1012

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 3, SEPTEMBER 2021

Slow and Stale Gradients Can Win the Race

Sanghamitra Dutta

Abstract—Distributed Stochastic Gradient Descent (SGD)
when run in a synchronous manner, suffers from delays in run-
time as it waits for the slowest workers (stragglers). Asynchronous
methods can alleviate stragglers, but cause gradient staleness
that can adversely affect the convergence error. In this work, we
present a novel theoretical characterization of the speedup offered
by asynchronous methods by analyzing the trade-off between
the error in the trained model and the actual training runtime
(wallclock time). The main novelty in our work is that our run-
time analysis considers random straggling delays, which helps
us design and compare distributed SGD algorithms that strike a
balance between straggling and staleness. We also provide a new
error convergence analysis of asynchronous SGD variants with-
out bounded or exponential delay assumptions. Finally, based on
our theoretical characterization of the error-runtime trade-off,
we propose a method of gradually varying synchronicity in dis-
tributed SGD and demonstrate its performance on the CIFAR10
dataset.

Index Terms—Asynchronous stochastic gradient descent, dis-
tributed machine learning, optimization, performance analysis,
stragglers.

I. INTRODUCTION

TOCHASTIC gradient descent (SGD) is the backbone of

most state-of-the-art machine learning algorithms. Thus,
improving the stability and convergence rate of SGD algo-
rithms is critical for making machine learning algorithms fast
and efficient. Classical SGD was designed to be run on a sin-
gle computing node, and its error-convergence with respect
to the number of iterations has been extensively analyzed
and improved in optimization and learning theory literature.
Due to the massive training data-sets and deep neural network
architectures used today, running SGD at a single node can
be prohibitively slow. This calls for distributed implementa-
tions of SGD, where gradient computation and aggregation
is parallelized across multiple worker nodes. Although paral-
lelism boosts the amount of data processed per iteration, it
exposes SGD to unpredictable node slowdown and commu-
nication delays stemming from variability in the computing
infrastructure. Thus, there is a critical need to make distributed
SGD fast, and yet robust to system variability.
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The convergence speed of distributed SGD depends on two
factors: 1) the error in the trained model versus the num-
ber of iterations, and 2) the number of iterations completed
per second. Traditional single-node SGD analysis focuses on
optimizing the first factor, because the second factor is gen-
erally a constant when SGD is run on a single dedicated
server. In distributed SGD, which is often run on shared cloud
infrastructure, the second factor depends on several aspects
such as the number of worker nodes, their gradient computa-
tion delays, and the protocol (synchronous or asynchronous)
used to aggregate their gradients. Hence, in order to achieve
the fastest convergence speed we need: 1) optimization tech-
niques to maximize the error-convergence rate with respect
to iterations, and 2) scheduling techniques to maximize the
number of iterations completed per second. These direc-
tions are inter-dependent and need to be explored together
rather than in isolation. While many works have advanced
the first direction, the second is less explored from a the-
oretical point of view, and the juxtaposition of both is an
unexplored problem. Our goal is to design SGD algorithms
that easily lend themselves to distributed implementations, and
are robust to fluctuations in computation and network delays
as well as unpredictable node failures. This work improves
the true convergence speed of distributed SGD with respect
to wallclock time by jointly designing scheduling techniques
to reduce per-iteration delay, and optimization algorithms to
minimize error-versus-iterations.

A commonly used distributed SGD framework, which is
first deployed at a large-scale in Google’s DistBelief [1], is
the parameter server framework, which consists of a cen-
tral parameter server (PS) that is used to aggregate gradients
computed by worker nodes as shown in Figure 1 (a). In syn-
chronous SGD, the PS waits for all workers to push gradients
before it updates the model parameters. Random delays in
computation (referred to as straggling) are common in today’s
distributed systems as pointed out in the influential work of [2].
Waiting for slow and straggling workers can diminish the
speedup offered by parallelizing the training. To alleviate the
problem of stragglers, SGD can be run in an asynchronous
manner, where the central parameters are updated without
waiting for all workers. However, workers may return stale
gradients that were evaluated at an older version of the model,
and this can make the algorithm unstable. Synchronous SGD
typically has better convergence error but has a higher wall-
clock runtime per iteration because it requires synchronization
of straggling workers. On the other hand, asynchronous SGD
has faster wallclock runtime per iteration but it also has higher
convergence error due to the problem of gradient staleness.

Our goal is to achieve the lower envelope of the error-
runtime trade-offs achieved by synchronous and asynchronous
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Fig. 1. (a) The parameter server framework (b) Synchronous SGD has lower
error floor but higher runtime, while, asynchronous SGD converges faster but
has a higher error floor. We want to achieve the lower envelope between the
two curves which characterizes the best error-runtime trade-off.

SGD (see Figure 1(b)), which characterizes the best error-
runtime trade-off. Towards achieving this goal, in this work
we present a systematic theoretical analysis of the trade-off
between error and the actual runtime (instead of iterations),
modeling wallclock runtimes as random variables with a gen-
eral distribution. Based on our analysis, we propose AdaSync,
which is a method of adaptively increasing the number of
nodes whose gradients are aggregated synchronously by the
central PS. Our theoretical results are also substantiated with
experiments on CIFAR10 [3] dataset.

A. Main Contributions

Existing machine learning algorithms mostly try to optimize
the trade-off of error with the number of iterations, epochs or
“work complexity” [4], [5], while assuming the time spent
per iteration to be a constant. However, due to straggling
and synchronization bottle-necks in the system, the same
gradient computation task can often take different time to
complete across different workers or iterations [2]. This work
departs from the classic optimization theory view of analyz-
ing error convergence with respect to the number of iterations
and takes the novel approach of minimizing the error with
respect to the wallclock time. By taking a joint runtime and
error optimization approach, we provide the first comprehen-
sive runtime-per-iteration comparison of SGD variants and
design adaptive synchronous SGD algorithms that can achieve
a super-linear runtime speed-up over naive synchronous SGD,
while still preserving a low error floor. The main contributions
of this paper are summarized below.

o Straggler-Resilient  Variants of Synchronous and
Asynchronous SGD: In order to a strike a balance
between the two extremes: synchronous and asyn-
chronous SGD, we propose partially synchronous SGD
variants such as K-sync, K-batch-sync, K-async and
K-batch-async SGD, where K is the number of workers
(out of the total of P workers) that the parameter waits
for when aggregating gradients. Although some of these
distributed SGD variants have been proposed previously,
to the best of our knowledge, this is the first work to
provide a unified error convergence and runtime analysis
of these variants.

