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Abstract

Animals display characteristic behavioural patterns when performing a task, such as the spi-

raling of a soaring bird or the surge-and-cast of a male moth searching for a female. Identify-

ing such recurring sequences occurring rarely in noisy behavioural data is key to

understanding the behavioural response to a distributed stimulus in unrestrained animals.

Existing models seek to describe the dynamics of behaviour or segment individual locomo-

tor episodes rather than to identify the rare and transient sequences of locomotor episodes

that make up the behavioural response. To fill this gap, we develop a lexical, hierarchical

model of behaviour. We designed an unsupervised algorithm called “BASS” to efficiently

identify and segment recurring behavioural action sequences transiently occurring in long

behavioural recordings. When applied to navigating larval zebrafish, BASS extracts a dictio-

nary of remarkably long, non-Markovian sequences consisting of repeats and mixtures of

slow forward and turn bouts. Applied to a novel chemotaxis assay, BASS uncovers chemo-

tactic strategies deployed by zebrafish to avoid aversive cues consisting of sequences of

fast large-angle turns and burst swims. In a simulated dataset of soaring gliders climbing

thermals, BASS finds the spiraling patterns characteristic of soaring behaviour. In both

cases, BASS succeeds in identifying rare action sequences in the behaviour deployed by

freely moving animals. BASS can be easily incorporated into the pipelines of existing beha-

vioural analyses across diverse species, and even more broadly used as a generic algorithm

for pattern recognition in low-dimensional sequential data.

Author summary

Animals in the wild perform characteristic motor sequences during a task, for example,

the surge-and-cast of a male moth while it searches for a female or that of a soaring bird

spiraling up a thermal. Such sequences recur yet occur transiently and are not easily

inferred from behavioural data. How can we find recurring yet transient action sequences

from noisy behavioural data without access to stimulus information? To address this
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question, we developed an unsupervised algorithm to extract an animal’s action sequence

repertoire in a manner analogous to how young children learn language from speech.

Applying this approach on larval zebrafish, we uncovered a sequence of fast large-angle

turns and burst swims that fish use to escape from an aversive environment. On simula-

tions of a soaring bird, we recovered the characteristic spiraling patterns executed by the

bird during thermalling. The algorithm can be more generally used to find rare but stereo-

typical patterns in low-dimensional sequential data.

Introduction

Animal behaviour is extremely diverse and context-dependent. Yet, animals often exhibit cer-

tain characteristic patterns in their behaviour, particularly when executing a task or in

response to a stimulus. One increasingly common computational approach to quantitatively

describe behaviour is to leverage recent developments in the automated tracking of postural

dynamics [1–8]. These methods exploit clusters in low-dimensional embeddings of postural

dynamics to describe behaviour as a sequence of stereotyped elementary locomotor episodes

(or bouts) drawn from a probabilistic model. The resulting descriptions parallel language

models, containing information about local dynamics in the form of a probabilistic syntax

over individual locomotor episodes (the classic example being a Markov model) [9–21].

An alternate, overlapping viewpoint is to interpret individual postures as segments of lon-

ger recurring action sequences or behavioural motifs, resulting in a description of behaviour as

a sequence of ‘words’ with much less attention paid to transitions between characters. Motifs

and transitions between motifs arguably contain more meaning in the context of a behavioural

algorithm, much like in language. Indeed, in his seminal paper, Lashley [22, 23] rejects the

reflex chain theory, which posits, in current terminology, a Markov model for the dynamics of

movements in favor of a model based on noisy motifs.

While many methods exist to learn the dynamics of an animal’s behaviour or cluster indi-

vidual elementary locomotor episodes (see references above), few methods exist to efficiently

infer recurring action sequences within a generative, probabilistic modeling framework. In this

work, we aim to fill this gap and develop methods to identify recurring sequences of behaviour.

This approach is particularly well-suited for highlighting the differences in navigation across

different environments or genetic variants, which reveal how the animal reacts to an environ-

mental or genetic perturbation. Such differences are often quite subtle, making comparative

analyses difficult to implement using existing dynamical models. The key difficulty lies in that

the majority of behaviourally-relevant responses are transient and occur only a few times in

the dataset. By focusing on capturing short time-scale dynamics, dynamical models miss low-

copy-number, behaviourally-relevant patterns. Such stretches are lost in the noise and are dif-

ficult to pick out from a large dataset.

To give a simple example, consider a scenario where one is presented with a control ‘beha-

vioural’ dataset consisting of a sequence of 100,000 fair coin tosses, and a treatment dataset

which is otherwise statistically identical except for 50 sequences of 20 consecutive tails placed

at random locations within the sequence. By eye, the sequences in the treatment dataset clearly

stand out as abnormal, relevant stretches. On the other hand, a Markov model on heads and

tails, for example, when fit to the treatment data may indeed show a statistically significant

deviation in its transition matrix from the control, but does not point to the nature of the

abnormal stretches or where to find them. Similarly, during navigation in a spatially-distrib-

uted sensory landscape, robust responses to gradients of attractive or aversive chemical [24],
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updraft [25, 26] or visual [27, 28] gradients are subtle. The moment at which the animal experi-

ences and reacts to the cue will vary from one animal to the other and is difficult to infer. To

identify repetitive elements of responses, one then has to find transient behavioural patterns

that are over-represented in the environment enriched with chemical, thermal or visual gradi-

ents relative to a uniform control. To discover and construct dictionaries of recurring action

sequences, referred to as ‘motifs’ [3], we developed a lexical model of behaviour and the unsu-

pervised method BASS (Behavioural Action Sequence Segmentation). Motifs correspond to

recurring sequences of elementary locomotor episodes of arbitrary length. A well-established

motif for larval zebrafish corresponds to the sequence of locomotor episodes consisting of a J-

turn followed by pursuit and capture swims deployed for hunting prey [17, 29, 34]. BASS has

the following advantages: 1) BASS does not need to know the sensory information perceived

by the animal, 2) BASS captures extended responses that last much longer than a typical loco-

motor episode, 3) BASS identifies recurring sequences despite them rarely occurring in the

behavioural recording. Our key generative assumption is that animals navigating in a particu-

lar environment draw their behaviour sequentially from a context-dependent dictionary of

motifs. Our goal then is to develop efficient, unsupervised methods to infer this dictionary

based on noisy instantiations of the motifs observed in experiments.

If elementary locomotor episodes are represented by symbols, one straightforward approach

to motif discovery is to simply enumerate over-represented sequences of n symbols (n-grams)

[30–33]. While the simplicity of n-gram models is attractive, the memory and computation

time required increases exponentially with n and dependencies longer than n symbols are not

captured. An alternative, more efficient approach is to maintain a set of possible sequences (in

the form of a dictionary [35] or a suffix tree [36–39]) and add a new motif m1 m2 to this set by

concatenating two existing motifs m1 and m2 only if they are juxtaposed more often than

chance. While the latter class of methods have enjoyed great success in bioinformatics [35, 37]

and text processing [36, 39], the complexity of behavioural data poses an additional challenge.

Data in bioinformatics and text processing consist of a well-defined sequence of letters (AGTC

or the English alphabet respectively) with little variability in instantiations of a particular word

(words are rarely misspelled). We identify three sources of variability in behavioural data: (1)

Action pattern noise, which is the variability in instantiations of a particular motif template, (2)

Locomotor episode noise, i.e., the variations in observed output, which may lead to a movement

appearing as a similar one, and (3) Background variability due to rare and/or erratic move-

ments. To make an analogy with speech learning [40], our task is similar to learning new words

from spoken language (with no distinctive pauses separating the words) and given prior knowl-

edge of phonology. Action pattern noise, in this analogy, corresponds (not exclusively) to stut-

ters in speech, locomotor episode noise to substitutions of similar phonemes (for example, the

aspirated /ph/ and the unaspirated /p/), and background noise to the utterance of unique proper

nouns or unusual sounds. To take into account these sources of variability, we generalize a

modeling framework from bioinformatics [35] by introducing an additional two-level hierar-

chical model. The lower level maps observed behavioural data to a latent state space (similar to

going from a Markov model to a Hidden Markov model) and the second level introduces a

model for noisy instantiations of motifs (Fig 1a). Despite the model’s complexity, we show that

inference is tractable and that motifs can be efficiently extracted from datasets of sizes within

reach of current experiments. We discuss the relationship of BASS with the n-gram model and

other models in more detail in the “Relationship with other methods and extensions” section.

The larval zebrafish is an interesting vertebrate model organism to investigate the emer-

gence of behavioural action sequences and how they are used to navigate in chemical gradients.

In order to survive, five days old zebrafish larvae actively explore their environment avoiding

toxic cues and searching for food using stereotypical locomotor episodes consisting of bouts of
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activity lasting few hundreds of milliseconds separated by distinct pauses [16, 17, 29, 41]. Their

small size enables the recording of numerous larvae in parallel, leading to the collection of

thousands of swim bouts in a few minutes. Using our lexical approach, we first investigate the

behavioural action sequences, i.e., the stereotyped sequences of bout types that larval zebrafish

use to spontaneously navigate their environment. Next, we take advantage of a novel chemo-

taxis assay in which larvae navigate in arenas with gradients of noxious stimuli (acidic pH) and

effectively avoid aversive regions. The behavioural response that enables zebrafish larvae to

avoid aversive environments is unknown. Examining global kinematic parameters reveals only

minor differences, which makes identifying the chemotactic response challenging with classical

approaches and thus makes for an appropriate benchmark for our approach.

