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Ants, mice, and dogs often use surface-bound scent trails to
establish navigation routes or to find food and mates, yet their
tracking strategies remain poorly understood. Chemotaxis-based
strategies cannot explain casting, a characteristic sequence of
wide oscillations with increasing amplitude performed upon sus-
tained loss of contact with the trail. We propose that tracking
animals have an intrinsic, geometric notion of continuity, allowing
them to exploit past contacts with the trail to form an estimate
of where it is headed. This estimate and its uncertainty form
an angular sector, and the emergent search patterns resemble a
“sector search.” Reinforcement learning agents trained to execute
a sector search recapitulate the various phases of experimentally
observed tracking behavior. We use ideas from polymer physics to
formulate a statistical description of trails and show that search
geometry imposes basic limits on how quickly animals can track
trails. By formulating trail tracking as a Bellman-type sequential
optimization problem, we quantify the geometric elements of
optimal sector search strategy, effectively explaining why and
when casting is necessary. We propose a set of experiments to
infer how tracking animals acquire, integrate, and respond to past
information on the tracked trail. More generally, we define nav-
igational strategies relevant for animals and biomimetic robots
and formulate trail tracking as a behavioral paradigm for learning,
memory, and planning.
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xperimental studies demonstrate the ability of ants, dogs,

humans, and rodents to track odor trails (1-6). Rodents
accurately track trails in the dark, remaining close to the trail and
casting when contact is lost (Fig. 14) (5). Carpenter ants closely
follow a trail while sampling it using a “crisscross” pattern with
their two antennae (Fig. 1B) (1). Current models of this behavior
rely on variants of chemotaxis (7) based on continuous estimates
of the rising and falling odor gradients as the trail is crossed.
One such strategy compares simultaneous odor concentrations
detected by two spatially separated sensors (8). Yet, rats with
a blocked nostril (5) and ants with a single antenna (1) are
still able to track trails, although less accurately. An alternative
chemotaxis strategy has the animal measuring odor gradients
along its trajectory and turning when a significant decrease is
perceived (5).

While chemotaxis-based strategies can allow for trail tracking
when trails are continuous, they fail when trails are broken and
gradients are absent, which is certainly relevant for animals track-
ing trails in the wild. In experiments with broken trails (1, 5), the
absence of signal triggers casting, which is a fundamental feature
shared with olfactory searches in a turbulent medium (9-11).
Even though turbulent searches also feature sporadic cues, air-
borne odor signals tend to be localized in a cone, and even within
the cone, the signal is highly fluctuating (12, 13). Therefore, be-
yond qualitative similarities between terrestrial trail tracking and
airborne olfactory searches, the specific statistics of detections,
geometric constraints, and behavioral patterns are distinct.

In contrast with chemotaxis-based algorithms, we propose
an alternative framework built on the searcher exploiting past
contacts with the trail to maintain an estimate of the trail’s
local heading and its uncertainty. A minimal memory of the
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approximate locations of the two most recent contacts suffices
to delineate an angular sector of probable trail headings that
radiates from the most recent detection point. The resulting
“sector search” provides a quantitative description of trail-
tracking behavior that unifies its various phases and yields specific
experimental predictions.

Results

We first show that reinforcement learning (RL) based on the
sector search idea can recapitulate natural behavior. An RL
agent in this scheme learns to traverse the trail as quickly as
possible while minimizing the probability of losing it (Materials
and Methods has details). Our in silico RL experiments show
that general aspects of animal tracking behavior naturally emerge
(Fig. 1 C and D). Specifically, casts are observed around the
most likely heading of the trail, and their amplitude is within the
angular sector defined by the initial uncertainty o of the trail’s
heading ¢. The reason for the oscillatory pattern of casting is
intuitive. Indeed, while moving along a path C without detecting
the trail, the estimated heading’s probability distribution P(¢)
(Fig. 1E) is updated into P¢(¢) as