o Runtime Analysis of the Distributed SGD Variants: We
provide the first systematic analysis of the expected run-
time per iteration of synchronous and asynchronous SGD
and their variants. We do so by modelling the runtimes at
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Fig. 2. Distributed SGD variants span the error-runtime trade-off between
fully Sync-SGD and fully Async-SGD. Here K is the number of workers or
mini-batches the PS waits for before updating the model parameters, as we
elaborate in Section II.

each worker as random variables with an arbitrary general
distribution. For commonly used delay distributions such
as exponential, asynchronous SGD is O(PlogP) times
faster than synchronous SGD where P is the total number
of workers.

o More General Error Analysis of Asynchronous SGD
Variants: We propose a new error convergence analysis
for asynchronous SGD and its variants for strongly convex
objectives that can also be extended to provide relaxed
guarantees for non-convex formulations. In this analy-
sis we relax the bounded delay assumption in [6] and
the bounded gradient assumption in [7]. We also remove
the assumption of exponential computation time and the
staleness process being independent of the parameter val-
ues [8] as we will elaborate in Section IV. Interestingly,
our analysis also brings out the regimes where asyn-
chronous SGD can be better or worse than synchronous
SGD in terms of speed of convergence.

o Insights from the Error-versus-wallclock Time Trade-off:
By combining our runtime and error analysis described
above, we can theoretically characterize the error-versus-
wallclock time trade-off for different SGD variants.
Figure 2 illustrates the error at convergence (or error
floor) versus the time to reach convergence of differ-
ent SGD variants. Observe how the K-batch-async and
K-async strategies can span different points on the trade-
off as K varies. By choosing the right value of K we can
achieve a desired error at convergence in minimum time.
The theoretical results presented in this paper are corrob-
orated by rigorous experiments on training deep neural
networks for classification of the CIFAR10 dataset.

o AdaSync strategy to Adapt Synchronocity during
Training: Instead of fixing K, we can achieve a win-win
in the error-runtime trade-off by adapting K so as to
gradually increasing the synchrony of the different
SGD variants. We propose AdaSync, a method that
uses the theoretical characterization of the error-runtime
trade-off, to decide how to adapt K, as illustrated in
Figure 3. This method is inspired from [9], [10] which
adapts the communication frequency for a different class
of SGD methods known as periodic averaging SGD.
Interestingly, similar to [9], our proposed method does
not require knowledge of the algorithm parameters such
as Lipschitz constant, variance of the stochastic gradient
etc. as one would otherwise require if they choose to
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Fig. 3. We propose AdaSync, a method of adaptively increasing K which is a
measure of the synchronicity of the algorithm. AdaSync aggregates gradients
from any K out the P total nodes. It helps achieve the best error-runtime
trade-off by gradually increasing K.

simply minimize the error-runtime trade-off with respect
to parameter K. Experimental results on CIFAR 10 (see
Figure 3b) show that AdaSync not only helps achieve
the same training loss much faster but also gives smaller
test error than fixed-K strategies.

B. Related Works

Single Node SGD: Analysis of gradient descent dates back
to classical works [11] in the optimization community. The
problem of interest is the minimization of empirical risk:

N
. def 1
min {F(w) 3 Nzlf(w’ s,o}. (1)
n=
Here, &, denotes the n—th data point and its label where
n=1,2,...,N,and f(w, &,) denotes the composite loss func-

tion. Gradient descent is a way to iteratively minimize this
objective function by updating the parameter w in the opposite
direction of the gradient of F'(w) at every iteration, as given by:

N
Wit = W — T]VF(W]') =W — 1% Z Vf(Wj, én)

n=1

The computation of Zﬁzvzl Vf(wj, &,) over the entire dataset
is expensive. Thus, stochastic gradient descent [12] with mini-
batching is generally used in practice, where the gradient is
evaluated over small, randomly chosen subsets of the data.
Smaller mini-batches result in higher variance of the gradi-
ents, which affects convergence and error floor [4], [13], [14].
Algorithms such as AdaGrad [15] and Adam [16] gradually
vary learning rate to achieve a lower error floor. Another class
of algorithms includes stochastic variation reduction tech-
niques such as SVRG [17], SAGA [18] and their variants listed
out in [19]. For a detailed survey of SGD variants, see [20].

Synchronous SGD and Stragglers: To process large datasets,
SGD is parallelized across multiple workers with a central
PS. Each worker processes one mini-batch, and the PS aggre-
gates all the gradients. The convergence of synchronous SGD
is same as mini-batch SGD, with a P-fold larger mini-batch,
where P is the number of workers. However, the time per
iteration grows with the number of workers, because strag-
gling workers slow down randomly [2]. Thus, it is important
to juxtapose the error reduction per iteration with the run-
time per iteration to understand the true convergence speed of
distributed SGD.
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Asynchronous SGD and Staleness: A complementary
approach to deal with the issue of straggling is to use
asynchronous SGD. In asynchronous SGD, any worker can
evaluate the gradient and update the central PS without waiting
for the other workers, as explained in more detail in Section II.
Asynchronous variants of existing SGD algorithms have also
been proposed and implemented in systems [1], [21]-[24].
In general, analyzing the convergence of asynchronous SGD
with the number of iterations is difficult in itself because of
the randomness of gradient staleness. There are only a few
pioneering works such as [6]—-[8], [25]-[34] in this direction.
In [25], a fully decentralized analysis was proposed that con-
siders no central PS. In [7], a new asynchronous algorithm
called Hogwild was proposed and analyzed under bounded
gradient and bounded delay assumptions. This direction of
research has been followed upon by several interesting works
such as [6] which proposed novel theoretical analysis under
bounded delay assumption for other asynchronous SGD vari-
ants. In [30]-[33], the framework of ARock was proposed for
parallel coordinate descent and analyzed using Lyapunov func-
tions, relaxing several existing assumptions such as bounded
delay assumption and the independence of the delays and
the index of the blocks being updated. In algorithms such
as Hogwild, ARock etc. every worker only updates a part
of the central parameter vector w at every iteration and are
thus essentially different in spirit from conventional asyn-
chronous SGD settings [6], [26] where every worker updates
the entire w. In an alternate direction of work [27], asynchrony
is modeled as a perturbation. In this work, we present a new
and simpler analysis of asynchronous SGD with number of
iterations that relaxes some of the assumptions in previous
literature, and helps us to characterize the error-runtime trade-
off as well as easily derive adaptive update rule for gradually
increasing synchrony.

