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Abstract—This paper proposes a symbolic algebra approach
for multi-target rectification of integer arithmetic circuits. The
circuit is represented as a system of polynomials and rectified
against a polynomial specification with computations modeled
over the field of rationals. Given a set of nets as potential
rectification targets, we formulate a check to ascertain the
existence of rectification functions at these targets. Upon con-
firmation, we compute the patch functions collectively for the
targets. In this regard, we show how to synthesize a logic sub-
circuit from polynomial artifacts generated over the field of
rationals. We present new mathematical contributions and results
to substantiate this synthesis process. We present two approaches
for patch function computation: a greedy approach that resolves
the rectification functions for the targets and an approach that
explores a subset of don’t care conditions for the targets. Our
approach is implemented as custom software and utilizes the
existing open-source symbolic algebra libraries for computations.
We present experimental results of our approach on several
integer multipliers benchmark and discuss the quality of the
patch sub-circuits generated.

Index Terms—Rectification, Debugging, Integer Arithmetic
Circuits, Formal Methods, Symbolic Algebra.

I. INTRODUCTION

Symbolic Computer Algebra (SCA) techniques are better

suited for verification of arithmetic circuits as compared to

conventional approaches based on Boolean satisfiability and

decision diagrams [1], [2], [3]. The approaches based on

decision diagrams are shown to exhibit exponential space com-

plexity, whereas Boolean satisfiability techniques are proven

to be not scalable. Methods based on theorem provers [4]

require preservation of hierarchical information. On the other

hand, the symbolic algebra techniques employing a polynomial
model as the core computation engine has been shown to be

the most effective approach for gate-level datapath verification.

Such models verify the correctness of a circuit C by checking

if the given polynomial specification Spec is implied by a

set of polynomials representing C. These algebraic models

have been shown to be largely successful in verifying integer

arithmetic circuits [1], [2], [3], [5], [6], [7], integer modulo

arithmetic circuits [8], and also for finite field circuits [9],

[10] – all with large operand sizes. Despite these advances in

verification, automated debug and rectification of arithmetic

circuits, especially multipliers, are still a significant challenge.

This research is funded in part by the US National Science Foundation
grants CCF-1911007 and CCF-1910368.

When formal verification detects the presence of a bug in

the design, it is required to perform post-verification debug

and rectification of the faulty implementation such that the

rectified circuit matches the given specification. In such a

setting, it is desirable to compute rectification functions at

internal nets, without re-synthesizing/re-designing the entire

circuit – a problem of partial synthesis. The partial synthesis

problem is more involved than that of verification, as the

former is a quantification problem, whereas the latter is a

decision problem. Given a set of candidate nets as potential

rectification targets, the rectification procedure requires i) to

ascertain the rectifiability of the circuit at these targets, and ii)

subsequently, compute a corresponding rectification function

at each target.

While rectification has been addressed for random-logic

circuits [11], [12], [13], [14], as well as recently for large

operand finite field circuits [15], [16], the problem has not been

satisfactorily addressed for integer arithmetic circuits. This

paper addresses the problem of ascertaining rectifiability and
computing rectification functions for faulty integer arithmetic
circuits at multiple targets. While the concepts presented in

this paper apply to any polynomial algebra-based model of

integer arithmetic circuits, the application is demonstrated over

integer multiplier benchmarks. For rectification, we assume

that the candidate nets are provided beforehand, say, selected

using contemporary signal selection heuristics [17], [13], [14].

Problem Statement: Given a gate-level integer arithmetic

circuit C and a polynomial specification Spec with integral

coefficients, we model them over the field of rationals (denoted

Q). Formal verification is performed to verify C against Spec
(say, using the techniques of [18], [1], [3], [6]). Verification

determines that C is buggy, i.e., C does not implement Spec.

No assumptions are made about the type, nature, or number

of bugs in C. A set of m candidate nets {w1, . . . wm} from C
are given as targets. Our objective is to ascertain if C is indeed

rectifiable at the m targets, and if so, compute a set of indi-

vidual rectification polynomial functions U = {u1, . . . , um}
for the targets. And finally, we synthesize these polynomial

functions into logic sub-circuit patches.

Related Previous Work: Once rectification is deemed feasi-

ble, the problem of finding the rectification function can be

considered as a partial synthesis of an unknown component.

The approach of [19] formulates the computation of the
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unknown component as a quantified Boolean formula (QBF)

and solves it using incremental and iterative SAT solving.

Similarly, the authors in [20] present a QBF formulation for

answering whether a partial implementation can be extended

to a complete design that models a given specification. As

Craig interpolation is an alternative to QBF solving, it has been

presented in [11] for multi-fix rectification for ECO synthesis.
The rectification problem has been addressed for finite field

arithmetic circuits, particularly the ones that find applications

in Elliptic Curve Cryptography. For this class of circuits, the

problems are modeled and solved using polynomial algebra

over finite fields. The concept of Craig interpolation was ex-

tended to polynomials in finite fields [15], [21] and application

to rectification of finite field arithmetic circuits was demon-

strated over large operand widths. As Craig interpolation in

finite fields is a computationally challenging problem, another

rectification approach was presented for finite field circuits in

[16] which uses the (extended) Gröbner basis algorithm as a

quantification procedure to compute the rectification function.

Recently, [22] proposed an SCA-based approach that decides
m-target rectifiability of finite field arithmetic circuits. Given

a set of m-targets, the approach only ascertains whether there
exists a set of patch functions at those targets, and cannot

compute rectification functions.
In contrast, the approach presented in this paper addresses

the rectification of integer arithmetic circuit designs, where

problems are modeled over infinite fields. Rectification has

been attempted for integer arithmetic circuits [23] [24]. Unfor-

tunately, the technique of [23] was demonstrated to be incom-

plete in [16], and [24] is limited by the fault model, which only

addresses a gate misplacement fault. In [25], a buggy integer

arithmetic circuit is patched at all the primary outputs where

the bug-effect is observable by implementing half-adders and

carry-propagate logic at those outputs. However, the approach

does not explore the possibility of rectification at internal nets

and also does not explore don’t care conditions for simplifying

patch functions.
Approach and Contributions: We model the rectification

problem using concepts from algebraic geometry and use sym-

bolic computer algebra algorithms to determine rectifiability

and to compute rectification functions. In [26], the authors

showed that the verification of integer multipliers can be

formulated and solved over polynomial rings with coefficients

from Q, as opposed to solving over integers Z. As many

algebraic geometry results are valid over fields, and Z is not

a field, their approach leverages the fact that Z ⊂ Q, and it

devises theory as well as computational techniques over fields

to solve the verification problem.
Expanding upon the model presented in [26], we describe

the gates of C with a set of polynomials with integer coeffi-

cients and perform all the algebraic computations required for

rectification over Q. Overall, our contributions are as follows:

1) We formulate a rectifiability check to ascertain that the

circuit C is rectifiable at the given set of m targets.

