen in
ImageNet. The baseline is not technically wrong
in this case (indeed, we marked pool tables as cor-
rect), but it misses the more common contextual
meaning of the word in the local collection. Finally,
none of the baselines are able to handle“fitness”.

Wikipedia experiments. We also ran EntSharp
on a multimodal Wikipedia dataset (Hessel et al.,
2018). Figure 1 shows that the algorithm often
grounds words differently in Wikipedia’s much
broader range of images than it does in the
StreetEasy dataset. Similarly, top ranked images in
Wikipedia for “fitness” included marathon runners
rather than the StreetEasy dataset’s exercise rooms.

4 Discussion

We present EntSharp, a simple clustering-based al-
gorithm for learning image groundings for words.
It is motivated by the unlabeled multimodal data
that exists in abundance rather than relying on ex-
pensive custom datasets. By encouraging words
to compete to claim responsibility for images, we
“sharpen” the resulting image/word associations.
The method is effective at finding contextual lexi-
cal groundings of words in unlabeled multi-image,
multi-sentence documents even in the presence of
high cross-document similarity.

One area for future work would be to better iden-
tify and model words that either don’t have a visual
grounding or whose identified visual grounding
doesn’t align with human expectation. For exam-
ple, the word “Gristedes” (the name of a super-

Evaluation word Image Top DenseNet169 predictions

“kitchen” ‘dishwasher’, ‘microwave’, ‘refrigerator’

“bedroom” ‘sliding door’, ‘wardrobe’, ‘window shade’

“outdoor” ‘mountain bike’, ‘bicycle-built-for-two’

“pool” ‘pool table’, ‘fountain’, ‘tub’

“washer” ‘washer’, ‘microwave’, ‘reflex camera’

“fitness” ‘shoe shop’, ‘dumbbell’, ‘barbell’

Table 2: Top DenseNet169 ImageNet class predictions
for selected example images.

market chain) appears in StreetEasy documents,
but users rarely post photographs of the supermar-
kets themselves. Conversely, the word “bright”
outside the context of StreetEasy may not be “vi-
sually concrete” (according to human judgment);
nonetheless, it frequently co-occurs with images
of sunlit hardwood floors. Given the lexical and
visual identifiability issues explored in §1, incorpo-
rating prior human concreteness judgments (e.g.,
Nelson et al. (2004)) for vocabulary items might
enable EntSharp to learn for these sorts of ambigu-
ous lexical items. However, finding an appropriate
balance of domain-specific flexibility versus align-
ment with human priors could pose a significant
challenge.
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A Document similarity metrics

We compute a length-controlled version of word
mover’s distance (Kusner et al., 2015) to measure
the textual distances between documents. This was
inspired by the simple extension to “image mover’s
distance” enabled by swapping the word2vec token
representations to CNN image representations.

After computing image/word mover’s distances,
we noticed that these metrics were slightly corre-
lated with document length; this correlation was
also noted by Kusner et al. (2015), who mention
that longer documents might be closer to others
“as longer documents may contain several similar
words.” To account for this, we implemented a ver-
sion of mover’s distances that selects a bootstrap
sample of b1=50 words and b2=10 images before
computing distances. The scatterplot we report
in Figure 2 is insensitive to reasonable choices of
these parameters, as it looks largely the same for
any 〈b1, b2〉 ∈ {10, 30, 50} × {3, 5, 10}.

To compute a corpus-level statistic, it’s compu-
tationally infeasible to compute distances between
all possible pairs; some calculations based on the
EMD library we are using shows that full computa-
tion would take at least a few months. Instead, we
randomly sample 10K pairs and report confidence
intervals for the mean in the figure.