Erasure Coded Computing. To deal with stragglers and
speed up machine learning, system designers have proposed
several straggler mitigation techniques such as [35] that try to
detect and avoid stragglers. An alternate direction of work is to
use redundancy techniques, e.g., replication or erasure codes,
as proposed in [36]-[59] to deal with the stragglers. While
recent works such as [41] propose erasure coding techniques
to overcome straggling workers, the SGD variants considered
in this paper such as K-sync and K-batch-sync SGD exploit
the inherent redundancy in the data itself, and ignore the gradi-
ents returned by straggling workers. If the data is well-shuffled
such that it can be assumed to be i.i.d. across workers, then
for the same effective batch-size, ignoring straggling gradients
will give equivalent error scaling as coded strategies, and at
a lower computing cost. However, coding strategies may be
useful in the non i.i.d. case, when the gradients supplied by
each worker provide diverse information that is important to
capture in the trained model. Other related works on gradi-
ent coding or approximate gradient coding include [48], [60].
Following our initial conference publication, other interesting
related works include [61]-[67] that bridge distributed gradient
descent, coding theory, and asynchrony.

The rest of the paper is organized as follows. Section II
describes our problem formulation introducing the system
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model and assumptions. Section III provides the theoretical
results on the analysis of true wallclock runtime per iteration
for the different SGD variants and provides insights on quan-
tifying the speedups that one variant provides over another.
In Section IV, we discuss our analysis of error convergence
with number of iterations where we also include our new con-
vergence analysis for asynchronous and K-async SGD. Proofs
and detailed discussions are presented in the Appendix in the
supplementary material. In Section V, we combine the runtime
analysis with the error analysis to derive novel error-runtime
trade-offs and demonstrate how our analysis could inform
predicting the trend of the trade-off for distributed systems
with different runtime distributions. Finally, in Section VI,
we introduce our proposed method AdaSync that gradually
varies synchronicity (parameter K) to achieve the desirable
error-runtime trade-off, followed by experimental results. We
conclude with a brief discussion in Section VII.

II. PROBLEM FORMULATION

Our objective is to minimize the risk function of the param-
eter vector w as mentioned in (1) given N training samples.
Let S denote the total set of N training samples, i.e., a col-
lection of some data points with their corresponding labels.
We use the notation £ to denote an index € S (either a single
datapoint and its label or a single mini-batch of m samples of
data and their labels).

A. System Model

We assume that there is a central parameter server (PS)
with P parallel workers as shown in Section I. The workers
fetch the current parameter vector w; from the PS as and when
instructed in the algorithm. Then they compute gradients using
one mini-batch and push their gradients back to the PS as and
when instructed in the algorithm. At each iteration, the PS
aggregates the gradients computed by the workers and updates
the parameter w. Based on how these gradients are fetched
and aggregated, we have different variants of synchronous or
asynchronous SGD.

B. Variants of SGD

We now describe the SGD variants considered in this paper.
We note that some of these variants have been proposed ear-
lier under alternate names in different papers, as we will
refer to during our descriptions. In this work, we give a uni-
fied runtime and error analysis to compare them with each
other in terms of their true error-runtime trade-off, a problem
that has not been considered in prior works. Please refer to
Figure 4 and Figure 5 for a pictorial illustration of the SGD
variants.

K-sync SGD: This is a generalized form of synchronous
SGD, also suggested in [21], [68] to offer some resilience to
straggling as the PS does not wait for all the workers to finish.
The PS only waits for the first K out of P workers to push
their gradients. Once it receives K gradients, it updates w; and
cancels the remaining workers. The updated w; | is sent to all
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Fig. 4. For K =2 and P = 3, we illustrate the K-sync and K-batch-sync SGD
in comparison with fully synchronous SGD. Lightly shaded arrows indicate
straggling gradient computations that are canceled.
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Fig. 5. For K =2 and P = 3, we illustrate the K-async and K-batch-async
algorithms in comparison with fully asynchronous SGD.

P workers for the next iteration. The update rule is given by:

K
n
Witl =W — = Zg(wj, &) 2)
=1
Here [ = 1,2,...,K denotes the index of the K workers

that finish first, & ; denotes the mini-batch of m samples
used by the /-th worker at the j-th iteration and g(w;, &) =
%ZSE&J Vf(wj, &) denotes the average gradient of the loss
function evaluated over the mini-batch & ; of size m. For
K = P, the algorithm is equivalent to a fully synchronous
SGD with P workers.

K-batch-sync SGD: In K-batch-sync, all the P workers start
computing gradients with the same w;. Whenever any worker
finishes, it pushes its update to the PS and evaluates the gra-
dient on the next mini-batch at the same w;. The PS updates
using the first K mini-batches that finish and cancels the
remaining workers. Theoretically, the update rule is still the
same as (2) but here / now denotes the index of the mini-
batch (out of the K mini-batches that finished first) instead of
the worker. However K-batch-sync will offer advantages over
K-sync in runtime per iteration as no worker is idle.

K-async SGD: This is a generalized version of asyn-
chronous SGD, also suggested in [21]. In K-async SGD, all
the P workers compute their respective gradients on a single
mini-batch. The PS waits for the first K out of P that finish
first, but it does not cancel the remaining workers. As a result,
for every update the gradients returned by each worker might
be computed at a stale or older value of the parameter w. The
update rule is thus given by:

K
Wit = Wj — % Zg(wf(l,j)’ Sl‘j)- ©)

=1
Here [ =1, 2, ..., K denotes the index of the K workers that
contribute to the update at the corresponding iteration, &;; is
one mini-batch of m samples used by the /-th worker at the
Jj-th iteration and t(/,j) denotes the iteration index when the
I-th worker last read from the central PS where t(/,j) < j.
Also, g(Wr(j), &) = n% Zéeéz,,- Vf(Wz,j), &) is the average
gradient of the loss function evaluated over the mini-batch & ;
based on the stale value of the parameter w( . For K =1,
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TABLE I
IMPORTANT NOTATIONS

CONSTANTS

J: Total Iterations

P: Total number of workers
(processors/nodes)

K: Number of workers or
mini-batches to wait for

'm: Mini-batch size

RANDOM VARIABLES

T": Runtime per iteration

X;: Runtime of a worker for a
mini-batch

X k. p: K-th order statistic out
of P iid runtimes

w;: Model value at iteration j

the algorithm is equivalent to fully asynchronous SGD, and
the update rule can be simplified as:

Wit = W — ng(We(). &)- )

Here &; denotes the set of samples used by the worker that
updates at the j-th iteration such that |§;| = m and 7(j) denotes
the iteration index when that particular worker last read from
the central PS. Note that 7(j) <.