• This check implies the existence of a polynomial
function over Q with mapping ui : {0, 1}|XPI | →

{0, 1}, at individual targets wi, where 1 ≤ i ≤ m and

XPI denotes the set of primary inputs of C. Substi-

tuting the polynomial function at the corresponding

targets, wi = ui[XPI ], rectifies the circuit.

2) We present two approaches for patch function compu-

tation, a heuristic that greedily resolves the rectification

functions for the targets and a heuristic that explores a

subset of don’t care conditions for the targets.

3) Modeling rectification over Q poses new challenges be-

cause algebraic computations may result in polynomial

functions with coefficients in Q. We further propose a

synthesis procedure that can translate such polynomial

functions to Boolean rectification functions. We present

new mathematical results and provide proof of soundness

and completeness as part of this investigation.

4) We demonstrate the application of our approach by per-

forming rectification of faulty integer multiplier circuits

at multiple targets.

Paper Organization: The paper is organized as follows: The

following section covers preliminary concepts and Sec. III

covers the circuit modeling. Sec. IV describes the rectifica-

tion check followed by rectification function computation in

Sec. V. The synthesis of rectification functions is described in

Sec. VI. Experiments are described in Sec. VII, and Sec. VIII

concludes the paper.

II. PRELIMINARIES

This section reviews basic concepts from symbolic algebra

and associated algorithms that are utilized in this paper.

1) Background:
• Let R = Q[X] be the polynomial ring in variables X =

{x1, . . . , xd} with coefficients in Q (field of rationals).

Finite extensions of Q are called algebraic number fields,

and the algebraic closure of Q is the field of algebraic

numbers (denoted Q in this work).

• A monomial is a power product over the variables X of

the type xe1
1 · xe2

2 · · ·xed
d , ei ∈ Z≥0.

• A polynomial p ∈ R is written as a finite sum of terms

p = c1X1 + c2X2 + · · · + ctXt. Here c1, . . . , ct are

coefficients ∈ Q and X1, . . . , Xt are monomials.

• To systematically manipulate the polynomials, a mono-

mial order > (also called a term order) is imposed on the

polynomial ring.

• Subject to >, X1 > X2 > · · · > Xt, and lt(p) =
c1X1, lm(p) = X1, lc(p) = c1, are the leading
term, leading monomial and leading coefficient of p,

respectively. Also, for a polynomial p, tail(p) = p−lt(p).

– In this work, we use lexicographic (lex) term orders.

2) Polynomial Ideals, Varieties, and Gröbner Basis: We are

given a multivariate polynomial specification f in the ring R.

The behavior of the gate-level circuit C is modeled as a set

of polynomials F = {f1, . . . , fs} contained in R (Sec. III).

• Then f
F−→+ r denotes the reduction of f modulo the

set of polynomials F , resulting in a remainder r. The

terms in f are iteratively canceled by the leading terms
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of the polynomials in F using polynomial division (cf.

Algorithm 1.5.1 [27]).

• The ideal generated by the set of polynomials F is

defined as J = 〈f1, . . . , fs〉 = {h1 · f1 + · · · + hs ·
fs | h1, . . . , hs ∈ R}. The polynomials f1, .., fs form

the basis or generators of ideal J .

• Given an ideal J ⊆ R, the radical of J is defined as√
J = {p ∈ R : ∃e ∈ N, pe ∈ J}.

– When
√
J = J , J is said to be a radical ideal.

• An ideal J ⊂ R is said to be maximal if J �= R and

any ideal J ′ containing J is such that either J ′ = J or

J ′ = R.

• Let a = (a1, . . . , ad) ∈ Qd be a point in the affine space,

and p ∈ R. If p(a) = 0, we say that p vanishes on a, or

a is a zero of the polynomial p.

• We are interested in the set of all common zeros (points)
of the polynomials of F that lie within the field Q. This

zero set is called the variety.

– The variety depends not only on the set of polyno-

mials F , but also on the ideal J generated by F .

We denote the variety of J over Q as VQ(J), where:

VQ(J) = VQ(〈F 〉) = {a ∈ Qd : ∀p ∈ J, p(a) = 0}.
Boolean functions comprise a finite set of points, so we

can model them as varieties. If a point is an element of a

variety, then that point can be considered an on-set minterm

of a corresponding Boolean function. The first two columns

of Table I describe the correspondence between operations

on Boolean functions and operations on varieties. We utilize

this correspondence to formulate rectification check and to

construct rectification functions by modeling the on-, off-, and

DC-sets as varieties.

TABLE I: Correspondences between algebraic operations and

Boolean operations. Here, J1 = 〈f〉, and J2 = 〈g〉.
Boolean Functions Varieties Ideal operations

f ∨ g V (J1) ∪ V (J2) J1 · J2
f ∧ g V (J1) ∩ V (J2) J1 + J2

f − g V (J1) \ V (J2) J1 : J2

Algebraic geometry analyzes ideals to reason about varieties

without explicitly computing the varieties, which is infeasible

in practice. In this paper, we compute the union, intersection,

and set difference of functions, represented by varieties, by

performing corresponding operations on ideals. In the third

column, ” · ” , ” + ” , ” : ” represent the product, sum, and

colon operations on ideals, respectively; these ideal operations

are implemented in computer algebra tools, which we utilize.

• An ideal may have many different bases or generators.

A Gröbner basis (GB) is a basis with properties that

are useful in solving many polynomial decision and

quantification problems. For example, a polynomial f

is a member of ideal J if and only if f
GB(J)−−−−→+ 0.

When f /∈ J , division by GB(J) results in a non-zero

remainder f
GB(J)−−−−→+ r that is unique/canonical.

• The Gröbner basis for an ideal J can be computed using

the Buchberger’s algorithm (Algorithm 1.7.1 in [27]). A

Gröbner basis can be reduced. A reduced GB (redGB) is a

canonical representation of an ideal. Thus, any operation

on an ideal can be construed as being performed on its

GB.

3) Variety over the Algebraic Closure of a Field: All vari-

ables representing the nets of a circuit only range over binary

values, and thus satisfy the polynomial constraint relation

x2 − x = 0.

• Let F0 = {x2
l − xl : ∀xl ∈ X} denote the set of all

such polynomials, and J0 be the ideal generated by it,

J0 = 〈F0〉. The variety of J0 is VQ(J0) = {0, 1}d.

• Consider the polynomial g = x2
l − xl ∈ Q[X]. The

solution to g = 0 over Q, and also over Q, is {0, 1}.

Therefore, VQ(J0) = VQ(J0) = {0, 1}d. Here, VQ(J0)

denotes the variety of J0 over the algebraic closure Q.