B StreetEasy dataset preprocessing

The dataset consists of 29,347 English-language
real estate listings from the StreetEasy website
from June 2019. They contain a total of 294,279
images and 24,078,190 word tokens across 34,564
word types. We preprocess the text by removing

This Gorgeous Sun-Filled home features fully renovated kitchen with 
granite counter-tops and stainless steel appliances. Island, dishwasher and 
marble floors. exposed brick, New Gleaming wood floors. Massive Deluxe 
bedroom featuring custom french doors. Chandeliers adorn this exquisite 
property. Sun beams in with triple south, east and northern exposure. This 
the the largest 2 bed in the complex ( it was once a 3!). Make this Gem 
your own! Just one minute away from the NW train at Ditmars.

BRIGHT CLEAN SUNNY 2 BED COOP APT 5 MINUTES TO TRAIN!!! Heart 
of Astoria...2 Bed Walk up apt W Hardwood floors, Updated Kitchen w 
dishwasher, Updated Bathroom, Lots of closet space, Video intercom 
System, Inner courtyard Gardens, Laundry on Premise , NO restrictions on 
Sublet policy, All this close to Great Restaurants, Markets and shopping. 
Call Steven for an appointment!!!! CASH ONLY

Live in Luxury! Sponsor Unit! Fantastic Beautifully Gut Renovated home! 
Stunningly Designed by established Architect. This home features 
Immaculate kitchen with Washer Dryer, Caesar Stone Counter tops. Sun-
filled Living room with modern details. Gleaming Hardwood Floors. Bright & 
Sun Beams in with windows on every wall!! 

2 Blocks from the JZ and a short stroll to the M train is this gorgeous gut 
renovated unit. One flight up in a prewar corner building with large living 
room , bedroom and beautiful open kitchen. The kitchen renovation includes 
granite countertops, new appliances with the coveted in unit stackable 
washer dryer and radiant floor heating. Large renovated bath with tub. All 
electric and plumbing is new.

Magnificent semi detached dream house prime Midwood Location!!! 1st 
FLOOR: -extra large living room, -Spacious dining room, -Large Renovated 
Eat In Kitchen, -half Bathroom. 2ed FLOOR: -2 Large Bedrooms, -1 Full 
Bathroom, -Massive Master Bedroom with Full Master Bathroom. 
BASEMENT: -Full finished basement, -Two Bedrooms, -Full Bathroom.

Figure 4: Additional excerpts of documents in the
StreetEasy dataset.

numbers, punctuation, hyphens, and capitalization.
We restrict the vocabulary to word types that occur
at least ten times in StreetEasy and in the multi-
modal Wikipedia dataset. This results in 3,773,608
word tokens across 7,971 word types. Figure 2
shows a few excerpts of listings, and Figure 4
shows additional listing excerpts.

C Baselines

Object detection. An image is represented as the
mean of the word vectors of its top K class predic-
tions from DenseNet169. We report each model’s
performance with the K ∈ {1, . . . , 20} that re-
sulted in the highest average PR AUC across evala-
tion words to create the strongest baselines (K = 2
for word2vec and K = 1 for RoBERTa). For words
not in the word2vec vocabulary, we use a random
vector as the word embedding. All six evaluation
words are present in the word2vec vocabulary. Av-
erage runtimes are 80.9±1.6 seconds for word2vec
and 458.8± 1.6 seconds for RoBERTa.

Image tagging. We reserved 20% of the
StreetEasy corpus as a validation set. We don’t
hold out a test set: this tasks the algorithms only
with fitting the dataset, not generalizing beyond it.
We use the validation set for early stopping, model
selection, and hyperparameter optimization. We
optimize learning rate (in {0.001, 0.0005, 0.0007})
and number of layers (in {0, 1, 2, 3, 4, 5}). We de-
cay learning rate upon validation loss plateau. We
use the Adam optimizer (Kingma and Ba, 2015).

D EntSharp training

We run EntSharp for 100 iterations. Figure 5 shows
that PR AUC converges at different rates for the
different evaluation words.
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Figure 5: During EntSharp training, PR AUC plateaus
at a different rate for each evaluation word.