K-batch-async SGD: Observe in Figure 5 that K-async also
suffers from some workers being idle while others are still
working on their gradients until any K finish. In K-batch-async
(proposed in [6]), the PS waits for K mini-batches before
updating itself but irrespective of which worker they come
from. So wherever any worker finishes, it pushes its gradient
to the PS, fetches current parameter at PS and starts comput-
ing gradient on the next mini-batch based on the current value
of the PS. Surprisingly, the update rule is again similar to (3)
theoretically except that now [ denotes the indices of the K
mini-batches that finish first instead of the workers and w.
denotes the version of the parameter when the worker com-
puting the /—th mini-batch last read from the PS. While the
error convergence of K-batch-async is similar to K-async, it
reduces the runtime per iteration as no worker is idle.

C. Performance Metrics and Goal

Our metrics of interest are:

Definition 1 (Expected Runtime per iteration): The
expected runtime per iteration is the expected time (average
time) taken to perform each iteration, i.e., the expected time
between two consecutive updates of the parameter w at the
central PS.

Definition 2 (Expected Error after J iterations): The
expected error after J iterations is defined as ]E[F (wy) — F *],
i.e., the expected gap of the risk function from its optimal
value.

Goal: Our goal is to determine the trade-off between the
expected error (measures the accuracy of the algorithm) and
the expected runtime after a total of J iterations for the dif-
ferent SGD variants. Based on our characterization, we would
like to derive a method of gradually varying synchronicity
(parameter K) in the SGD variants to achieve a desirable
error-runtime trade-off.

In Table I, we provide a list of some of the important
notations used in this paper.
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TABLE II
EXPECTED RUNTIME FOR THE DIFFERENT SGD VARIANTS

SGD Variant Expected Runtime per iteration E [T]

K-sync E[T] = E[Xk.p] (all distributions)

K -batch-sync E[T] < KE[X;.p] (new-longer-than-used)

K-async E[T] < E[Xk.p] (new-longer-than-used)
]

K-batch-async  E [T = %E [X] (all distributions)

III. RUNTIME ANALYSIS: INSIGHTS ON
QUANTIFYING SPEEDUP

Our runtime analysis provides useful insights in quantify-
ing the speedup offered by different SGD variants. We first
state our key modeling assumptions in Section III-A, fol-
lowed by our main theoretical results on quantifying speedup
in Section III-B. Next, we include our detailed runtime anal-
ysis for the four SGD variants considered in this paper in
Section III-C, some of which are useful in the proofs of the
main results on speedups. For a summary of the expected
runtime of the different SGD variants, we refer to Table II.

A. Modeling Assumptions

The time taken by a worker to compute gradient on one
mini-batch is denoted by random variable X, whose realiza-
tion X; for i = 1,2, ..., P are i.i.d. across mini-batches and
workers.

The assumption that the computational times are identically
distributed across workers makes the analysis tractable. Since
the X/s are random variables, the actual computational times
(values of X;) can still be quite different across workers. It
would be an interesting future work to extend the analysis
to the case of non-identical distributions across workers. If
the distributions are known to be non-identical, i.e., the work-
ers are known to be heterogeneous, one might also consider
alternate techniques of allocating the tasks that somehow lever-
ages this heterogeneity, e.g., more mini-batches to the faster
workers, which can also be explored as future work.

B. Main Results on Quantifying Speedups

Our first result Theorem (1) analytically characterizes the
speedup offered by asynchronous SGD for any general distri-
bution on the wallclock time of each worker.

Theorem 1: Let the wallclock time of each worker to
process a single mini-batch be i.i.d. random variables

X1,X>,...,Xp ~ Fx. Then the ratio of the expected runtimes

per iteration for synchronous and asynchronous SGD is
IE[TSync] _ E[Xp.p] (5)
E[TAsync] E[X]

where Xp.p is the P order statistic of P i.i.d. random variables
X1,Xo,...,Xp.

Proof of Theorem 1: Fully synchronous SGD is actually
K-sync SGD with K = P, i.e., waiting for all the P work-
ers to finish. On the other hand, fully asynchronous SGD
is actually K-batch-async with K = 1. By taking the ratio
of the expected runtimes per iteration for K-sync SGD (see
Lemma 1 in Section III-C) with K = P and K-batch-async (see
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Lemma 5 in Section III-C) with K = 1, we get the result in
Theorem 1. |

In the following corollary, we highlight this speedup for the
special case of exponential computation time.

Corollary 1: Let the wallclock time of each worker to pro-
cess a single mini-batch be i.i.d. exponential random variables
X1,X2,...,Xp ~ Exp(u). Then the ratio of the expected run-
times per iteration for synchronous and asynchronous SGD is
®(PlogP).

Thus, the speedup scales with P and can diverge to infinity
for large P. We illustrate the speedup for different distribu-
tions in Figure 6. It might be noted that a similar speedup as
Corollary 1 has also been obtained in a recent work [31] under
exponential assumptions.

Proof of corollary 1: The expectation of the maximum of

Piid. X; ~ Exp(u) is EXppl = Y, & ~ “’%P [69]. This
can be substituted in Theorem 1 to get corollary 1. |

The next result illustrates the advantages offered by
K-batch-sync and K-batch-async over their corresponding
counterparts K-sync and K-async respectively.

Theorem 2: Let the wallclock time of each worker to pro-
cess a single mini-batch be i.i.d. exponential random variables
X1,X5,...,Xp ~ Exp(n). Then the ratio of the expected
runtimes per iteration for K-async (or sync) SGD and K-batch-
async (or sync) SGD is

E [TKfasynC]
E [TK—batch—asynC]

_ PE[Xgwp] 1<K<P Plog 555
T KE[X] K

where Xg.p is the K™ order statistic of i.i.d. random variables
X1,X2,...,Xp.

Proof of Theorem 2: For the exponential X;, equality holds
in (11) in Lemma 3, as we justify in Appendix B-Cl, in
the supplementary material. The expectation can be derived
as IIEl:)(K:P] = Zf:P—K—I—l % ~ k)g(}’# for 1 < K < P.
For exponential X;, the expected runtime per iteration for
K-batch-async is given by E[T] = @ = % from
Lemma 5. |

E[TKfasync] _ PE[XK;P] _ _ .
We have E[Tx o] —  KEIXT = 1 (for K = 1) since

E[X;.p] = % (also notice that 1-async and 1-batch-async
_ BTk-asyne] _
]E[TK—bmch—async]

are equivalent). When K = P, we have

EXk: ; P log P
%&f] ~ log P since E[Xp.p] = ) i, % ~ %.

Theorem 2 shows that as % increases, the speedup using
K-batch-async increases and can be upto log P times higher.