– To enforce idempotency, we include the ideal J0
in our computations. In other words, the circuit

is modeled as an ideal J + J0. We have that,

VQ(J+J0) ⊂ {0, 1}d, and VQ(J+J0) = VQ(J+J0).
– In this work, we simplify notation by writing V (J)

to mean VQ(J). However, we will use the notation

VQ and VQ when we need to specify which field the

variety is considered over.

4) Quotient rings:

• Although circuit polynomials F and specification poly-

nomial f contains integral coefficients; every polynomial

has to satisfy the constraints imposed by the set F0. Let

J = 〈F 〉 and J0 = 〈F0〉. Thus, every computation is

performed (mod J0) and effectively, we are working

over the quotient ring R/J0 = Q[X]/J0. Note that J0
is a radical ideal in Q[X]. This implies that R/J0 is

0-dimensional and reduced, and hence R/J0 is a Von
Neumann regular ring [28], [29], which have special

properties.

• There is a one-to-one correspondence between ideals

I ∈ R containing J0 and ideals I ′ in R/J0. The

correspondence is given by I → I ′ = I/J0. As such,

properties of I ′ ∈ R/J0 lift to the corresponding ideal

I ∈ R.

• Due to the fact that R/J0 is a Von Neumann regular ring,

it has the following properties:

– Every ideal I ′ is radical in R/J0. So, every ideal I
of R such that J0 ⊆ I is radical in R, or equivalently√
J + J0 = J + J0, for any ideal J in R.

– Every ideal I ′ is principal in R/J0, which implies

the ideal can be generated by a single element, i.e.,

J+J0 (mod J0) = p·R+J0 (mod J0) or J+J0 =
p ·R+ J0.

• This implies that we can compute a single rectification

polynomial p by performing ideal computations on J +
J0 ⊂ Q[X].
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III. POLYNOMIAL MODELING

Consider an n-bit gate-level integer multiplier circuit im-

plementation C modeled over the ring R = Q[X]. Let

the two n-bit input vectors of C be a0, . . . , an−1 and

b0, . . . , bn−1, i.e. XPI = {a0, . . . , an−1, b0, . . . , bn−1}. Let

XPO = {s0, . . . , s2n−1} denote the 2n-bit output vector.

Each internal gate is represented by a gate variable, and let

Xg = {x1, . . . , xk} denote the set of all such variables. Then,

X = XPO ∪Xg ∪XPI .

Specification: Let f be a polynomial in R that acts as the

specification for C. Given two n-bit input vectors ai and bi,
f can be modeled as a polynomial in Q as:

f =

2n−1∑
i=0

2isi −
n−1∑
i=0

2iai ·
n−1∑
i=0

2ibi (1)

where ai, bi, si ∈ {0, 1} ⊂ Q.

Implementation: Given a gate-level circuit netlist, we map

the gate-level Boolean operators to polynomials over Q. For

example, the Boolean operators NOT, AND, OR, and XOR

are represented as polynomials using the following relations:

u = ¬v =⇒ u− 1 + v = 0

u = v ∧ w =⇒ u− vw = 0

u = v ∨ w =⇒ u− v − w + vw = 0

u = v ⊕ w =⇒ u− v − w + 2vw = 0

Let F = {f1, . . . , fs} represent the polynomial functions of

all the gates in the circuit and J = 〈F 〉 be the corresponding

ideal. We also construct J0 = 〈F0〉 = 〈x2
l − xl : xl ∈ X〉.

Then, ideal J + J0 models the functionality of C. The veri-

fication problem can now be formulated as checking whether

or not f is implied by the ideal J + J0. In other words,

f ≡ C ⇐⇒ f
GB(J+J0)−−−−−−−→+ 0 [9], [26].

To systematically manipulate the polynomials, instead of

imposing an arbitrary order, it is a standard practice to use a

specialized term order called the Reverse Topological Term
Order (RTTO). RTTO is a lex term order with the circuit

variables ordered reverse topologically from POs to PIs. RTTO

has the property which ensures the polynomials of the circuit

form a Gröbner basis themselves [9], [26]. As a consequence,

GB(J+J0) = F ∪F0, and hence we can perform verification

by checking whether the remainder r from the polynomial

division f
F∪F0−−−−→+ r equals zero. It was further shown [9]

that in the ideal of vanishing polynomials J0, it is sufficient

to include vanishing polynomials in primary input variables

(XPI ⊂ X). Thus, ideal J+JXPI
0 , where JXPI

0 = 〈FXPI
0 〉 =

{x2
l −xl : ∀xl ∈ XPI}, models the functionality of the circuit.

Example III.1. Fig. 1 represents a faulty implementation C of
a two-bit integer multiplier circuit. A correct multiplier would
have XOR gates in place of the AND gates at nets e7 and
z1. The Spec polynomial for this two-bit multiplier is modeled
according to III: f = (8 · z3 + 4 · z2 + 2 · z1 + z0) − ((2 ·
a1 + a0) · (2 · b1 + b0)). We impose RTTO > as lex with:

{z0 > z1 > z2 > z3} > {e9 > e5} > {e8 > e4} > {e7 >
e1} > {e6 > e2} > {e3} > {a0 > a1 > b0 > b1}.

We map the Boolean gates of C to polynomials over Q:

f1 : z3 − (e9 · e5); f8 : e4 − (a0 · b1);
f2 : z2 − (e9 + e5 − 2 · e9 · e5); f9 : e5 − (b1 · a1);

f3 : z1 − (e4 · e1); f10 : e6 − (e3 · b0);
f4 : z0 − (a0 · b0); f11 : e7 − (e6 · e2);
f5 : e1 − (a1 · b0); f12 : e8 − (e7 · e1);
f6 : e2 − (1− b0); f13 : e9 − (e8 · e4);

f7 : e3 − (b0 + a0 − a0 ∗ b0);
The polynomials highlighted in red specify the gates where

bugs were introduced into the circuit. For simplicity, we select
these two nets as targets for rectification (w1 = e7, w2 = z1).
Let J = 〈f1, · · · , f13〉 and JXPI

0 = 〈a23 − a3, . . . , b
2
0 − b0〉.

a0
b0

b0

a1

a0
b1

a1

z0

z1

z2

z3

e1

e2

e3

w2=z1

e6
w1=e7

e4

e5

e8 e9

Fig. 1: Buggy two-bit multiplier circuit with added redun-

dancy. Red gates were changed from XOR gates to AND gates.

Labels w1, w2 indicate the two selected rectification targets.

To perform verification, we reduce the Spec polynomial by

the ideal J+JXPI
0 which models C. We find that f

J+J
XPI
0−−−−−−→+

r = 2a0a1b0b1 − a0b1 − 2a1b0, confirming that C is buggy.