We first develop the lexical model and the motif identification algorithm, BASS. We apply

the algorithm to synthetic data and to datasets obtained from freely-exploring and chemotactic

zebrafish larvae. By comparing the dictionaries in the two environments, we identify the

sequences that larvae use to chemotax. Lastly, we apply BASS to synthetic datasets of a soaring

glider executing a thermalling strategy and show that the algorithm successfully identifies

characteristic spiralling patterns.

Model

A lexical model of animal behaviour

Much like language, we assume the behaviour of an animal in a particular environment can be

described by a sequence of motifs drawn from a dictionary D, where each motif is a string of

Fig 1. The generative model from motifs to behavioural output. (a) Motif templates are fixed sequences of

elementary locomotor episodes (labeled a, b and c in this example). The observed behavioural output is generated from

motif templates drawn sequentially from a dictionary. An instantiation of a template may “mutate” by insertions (red)

or deletions (blue), which then generates the observed output as shown in panel (b). (b) The generative process from a

motif template c1 c2. . .cl to instantiation ~c1~c2 . . . ~c~l to observed output y
1
y

2
. . . y~l . (c) The unsupervised inference

procedure (BASS) first learns a dictionary of motifs and then segments (vertical bars) the observed behavioural output

y1, y2, . . . into the most likely sequence of motifs m1, m2, . . . from the dictionary that generated it.

https://doi.org/10.1371/journal.pcbi.1009672.g001
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arbitrary length containing characters from an alphabet. Motifs are to be considered as tem-
plates for the generation of action sequences. Each of the K characters in the alphabet represent

elementary locomotor episodes and correspond to the unique label of one of the K soft

clusters that define the elementary locomotor episodes in postural space. The probability den-

sity q(y|c), in practice obtained through clustering, specifies the probability of observing y
when the animal executes the locomotor episode c. The implicit assumption here is the exis-

tence of well-defined elementary locomotor episodes, which has indeed been shown in a vari-

ety of systems including rodents, flies, worms and zebrafish larvae [11, 16, 41–43]. We may

relax this assumption and instead use clustering as a tiling of postural space, which would

manifest as additional noise and a larger alphabet.

Behaviour is generated from motif templates, which are sequentially sampled indepen-

dently and identically from a distribution {pm} over the motifs in the dictionary and individual

characters (Fig 1a). The inclusion of individual characters accounts for movements that are

not part of any motif, for instance, rare behaviours and erratic movements. These movements

constitute background noise that impair motif identification since a motif m = c1 c2. . .cl is
detectable only if its likelihood is comparable to its constituent characters, pm≳

Q
ipci . Given a

sequence of motifs, the data is generated from each template m according to the probability

density Q(.|m) defined below, which is a central element of the model.

The probability, Q(Yα|mα), of an observed output pattern Ya ¼ y
1
y

2
. . . y~l given a motif

template mα = c1 c2. . .cl (Fig 1b) defines the behavioural output generated by mα. We introduce

a model for ‘pattern noise’: intuitively, if a motif template is viewed as the averaged trajectory

of a stochastic dynamical system traversing through a state space, our model for pattern noise

corresponds to one where in a particular realization, the trajectory spends a longer or shorter

duration at certain regions of state space, but does not deviate into distant regions of state

space. In particular, in each instantiation, mα ‘mutates’ to ~m ¼ ~c1~c2 . . . ~c~l with probability

Pð ~mjmaÞ. The output yi is drawn independently for each character in the mutated sequence

from qðyij~ciÞ. To quantify pattern noise, we fix the probability of error per character that

results either in the deletion or duplication of that symbol. Note that locomotor episode noise

is implicitly incorporated via soft clustering and is determined by the discriminability of

neighboring states. We derive a recursive equation for the efficient calculation of Q(Yα|mα)

(see Materials and methods).

Performing inference on this model requires constructing the dictionary D as well as esti-

mating the motif probabilities {pm}. To build our dictionary, we use an iterative procedure

generalized from ref. [35] to our latent space model, where we start from a dictionary with

only single characters and progressively add new motifs based on how often existing motifs

occur next to each other. In particular, we cycle between: (1) estimating {pm} using

maximum likelihood estimation (MLE), (2) expanding D if certain pairs of motifs occur

next to each other more often than you would expect from {pm}, (3) truncate shorter motifs

from D that are “explained away” by the addition of the longer motifs into the dictionary. We

briefly expand on these three steps in the next paragraph; see Materials and methods for fur-

ther details.

Given a behavioural dataset Y = y1 y2. . .yL, the series of motif templates that generate it is

unknown. For example, if L = 3, we have Y = y1 y2 y3, whose likelihood is obtained by sum-

ming over all possible ways the dataset can be partitioned: Q(y1)Q(y2)Q(y3) + Q(y1)Q(y2 y3) +

Q(y1 y2)Q(y3) + Q(y1 y2 y3), where each marginal probability factor in each term is from an

instantiation of a particular motif template. In general, the likelihood of Y under our genera-

tive model is the sum over all possible partitionings {π} of the dataset (of which there are 2L−1)
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into observed data sequences fYp

a
g, weighted by the likelihood of each partitioning:

PðY; fpmgÞ ¼
X

p

YNðpÞ

a¼1

QðYp

a
Þ; ð1Þ

where the marginal probability is QðYp

a
Þ ¼

P
mQðYp

a
jmÞpm and N(π) is the total number of

templates in partitioning π. We show (Materials and methods) that the MLE for pm satisfies

the implicit equation

p�
m /

X

p

XNðpÞ

a0¼1

pðmjYp

a0 Þ
YNðpÞ

a¼1

QðYp

a
Þ; ð2Þ

where pðmjYp

a
Þ is the posterior probability of m given the data and the pre-factor is determined

from normalization. The sum over the posterior probabilities can be interpreted as an effective

number of counts of m in the partitioning π; Eq (2) can then be re-cast as p�
m ¼ hNmi= �N ,

where hNmi is the expected number of counts of m over the ensemble of partitionings and

�N ¼
P

m0 hNm0 i is the average number of partitions.

Given the implicit dependence of p�
m within the large sum in Eq (2), it is rather surprising

that the MLE can be performed efficiently. To compute p�
m, it is useful to define the free energy,

F � −ln P(Y;{pm}), which is to be minimized. The gradients of F can be efficiently calculated

using dynamic programming methods (Materials and methods), which allows for computa-

tion of p�
m using standard gradient descent methods. Note that the number of counts is then

hNmi = −pm@m F. New motifs are added to the dictionary if they occur more often than

expected by random concatenations of motifs already in the dictionary. The probability of a

new motif m being generated through all possible concatenations of smaller motifs in the dic-

tionary, z(m), is compared to the empirical probability of m, �zðmÞ@mF= �N . A standard likeli-

hood ratio test yields a p-value and pairs below a p threshold (10−3) are added to the

dictionary. The results are not sensitive to this threshold. The output of the algorithm is a dic-

tionary of motifs and the number of times each motif occurs in the dataset, hNmi. Standard sta-

tistical tests on hNmi can then be used in order to compare the relative abundance or rarity of a

motif across datasets (for example, a control and a treatment dataset). Further, a Viterbi-like

algorithm can be used to partition the data into the most likely partitioning (Materials and

methods). An implementation of BASS is publicly available [44]. Data deposited in the Dryad

repository [45] www.doi.org/10.5061/dryad.6t1g1jwwz.

Results

An illustration on synthetic data

To illustrate the generative process and the effectiveness of the method in identifying and seg-

menting motifs, we first apply it to a synthetically generated dataset. We assume individual

data points are two-dimensional (representing a lower-dimensional embedding of postural

dynamics) and are drawn from 7 distinct states (which make up the characters in our alphabet)

with a Gaussian emission function as shown in Fig 2a. A dictionary of 50 motifs is constructed

such that each motif has a mean length of five. Given the generated dictionary, the probability

of each motif, pm, is drawn and scaled with a parameter 1 − �b, where �b is the fraction of the

dataset that is made up of individual characters. We use �b as a measure of ‘background noise’.

Sequential data is sampled according to the lexical model, with �p as a measure of action pat-

tern noise and locomotor episode noise μ, defined as the distance between neighboring clusters
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relative to the standard deviation of each cluster (Fig 2a). In the sample shown, we use

L = 40000, �p = 0, �b = 0.5, μ = 3.

On this dataset, the algorithm builds a dictionary containing 44 motifs with 11 false nega-

tives and 6 false positives. Of the 11 false negatives (crosses in Fig 2b), 8 occur fewer than 25

times in the entire dataset. The three other false negatives (632, 631, 421325 in the inferred dic-

tionary, see Fig 2a for cluster labels) were in fact closely related to the three most prominent

motifs that were not identified (32,31,421335 in the true dictionary). The estimated probabili-

ties of the true positive motifs match very well with their true probabilities (Fig 2b) despite sig-

nificant background and locomotor episode noise. As a measure of performance, we compute

the percentage of the sequence correctly segmented (i.e., both the state and the partition

between motifs are correctly identified) by BASS in the most likely partitioning of the

sequence. Fig 2c shows near-optimal performance for larger datasets, where optimal is defined

with respect to the case when the true dictionary is known. Note that optimal partitioning per-

formance may not be perfect (*90% in Fig 2c) as motif generation is a stochastic process. A

snippet of the raw data is shown in Fig 2e along with the most likely partitioning into motifs

from the learned dictionary. With larger datasets, the method robustly integrates out fluctua-

tions due to significant action pattern and locomotor episode noise �p and μ (Fig 2d). BASS

found no motifs in shuffled data.

We now apply BASS to larval zebrafish behaviour in exploratory (pH neutral) and aversive

(acidic) chemotaxis assays. An outline of our analysis pipeline is shown in Fig 3a.