For non-exponential distributions, we simulate the behavior
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Fig. 7. Simulation of expected runtime for 2000 iterations for K-sync,

K-async and K-batch-async SGD: (Left) Pareto distribution Pareto(2, 1) and
(Right) Shifted exponential distribution 1 + Exp(1).

of expected runtime in Figure 7 for K-sync, K-async and
K-batch-async respectively for Pareto and Shifted Exponential.

C. Runtime Analysis for Four Different SGD Variants

Here, we rigorously analyze the theoretical wallclock run-
time of the four different SGD variants. These results have
also been used in providing insights on the speedup offered
by different asynchronous and batch variants in Theorem 1
and Theorem 2.

1) Runtime of K-Sync SGD:

Lemma 1 (Runtime of K-sync SGD): The expected run-
time per iteration for K-sync SGD is,

E[T] = E[Xk.p] (6)

where Xg.p is the K th order statistic of P i.i.d. random variables
X1, X2, ..., Xp.

Proof of Lemma 1: When all the workers start together,
and we wait for the first K out of P i.i.d. random variables
to finish, the expected computation time for that iteration
is E[Xk.p], where Xg.p denotes the K-th statistic of P i.i.d.
random variables X;, X, ..., Xp. [ |

Thus, for a total of J iterations, the expected runtime is
given by JE[Xk.p].

Remark 1: For X; ~ Exp(u), the expected runtime per
iteration is given by,

P P
1 1 1 [logp=
E[T] = — E - ~ (#)

i=P—K+1 K K

where the last step uses an approximation from [69]. For
justification, the reader is referred to Appendix B-A, in the
supplementary material.

2) Runtime of K-Batch-Sync SGD: The expected runtime
of K-batch-sync SGD is not analytically tractable in gen-
eral, but we obtain an upper bound on it for a class of
distributions called the “new-longer-than-used” distributions,
as defined below.

Definition 3 (New-longer-than-used): A random variable U
is said to have a new-longer-than-used distribution if the
following holds for all ¢, u > O:

Pr(U > u+t|U > t) < Pr(U > u). (7)

To understand the intuition behind this notion, let a random
variable U denote the computational time taken to perform a
task. Suppose that the task has been running for ¢ units of
time but has not finished, and the scheduler needs to decide
whether to keep the task running or abort it and launch a new
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copy. If U has a new-longer-than-used distribution, then a new
copy is expected to take longer than waiting for the already
running task to finish. Most of the continuous distributions
we encounter like normal, shifted-exponential, gamma, beta
are new-longer-than-used. Alternately, the hyper-exponential
distribution is new-shorter-than-used and it satisfies

Pr(U>u+tlU >1t) >Pr(U>u) Vt,u> 0. (8)

For the exponential distribution, the inequality (7) holds with
equality due to the memoryless property, and thus it can be
thought of as both new-longer-than-used and new-shorter-than-
used.

Lemma 2 (Runtime of K-batch-sync SGD): Suppose that
each X; has a new-longer-than-used distribution. Then,
the expected runtime per iteration for K-batch-sync is
upper-bounded as

E[T] = KE[Xi.p] €))

where X;.p is the minimum of P ii.d. random variables
X1, X2, ..., Xp.

The proof is provided in Appendix B-B, in the supplementary
material. For the special case of X; ~ Exp(u), the runtime per
iteration is distributed as Erlang(K, Pu) (see Appendix B-B,
in the supplementary material). Thus, for K-batch-sync SGD,

E[7) = .
Pu
which is what we obtain when (9) holds with equality.
3) Runtime of K-Async SGD: The expected runtime per
iteration of K-async SGD is also not analytically tractable for
non-exponential X;, but we obtain an upper bound on it for
“new-longer-than-used” distributions.
Lemma 3 (Runtime of K-async SGD): Suppose that each
X; has a new-longer-than-used distribution. Then, the expected
runtime per iteration for K-async is upper-bounded as

E[T] = E[Xk:p]

(10)

(1)

where Xk.p is the K™ order statistic of P i.i.d. random variables
X1, X>, ..., Xp.

The proof of this lemma is provided in Appendix B-C, in
the supplementary material.

Remark 2: Recall that the runtime of K-sync SGD is
E[Xk:p]. Therefore, Lemma 3 essentially implies that for new-
longer-than-used distributions, the runtime of K-async SGD is
upper-bounded by the runtime of K-sync SGD. For the spe-
cial case of exponential runtimes, (7) holds with equality, and
the expected runtime of both K-sync SGD and K-async SGD
match theoretically. However, for other classes of distributions
where (7) holds with strict inequality, the upper bound of
Lemma 3 also holds with strict inequality. In general, intu-
itively the “more” is the new-longer-than-used property, the
lower is the runtime of K-async SGD as compared to K-sync
SGD. We show this by explicitly deriving an alternate upper
bound for the shifted-exponential distribution (a special case
of the new-longer-than-used distributions) that is lower than
the expected runtime of K-sync SGD when the shift of the
distribution is large.

Lemma 4 (Alternate Upper Bound for Shifted Exponential):

Let P = nK where n is an integer greater than 1, and each
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X; follow a shifted exponential distribution with shift A, i.e.,
Xi ~ A + Exp(u). Then, the expected runtime for any n
consecutive iterations of K-async SGD is upper-bounded as

n—1
ETi+T+...+T,] < A+ ZE[)’?K:(P—iK)]v (12)
i=0

where X ~ Exp(u) and X k:(p—ik) denotes the K " order
statistic out of P — iK i.i.d. random variables.

The proof of this lemma is also provided in Appendix B-C,
in the supplementary material. Based on this lemma, the upper-
bound on per-iteration runtime can be approximated as:

1 n—1 -
p <A + ; E[XK:(PiK)]>
1=
A+1 i P . P—K
~—+4+—|1o 0
n o nyu gP—K gP—2K
botlog iz DR T (K)
co.tlog—— —1o
gP—(n—l)K nu g
A logP KA KlogP
~o 2822 e, (13)
n nu P Pu

In comparison, the runtime per iteration for K-sync SGD is
(A + W). Thus, a high value of A implies that the
runtime of K-async SGD is strictly lower than K-sync SGD.

4) Runtime of K-Batch-Async SGD: We derive an expres-
sion that holds for any distribution on X;.

Lemma 5 (Runtime of K-batch-async SGD): The expected
runtime per iteration for K-batch-async SGD in the limit of
large number of iterations is given by:

E[T] — KE[X].
P

Unlike the results for the synchronous variants, this result
on average runtime per iteration holds only in the limit of
large number of iterations. To prove the result we use ideas
from renewal theory. For a brief background on renewal theory,
the reader is referred to Appendix B-D, in the supplementary
material.