IV. RECTIFICATION CHECK

If verification results in a non-zero remainder r, then the

circuit is deemed faulty and rectification needs to be performed

to fix the circuit. As a first step, it is required to derive the

necessary and sufficient condition to confirm whether or not

the circuit can be rectified at a given set of m targets. This

condition implies the existence of a polynomial function with

mapping ui : {0, 1}|XPI | → {0, 1}, at individual targets.

Let W = (w1, . . . , wm) ⊂ {Xg, XPO}
denote a given set of m candidate targets. Let

Wc = {(0, 0, . . . , 0), . . . , (1, 1, . . . , 1)} represent the set

of all {0, 1}-assignments to targets W . Here, |W | = m and

|Wc| = 2m, with each Wc[l], 1 ≤ l ≤ 2m, representing one

set of assignments to targets W (|Wc(l)| = m). In other

words, the tail of gate polynomials representing the targets

are replaced by the corresponding {0, 1} values from Wc[l].

Theorem IV.1. A Spec polynomial f , a faulty circuit C, and a

set of targets W from C are given. The circuit C is represented

using the ideal J + J0 ⊂ R, wherein the targets in set W are
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considered fan-in free or treated as pseudo primary inputs.

RTTO > is imposed on R.

The following ideals are constructed:

• Jl = 〈Fl〉 = 〈f1, . . . , fw1 : w1 − Wc[l][1], . . . , fwm : wm −
Wc[l][m] , . . . , fs〉, ∀l ∈ 1, . . . 2m.

Reduce f by Jl+J0 to obtain remainders reml: f
Jl+J0−−−−→+

reml, for 1 ≤ l ≤ 2m. Then, the faulty circuit C is rectifiable

at the target set W if and only if

2m⋃

l=1

V (〈reml〉+ JXPI
0 ) = {0, 1}|XPI | (2)

where, JXPI
0 = 〈FXPI

0 〉 = {x2
l − xl : ∀xl ∈ XPI}.

Proof IV.1. If rectification is feasible, then a rectification at

the target-set W makes C match f . Consequently, f should be

implied by the patched ideal J + J0 representing the rectified

circuit, or f should vanish on V (J + J0). Moreover, each

reml comprises only XPI variables. This is because RTTO

> ensures that each non-primary input variable (each gate

output) appears as the leading term of some polynomial in

F and all such leading terms are canceled in the reduction

f
Jl+J0−−−−→+ reml. Furthermore, as XPI take values in {0, 1},

V (reml) ⊆ {0, 1}|XPI |. Thus, the rectification condition can

be equivalently stated as: “f vanishes on V (J + J0) ⇐⇒
2m⋃
l=1

V (〈reml〉+ JXPI
0 ) = {0, 1}|XPI |”.

(i) To prove “⇒”: Let xPI ∈ {0, 1}|XPI | be an assignment

to the primary input variables of C. Every assignment xPI

results in a corresponding assignment xint to rest of the

variables in C. For each such point (xPI , xint) ∈ {0, 1}|X|,
the set of m targets W evaluate to one set of possible

{0, 1} assignment from Wc. When the m-targets in W eval-

uate to Wc[1] = (0, 0, . . . , 0), J1 vanishes on the point

(xPI , xint). Likewise, J2 vanishes on (xPI , xint) when the

targets evaluate to Wc[2] = (0, 0, . . . , 1), and so on. Since

f
Jl+J0−−−−→+ reml, 1 ≤ l ≤ 2m, and f vanishes on the point

(xPI , xint) to begin with, we obtain that for every primary

input assignment xPI , one of the reml vanishes. This implies

that
2m⋃
l=1

V (〈reml〉+ JXPI
0 ) = {0, 1}|XPI |.

(ii) To prove “⇐”: Say there exists an assignment to the

primary inputs xPI ∈ {0, 1}|XPI | such that rem1 vanishes on

xPI , i.e. rem1(xPI) = 0. For the given point xPI , the rest

of the variables of C get a corresponding assignment xint. As

f
J1+J0−−−−→+ rem1, we have that f is a member of the ideal

J1+J0+ 〈rem1〉. Therefore, when rem1(xPI) = 0, the ideal

J1 also vanishes on (xPI , xint) ∈ {0, 1}|X| because the point

(xPI , xint) is a valid evaluation of the circuit. Further, J0 by

definition vanishes on all the points ∈ {0, 1}|X|. This implies

that f(xPI , xint) = 0. The argument similarly holds for each

reml vanishing on some xPI . This proves that for all primary

inputs, if any reml : 1 ≤ l ≤ 2m vanishes, then f vanishes

too; and that completes the proof.

Intuitively, the above theorem can be elaborated as follows.

The variety of reml, for any l, corresponds to the set of all

assignments to primary inputs XPI (minterms) where the Spec
f agrees with the Impl C. Thus, the condition of Thm. IV.1

implies that every minterm in the input space is contained in

the union of varieties of each reml. Thus, for every minterm

from the input space, there exists an assignment Wc[l] to W
where f and C match. Consequently, there exists a set of

individual rectification functions for the targets that can be

computed to rectify every error minterm.

In the above check, the computation with the union of vari-

eties
2m⋃
l=1

V (〈reml〉+JXPI
0 ) = {0, 1}|XPI | can be performed as

a product of ideals, i.e. by checking if
∏2m

l=1 reml
J

XPI
0−−−−→+ 0.

Example IV.1. Continuing Ex. III.1, we demonstrate the
rectification check for W = (w1, w2) = (e7, z1).

Constructing the Jl ideals:
• J1 = 〈F1〉; F1[f3 : z1 − 0, f11 : e7 − 0], (z1 = 0, e7 = 0)

• J2 = 〈F2〉; F2[f3 : z1 − 0, f11 : e7 − 1], (z1 = 0, e7 = 1)

• J3 = 〈F3〉; F3[f3 : z1 − 1, f11 : e7 − 0], (z1 = 1, e7 = 0)

• J4 = 〈F4〉; F4[f3 : z1 − 1, f11 : e7 − 1], (z1 = 1, e7 = 1)

Reducing the Specf modulo these ideals results in:

• rem1 = f
J1+J

XPI
0−−−−−−→+ −2a0b1 − 2a1b0,

• rem2 = f
J2+J

XPI
0−−−−−−→+ −2a0b1 − 2a1b0 + 2,

• rem3 = f
J3+J

XPI
0−−−−−−→+ 4a0a1b0b1 − 2a0b1 − 2a1b0,

• rem4 = f
J4+J

XPI
0−−−−−−→+ 4a0a1b0b1 − 2a0b1 − 2a1b0 + 2.