Fig 2. BASS accurately identifies and segments motifs in noisy, synthetic data: (a) The seven clusters from which the two-dimensional data (along y1, y2) is drawn. (b)

The true probabilities of the motifs (red dots) and probabilities estimated (blue dots) by our algorithm showing successful reconstruction of the dictionary. The crosses

are low-probability motifs not identified by the algorithm (see main text). (c) The percentage of correct segmentations into motifs (cyan) with increasing dataset size.

The optimal percentage when the true dictionary is known is shown in pink. In panels b,c and e, we use L = 40000, �p = 0, �b = 0.5, μ = 3. See S1 Fig for the case �p > 0.

(d) The difference in the negative log-likelihood per symbol after convergence when the true dictionary is unknown (F) and known (Fmin). Action pattern noise �p and

locomotor episode noise μ are successfully integrated out with larger datasets. Top: μ = 3, pd = 0.5, Bottom: �p = 0.15, pd = 0.5, where pd is the probability of a deletion in a

motif instantiation. Error bars are s.e.m. (e) A snippet of the raw data sequence and the most likely partitioning into motifs found by the algorithm. The vertical bars

delineate two successive motifs. The black arrows mark two instantiations of the same length-five motif.

https://doi.org/10.1371/journal.pcbi.1009672.g002
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A dictionary of action sequences for exploring larval zebrafish

Zebrafish larvae swim in short punctuated locomotor episodes called ‘bouts’ (duration

mean ± s.d = 150±50 ms) separated by longer periods of rest (mean ± s.d = 700±400 ms) (Fig

3b). Larvae spontaneously explore their environment by performing mainly slow bouts occur-

ring as forward swims and routine turns, often by repeating turns in the same direction [46],

and rarely exhibit fast bouts such as burst swims or escapes [16, 41]. We collected a dataset of

� 85000 bouts from 171 fish swimming in elongated swim arenas.

A single bout is well-characterized by the fish’s tail movement and other kinematic variables

such as average speed and change in heading. From raw tracking data (Materials and meth-

ods), we use a six-dimensional parameterization y for each bout, which includes the speed, the

change in heading, the summed tail angle (summed absolute amplitude of the tail angle) and

the first three principal components of the tail angle over time (Materials and methods). Based

on this parameterization, bouts were categorized into different bout types using a Gaussian

Mixture Model (GMM). A GMM yields the probability density, q(y|c), for each bout type c,
which serves as a statistical description of each bout type in terms of the means and covari-

ances of the six variables. We clustered bouts into seven bout types (Fig 3c and S1 and S2 Mov-

ies), which correspond to two forward swims of different speeds (f, slow and F, fast), three

turns based on the magnitude of change in heading (t,T and L, increasing angle), bursts (b)

and an other (O) category. The O category contained a variety of different bouts that did not

clearly fall into one class; these included O-bends, long turns and bursts, and improperly

tracked bouts. The bout types are not sharply delineated; this is not an issue for the BASS algo-

rithm since variability in y is implicitly taken into account via q(y|c) as noted before.

Typical bout types are displayed in Fig 3c. Compared to previous categorizations performed

on spontaneous exploration [16, 17, 29], our categories (except O) likely correspond to sub-

divisions of forward swims, routine turns and burst swims. The f, t, T bout types typically cor-

respond to the slow regime of locomotion enriched during basic exploration, while F, b and

the rare O belong to the fast regime and occur overall less frequently when no aversive stimulus

is applied [16, 41].

Fig 3. Analysis of larval zebrafish behaviour exploring neutral and aversive environments. (a) Overview of the analysis pipeline. (b) A time series of the tail angle θ
shows the discrete nature of locomotor episodes (‘bouts’) with the corresponding speed, change in heading and the summed tail angle calculated as the summed

absolute amplitude of the tail angle. (c) Samples of the seven bout types identified using a Gaussian Mixture Model. In the superimposed images corresponding to a

given bout type, the green and red dots correspond to the head position at the bout beginning and end respectively. Below each sample, the average tail angle θ is shown

in solid color with 200 trajectories shown in grey.

https://doi.org/10.1371/journal.pcbi.1009672.g003
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Zebrafish locomotor episodes in our conditions consist of seven bout types that make up

the alphabet of our generative model. Sequences of consecutive bouts for each fish (� 500

bouts per fish) served as input to BASS. A coarse exploration of the pattern noise parameter �p

and the probability of an insertion pd using a held-out dataset yielded �p = 0.1 and pd = 0.2,

which were used for the rest of our analysis (S5 Fig). These numbers suggest noisy motif

instantiation and a bias towards insertions (i.e., repeats). Notably, the greater held-out likeli-

hood for �p > 0 highlights the advantage of incorporating variability into our modeling

framework.

The algorithm converged to a dictionary consisting of 66 motifs with similar results across

trials and subsamples. The output of the algorithm is a dictionary consisting of the identified

motifs and the expected number of occurrences of the motif, hNmi, in the dataset. Intuitively,

hNmi is the number of times a motif occurs after appropriately discounting its occurrences

within a longer motif and taking into account pattern noise and locomotor episode noise. For

example, a locomotor episode which is on the boundary between the f and t clusters (locomo-

tor episode noise) is appropriately weighted as one half f and one half t. This example further

highlights the importance of incorporating locomotor episode noise as a source of variability.

Similarly, the observed sequence ffff will also contribute to the number of counts of the motif

fff since the extra f could be due to an insertion (pattern noise). The observed sequence ffff will

not contribute as one count for the motif ffff and also contribute as two counts for the motif ff.
The counts are instead shared between the motifs ffff and ff based on the relative probability of

the two motifs (implicitly using Bayes’ rule) and the number of ways ff can appear in the

observed sequence ffff. A subset of these motifs is shown in Table 1 (see also S1 Table). In Fig

4a and 4b, we provide a typical series of bouts segmented into sequences of motifs.

Table 1. Motifs over-represented in the exploratory dataset. A subset of motifs occur (‘Observed’ column) more often than predicted by a first-order Markov model (the

‘Expected’ column). The p-value is obtained using a likelihood ratio test. Single-length motifs are not shown (see Fig 5c). See also S1 Table. The fifth column shows the per-

centage of unique fish (out of 171 total) which executed the motif at least once in the most likely partitioning of the data. Note that a motif may never appear in the most

likely partitioning even though it has non-zero pm (for eg. tttt below, which is partitioned into four individual ts). The rightmost column shows the fraction of the explor-

atory dataset tiled by each motif.

Motifs −log10 p Observed Expected % of fish Coverage

ffffffffff >300 1366 387 51% (87/171) 1.30%

ffffffffffffff >300 510 50 38% (65/171) 1.67%

fffffff 208.01 3234 1797 69% (118/171) 2.01%

ffff 42.33 9544 8327 93% (159/171) 3.70%

FFFFFFF 28.23 311 153 53% (91/171) 1.47%

fffffftf 27.64 497 290 70% (119/171) 2.02%

fftfffff 25.07 495 297 66% (113/171) 2.11%

fftfff 22.72 1125 824 76% (130/171) 2.01%

fftff 21.12 1745 1377 84% (144/171) 2.78%

fftf 18.5 2724 2289 57% (98/171) 1.33%

ftf 13.96 4337 3859 92% (158/171) 4.10%

TfT 11.12 722 554 68% (116/171) 0.95%

FFFF 7.94 1428 1224 67% (115/171) 1.17%

TfTf 7.28 346 254 58% (100/171) 0.68%

tttt 6.7 256 181 0% (0/171) 0.38%

TTTT 5.06 160 110 54% (92/171) 0.41%

bb 3.87 924 1044 30% (52/171) 0.15%

bbbb 3.21 115 82 21% (36/171) 0.29%

FbFb 2.19 99 74 19% (32/171) 0.45%

https://doi.org/10.1371/journal.pcbi.1009672.t001
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The dictionary reveals several surprising features. A significant fraction of the fish move-

ments were made of motifs: motifs covered on average 78% of all bouts per fish with a standard

deviation of 7.3% across fish. We found motifs as large as 14 bouts, and this could further

expand in a particular realization due to insertions. In particular, f repeated 14 times occurred

more than 500 times. While this may be explained by the large fraction of f, repeats were also

found for T, F and b. Overall, the most enriched and common motifs correspond to repetitions

of the same bout type, and typically occur 2–14 times in a row. Motifs containing mixtures of

bouts included typically only 2 different bout types. Remarkably, we noticed throughout the

list of enriched motifs that the two bout types belonging to a given motif, belonged either to

low speed (mixtures of either f and t in ffTf or in TfTf) or to high speed (mixtures of F and b in

FbFb or bbFb), but never combined fast and slow locomotor episodes.

To quantify how unusual these sequences were under a Markov model, we compared the

observed occurrence of the identified motifs to those predicted from the best-fit Hidden Mar-

kov Model (HMM). Our lexical model yielded a better fit compared to an HMM (difference in

held-out free energy per bout of 0.12), and a significant portion of motifs deviated from Mar-

kovianity (Table 1, S1 Table). Two aspects of the behaviour likely lead to the observed non-

Markovianity. First, while long repeats of the same bout type occur often, the distribution of

the number of repeats has a heavy tail and decays much slower than a geometric distribution

(Table 1, S1 Table). Second, sequences with mixtures of two bout types such as TfTf and fftf are

common; while the repeats emphasize (say) f!f transitions, the motifs with mixtures of bout

types on the other hand emphasize f!t transitions, creating a tension between the two in a

purely Markovian picture. One concern could be that the t bouts in the mixtures of f and t (e.g.

fftf) lie on the border between the f and t clusters, and that the apparent non-Markovianity is

simply due to excessive coarse-graining of the elementary locomotor episodes. However, this

issue is solved by our soft clustering procedure, which assigns the appropriate probability

weight to locomotor episodes that lie on the boundary between two clusters.