Proof of Lemma 5: For the i-th worker, let {N;(¢), t > 0}
be the number of times the i-th worker pushes its gradient
to the PS over in time ¢. The time between two pushes is
an independent realization of X;. Thus, the inter-arrival times

(14)

xM x® . are iid. with mean inter-arrival time E[X;].
Using the elementary renewal theorem [70, Ch. 5] we have,
E[N;(t 1
lim VO] _ S— (15)
=00 P E[X;]

Thus, the rate of gradient pushes by the i-th worker is 1/E[X;].
As there are P workers, we have a superposition of P renewal
processes and thus the average rate of gradient pushes to the
PS is

- EN)]
lim Z — =

t—00 t -
i=1 i=1

_ P 16
= EIX]’ (16)

1
E[X;]

Every K pushes are one iteration. Thus, the expected run-
time per iteration or effectively the expected time for K pushes
is given by E[T] = @. |
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IV. ERROR ANALYSIS: NEW CONVERGENCE ANALYSIS
FOR ASYNCHRONOUS SGD

In this section, we discuss our analysis of error convergence
with the number of iterations. We first state some assump-
tions on the objective function in Section IV-A, followed by
the main theoretical results on the error analysis including
our novel analysis for asynchronous SGD and its variants in
Section IV-B.

A. Assumptions on the Objective Function

Closely following [4], we make these assumptions:
1) F(w) is an L— smooth function. Thus,

[IVF(w) — VEW)|l2 < Lllw —W|l2 V w,w. (17)
2) F(w) is strongly convex with parameter c. Thus,

2¢(F(w) — F*) < [IVF(W)|[5 V w. (18)

Refer to Appendix A, in the supplementary material for
discussion on strong convexity. Our results also extend
to non-convex objectives, as discussed in Theorem 4.

3) The stochastic gradient is an unbiased estimate of the
true gradient:

Egw [¢(We, §)] = VF(W) ¥ k <.

Observe that this is slightly different from the common
assumption that says Eg[g(W, &)] = VF(w) for all w.
Observe that all w; for j > k is actually not independent
of the data &. We thus make the assumption more rig-
orous by conditioning on wy for k < j. Our requirement
k < j means that wy is the value of the parameter at
the PS before the data & was accessed and can thus be
assumed to be independent of the data &;.

4) Inspired from [4], we also assume that the variance of
the stochastic update given wy at iteration k before the
data point was accessed is also bounded as follows:

19)

Eg [ 118(Wi, &) — VFw 1]

O’2 MG 2 .
= —+ —IlIVFWI; Y k<. (20

m m

5) In the analysis of K-async and K-batch-async SGD, we
replace some assumptions in existing literature that we
discuss in Section IV-B, and instead use an alternate
staleness bound that allows for large, but rare delays.
We assume that for some y <1,

E[IIVFw)=VF(weap)I3] = vE[IVFopI3].

B. Main Theoretical Results

In this work, we provide a novel convergence analysis of
K-async SGD for fixed 7, relaxing the following assumptions
in existing literature.

o In several prior works such as [8], [31], [40], [42], it
is often assumed, for the ease of analysis, that runtimes
are exponentially distributed. In this paper, we extend our
analysis for any general service time X;.
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o In [8], it is also assumed that the staleness process is
independent of w. While this assumption simplifies the
analysis greatly, it is not true in practice. For instance,
for a two worker case, the parameter wy after 2 iterations
depends on whether the update from w; to wy was based
on a stale gradient at wo or the current gradient at wy,
depending on which worker finished first. In this work,
we remove this assumption.

« Instead of the bounded delay assumption in [6], we use
a general staleness bound

E[IIVFW) = VFweapIR] = vE[IIVFoIE]

which allows for large, but rare delays.

o In [7], the norm of the gradient is assumed to be bounded.
However, if we assume that |[|[VF (W)||% < M for some
constant M, then using (18) we obtain |lw — w*||§ <
%(F (w) — F*) < Lﬂz implying that w itself is bounded
which is a very strong and restrictive assumption, that
we relax in this result.

1) Strongly Convex Loss Function:

Theorem 3: Suppose the objective F(w) is c-strongly con-

vex and the learning rate n < m Also assume that
for some y < 1, we have E[||VF(w;)) — VF(Wr(l,j))H%] <
vE[IIVF(w))||3]. Then, the error of K-async SGD after J
iterations is,

" nLcr2
E[F(w))] —F" <
2cy’'Km

nL02
+ (1 - ncy’)’(F(wm —F*— ZCV,Km> (1)

where vy = 1 —y + % and po is a lower bound on the
conditional probability that t(/, j) = j, given all the past delays
and parameters.

Here, y is a measure of staleness of the gradients returned
by workers; smaller y indicates less staleness. The full proof
is provided in Appendix C, in the supplementary material.
We first prove the result for K = 1 in Appendix C-B, in the
supplementary material for ease of understanding, and then
provide the more general proof for any K in Appendix C-C,
in the supplementary material.

Lemma 6 below provides bounds on pg for different classes
of distributions.

Lemma 6 (Bounds on pg): Let us denote the conditional
probability of t(/,j) = j given all the past delays and
parameters as p, . Define pp = inf; pg). Then the following
holds. .

o For exponential computation times, p(()’) =

(invariant of j) and pg = %.
o For new-longer-than-used (See Definition 3) computation
times, p(()/) < 113 and thus pg < %.

3 for all j

o For new-shorter-than-used computation times, pg) > %

and thus pg > %.
The proof is provided in Appendix C-A, in the supplemen-
tary material.
Remark 3: For K-batch-async, the update rule is same as
K-async except that the index [ denotes the index of the mini-
batch. Thus, the error analysis will be similar.
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Now let us compare with K-sync SGD. We observe that the
analysis of K-sync SGD is same as serial SGD with mini-batch
size Km. Thus,

Lemma 7 (Error of K-sync [4]): Suppose that the objec-

tive F'(w) is c-strongly convex and learning rate n < Mlc

2L(FE+1)
Then, the error after J iterations of K-sync SGD is

" nLo?

o e ko
4+ —nc) (F(wo) F ZC(Km)>' (22)

Can stale gradients win the race? For the same 7, observe
that the error given by Theorem 3 decays at the rate (1 —
ne(l—y + ’%)) for K-async or K-batch-async SGD while for
K-sync, the decay rate with number of iterations is (1 — nc).
Thus, depending on the values of y and pg, the decay rate
of K-async or K-batch-async SGD can be faster or slower
than K-sync SGD. The decay rate of K-async or K-batch-
async SGD is faster if % > y. As an example, one might
consider an exponential or new-shorter-than-used service time
where pyg > 113 and y can be made smaller by increasing K.
It might be noted that asynchronous SGD can still be faster
than synchronous SGD with respect to wallclock time even if
its decay rate with respect to number of iterations is lower as
every iteration is much faster in asynchronous SGD (Roughly
Plog P times faster for exponential runtimes).