When we compute
∏2m

l=1 reml
J

XPI
0−−−−→+, we obtain remain-

der 0, thus confirming that the target set W indeed admits
correction.

V. COMPUTING RECTIFICATION FUNCTIONS

For a given set of targets W , due to the presence of

don’t cares (DC), there may exist more than one set U of

rectification functions which rectify the circuit. Exploring all

the DC conditions for m targets might be computationally

infeasible; we present two different approaches to overcome

this. First, we present an approach to compute an on- and

off-set for each rectification function by greedily resolving all

the DC conditions. Following this, we present an approach

to heuristically explore and compute a subset of the DC

conditions, along with on- and off-sets, for each rectification

function.

1) Greedy Approach for MFR: To illustrate the greedy ap-

proach, consider the case with m = 2 (W = {w1, w2}), where

Wc = {(0, 0), (0, 1), (1, 0), (1, 1)}, and we must compute rec-

tification functions u1 and u2 corresponding to targets w1 and

w2, respectively. For brevity, let VWc[l] = V (〈reml〉+JXPI
0 ),

for 1 ≤ l ≤ 2m; in this case, VWc[1] = V(0,0) = V (〈rem1〉+
JXPI
0 ), VWc[2] = V(0,1) = V (〈rem2〉+ JXPI

0 ), and so on.

Recall that V(0,0) comprises the set of points where the Spec
matches the Impl under the assignments w1 = w2 = 0 to

the targets. This implies that at these points, the rectification
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functions u1 and u2 should evaluate to 0. Table II shows

the required evaluations of u1 and u2 for the points in each

variety, following the same reasoning, assuming each VWc[l] is

pairwise disjoint. The on (off)-set of the rectification function

for a target corresponds to the union of the varieties where

the function evaluates to 1 (0). In this case, the on- and off-

sets of u1 consist of the set of points in V(1,0) ∪ V(1,1) and

V(0,0) ∪ V(0,1), respectively. Similarly, the on- and off-set of

u2 comprise points in V(0,1) ∪ V(1,1) and V(0,0) ∪ V(1,0). The

functions u1 and u2 could be synthesized using these sets.

TABLE II: Required rectification function evaluations

Variety u1 u2

V(0,0) 0 0

V(0,1) 0 1

V(1,0) 1 0

V(1,1) 1 1

However, the above argument is only correct when each

VWc[l] are pairwise disjoint, which may not be true in practice.

For example, for a point contained in V(0,0) ∩ V(0,1), (u1, u2)
may evaluate either to (0, 0), or to (0, 1) in order for the Impl
to evaluate to the same value as the Spec; this point would

be in both the on- and off-set of u2 in the method previously

described. A decision procedure is necessary to determine the

evaluation of (u1, u2) at these intersections, unambiguously.

We present a greedy approach which resolves such ambiguities
by imposing an order on the sets.

An example of our greedy approach to evaluate (u1, u2)
for an order V(0,0) > V(0,1) > V(1,0) > V(1,1) is as follows:

First, we place all the points from V(0,0) into the off-sets of

(u1, u2). Next, we place all the points from V(0,1) \ V(0,0)

into the off-set of u1 and the on-set of u2. We perform the

set difference to avoid placing the points in V(0,0) ∩ V(0,1)

into both the on-set and off-set of u2. Next, we place all the

points from V(1,0) \ (V(0,0) ∪V(0,1)) into the on-set of u1, and

the off-set of u2. Finally, we place the remaining points from

V(1,1)\(V(0,0)∪V(0,1)∪V(1,0)) into the on-set of (u1, u2). The

resulting on- and off-sets for u1 and u2 are shown below.

V (u1on ) = (V(1,1) \ (V(0,0) ∪ V(0,1) ∪ V(1,0))) ∪ (V(1,0) \ (V(0,0) ∪ V(0,1)))

V (u1off
) = (V(0,0)) ∪ (V(0,1) \ V(0,0))

V (u2on ) = (V(0,1) \ V(0,0)) ∪ (V(1,1) \ (V(0,0) ∪ V(0,1) ∪ V(1,0)))

V (u2off
) = (V(0,0)) ∪ (V(1,0) \ (V(0,0) ∪ V(0,1)))

This approach with the given order greedily places points

into the off-sets of the rectification functions (u1, u2) where

possible and only places points into the on-sets of the recti-

fication functions when necessary. Subject to the given order,

the on-sets of the rectification functions are thus minimized.

For the experiments in this paper, we always use the order

VWc[i] > VWc[j] for i < j, as in the above example, though

any order would yield valid rectification functions.

Generalizing our greedy approach for m targets, we first

construct the following composite sets (varieties):

Sl =

⎧⎨
⎩

VWc[1], if l = 1

VWc[l] \ (
l−1⋃
j=1

VWc[j]), 2 ≤ l ≤ 2m
(3)

The resulting on-set and off-set functions for each target i,
where 1 ≤ i ≤ m are:

V (uion) =
⋃

Sl, ∀l | Wc[l][i] = 1

V (uioff ) =
⋃

Sl, ∀l | Wc[l][i] = 0
(4)

2) Don’t Care Conditions for MFR: Let Ud ⊆ U denote a

subset of the target rectification functions. We are interested

in the DC conditions which arise for these functions at

points where they may evaluate to any value, for some fixed

evaluation of the remaining functions in the set {U \Ud}. For

example, consider a point in V(0,0) ∩ V(0,1) for a circuit with

two targets. As discussed previously, u1 must evaluate to 0 at

this point, but Ud = {u2} may evaluate either to 0 or to 1, so

this is a DC point for u2.

Not every intersection of varieties yields DC points which

follow the conditions described above. Consider a point in

V(0,0) ∩V(1,1). Here, (u1, u2) must evaluate either to (0, 0) or

to (1, 1). If this point were assigned to the DC set of u2, for

example, the Spec and Impl would only evaluate the same if

u1 evaluated to the same value as u2. Thus, u1 would become

a function of u2 at this point. This point cannot be placed into

the on-set, off-set, or DC-set of u1 before u2 is evaluated. To

avoid inter-dependencies between the rectification functions,

we do not classify points in such intersections as DC points.

We rely on our greedy heuristic to evaluate these points.

Finally, consider a point in V(0,0)∩V(0,1)∩V(1,0). This point

cannot be a DC point for both targets simultaneously since the

evaluation (1, 1) here will result in an incorrect rectification

function. However, because V(0,0) ∩ V(0,1) ∩ V(1,0) ⊂ V(0,0) ∩
V(0,1), we could treat this point as a DC point for u2 and

evaluate u1 to 0. Alternatively, because V(0,0)∩V(0,1)∩V(1,0) ⊂
V(0,0) ∩V(1,0), we could treat this point as a DC point for u1

and evaluate u2 to 0. Thus, we have a choice to place this

point in the DC-set of either targets, but not both.