P(¢) = Pc(¢) x Te(4)P(6) (1]

where I'c (¢) is the probability of not detecting the trail headed
along ¢. Irrespective of the explicit form of I'c (¢), the depletion
of headings already explored generally leads to a bimodal poste-
rior distribution, with the two modes at the edges of the angular
sector (Fig. 1E). The search process is analogous to an agent
“foraging” for the trail at two spatially separated patches. The
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Fig. 1. Sample trail-tracking trajectories from previous experiments and our RL simulations. (A) A rat (head position in red) tracking a trail (in black). Note

the wide casts on extended loss of contact with the trail. Data reproduced from ref. 5. (B) A carpenter ant tracking an odor trail (black) using a stereotyped
crisscrossing strategy (1). (C and D) Sample trajectories obtained from RL for agents with one sensor (C) and two sensors (D) recapitulate experimentally
observed tracking patterns in A and B. (E, Left) Search paths executed by RL agents with a single sensor upon loss of contact with the trail. (E, Right) The
initial prior distribution (E, Bottom Right) over trail headings transforms into a bimodal posterior distribution (E, Top Right and E, Middle Right), which
drives the oscillatory pattern of casting. (F) RL agents with two sensors show a characteristic crisscrossing pattern close to the last detection point. The search
path is similar to the single-sensor agent at long distances (5/ Appendix, Fig. 514). (G) RL agents show a trade-off between tracking speed (rescaled by the

sector angle o, sensor size a, and sampling frequency w) and the probability of losing the trail entirely.

emergence of oscillations is then understood in terms of marginal
value theory (14, 15); we show using a minimal model of casting
(Materials and Methods) that the turning point of a cast occurs
when the marginal value of continuing on one side of the sector
(i.e., without paying the cost of traveling) is outweighed by the
probability of finding the trail on the opposite side.

We proceed now by establishing geometric limits on tracking
speed. A typical RL curve for the probability of losing the trail vs.
speed is shown in Fig. 1G. Its monotonicity epitomizes universal
limits that “staying on the trail” imposes on tracking speed. Intu-
itively, searching slowly reduces the distance between detections
(the interdetection interval [IDI]), decreasing the uncertainty in
the estimate of the trail’s heading and thus, the probability of
losing the trail. However, these benefits come at the cost of slow
forward progression along the trail. In contrast, moving quickly
reduces the detection rate, leading to longer IDIs, increased
uncertainty, and loss probability.

We quantify the above trade-off using simple scaling argu-
ments. Suppose the tracking agent has a sensor of size a, samples
at a frequency w, and moves with a fixed forward speed v. As
shown in Fig. 24, the angle subtended by the detector at distance
r from the last contact is a/r. The agent searching over an angular
sector then scans at a rate d¢/dt = wa/r ~ wa/vt. Integrating
the above expression for the angular rate, - [d¢ = [ dt/t,
we obtain the typical time for searching over a sector angle o:
t. ~w te?"/% The corresponding distance L ~ vt, is obtained
using r ~ vt. The heading of the trail is known with uncertainty o,
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which is the opening angle of the conical sector shown in Fig. 24.
Uncertainty is expected to depend on the distance L' from the
previous detection as ¢(L’) = (L'/£)”, where £ and ~ charac-
terize the statistics of trails (below and Fig. 2D). Importantly,
a stable strategy for long-term tracking requires that successive
IDIs should on average be equal (i.e., L = L"). Combining L =
vt, with L' = ¢'/7¢ and the expression for t., we finally obtain
an upper bound on the tracking speed v:

1‘,1+')f

m =(wtc)_7log(wtc)€'y_le_l. [2]
Its maximum vmax ~ w(af™) T+ defines the optimal stable track-
ing speed in terms of the tracker’s sensory parameters and trail
statistics. The basic element that leads to this bound is the
geometric factor 1/ that underlies searching over an angular
sector. The result from Eq. 2 that wt, is of order one (e'/7)
explains experimental observations (Fig. 1) that tracking animals
typically take only a few samples to reestablish contact with the
trail.