The maximum allowable learning rate for synchronous

SGD is max{%, m} which can be much higher than
Pm

that for asynchronous SGD, i.e., max L , 1 .
¥ {c(l—y+’7°) 2L(’”fn—0+1)}

.. . pLo?
Similarly the error floor for synchronous is 35— as compared

nLo
2c(1—y+p7°)m'

2) Extension to Non-Convex Loss Functions: The analysis
can be extended to provide weaker guarantees for non-convex
objectives. Let y' = 1 —y + ’% For non-convex objectives,
we have the following result.

Theorem 4: For non-convex objective function F(-), where
F* = miny, F(W), we have the following ergodic convergence
result for K-async SGD:

J—1 2
1 2(F(wg)—F*) Lno
S E[IVEmpIB] = ) o
J/i0 Jny Kmy

to asynchronous whose error floor is

(23)

The proof is provided in Appendix C-D, in the supplementary
material. As before, the same analysis also holds for K-batch-
async SGD. For K-sync and K-batch-sync, we can also obtain
a similar result, substituting ¥’ = 1 in (23) (see [4]). Next,
we combine our runtime analysis with the error analysis to
characterize the error-runtime trade-off.

V. EXPERIMENTS AND INSIGHTS ON THE
ERROR-RUNTIME TRADE-OFF

We can combine our expressions for runtime per iteration
with the error convergence per iteration to derive the error-
runtime trade-off. In Figure 1(b), we compare the theoret-
ical trade-offs between synchronous (K = P in Lemma 7
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Fig. 8. Runtime per iteration changes along with the parameter K for

CIFARI10 dataset: K-async SGD always has lower runtime than K-sync SGD
as one might expect from our theoretical analysis.

and Lemma 1) and asynchronous SGD (K = 1 in
Theorem 3 and Lemma 3) under the strongly-convex assump-
tion. Asynchronous SGD converges very quickly, but to a
higher floor. On the other hand, synchronous SGD converges
slowly with respect to time, but reaches a much lower error-
floor. To validate the trend observed in theory, we conduct
experiments on training neural networks to perform image
classification on CIFAR 10 dataset. These experiments give
insights on how choosing the right K helps us strike the best
error-runtime trade-off, depending upon the distribution of the
gradient computation delays.

A. Experimental Setting

The algorithms are implemented in Pytorch (v1.0) using
multiple nodes. Ray (v0.7) is used for supporting the dis-
tributed execution. We use the CIFAR-10 [3] dataset. This
dataset consists of 60,000 32 x 32 color images in 10
classes. There are 50, 000 training images and 10, 000 valida-
tion images. The neural network used to classify this dataset
has two convolutional layers and three fully connected lay-
ers. Experiments were conducted on a local cluster with 8
worker machines, each of which has an NVIDIA TitanX GPU.
Machines are connected via a 40 Gbps (5000 MB/s) Ethernet
interface. Mini-batch size per worker is 32 and learning rate
is n =0.12.

B. Speedup in Runtime

In Figure 8(a) and Figure 8(b) we compare the average
runtime per epoch of K-sync and K-async SGD for differ-
ent values of K. When K = P = 8, both the variants become
identical to fully synchronous SGD. As we decrease K from
P = 8 to 1, the computation time drastically reduces since we
do not have to wait for straggling nodes. K-async SGD gives
a larger delay reduction than K-sync SGD because we do not
cancel partially completed gradient computation tasks. Each
plot shows three cases: 1) with no artificial delays added to
induce straggling, 2) with an additional exponential delay with
mean 0.02sec, and 3) with an additional exponential delay with
mean 0.05sec. The purpose of these curves is to demonstrate
how variability in gradient computation time affects the run-
time per iteration. Higher variability means that the system is
more susceptible to straggling workers. Thus, as the delay vari-
ability increases (as we add a higher mean exponential delay
per worker), setting a smaller K gives sharper delay reduction
as compared to the K = 8 (fully synchronous SGD) case.
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Test error (%) of K-sync SGD on CIFAR-10 with 8 worker nodes. We now demonstrate the error-runtime trade-off for the case with no artificial

delay, and then also plot the trade-off as we add an exponential delay on each worker. As the mean of the additional delay increases, using an intermediate
value of K achieves a better error-runtime trade-off. The trend of training loss is similar (see Figure 12 in Appendix E, in the supplementary material).
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Fig. 10. Test error (%) of K-async SGD on CIFAR-10 with 8 worker nodes. We demonstrate the error-runtime trade-off for the case with no artificial delay,
and then also plot the trade-off as we add an exponential delay on each worker. As the mean of the additional delay increases, using an intermediate value
of K achieves a better error-runtime trade-off. The trend of training loss is again similar (see Figure 13 in Appendix E, in the supplementary material).

C. Accuracy-Runtime Trade-off in K-Sync and K-Async

In this subsection, we examine the accuracy-runtime trade-
offs for K-sync and K-async SGD variants for CIFARI10
dataset. We plot the test error against wallclock runtime for
three cases: (a) No artificial delay; (b) Exponential delay with
mean 0.02sec; and (c) Exponential delay with mean 0.05sec.
In Figure 9 and Figure 10, we show the test errors for K-sync
SGD and K-async SGD. For brevity, we present test error
plots here and include the training loss plots in Appendix E,
in the supplementary material. The training loss follows the
same trend as test error.

As predicted from our theoretical analysis, increasing K
improves the final error floor for all the SGD variants. But
increasing K also increases the runtime per iteration. Hence,
when the error is plotted against wallclock run-time, we begin
to observe interesting trends in the error-runtime trade-offs —
the highest K does not always achieve the best error-runtime
trade-off. An intermediate value of K often achieves a better
trade-off than fully-asynchronous or fully-synchronous SGD.
For example, in Figure 9a, since there is little delay variability
in the gradient computation time, K = 8 (fully synchronous
SGD) is the best choice of K, but as the delay variability
increases in Figure 9b and Figure 9¢c, K = 4 becomes the case
that gives the fastest error-versus-wallclock time convergence.
A similar trend can be observed in Figure 10 for K-async
SGD.