To verify that the long chain of repeats were not an artifact due to our elongated well

geometry, we applied a similar pipeline of bout categorization and motif identification on a

previously published dataset [16] (see Materials and methods, S4 Fig). The dataset consists

of � 120,000 bouts obtained from 23 fish freely swimming in a square well (of side *25mm)

under varying light intensities. Notably, the resulting dictionary also displays long chains of

repeats and significant non-Markovianity albeit with a heavier emphasis on turns compared to

forward swims (S2 Table). We observe again in the motifs a dichotomy between the classical

slow and fast locomotor episodes when bouts occur either via forward swims or turns. Mix-

tures are composed either of slow or of fast locomotor episodes: slow turns and forward swims

appear together in a set of sequences (ffTf, TfTf) while fast forward and burst swims (FbFb,

bbFb) appear together in other sequences. Remarkably, mixtures of slow bouts (forward swims

or turns) and fast bouts (forward or burst swims) are conspicuously absent in both

dictionaries.

Fish chemotax away from acidic pH using action sequences of fast bursts

and large avoidance turns

Although few studies have reported that zebrafish respond to acute applications of chemicals

in the surrounding water [47–49], the behavioural responses of freely-swimming zebrafish lar-

vae navigating in chemical gradients of aversive or appetitive cues have not yet been investi-

gated. We applied acid to the two ends of our extended arenas (of length 14 cm) forming a

sharp gradient (Materials and methods); diffusive transport at the time scale of the experiment

(ten minutes) is at most 1 cm and therefore is confined to the ends. Zebrafish larvae robustly
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performed chemotaxis and avoided the two extremities (Fig 5a) despite displaying only minor

differences in kinematic parameters (Fig 5b). The distribution of bout types was similar for lar-

val zebrafish navigating in acidic gradients. We noticed a small over-representation of certain

bout types (Fig 5c), suggesting that fish perform more fast forward swims F, burst swims b,

and large-angle avoidance turns O in response to the aversive gradients. Burst b and fast for-

ward swims F occurred uniformly around the center of the well (S3 Fig), while larval zebrafish

executed more large-angle avoidance O bouts closer to the acidic gradient, suggesting that O
bouts are potentially implicated in the response to noxious stimuli during aversive chemotaxis.

We next investigated whether the chemotaxis response extended beyond a single bout to

action sequences composed of a sequence of bouts that were consistently observed across fish.

We implemented a comparative approach of finding recurring sequences of actions that are

highly over-represented in the aversive environment compared to exploration. We applied the

BASS algorithm to the dataset from fish in the aversive environment (*66,000 bouts from 135

fish). The resulting dictionary of motifs contained a total of 81 motifs, slightly larger than the

one obtained from exploration (S3 Table). The two dictionaries contain broad similarities:

both contain long repeats of the same bout type and mixtures of t and f, yet contain important

differences, particularly in the over-representation of mixtures of b,F and O,b in the aversive

environment.

We examined over-represented sequences by comparing the relative occurrences of motifs

in the exploratory and aversive environments. The two dictionaries were combined to obtain a

total of 103 unique motifs and the expected number of occurrences of each motif, hNmi, for

the two environments. We use −log10 p as a measure of over-representation, where p is

Fig 4. Motifs identified by BASS make up a significant fraction of the dataset. (a) A sample sequence of 75 bouts from the exploratory data segmented (separated by

vertical bars) into the most likely sequence of motifs from the learned dictionary. The corresponding speed and absolute change in heading are shown. Motifs longer

than one locomotor episode are underlined in gray. (b) A sample trajectory consisting of 80 bouts (head position at the beginning of a bout is shown as a red dot) are

segmented into motifs (head and tail at each frame are shown), where successive bouts from the same motif have the same color. The black-colored segments of the

trajectory are motifs of length one i.e., single locomotor episodes.

https://doi.org/10.1371/journal.pcbi.1009672.g004
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obtained from a likelihood ratio test on hNmi in the two environments. To calibrate this score,

we first split the exploratory dataset into halves and computed the −log10 p for each motif; the

threshold 15 was chosen for a false positive rate of 10%. To find action sequences that were

executed by many fish and not just a few abnormal fish, we sub-sampled our dataset from the

aversive environment to 80% its size ten times, performed the comparison for each sub-sam-

ple, and chose only those motifs above threshold of 15 in all ten sub-samplings.

Table 2 shows the eight over-represented motifs found across fish. The eight motifs were

executed by multiple fish (rightmost column of the table). All motifs except one (fTff) are mix-

tures of b and O. The bouts from the selected motifs (except fTff) are significantly over-repre-

sented close to the aversive gradient compared to the rest of the bouts in the aversive

Fig 5. Fish avoid aversive environments using a transient chemotactic response. (a) Histogram of larvae positions along the well with and without the aversive

(acidic) gradient, located at the ends of the well. The s.e.m is square-root of the counts, which is negligible. An illustration of the aversive gradient is shown above. (b)

The distribution of speed, change in heading and the summed tail angle of all bouts during exploration (black) and in aversive environment (red). The difference in

global kinematic parameters between the two environments is small. (c) The fraction of each bout type in exploratory and aversive environments, where a total of �

85000 and � 66000 bouts were collected respectively, shows an increase in fast bouts: b,F and O. (d) Localisation of bout types along the well with and without the

aversive (acidic) gradient, (e) BASS segments a series of bouts from the aversive environment into sequence of recurring motifs. Shown here is a sample trajectory (as in

Fig 4b) where the fish escapes from the aversive environment.

https://doi.org/10.1371/journal.pcbi.1009672.g005

Table 2. Motifs consistently over-represented in the aversive chemotaxis assay. The fifth column shows the percentage of unique fish (out of 135 total) which executed

the motif at least once. The rightmost column shows the fraction of the aversive dataset tiled by each motif.

Motifs −log10 p hNmiaver hNmiexplo % of fish Coverage

fTff 90.84 101 5 64% (87/135) 1.73%

OO 66.63 111 11 60% (81/135) 0.15%

bb 55.84 210 55 82% (82/135) 0.53%

bOOb 46.06 63 5 46% (46/135) 0.45%

Ob 35.74 135 36 77% (77/135) 0.56%

bO 34.6 140 39 82% (82/135) 0.53%

bFbb 24.96 49 6 49% (49/135) 0.54%

Obbb 24.07 56 9 49% (49/135) 0.52%

https://doi.org/10.1371/journal.pcbi.1009672.t002
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environment (Fig 6a), though no such selection was explicitly imposed a priori in our analysis.

To verify that these motifs were indeed the ones involved in aversive chemotaxis, we computed

the distance per bout the fish travels in the direction down the aversive gradient for bouts

within motifs flagged as over-represented and the rest of the bouts. We find a highly significant

bias for the over-represented bouts for swimming down the gradient (Fig 6b). Strikingly, when

bouts from the flagged sequences that begin at the two extreme quarters of the well excluding

fTff are considered, the bias greatly increases, even beyond the typical length-wise distance

travelled per bout, indicating that these bouts are triggered by the sharp acidic gradient and

are almost exclusively aimed down the gradient. In contrast, the motif fTff, which was also reli-

ably observed across fish, was not directed away from the aversive gradients nor did it prefer-

entially occur close to the gradient (see S3 Movie for a sample of the motif fTff). These

observations suggest that fTff may be induced by a global acidification of the swim arena but

not as a direct response to the acidic gradient, or is a false positive emerging from stochasticity

in the analysis pipeline (e.g., the clustering of bouts). Indeed, we did not observe the fTff motif

when the entire analysis pipeline including the clustering of bouts was re-run, in support of

the latter possibility.

Further examination of the bouts from the b and O bout types implicated in chemotaxis

showed that both bout types were significantly longer and the fish swam faster compared to

the unflagged bout types (Fig 6c and S2 Fig). Inspection of the tail movements from this subset

of O bouts showed that these bouts typically consisted of a large-angle avoidance turn followed

by a long burst swim (see Fig 6d for examples). The induced sequences of fast bouts composed

of b and O near the edges of gradient are distinct from the recently described slow avoidance

response to CO2 [47]. The previous report of a lack of behavioural response to HCl pH = 4.5

[47] suggests that b and O may be elicited by more acidic pH.

Fig 6. Fish chemotax against an acidic gradient via sequences of fast bursts and large-angle avoidance turns. (a) Distributions of length-wise positions for the

Control bouts (all bouts from aversive environment except the ones from sequences flagged as over-represented in Table 2), fTff only and Flagged bouts (from the

sequences in Table 2) except fTff in red, orange and blue respectively. (b) The length-wise displacement travelled in a bout down the gradient for bouts tagged as Control,

Flagged (as defined in (a)), fTff only, Control(ends) (all bouts from the two ends of well shown in (a)), Flagged(ends) (flagged but with fTff removed and in the ends of

the well). For scale, the red, dashed line shows the mean length-wise distance per bout for unflagged bouts. Error bars are s.e.m. (c) The mean speed, change in heading

and duration of the bouts (black, red error bars for s.d, s.e.m respectively) from b and O bout types that are part of the Flagged(ends) sequences from (b). (d)

Superimposed images for four random samples of b and O bout types from the flagged sequences in (a). The green and red are the head positions at the beginning and

end of the bout respectively. (e) Superimposed images for four random samples highlighting the Flagged(ends) sequences (blue dots), which include the three bouts

before (green dots) and after (red dots) the flagged sequence. Note that the depicted gradient is illustrative.

https://doi.org/10.1371/journal.pcbi.1009672.g006
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Spiraling motifs in soaring trajectories

We note that BASS receives no information about the stimulus experienced by the animal. To

confirm that BASS can extract relevant aspects of behaviour even when the cues in the envi-

ronment are unknown and the stimulus-response map is complex, we turn to simulations of a

soaring glider using thermals (updrafts) to gain height in a convective environment [25, 26].