Finding every intersection containing DC points for every

target can be very expensive for circuits with more than a

few targets. We therefore propose an approach to compute a

subset of the DC points by considering only the set of pairwise

intersections of varieties which contain DC points for exactly

one target, denoted as DCpair.

Let d(Wc[j],Wc[k]) denote the Hamming distance between

the two sets of assignments to the targets Wc[j] and Wc[k].
We compute the set of varieties which contain DC points for

one target, denoted DCpair, from the equation below, where

1 ≤ j, k ≤ 2m.

DCpair = {VWc[j] ∩ VWc[k] | d(Wc[j],Wc[k]) = 1} (5)

Since the Hamming distance d = 1 between the assignments

Wc[j] and Wc[k] for each intersection of varieties in DCpair,

exactly one rectification function may evaluate either to 0
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or to 1. The remaining rectification functions require fixed

evaluations of 1 or 0. Therefore, each intersection of varieties

in DCpair yields DC points for exactly one rectification

function in U , and either on- or off-set points for the remaining

rectification functions in U . We use DCpair to compute the

DC points for each rectification function, as described below.

3) Computing Rectification Functions with Don’t Cares:
Once the set DCpair has been found, a few steps remain

to compute the on-, off-, and don’t-care sets for each target.

First, we follow an approach identical to the greedy approach

to evaluate points outside of DCpair. We construct new

composite sets Sd
l for 1 ≤ l ≤ 2m, which are identical to the

composite sets (varieties) created for the previous approach,

except that all the points from DCpair set are removed.

Sd
l =

⎧⎨
⎩

VWc[1] \DCpair, if l = 1

VWc[l] \ ((
l−1⋃
j=1

VWc[j]) ∪DCpair), 2 ≤ l ≤ 2m
(6)

Points in these composite sets are assigned to the on- and

off-set for each rectification function in the same way as

Eqn. (4), substituting Sl with Sd
l . Next, we place the points

in DCpair in the on-, off-, or DC sets for each rectification

function, by imposing an order on the intersections and

resolving them as explained in the following example.

Given a circuit with two targets, DCpair = {V(0,0) ∩
V(0,1), V(0,0)∩V(1,0), V(0,1)∩V(1,1), V(1,0)∩V(1,1)}. We impose

the order V(0,0) > V(0,1) > V(1,0) > V(1,1). We place the

points in V(0,0) ∩ V(0,1) into the off-set of u1 and the DC set

of u2. We then place the points in V(0,0)∩V(1,0)\V(0,0)∩V(0,1)

into the DC set of u1 and the off-set of u2. We place points

in V(0,1) ∩ V(1,1) \ ((V(0,0) ∩ V(0,1)) ∪ (V(0,0) ∩ V(1,0))) into

the DC set of u1 and the on-set of u2. Finally, we place

points in V(1,0) ∩V(1,1) \ ((V(0,0) ∩V(0,1))∪ (V(0,0) ∩V(1,0))∪
(V(0,1) ∩ V(1,1))) into the on-set of u1 and the DC set of u2.

Following this approach, we calculate on- off- and DC sets

for each rectification function.

VI. SYNTHESIZING RECTIFICATION FUNCTIONS

The above techniques show how to construct a rectification

function by reasoning about the varieties of each reml.

However, algebraically, these functions are computed using

their corresponding ideals. We now show how the remainders

computed in Sec.IV can be utilized for rectification function

computation.

The rectification theorem IV.1 implies the existence of a
polynomial function with mapping ui : {0, 1}|XPI | → {0, 1},

at individual targets. However, since we use a polynomial

model over Q, our algebraic rectification techniques compute

a polynomial function over Q, i.e., it may evaluate to constants

in Q, i.e., non-Boolean values. To overcome this, we present

new mathematical contributions to transform a polynomial

function of the form 〈reml〉 + JXPI
0 to another polynomial

rem′
l such that V (〈reml〉 + JXPI

0 ) = V (〈rem′
l〉 + JXPI

0 ),
and rem′

l evaluates to only Boolean values {0, 1} ⊂ Q and

corresponds to the rectification function evaluation.

Consider the quotient ring R/J0 = Q[X]
J0

. Let J ⊆ Q[X] be

an ideal with coefficients in Q and so V (J +J0) ⊆ {0, 1}|X|.
Moreover, J + J0 (mod J0) is radical in R/J0, and J + J0
is radical in R. Given that ideals J +J0 correspond to a finite

variety, and that they are radical and principal, from the above

discussion, we show the following results.

Fact VI.1. The ideal J +J0 can be expressed as the intersec-

tion of maximal ideals. In Q[X] the intersection of maximal

ideals is the same as their product: J + J0 =
⋂k

i=1 Mi =∏k
i=1 Mi, where Mi are maximal in R. Furthermore, each

such maximal ideal Mi is of the form M = (x1−ε1, . . . , xd−
εd), where εj ∈ {0, 1}, ∀1 ≤ j ≤ d.

Every radical ideal can always be decomposed into an

intersection of maximal ideals. While the result is well known

over algebraically closed fields, it is also true over Q[X].

Proposition VI.1. The ideal
∏k

i=1 Mi can be expressed as

generators (f1, . . . , fs, x
2 − x : ∀x ∈ XPI) such that

f1, . . . , fs have coefficients only in {−1,+1}.

Since each Mi is of the form (xi − ε), their intersection

also have coefficients only in {−1,+1}. The above implies

that any arbitrary polynomial p ∈ R, when combined with

J0, can be expressed as 〈p〉+ J0 = 〈f1, . . . , fs〉+ J0, where

f1, . . . , fs have coefficients in {−1,+1}.

Even though the remainders reml have coefficients in Q

(higher field), their varieties are in {0, 1}|XPI | (V (〈reml〉) ⊆
{0, 1}|XPI |) as they correspond to bit-level assignments to

XPI .

Proposition VI.2. Compute the GB Gl for the ideals

(〈reml〉+ JXPI
0 ) ⊂ Q[X], 1 ≤ l ≤ 2m, as

reducedGB(〈reml〉 + JXPI
0 ), where reml’s are the remain-

ders generated in Thm. IV.1. Then the polynomials in Gl have

coefficients in {−1,+1} with variables in XPI .

The above results imply that a reduced Gröbner basis of an

ideal of the form 〈f〉 + JXPI
0 for any arbitrary polynomial

f ∈ Q[XPI ] will have generators G = {g1, . . . , gt} with

coefficients from {+1,−1}. This enables the synthesis of

Boolean rectification functions from these Gröbner bases.

Example VI.1. Let p = 4/3 ·a0a1b0b1−2 ·a0b0b1−2/7 ·a1b0
be a polynomial in R = Q[a0, a1, b0, b1]. Let J0 = 〈a20 −
a0, . . . , b

2
1 − b1〉.