The above argument implies that tracking speed depends on
the trail statistics via the relation between uncertainty and the
distance between points of contact. We use ideas from polymer
physics to quantify how this relationship depends on geometric
properties of the trails. Specifically, we ask how detecting the trail
ataset of points ry, r1, 72, . .. (Fig. 2B) constrains the searcher’s
estimate of its future heading. We consider the case when the
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Fig. 2. History dependence and trail models. (A and B) Trail tracking naturally splits into distinct episodes punctuated by trail detections by the searcher. In
each episode, we propose that the tracker searches for the trail using an estimate of the trail's heading updated based on the past points of contact with
the trail and a model of trail statistics. We affix a polar coordinate system with the origin at the most recent contact point and the azimuthal angle defined
relative to the estimated trail heading. The uncertainty o fixes the angular width of the search. The searcher moves forward with a speed v while sampling
at a frequency w. A sensor of size a spans a/r radians at distance r, which determines the rate at which the angular space is searched. (C) To estimate where
the trail is headed and its uncertainty from past contacts, the tracker can either use local anisotropy estimated from a single contact (C, Left) or extrapolate
from previous points of contact using a model of trail statistics (C, Center and C, Right). In the latter case, the most likely trail paths (dashed blue lines)
are similar to interpolated splines, which capture basic geometric notions of persistence in heading and curvature. (D) The uncertainty in trail heading (in
radians) as a function of the distance, L, between points of contact for the GWLC model of trails discussed in the text. A is the correlation length scale of
the trail's curvature. 5/ Appendix, Fig. S3C illustrates the various scaling regimes exhibited by the GWLC model. (E) The correlation between trail heading at
the most recent and second most recent points of contact for the GWLC model changes with the distance between these points, yet it is generally expected
to be negative. (F) The expected search distance, vt., against the distance, L, between the previous two points of contact for a/A = 0.1 and v/aw = 5, 6.25
{black and gray, respectively) (discussion above Eq. 2). The point of intersection with the 45° dashed line is the condition for a stable tracking strategy. The

gray curve corresponds to vmax beyond which tracking is unstable.

searcher keeps track of the two most recent points of contact with
perfect memory of their location. A more extended memory is
discussed further below; an imperfect memory adds to the un-
certainty and can be easily accommodated within the framework
developed below. Intuition for the two-point case is provided
by the familiar “curve” tool in graphical design software, which
draws a cubic spline through a set of prescribed points (Fig. 2C).
The tool captures the simple intuition that tangents to a curve
are continuous (i.e., the trail’s heading has local persistence),
which is a plausible, minimal assumption about trails. We show
in ST Appendix that cubic spline interpolation corresponds to
the most likely path (through a fixed set of points) in the so-
called worm-like chain (WLC) ensemble (originally introduced
for polymers) (16, 17). In this ensemble, the tangent direction
undergoes diffusion with rate «, and the uncertainty is then o =

(kL/3) 2 , which determines the two parameters: the scaling law,
v = 1/2, and the correlation length scale, £ = 3x*,in Eq. 2. Ac-
tual trails could be smoother and have a well-defined curvature
(the rate of change of heading) that persists on a characteristic
length scale A. We capture this ensemble of curves by introduc-
ing two additional parameters: persistence length A and typical
radius of curvature £ (Materials and Methods). Uncertainty is
then given by o =~ L/2¢ (hence, v =1 and £ = 2£) at distances
L < X, while diffusive scaling is recovered at larger distances with
an effective diffusivity x = 2X& 2. This extended model defines
a generalized worm-like chain (GWLC) ensemble with cross-
overs across the various regimes (Materials and Methods). In
summary, the model leads to a “propagator,” which encodes how
information about past contacts is integrated to form an estimate
of the trail’s heading while taking into account geometric aspects
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of trails. A general feature is that the headings at two consecutive
contacts are anticorrelated (Fig. 2E), which reflects the bending
of the spline relative to the chord seen in Fig. 2C. We emphasize
that although the general strategy of the agent depends on the
statistical properties of the trail ensemble, the specific actions
taken by the tracking agent along a particular trail, such as
reorientation based on the most likely trail heading, will depend
on the history of contact points via the propagator for the WLC
(or GWLC) model.

Why and when do searchers need to cast? The question stems
from our previous result that a few samples are typically sufficient
to reestablish contact with the trail. To address it quantitatively,
we consider again the setup of Egs. 1 and 2. The nondetection
probability averaged over the ensemble of trails that pass through
past contact points is

Te = {e_'““'.lrc %Ia(”(s)m(s)))y_ [3]

where s parametrizes the searcher’s path C and the Boolean
indicator function I, measures if the agent at r(s) is within
sensing range a of the trail at y (i.e., the integral is the time
spent in contact with the trail). Numerical simulations of the
search show a power law scaling regime for I'c, which is cut off at
short distances by the initial surge and at long distances by trails
escaping out of the casting envelope (Fig. 3 A-C). We proceed
to explain these three regimes shown in Fig. 3B. Intuitively, at
short radial distances r < a/o ~ v/w (the latter from Eq. 2), the
sensor covers the entire sector of likely headings, the searcher
can just move forward, and T'c o e "“"/? (Fig. 3B). Casting sets
in if the searcher reaches, without detection, a distance r =
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