The purpose of this exercise is to present an example of how BASS could be applied to natural-

istic behavioural data obtained in the field. We used a dataset of size within experimental reach

and input variables that can be readily measured using existing instrumentation.

We simulated trajectories of a soaring glider executing a thermalling strategy in an environ-

ment that contains updrafts and downdrafts of varying strengths. The thermalling strategy was

learned using reinforcement learning in the field [26]. The glider takes mechanical cues (i.e.,

torques and accelerations) as input and responds by modulating its bank angle. Past simula-

tions in a turbulent convective environment have shown that a glider executing this thermal-

ling strategy successfully gains height using thermals and exhibits spiralling trajectories similar

to those displayed by birds [25]. A sample trajectory is shown in Fig 7a, which shows the glid-

er’s meandering path before finding the updraft and the spiralling trajectory while ascending

the thermal.

We simulated 75 episodes each (250 seconds per episode) of the glider executing the ther-

malling strategy and the glider executing a random policy (i.e., it increases, decreases or keeps

the same bank angle with equal probability). Units are defined using realistic parameters for

glider aerodynamics; for instance, the glider has an airspeed *10m/s and takes actions every

1.5 seconds (see refs [25, 26] for full details of the simulation). BASS receives as input solely the

Fig 7. BASS finds spiralling motifs in simulated trajectories of a soaring glider executing a thermalling strategy. (a) A sample trajectory showing the thermalling

behaviour of the soaring glider. The glider reacts to mechanical cues such as torques and accelerations. See [25, 26] for more details. Regions of downdraft and updraft

(blue through yellow) are marked, which highlight the relatively disperse trajectories in downdrafts compared to the spiraling behaviour in updrafts. (b) Motifs found

by BASS that span the largest fraction of the thermalling dataset (i.e., episodes where the glider used a thermalling strategy). Most enriched motifs are those of a

spiralling pattern. The green and red dots mark the start and end points. Note that the glider sinks without updrafts. (c) Same as (b) for motifs found in the dataset of a

glider executing a random policy.

https://doi.org/10.1371/journal.pcbi.1009672.g007
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bank angle at every 1.5 seconds, which is divided into five states corresponding to bank angles

of −30˚, −15˚, 0˚, 15˚, 30˚.

BASS converged to dictionaries with 80 and 65 motifs for the thermalling and random pol-

icy datasets respectively (�p = 0.1, pd = 0.5). In Fig 7b and 7c we show examples of the eight

motifs that spanned that largest fraction in the two dataset (i.e., the motifs were sorted accord-

ing to the number of times they occur in the dataset multiplied by the length of the motif).

BASS indeed finds a consistent spiraling pattern in the thermalling dataset, with the longest

two motifs of opposite helicity (first two in the top row of Fig 7b) lasting 24 actions, i.e., 36 sec-

onds. Full circles with a lower bank angle and spiraling patterns of shorter length were also

found. The motifs from the random policy dataset were roughly half as long (mean length �

8s) on average compared to the motifs from the thermalling dataset (mean length � 16s) and

largely consist of short turns as shown in Fig 7c.

Discussion

In this study, we develop a method to extract recurring action sequences that rarely occur in

noisy behavioural data from freely-moving animals. We present a lexical model of animal

behaviour, where we view observed behaviour as a composition of recurring motif templates

drawn from a dictionary. We develop the BASS algorithm for performing inference on this

model, which ultimately yields a dictionary of motifs that the animal performs in its designated

environment. Applying the method on data from exploring zebrafish larvae revealed a long

time-scale organization of bout sequences that cannot be explained in a Markovian model on

single bouts. In a novel aversive chemotaxis task, we identified action sequences of bouts that

the fish employ to avoid a noxious environment. When applied to simulated thermalling data-

set, BASS succeeded in identifying the long spiraling patterns characteristic to soaring.

BASS is a useful tool to identify behavioural action sequences despite being rare and tran-

sient in naturalistic settings when animals are freely moving. To summarize, BASS can be

used: 1) when the sensory information perceived by the animal is unknown / uncontrolled, 2)

when the behavioural responses is complex and last much longer than a typical locomotor epi-

sode, 3) when the behavioural response consist of recurring sequences that occur rarely in the

behavioural recording.

We argue that our lexical model yields complementary insight to traditional dynamical

models, and is better suited for comparative behavioural analyses, particularly for comparisons

across animals in different environments and/or closely related genetic variants. The genera-

tive model of independent motifs is the simplest one and fits better to our behavioural data

than a Markov model with a similar number of parameters, which is often used to depict quan-

titative ethograms.

Relationship with other methods and extensions

Our model generalizes previous work [35–39] on motif discovery from bioinformatics,

machine learning and time series analysis by incorporating two important generative processes

crucial for behavioural modeling that were not modeled previously: elevating motif templates

to latent variables and introducing a data-generating process for elementary locomotor epi-

sodes. This generalization is necessary to take into account the significant variability in beha-

vioural data, where clusters in postural space are not always well-defined and erratic

movements are common. Note that the generative process for motif templates can also be

viewed here as a particular hidden Markov model, where the jDj þ 1 hidden states at the top-

most level are the motifs in the dictionary and the ‘background’. In this picture, the full genera-

tive model has three levels of hierarchy.
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We note that BASS stripped to its most basic form (i.e., with no pattern noise or syllable

noise) is simply an efficient method to implement an n-gram model for large n. One major

advantage of BASS is the automatic selection of n based on statistical significance and the capa-

bility to find sequences of length beyond what could be feasibly found using a straightforward

implementation of an n-gram model. Indeed, for the larval zebrafish analysis above, the rela-

tively short abnormal motifs in Table 2 can also be found using an n-gram model. However,

the analysis using BASS suggests that any other longer, relevant sequences are unlikely to be

found in the given dataset. The second advantage of the current formulation lies in the possi-

bility for extending the model along various directions. Prior knowledge can be easily applied.

For instance, priors on the distributions of motif lengths or the distribution of frequencies can

be introduced by weighting different partitions or a Dirichlet prior on the probabilities, respec-

tively. In both cases, an MLE equation (or a MAP estimate in the latter case) similar to Eq (2)

can be derived. To obtain a MAP estimate, the free energy for BASS is modified as F0 = F + C
({pm}), where C({pm}) is an additional cost term that regularizes the solution or imparts exter-

nal knowledge. More complex, hierarchical models over motifs may be learned by noticing

that the Markovian structure of the partitioning is compatible with structured variational

approximations [50]. Further structure can be introduced into the ‘background’, which we

have assumed is made of independently drawn characters, similar to those used in bioinfor-

matics [51]. Finally, unlike n-gram models, the BASS framework incorporates pattern noise as

a generative model from motif templates to motif realizations. This generative model can be

flexibly modified based on the specific pattern noise model most appropriate for the system

under consideration without changing the optimization procedure and the basic structure of

the model.

Compression methods [52–54] optimize an altogether different “coding” objective, which

does not necessarily lead to meaningful motifs; for example, the two-symbol word ab could be

identified as a motif simply because a and b occur often, even if a and b occur next to each

other purely by chance. To illustrate this point, we applied the Sequitur (Nevill-Manning) algo-

rithm [52] using PySequitur [55] on the zebrafish larva exploration dataset. Since Sequitur

takes a sequence of symbols as input, we collapsed the soft clusters obtained using the GMM to

the most likely cluster assignment. Sequitur found a total of *2500 codewords, much larger

than the dictionary obtained by BASS (81 motifs for the hard cluster case). Importantly, the

codewords found by Sequitur are not consistent across subsets of the exploratory dataset. Spe-

cifically, we split the exploration dataset into two subsets of equal sizes and applied Sequitur to

each subset. Only *23% of the codewords found in the first half were also present in the sec-

ond half, in contrast to *61% using BASS (the same parameters as the previous analysis were

used except for the hard cluster assignments). This inconsistency is further highlighted when

Sequitur is applied to a dataset containing a sequence of 10,000 independently drawn fair coin

tosses. BASS found no motifs whereas Sequitur found on an average *300 codewords despite

the random draws. Additionally, the codewords found in two independent realizations of size

10,000 overlap only by 6%, suggesting that codewords found using Sequitur do not represent

intrinsic features of the data generation process but are rather sensitive to the specific

realization.

As noted above, BASS can be viewed as a constrained version of an hierarchical hidden

Markov model (HHMM) with jDj þ 1 hidden states. The constraint that each higher-order

hidden state corresponds to a motif template, i.e., a fixed sequence of symbols rather than a

stochastic sequence enables an implementation linear in the dataset size. An HHMM without

this constraint has complexity SL3 [56] (L is the size of the dataset and S is the number of

states), which makes straightforward implementations infeasible for most practical applica-

tions. Linear-time implementations using approximate inference techniques have been
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developed [57, 58] and offer promising alternatives. However, the unconstrained HHMM has

O(K2) parameters (K is alphabet size) for each higher-order hidden state, which are to be

inferred. Whether the large number of parameters in an HHMM can be inferred from beha-

vioural datasets with many behavioural modes remains an open question and is beyond the

scope of the current work.

In certain cases, behaviour is better described as continuous motor output in contrast to the

discrete bouts that comprise zebrafish locomotion (e.g the eigenworms that describe C.elegans
dynamics [43]). In such cases, locally linear approximations similar to those in ref. [18] can be

used. The approach there is to fit short windows of dynamics using linear models and then use

hierarchical clustering to cluster models in model space into discrete states. A similar approach

can be used to generalize BASS to continuous motor output. In particular, we may define the

elementary locomotor episodes (via q(y|c)) as a set of short continuous snippets (such as lines

and curves) equipped with an appropriate probability measure to accommodate imperfect fits.