Computing G = redGB(〈p〉+ J0) = {a0b0b1, a1b0}.

Note that the polynomials in G have coefficients in

{−1,+1}.

Proposition VI.3. Given a set of generators F = {f1, . . . , fs}
with coefficients only in {−1,+1}, a polynomial p can always

be constructed as p = ((1 + f1)(1 + f2) . . . (1 + fs) + 1)
(mod 2), such that V (〈p〉 + J0) = V (〈f1, . . . , fs〉 + J0) and

p evaluates to only binary values {0, 1} ⊂ Q.

We utilize the above facts and the reduced GB computation

to construct a synthesizable Boolean function rem′
l from a

polynomial function reml.
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Overall, our procedure for the rectification of integer arith-

metic circuits is as follows:

• Model the specification polynomial and the circuit poly-

nomials over Q[X] using techniques described in Sec. III.

• Generate remainders reml and formulate the rectification

check for a given set of m targets as
∏2m

l=1 reml
J

XPI
0−−−−→+ 0 (Thm. IV.1).

– Here, each reml corresponds to a polynomial func-

tion mapping from {0, 1}|XPI | → Q|XPI |.
• If the check confirms existence of rectification functions,

then compute functions ui, i = 1, . . . ,m corresponding

to each target as follows:

1) Compute a reduced GB for each (〈reml〉+ JXPI
0 ) as

shown in Prop. VI.2.

– Here, the generators from each redGB(〈reml〉 +
JXPI
0 ) will have coefficients only in {−1,+1}, and

V (〈reml〉+ JXPI
0 ) corresponds to the minterms of

the rectification function.

2) Construct a singleton polynomial rem′
l such that,

V (〈rem′
l〉 + JXPI

0 ) = V (〈reml〉 + JXPI
0 ), as shown

in Prop. VI.3.

– Here, rem′
l is a polynomial function mapping from

{0, 1}|XPI | �→ {0, 1}, such that it has the same

variety.

3) Impose the order on the remainders: rem′
1 > · · · >

rem′
l.

4) Greedy approach: Compute composite sets from

Eqn. (3).

– Assign points from composite sets to the on- or off-

sets of the rectification functions (Sec. V-1).

5) DC-based approach: Compute DCpair using Eqn. (5),

and then compute the composite sets in Eqn. (6)

– Assign the points in the composite sets and DCpair

to the DC-, on- or off-sets of the rectification func-

tions (Sec. V-2).

6) Perform the union, intersection, and set difference of

varieties using the respective ideal operations (Table I).

7) Translate the polynomials representing uiDC
and uion

into Boolean functions uB
iDC

and uB
ion

by interpreting

the algebraic product and sum as Boolean AND and

XOR gates, respectively.

8) Optimize the on-set uB
ion

w.r.t. to the DC-set uB
iDC

for

the DC-based approach using a logic synthesis tool.

Example VI.2. Continuing with Ex. IV.1, consider rem3:

• Recall, rem3 = 4a0a1b0b1 − 2a0b1 − 2a1b0.

• redGB(〈rem3〉 + J0) = {a1b0b1 − a1b0, a0b1 −
a1b0, a0a1b0 − a1b0}

– Note, V (〈rem3〉+ J0) = V (redGB(〈rem3〉+ J0))
– Compute a reduced GB for rem1, rem2, and rem4.

• Impose the order rem1 > rem2 > rem3 > rem4.

• The rectification polynomials for the targets (e7, z1)
computed using our greedy approach:

u1on = a0a1b0b1;

e7 = uB
1 = (a0 ∧ a1 ∧ b0 ∧ b1);

u2on = a0b1 + a1b0;

z1 = uB
2 = (a0 ∧ b1)⊕ (a1 ∧ b0);

• The rectification polynomials for the targets (e7, z1)
computed using our DC-based approach:

u1on = a0a1b0b1; u1dc = a0a1b0b1 + 1;

e7 = uB
1 = 1; (after logic optimization)

u2on = a0b1 + a1b0; u2dc = 1;

z1 = uB
2 = (a0 ∧ b1)⊕ (a1 ∧ b0);

Note that with DC conditions extracted using our ap-

proach, the synthesis tool was able to optimize the logic

at net e7 to tautology.

VII. EXPERIMENTS

This section presents experimental results on performing

rectification of faulty integer multiplier benchmarks using our

approach. The multiplier benchmark circuits comprise three

structural levels: the Partial Product Generator (PPG) stage,

the Partial Product Accumulator (PPA) stage, and the Final

Stage Adder (FSA) stage. We focus on two different multiplier

structures, sp-ar-rc and sp-wt-cl. The naming convention of

the multipliers follows the structure: ”PPG-PPA-FSA”, e.g., a

sp-ar-rc multiplier indicates simple partial product for PPG,

array structure for PPA, and ripple-carry adder for FSA.

Similarly, the notation wt indicates a Wallace-tree structure,

and cl indicates a Carry-look-ahead adder. The circuits are

taken from [3] and are mapped using the abc tool with a

library consisting of AND-XOR-OR-INV gates. We introduce

gate and wiring faults in the netlists which affect multiple POs.

The faults are placed at various topological levels across the

multiplier stages; some faults are placed inside the PPG stage

near the PIs, some are placed in the middle of the circuit in

the PPA stage, and some inside the FSA stage near the POs.

We select between two to five targets m, one near each bug

location in the benchmark.

Our approach is implemented as a custom software using

the programming language Python. The software utilizes the

binary revsca [6], and the open-source libraries amulet [3],

Singular [30], abc, and sis. The tools amulet and revsca
use different approaches to generate the remainders reml.

We run both tools to compare the performance of the two,

and use the remainders from the first tool to complete.