Remark 4: The problem of choosing K is similar in spirit
to that of selecting the best mini-batch size in standard syn-
chronous SGD. The main difference is that we consider the
error-runtime trade-off instead of the error-iterations trade-off
when making the choice.

So far we have considered partially syn-
chronous/asynchronous SGD variants with a fixed value

of K. In Section VI we propose the AdaSync strategy that
gradually adapts K during the training process in order to get
the best error-runtime trade-off.

VI. ADASYNC: ADAPTIVE SYNCHRONICITY FOR
IMPROVING ERROR-RUNTIME TRADE-OFF

As we observed both theoretically and empirically above,
asynchronous SGD converges faster (with respect to wallclock
time) but has a higher error floor. On the other hand, syn-
chronous SGD converges slower (with respect to wallclock
time) but achieves a lower error floor. In this section, our goal
is to try to achieve the best of both worlds, i.e.,, attain the most
desirable error-runtime trade-off by gradually varying the level
of synchronicity (parameter K) for the different SGD variants.

Let us partition the training time into intervals of time ¢
each, such that, after every slot of time r we vary K. The
number of iterations performed within time ¢ is assumed
to be approximately N(f) =~ t/E[T] where E[T] is the
expected runtime per-iteration for the chosen SGD variant.!
From Theorem 4, we can write a (heuristic) upper bound
on the average of E[|[VF(w)||3] within each time interval

t as follows: Upper Bound as a function of: K = u(K) =
2FWstar)—F)EIT] | Lo

my’ Kmy'>
the model w at the beginning of that time interval.> Our goal
is to minimize u(K) with respect to K for each time interval.

Observe that,

du(K) _ 2(F(Wsiarr)) dEIT) _ Lno?
dKk my’ dK K2my’"

where Wy, denotes the value of

(24)

INote that, for exponential inter-arrival times, this approximation holds in
the limit of large ¢.

2Note that y’ can be set as 1 for synchronous variants. Though, this does
not matter much here as the minimizing K does not depend on it.
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Algorithm 1 AdaSync for K-Async SGD (Can Be Adapted

to Other Variants)

Start with K = Ky (typically Ko = 1),

Iteration counter j = 0

Wyarr = Wo (Initial value of model).

While Wallclock Time < Total Time Budget do:
Perform an iteration of K-async SGD: wj;1 = w; —
% 2 8(Weay, £1)-

K 2ui=1 J)2 SLj
. Update iteration counter: j =j+ 1
If (Wallclock Time % ¢t = 0) and (K < P) do:
Update Wy, as follows: Wy, = w; (value of
model at the start of this time interval)

A

. K= F(wo)
9: Update K as follows: K = K FWaer)
Setting % to O therefore provides a rough heuristic on how
2
to choose parameter K for each time interval, as long as, d d’;{(f)

is positive. We derive the rule for adaptively varying K for
each of the SGD variants in Appendix D, in the supplementary
material. Here, we include the method for one variant K-async
to demonstrate the key idea.

For general distributions, the runtime of K-async is upper
bounded by that of K-sync (see Lemma 3). For exponential
distributions, the two become equal and an algorithm simi-
lar to K-sync works. Here, we examine the interesting case
of shifted-exponential distribution. We approximate E[7] ~

% + K}DOEP (see Lemma 4). This leads to

2 LT](TZH]P/L
2m(F (Wyzarr)) (A + log P) .
To actually solve for this equation, we would need the values
of the Lipschitz constant, variance of the gradient etc. which
are not always available. We sidestep this issue by proposing
a heuristic here that relies on the ratio of the parameter K at
different instants.

Observe that, the larger is F (W), the smaller is the value
of K required to minimize u(K). We assume that F(Wg;¢) 1S
maximum at the beginning of training, i.e., when Wgr = Wo.
Hence we start with the smallest initial K, e.g., Ky = 1. Thus,
we could start with a small Ky and after each time interval ¢,
we can update K by solving for

K2 = Kgm.
F(Wgar)

We can also verify that the second derivative is positive, i.e.,

2 2
d“u(K) — 2L1ZU -~ 0.

2 3
dl’l(“he detailed algorithm for AdaSync for K-async SGD in
described in Algorithm 1.
For K-sync SGD under exponential assumption, the update
rule for K is derived by solving for K in the quadratic equation:
K> K§ _F(wo)

P-K = P—Kg Fiwgey)® 35 discussed in Appendix D, in the sup-
plementary material. For the two other variants of distributed

SGD, the adaptive update rule for K is K = Ky Ffv(vzzzt)’
under certain assumptions on the runtime distribution, as also
discussed in Appendix D, in the supplementary material.

We evaluate the effectiveness of AdaSync for both K-sync

SGD and K-async SGD algorithms. An exponential delay with

(25)

(26)
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Fig. 11. Test error of AdaSync SGD on CIFAR-10 with 8 worker nodes.
We add an exponential delay with mean 0.02s on each worker. The value of
K is changed after every 60 seconds.

mean 0.02s is added to each worker node independently. We
fix K for every t = 60 seconds (about 10 epochs). The initial
values of K are fine-tuned and set to 2 and 4 for K-sync SGD
and K-async SGD, respectively. As shown in Figure 11, the
adaptive strategy achieves the fastest convergence in terms of
error-versus-time. The adaptive K-async algorithm can even
achieve a better error-runtime trade-off than the K = 8 case
(i.e., fully synchronous case).

VII. CONCLUDING REMARKS

This work introduces a novel analysis of error-runtime
trade-off of distributed SGD, accounting for both error reduc-
tion per iteration as well as the wallclock runtime in a
delay-prone computing environment. Furthermore, we also
give a new analysis of asynchronous SGD by relaxing some
commonly made assumptions in existing literature. Lastly, we
also propose a novel strategy called AdaSync that adaptively
increases synchronicity during distributed machine learning to
achieve the best error-runtime trade-off. Our results provide
valuable insights into distributed machine learning that could
inform choice of workers and preferred method of paralleliza-
tion for a particular distributed SGD algorithm in a chosen
distributed computing environment.

As future work, we plan to explore methods of gradually
increasing synchrony in other distributed optimization frame-
works, e.g., federated learning, decentralized SGD, elastic
averaging etc., that is closely related to [9], [10], [71]-[78].
Our proposed techniques can also inform hyperparameter tun-
ing. Given some knowledge of the computing environment,
our technique could allow one to simulate the expected error-
runtime trade-off in advance, and possibly choose training
parameters such as parameter K, mini-batch size m etc. It
is also an interesting future direction to extend our current
analysis for non iid scenarios, i.e., when the runtime or the
dataset of different workers are not independent and identically
distributed.
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