Further, motifs from the extracted dictionaries can be hierarchically clustered to define

broader behavioural classes of motifs. These generalizations will be explored in future work.

It is important to emphasize that BASS receives no explicit information about the stimulus

experienced by the animal; the extracted motifs therefore do not contain information about

the precise stimulus-response map of the animal, but can reveal relevant qualitative aspects of

the animal’s behaviour when the sensory information is not known. As illustrated here with

our simulation, BASS may discover the spiraling of a soaring bird [59] with no reference to

what stimulus triggers those responses. More generally, BASS is applicable when characteristic

patterns of behaviour are repeated on several occasions during a task. However, it is possible

that a single stimulus-response map may yield a highly diverse set of outcomes based on diver-

sity in input and memory of past inputs. In this case, inference is difficult for any algorithm

since little statistical information is available without access to the input stream and other

methods should be devised.

Action sequences implicated in aversive chemotaxis

Using BASS, we reveal here that freely-swimming zebrafish larvae navigating in a gradient of

aversive cues exhibit recurring sequences of fast bouts mixing burst and large-angle avoidance

turns to avoid the aversive environment. Notably, these sequences make up only a very small

fraction of the dataset (*0.2%), yet are successfully captured in our analysis.

Furthermore, we discover recurring sequences deployed by zebrafish larvae when exploring

arenas of diverse geometry, either rectangular (this study) or square [16]. In all cases, larval

zebrafish repeated bout types belonging to the same speed regime (slow or fast). Long repeats

of the same bout type, particularly forward and turn swims, occur frequently for *3–8 itera-

tions. This observation is consistent with prior observations of repetition of turns in freely-

swimming larvae [46]. In the baseline conditions when the environment contains no aversive

cue, larvae mainly display motifs consisting of slow forward bouts and turns. In contrast, larval

zebrafish exposed to noxious stimuli, such as the acidic gradients that activate cutaneous sen-

sory afferents, respond using transient action sequences of fast forward and/or turns in order

to swim away. While an automated categorization of bouts can identify that large-angle avoid-

ance turns O often occur in the acidic gradients (S3 Fig), our method reveals a richer chemo-

tactic response composed of fast locomotor episodes including burst swims and large angle

turns. Remarkably, BASS led to the discovery of a very interesting phenomenon that is pre-

served across datasets from multiple labs operating with different zebrafish strains and differ-

ent arenas. We show that larval zebrafish perform highly-specific sequences containing either

only slow (during basic exploration) or only fast (during aversive chemotaxis) locomotor
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episodes. This observation suggests that the descending command signals sent to the spinal

cord to elicit forward bouts [60] or turns [61] last over seconds to tens of seconds, possibly via

sustained inputs to reticulospinal neurons in the hindbrain [60]. The dichotomy in terms of

speed regime observed within sequences of locomotor episodes may therefore have important

implications for the construction of neuronal networks sustaining foraging and avoidance.

Conclusion

BASS can be easily incorporated into existing behavioural analyses pipelines alongside the

expanding repertoire of methods established for unsupervised behavioural clustering that deal

with classifying individual locomotor episodes [1–5]. In its current form, our implementation

can handle datasets of size≲ 300,000 bouts and dictionaries of size≲ 500, beyond which

approximations for scalable inference have to be developed. Our approach further highlights

the connection between behavioural modeling and genomics, where a wealth of algorithms

have been developed. Exploiting this analogy may lead to a fruitful exchange of techniques

between the two seemingly-disparate fields. Finally, we remark that our method is an addition

to a rapidly enlarging computational toolkit for extracting mechanistic answers to behavioural

questions. BASS complements existing computational methods for unsupervised behavioural

clustering, typically used to segment individual locomotor episodes, by finding structure in the

form of recurring sequences of locomotor episodes.

Materials and methods

Ethics statement

Animal handling and behavioural assays on 6–7 days old larvae were carried out with the vali-

dation of the Institut du Cerveau (ICM) in agreement with the French Ministry for Research

and Education and the French National Ethics Committee (Comité National de Réflexion

Ethique sur l’Expérimentation Animale, APAFIS #2018071217081175) following the European

Communities Council Directive (2010/63/EU). All zebrafish animals were reared and main-

tained at +28.5˚C on a 14/10 hour light/dark cycle until 7 days post fertilization (dpf) when

behavioural experiments were conducted.

Behavioural assays and recording

Wild-type AB zebrafish were reared at the density of 20 larvae per petri dish filled with 30 mL

of E3 medium. At 4 dpf, the E3 medium was replaced to avoid waste accumulation. On the day

of behavioural recording, ten minutes prior to the beginning of experiments, all larvae were

transferred onto the LED illumination plate to allow habituation to the lighting of the setup.

At the beginning of each trial, we positioned on the illumination plate the recording chamber

containing 12 swim arenas (length 140 mm x width 10 mm x height 4 mm) filled with 4 mL of

E3 medium. Each individual larva was then transferred into the central region of a swim arena

delimited by a custom-made comb. Once all larvae were positioned, the comb was carefully

removed to enable animals to explore freely the arena and the video recording was launched.

To monitor the navigation in gradients of pH, larvae were exposed to acidic solution at

both ends of the swim arenas. To create this double acidic gradient, an acidic solution was pre-

pared by diluting 1 M HCl (Merck, #109057) 1:6 into E3 medium (final pH 1.5). 100 μL of this

solution was applied at both ends of the swim arena before removing the comb and launching

the recording. Out of 12 swim arenas, 6 were filled with the double gradient of acidic pH and 6

were filled with E3 medium only. Before any behavioural recordings, we estimated the stability

of the pH gradient generated by following the same application protocol and monitoring the
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diffusion of red food colorant over 10 minutes. These pilot experiments indicated that in our

conditions, the acidic solution slowly diffused and formed a steep gradient about 20 mm from

each end of the swim arena over the 10 min-long recording.

Ten min-long videos were recorded at 160 Hz with an exposure time of 1 ms, and a pixel

size of 70 μm using a ViewWorks camera (Basler acA2040–180km) controlled by the Hiris

software (R&D Vision, Nogent sur Marne, http://www.rd-vision.com/r-d-vision-eng).

Tracking

To track the head and tail positions of zebrafish larvae, we used the open-source software Zeb-

raZoom (https://zebrazoom.org/) [41, 62]. The algorithm begins by locating all the wells and

by extracting the background of the video. ZebraZoom first applies a series of actions to detect

the animal in each well: i) contours of head and entire body are detected using active contours,

ii) the center of the head is identified as the center of mass of the head contour and the tip of

the tail is detected using both the curvature along the body contour and distance to the center

of the head. The midline is then identified between the left and right borders of the body con-

tour. For each animal, the difference in pixel intensity between subsequent frames enables the

automated detection of bout start and end. Then, for each bout, the algorithm calculates the

head position, head direction and the tail angle from which kinematic parameters are subse-

quently estimated: number of oscillations, instantaneous tail beat frequency, maximum ampli-

tude for each tail bend, bout speed, bout duration, and bout distance. Tunable parameters in

the tracking algorithm were optimized to detect small amplitude forward bouts occurring fre-

quently during exploration. In order to validate our algorithm, we manually inspected valida-

tion videos where the head direction and tail position were superimposed on the raw image

when a bout is detected, allowing to check both the tracking and bout detection quality.

Bout categorization

A segmented bout contains the positions of the head and ten tail segments for each frame. For

each bout, we computed the average speed, the change in heading angle and the duration of

the bout. The tail angle relative to head orientation of the seven tail segments farthest away

from the head were computed and the first 16 frames of these 7 quantities were concatenated

to form a 112-dimensional vector. Principal Component Analysis (PCA) on this vector yielded

a projection onto 3 principal components that together explained 80% of the variance. For

bout categorization, the average speed, the change in heading and the summed tail angle (inte-

grated absolute value of tail amplitude) were combined with the first 3 tail angle principal com-

ponents, which together served as the six-dimensional input (denoted y throughout the paper)

for the clustering algorithm. Including other kinematic variables such as tail maximum ampli-

tude, inter-bout interval, duration, number of oscillations, angular speed or displacement did

not change our bout categorization and were excluded for the rest of the analysis.

For clustering of bouts, we employed a Gaussian Mixture Model (GMM) with a full covari-

ance matrix. We modified the standard expectation-maximization algorithm to fit multiple

datasets simultaneously such that the emission functions i.e., the probability of the input given

cluster label, q(y|c), was fixed for all datasets but the cluster weights differ across datasets. To

do this, we first sub-sampled the datasets so that they all have the same size. The objective func-

tion to be maximized for the GMM model was modified to be the sum of the log-likelihoods

for each dataset. We found that adding a term proportional to the Jensen-Shannon divergence

between the cluster weights across the two datasets encouraged the algorithm to find cluster

assignments whose weights differed the most across datasets. The number of clusters was set
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to seven by measuring the log-likelihood on a held-out dataset. The distributions of the speed,

duration and change in heading for different bout types are shown in S2 Fig.

We performed a similar procedure to analyze the data from Marques et al [16]. The dataset

contained approximately 120,000 bouts from 23 zebrafish larvae at 6–7 dpf imaged individu-

ally at 700 frames per second at a resolution of 62 microns per pixel with different light intensi-

ties. From the raw head position data, for each bout we extracted the displacement and change

in heading in the first 120 frames (170 ms). Tail angles for five tail segments (3rd furthest away

from the head to the 2nd closest) sub-sampled at half the frame rate were concatenated

together to form a 300-dimensional vector. PCA yielded four principal components, which

were combined with the displacement and change in heading to form the input to the GMM

(S4 Fig). More clusters simply yielded finer divisions of the clusters. In their paper, Marques

et al use a density-based clustering algorithm to identify 13 different bout types. In this dataset,

most bouts corresponded to AS, Slow 1, Slow 2, Routine Turns with a small but significant

fraction of SATs and HATs (which together formed the first four bout types f, F, t and T) and a

much smaller fraction of other bout bout types. Most of the rare bout types were not identified

in our clustering and were part of the other (O) bout type.

Modeling

In this Section, we expand on the model presented in the main text. We first develop the

model followed by the method to build the dictionary.

Generative model. Given a time series of length L, Y = y1 y2. . .yL, a clustering algorithm

with K clusters (labeled from 1 to K) applied on each yi converts the dataset Y into a sequence

of probability vectors, R = ρ1 ρ2. . .ρL, where each ρi is a K-dimensional probability vector. To

fix notation, the jth component of this vector, ρij, is given by ρij � q(yi|j), where q(.|j) is the

probability density function associated to cluster label j. We use cluster label and characters of

an alphabet interchangeably. Each character represents a well-defined locomotor episode; in

the case of larval zebrafish, this is the category of a single bout. In the case of the soaring glider,

the glider takes discrete actions of changing the bank angle every 1.5 seconds. For each action,

the glider changes its bank angle linearly over 1.5 seconds for a total change of 0˚ or ±15˚ start-

ing from one of five angles: −30˚, −15˚, 0˚, 15˚, 30˚. The bank angle at the beginning of the

action is taken as the postural state. The appropriate choice of the timescale used to define a

postural state is organism-dependent. We assume the timescale and the clustering scheme

have been chosen appropriately based on prior knowledge about the organism. We do not

address the details of how to find an appropriate clustering scheme for each scenario; we refer

to reviews on the topic [2, 4, 5].

We define a motif m = c1 c2. . .cl as a string of characters (or cluster labels) of arbitrary

length l (l is not a parameter), which belongs to a dictionary D that contains all the motifs.

Each motif in the dictionary and each character in the alphabet are assigned probabilities

pm which are to be inferred from data. Henceforth, we will use ‘templates’ to mean both motifs

and characters. We assume the data is generated as follows: First, templates are generated

sequentially, drawn independently and identically from the distribution pm. Second, in each

instantiation, the template has a probability of ‘mutating’ to a closely-related pattern. The

model for mutation of templates is described in the following paragraph. Third, data is gener-

ated from the mutated templates character-by-character from q(y|c). For instance, if the

mutated template is given by ~m ¼ ~c1~c2 . . . ~c~l , a data vector of length ~l, y
1
y

2
. . . y~l , correspond-

ing to ~m is drawn from the distribution
Q

iqðyij~ciÞ.

Now, we define the likelihood function for motifs Q(Y|m), where Y is a sequence of data

vectors y
1
y

2
. . . y~l and m = c1 c2. . .cl. A character in a motif can be mutated in two ways: a
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deletion, where the character does not appear, or copy insertions, where the character is copied

in-place a certain number of times. This is similar to the operations allowed in a profile HMM.

We do not allow for transpositions of two characters or insertions of new characters that are

not identical to the one already present. To give an example, a motif abb (K = 2 alphabet size)

may mutate to ab or bb corresponding to one deletion, and aabb or abbb corresponding to

one insertion, but cannot mutate to abab via one insertion or deletion (see main text for an

explanation for this choice). We assume each character mi in the motif has a probability �ppd

of being deleted, probability �ppc,j of being copied exactly j (j > 0) times and is neither deleted

nor copied with probability 1 − �p. To normalize, we require pd + ∑j pc,j = 1. We can write

down a recursive formula for computing Q(Y|m). Intuitively, we start from the last character

in the motif and assign it a certain number of data points depending on whether there is a dele-

tion (0 points), j insertions (j + 1 points) or neither (1 point). After the assignment, the last

character and all the data points assigned to it are removed, and the process is repeated until

there are no data points left to be assigned. Denote Qðy
1
y

2
. . . yk1

jc1c2 . . . ck2
Þ � Mðk1; k2Þ,

where 0 � k1 � L and 0 � k2 � l. For k1, k2 > 0, M can be computed recursively as

Mðk1; k2Þ ¼ ð1 � �pÞqðyk1
jck2

ÞMðk1 � 1; k2 � 1Þ þ �ppdMðk1; k2 � 1Þ

þ
Xk1

j¼1

�ppc;jMðk1 � j; k2 � 1Þ
Yj

k0¼0

qðyk1�k0 jck2
Þ;

ð3Þ

with boundary conditions M(0, k1) = 0 for k2 > 0 and M(0, 0) = 1. In the applications pre-

sented in this paper, we set pc,1 = 1 − pd non-zero and the rest zero (i.e., only one copy of a

character is allowed).

Likelihood function and proof that normalization is unity. Given a dataset Y = y1

y2. . .yL, its likelihood under the model is given by the sum over all possible 2L−1 partitionings

{π} of the dataset, where partition α in partitioning π is denoted Yp

a
. Each partitioning is

weighted by its likelihood. We have

PðY; fpmgÞ ¼ Z0�1
X

p

YNðpÞ

a¼1

QðYp

a
Þ; ð4Þ

where the marginal probability is Q(Yα) = ∑m Q(Yα|m)pm, N(π) is the total number of tem-

plates in partition π and Z0 is the normalization constant, which is integrated over all possible

Y. The product of the marginals Q in the above equation is the likelihood of each partitioning.

We give a simple (non-rigorous) argument for Z0 being close to unity for large L. Intuitively,

this is because the normalization should be one if not for boundary effects, which we show are

negligible for large datasets. We have

Z0ðLÞ ¼
R
DYLPðYL; fpmgÞ ð5Þ

where the subscript is introduced to keep track of its length. For any l, conditioning on the

first partition before l, we have the recursive formula

Z0ðlÞ ¼
Xl�1

i¼1

Z

DY iQðY iÞZ
0ðl � iÞ

¼
X

m

pm
Xl�1

i¼1

Z

DY iQðY ijmÞZ0ðl � iÞ

ð6Þ
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Consider the case when l � L and we modify the sequence so that the first l − 1 points in

the sequence are replaced by 1s instead of the appropriate integrals over the marginals Q i.e.,

Z0(i) = 1 for i < l. Since l � L, we must have Z0 for this modified sequence approximately

equal to the original Z0, with corrections being O(l/L). By the above recursive formula, for this

modified sequence Z0(l) = 1 because of the normalization of pm and Q(Y|m) and it follows that

Z0(l0) = 1 for any l0 > l. An approach for a rigorous argument could be to find an upper bound

for |1 − Z0(i)| for i < l � L and proceed similarly.

Maximum likelihood estimation of motif probabilities. Since Z0 ’ 1, {pm} enter the

equation only via Q(Yα). We use a Lagrange multiplier λ to impose the normalization con-

straint ∑pm = 1 and maximize P(Y;{pm}). Taking the derivative w.r.t pm and equating to zero,

we get

l ¼
X

p

X

a0

QðYp

a0 jmÞ
Y

a6¼a0

QðYp

a
Þ: ð7Þ

Multiplying on both sides by pm and using Bayes’ rule, QðYp

a0 jmÞpm ¼ QðYp

a0 ÞpðmjYp

a0 Þ, we

get the implicit equation for the MLE,

lp�
m ¼

X

p

XNðpÞ

a0¼1

pðmjYp

a0 Þ
YNðpÞ

a¼1

QðYp

a
Þ: ð8Þ

The sum over the posterior probabilities can be interpreted as an effective number of counts

of m in the partition π. We then have p�
m ¼ hNmi=

P
m0 hNm0 i, where hNmi is the expected num-

ber of counts of m over the ensemble of partitions.

Numerical optimization. To compute pm numerically, we define the free energy, F = −ln

P(Y;{pm}) and minimize it under the constraint ∑m pm = 1. We impose this constraint using

the transformation pm ¼ e�bmP
m0

e�bm0
, fixing one of the βm’s to zero and optimizing for the rest.

We use the L-BFGS-B algorithm, which requires F and the gradient of F, whose calculation is

described below. The Hessian can be computed exactly and Hessian-based methods applied,

but we found that the gradient-based methods work equally well and are in fact slightly faster.

Note that since hNmi = −pm@m F, the gradient calculation can also be used to calculate the

number of occurrences of a motif.

Free energy and gradient calculation. The calculation of F and @mF is performed using

transfer matrix-like techniques. The procedure is similar to the one described in ref [35] (see

[63] for technical details). The key insight from ref [35] is that the partitioning of the data vec-

tor has a Markovian structure, which allows calculations similar to the forward-backward algo-

rithm for Hidden Markov Models. The same structure is preserved in our model albeit with

the added complication that the motifs themselves are latent variables and thus all possibilities

need to be considered for each partition, which is taken into account in the marginal Q(Yα) in

(4). The procedure described below holds for a single unbroken sequence. In practice, the

dataset contains a collection of sequences from different sources and the procedure is easily

adapted to the multiple sequence case. Below, we use a subscript i : j to mean the quantity is

evaluated for the sequence yi yi+1. . .yj. Let Zi:j denote P(Yi:j|{pm}). We can write the recursive

formula

Z1:i ¼
Xm

l¼1

Qi�lþ1:iZ1:i�l; ð9Þ

where the marginal probability in shorthand is Qi�lþ1:i ¼
P

mQ
m
i�lþ1:ipm and Qm is the motif

likelihood function of m, Q(.|m). Here we truncate the length of the partition to m = 2lmax,
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where lmax is the length of the longest motif since we allow at most one duplication per

character.

In practice, the Q values become extremely small and there is underflow. We instead calcu-

late the ratio Ri = Z1:i/Z1:i−1, for which we can write

Ri ¼ Qi:i þ
Xm

l¼2

Qi�lþ1:i

Yi�1

k¼i�lþ1

Rk

 !�1

: ð10Þ

The free energy is F ¼ �
PL

i¼1
ln Ri. For the derivative, it is also useful to calculate the quan-

tity R0
i ¼ Zi:L=Ziþ1:L, which is calculated as

R0
i ¼ Qi:i þ

Xm

l¼2

Qiþl�1:i

Yiþl�1

k¼iþ1

R0

k

 !�1

ð11Þ

The derivative @mF is calculated using

@mF ¼ �
XL

i¼1

Gi�lþ1;iQ
m
i�lþ1:i; ð12Þ

where Gi−l+1,i � Z1:i−l Zi+1:L/Z1:L is calculated using

Gi�lþ1;i ¼
Yi�l

k¼1

Rk=R
0

k

 !
Yi

k¼i�lþ1

R0

k

 !�1

: ð13Þ

In practice, calculating Qm
i�lþ1:i is the bottleneck, and we pre-calculate and store non-zero

(above a threshold) values of Qm
i�lþ1:i before the optimization for pm is done. Finally, gradients

in pm are converted to gradients in βm for optimization.

Dictionary expansion. As described in the main text, new motifs are added by consider-

ing all possible concatenations of pairs of motifs in the dictionary. Consider the motif mm0

obtained by two existing motifs m and m0. The expected number of counts in Y of mm0 is cal-

culated using the derivative of F:

hNmm0 i ¼ zðmm0Þ
XL

i¼1

Gi�lþ1;iQ
mm0

i�lþ1:i; ð14Þ

where z(mm0) is the probability under the model of all possible partitionings of the

concatenated motif mm0. For example, if the dictionary contains a, b and ab with probabilities

pa, pb, pab, we have zðababÞ ¼ papbpapb þ papbpab þ pabpapb þ pabpab ¼ p2
ap

2
b þ 2papbpab þ p2

ab.

z can be computed efficiently using an equation similar to (9). hNmm0i is compared to the

model prediction �Nzðmm0Þ ’ Lzðmm0Þ=�l, where �l is the mean motif length,�l �
P

mlmpm. A

likelihood ratio test yields a p-value and pairs below a threshold (we use 0.001) are added to

the dictionary.

Dictionary truncation. For truncation, the set {pm} is re-calculated. To prune clusters of

similar motifs, we define a distance measure between a pair of motifs using the Jensen-Shan-

non (JS) divergence of the data distributions Q generated by the pair, calculated using Monte

Carlo sampling i.e., the distance between two motifs is

dðm;m0Þ ¼
DKLðQð:jmÞjjQ0Þ þ DKLðQð:jm0ÞjjQ0Þ

2ln2
; ð15Þ

where Q0 = (Q(.|m) + Q(.|m0))/2 and DKL is the standard Kullback-Leibler divergence between
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two distributions. The factor 1/2ln2 restricts the range of d between 0 and 1. Motifs which

have a distance less than a threshold (we use Jthr = 0.15, see S5 Fig) are considered similar. We

re-weight motif probabilities by adding the probabilities of similar motifs to the estimated one,

keep the representative motif with the highest re-weighted probability in a cluster and discard

the rest. Finally, {pm} is again calculated and motifs which have low counts (we use 5) are dis-

carded. Individual characters are not discarded from the dictionary using the above criteria

until the last iteration. Note that pruning using the JS divergence is only performed when �p >

0; the JS distance is always 1 otherwise.

We keep track of the free energy per symbol of the dataset after every iteration of the above

three steps. We find that the free energy monotonically decreases in almost all cases and con-

verges to a local optimum, though we have no formal proof as to why it is monotonic. The iter-

ative procedure is stopped when the relative change in free energy is <0.1% for two

consecutive iterations. The procedure usually converges within 15 iterations.

Most likely sequence of motifs. The HMM structure of the generative model allows us to

compute the most likely sequence of motifs that generate the dataset in a manner similar to the

Viterbi algorithm. In particular, given the dataset Y, we would like to find the most likely

sequence m�
1
;m�

2
; . . . defined as

m�
1
;m�

2
; . . . ¼ arg max

m1 ;m2 ;...
Pðm1;m2; . . . jYÞ ð16Þ

¼ arg max
m1 ;m2 ;...

PðYjm1;m2; . . .Þ
Y

i

pmi ð17Þ

The max over the quantity on the right hand side can be computed using dynamic pro-

gramming; we define a value function for the probability of the most likely motif sequence

maxm1 ;m2 ;... Pðm1;m2; . . . jY1:kÞ for the length k sequence Y1:k and iterate over the next most

likely motif.

Generation of the synthetic dataset. The data is drawn from a Gaussian mixture model

with 7 components in two dimensions as shown in Fig 2a of the main text. We sample a fre-

quency distribution over the 7 characters in the alphabet from a symmetric Dirichlet distribu-

tion (α = 5). We then construct a dictionary of 50 motifs, with each motif having a length drawn

from a Poisson distribution with mean 5. The characters in each motif are drawn according to

the frequency distribution over the alphabet. The probability of each motif, pm, is drawn from a

symmetric Dirichlet distribution (α = 1) and scaled with a parameter 1 − �b, where �b is the frac-

tion of the dataset that is made up of individual characters and specifies the ‘background noise’.

The data is sampled according to the generative process described previously. We use �p as

a measure of action pattern noise, which is the probability of a deletion or duplication (which

are set equal) per symbol in the motif as described previously. To quantify locomotor episode

noise, we define the discriminability μ between clusters using the distance between neighbor-

ing clusters (each of which has standard deviation one) as shown in Fig 2a. For the numerical

experiments, we set �b = 0.5 fixed and vary �p and μ. In the example shown in main text, we set

dataset size L = 40000, �p = 0, μ = 3.

Supporting information

S1 Fig. BASS performance on synthetic data with pattern noise. (a) The true probabilities of

the motifs (yellow dots) and probabilities estimated (green dots) by our algorithm showing

successful reconstruction of the dictionary for �p = 0.1, L = 40, 000. The crosses are low-proba-

bility motifs not identified by the algorithm. (b) The percentage of correctly placed partitions

with increasing dataset size. Note that this measure differs from the measure used in Fig 2c

PLOS COMPUTATIONAL BIOLOGY A lexical approach for identifying behavioural action sequences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009672 January 10, 2022 24 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009672.s001
https://doi.org/10.1371/journal.pcbi.1009672


(which additionally measures whether the correct symbol is decoded). This new measure is

simpler to calculate when �p 6¼ 0 since an extra alignment step is required to use the former

measure when there are insertions and deletions. The corresponding optimal partitioning per-

formance when the true dictionary is known is shown in dashed lines. In both panels, we use

�b = 0.5, μ = 3, pd = 0.5.

(EPS)

S2 Fig. Bout categorization. (a) The held-out log likelihood from fitting the Gaussian Mixture

Model to the exploratory and aversive datasets vs the number of mixture components. We

characterize each bout using its speed, change in heading, summed tail angle (integrated abso-

lute tail angle over time) and the first three PC components of the tail angles. (b) The histo-

grams of speed, change in heading and duration of bout for each bout type.

(EPS)

S3 Fig. Bout locations along the well. Histogram of larvae positions along the well in explor-

atory (black) and aversive (red) datasets.

(EPS)

S4 Fig. Bout categorization and motif segmentation of the dataset from Marques et al. (a)

The five bout types identified using a Gaussian Mixture Model. Each bout is characterized

using its displacement, change in heading and the first four PC components of the tail angles.

(b) The histograms of displacement and change in heading for the five bout types. (c) A sample

from the dataset showing the most likely segmentation of the data into motifs from the learned

dictionary.

(EPS)

S5 Fig. Hyperparameter selection via held-out test sets. Pattern noise �p, the probability of a

deletion pd and the Jensen-Shannon divergence threshold for removing similar bouts, Jthr,

were set by computing the free energy per bout on a randomly split held-out dataset of approx-

imately 18000 bouts (training dataset size was 70000). The free energy per bout for each tested

parameter triplet is computed by averaging over 18 trials (with a separate random split for

each trial). The red square shows the parameters (�p = 0.1, pd = 0.2, Jthr = 0.15) chosen for the

rest of our analysis.

(EPS)

S1 Table. Motifs discovered in exploratory data. The 25 motifs that deviate most from Mar-

kovianity are shown (as measured by a p-value with Markovianity as the null hypothesis, see

main text).

(PDF)

S2 Table. Motifs discovered in the data from Marques et al. The 25 motifs that deviate most

from Markovianity are shown (as measured by a p-value with Markovianity as the null hypoth-

esis, see main text).

(PDF)

S3 Table. Motifs discovered in the data from chemotactic fish in the aversive environment.

The 25 motifs that deviate most from Markovianity are shown (as measured by a p-value with

Markovianity as the null hypothesis, see main text).

(PDF)

S1 Movie. Movie showing the raw video captured by the camera and the most likely bout

categorization using the Gaussian Mixture Model. The data is from a single larva in the

exploratory environment.

(MOV)
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S2 Movie. Movie showing the raw video captured by the camera and the most likely bout

categorization using the Gaussian Mixture Model. The data is from a single larva in the aver-

sive environment.

(MOV)

S3 Movie. Movie showing a sample of the the abnormal motif fTff (see main text).

(MOV)
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