We utilize the symbolic computer algebra system Singular
to perform the rectification check. Singular is also used to

compute the reduced Gröbner basis for each reml and to

construct a singleton polynomial rem′
l corresponding to each

reml. Our custom software utilizes the polynomials rem′
l to

compute rectification functions by performing all the algebraic
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TABLE III: Rectification of faulty integer multipliers; Time in seconds, I = Row number, n = Operand width, m = Number

of targets, revsca = required time for remainder generation using [6], amulet = required time for remainder generation using

[3]. GBC = required time to perform rectification check and to compute the redGB for each reml using Singular, FC
= required time to compute functions using the greedy approach and don’t care based approach, PGC = synthesized patch

sub-circuit using the greedy approach, PDC = synthesized patch sub-circuit using the DC-based approach, A = Area in terms

of number of gates, D = longest topological delay, Time-Out (TO) = 10000s, NA = not applicable, OOM = out of memory

I n m

sp-ar-rc sp-wt-cl

revsca amulet GBC FC
PGC PDC

revsca amulet GBC FC
PGC PDC

A D A D A D A D

1 4 2 0.8 0.8 1.0 0.8 74 13 36 8 0.1 0.1 0.1 0.3 27 8 14 6

2 4 3 0.3 0.3 0.4 0.5 74 10 52 13 0.2 0.2 0.2 0.5 23 6 10 5

3 4 5 1.2 1.4 0.7 2.2 30 7 31 8 1 1 0.1 1.7 21 7 16 5

4 8 2 0.1 0.1 0.3 0.2 17 8 16 7 0.8 1.2 3.7 0.2 173 18 151 14

5 8 3 0.2 0.2 36 0.9 374 19 193 27 0.1 0.3 0.8 1.1 46 8 31 6

6 8 5 0.7 0.7 TO NA NA NA NA NA TO TO NA NA NA NA NA NA

7 16 2 0.2 0.2 7696 1.3 823 17 114 17 0.4 0.8 1872 0.9 231 27 189 25

8 16 3 0.4 0.4 0.5 0.8 105 15 47 10 1.4 2.7 0.8 0.4 67 22 53 25

9 32 2 1.9 TO 0.2 0.4 53 9 39 8 4.6 6.5 193 0.6 92 16 83 17

10 32 3 3 3 3732 0.6 155 15 68 12 TO TO TO NA NA NA NA NA

11 64 2 OOM TO NA NA NA NA NA NA 7.3 TO 1940 1.2 137 22 94 19

computations described in Sec. V. The software uses the

sis scripts kernel extraction and full simplify to optimize

the rectification function using the DC-sets computed in the

DC-based approach. Next, all the computed functions are

optimized using abc. The optimized functions are then mapped

using a library of AND-XOR gates and the synthesis results for

Area and Delay are extracted. The experiments are conducted

on a desktop computer with a 3.5GHz Intel CoreTM i7-4770K

Quad-core CPU, 16 GB RAM, running 64-bit Linux OS.

Table III presents the results on performing rectification

of faulty circuits for multiplier structures sp-ar-rc and sp-
wt-cl. The columns denote the datapath size of the faulty

benchmarks, the number of selected targets, the execution time

for different stages of the approach, and the area and delay of

the resulting patch sub-circuits after abc and sis optimization.

As seen in these results, the main bottleneck of our approach is

the execution time required to compute reduced Gröbner bases

for each reml. This computation times out when performed on

large remainders. The size of the remainders depend primarily

on the factors: i) the number of bugs; ii) the number of targets;

iii) the location of the bugs; iv) the location of the targets; and

v) the size of the benchmark.

For example, consider the results for the structure sp-
ar-rc, at row six of the table, the GBC execution times

out while computing a reduced Gröbner basis due to large

remainder sizes. However, the GBC computation completes

relatively quickly for the same benchmark with fewer targets

and fewer bugs at different locations as shown at row five

of the table. The seventh row shows an example where the

GBC computation completed after significant execution time

due to large remainder sizes. Row eleven shows an example

where neither revsca nor amulet were able to generate the

remainders reml.

TABLE IV: Comparison of Area and Delay between original

benchmark and patch-integrated rectified benchmarks. n =

Datapath size, m = Number of targets, ORIG = Original faulty

benchmark, Greedy = Benchmark rectified using patch from

our greedy approach, DC-based = Benchmark rectified using

patch from our DC-based approach, A = Area in terms of

number of gates ×103, D = Longest delay

n m

sp-ar-rc sp-wt-cl

ORIG Greedy DC-based ORIG Greedy DC-based

A D A D A D A D A D A D

4 2 127 31 126 20 119 20 130 22 116 20 96 20

4 3 134 31 130 20 141 24 137 22 96 20 96 20

4 5 148 35 97 19 90 21 151 25 98 22 99 22

8 2 647 67 534 62 538 55 755 32 731 29 714 30

8 3 654 70 815 64 674 72 762 37 723 34 698 36

16 2 1935 146 1908 135 1872 137 3831 50 3778 49 3753 51

32 3 12510 306 10090 270 10128 274 17501 84 17445 78 17312 79

Columns PGC and PDC denote the post-optimization syn-

thesis results for the greedy approach and the DC-based

approach, respectively. The synthesis results computed in PDC

contain a smaller area and delay than the ones computed in

PGC. This shows the efficacy of the DC-based approach in uti-

lizing DC points for the logic optimization of the rectification

functions. For these small patch sub-circuits, the difference in

execution time between the greedy and DC-based approaches

is negligible. Table IV compares the area and delay between

the original benchmarks and the patch-integrated benchmarks

for the relevant cases. As shown in the results, the area and
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delay of the patched benchmarks is comparable to the original

faulty benchmark after resynthesis (using abc).

VIII. CONCLUSION

This paper presents an automated approach for the multi-

fix rectification of integer arithmetic circuits using computer

algebra techniques. Given a set of targets, we formulate a

rectifiability check to ascertain the existence of rectification

functions and present two approaches to compute them. One

approach utilizes a greedy heuristic for quick patch computa-

tion, while the other finds a subset of DC points to better

optimize the rectification functions. These approaches may

result in polynomials with coefficients in the field of rationals.

We present novel techniques to synthesize sub-circuit patches

from these polynomials and demonstrate them on preliminary

experimental results from array integer multiplier benchmarks.

Our approach requires computing reduced Gröbner bases,

which is the main bottleneck in our experiments. As part of

our future research, we are investigating alternatives to this

expensive computation. We are also researching methods to

compute the rectification functions in terms of internal nets of

the circuit.

REFERENCES

[1] M. Ciesielski, T. Su, A. Yasin, and C. Yu, “Understanding algebraic
rewriting for arithmetic circuit verification: A bit-flow model,” IEEE
TCAD of Integrated Circuits and Systems, 2020.

[2] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in DATE, 2020.

[3] D. Kaufmann and A. Biere, “Amulet2.0 for verifying multiplier circuits,”
in TACAS, 2021.

[4] M. Temel, A. Slobodova, and W. A. Hunt, “Automated and scalable
verification of integer multipliers,” in Computer Aided Verification, 2020.

[5] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining sat and computer algebra,” in FMCAD, 2019.

[6] A. Mahzoon, D. Große, and R. Drechsler, “Revsca: Using reverse
engineering to bring light into backward rewriting for big and dirty
multipliers,” in Design Automation Conference, 2019.

[7] D. Kaufmann, “Formal verification of multiplier circuits using computer
algebra,” Ph.D. dissertation, Johannes Kepler University Linz, 2020.

[8] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Gruel, “An Alge-
braic Approach to Proving Data Correctness in Arithmetic Datapaths,”
in Computer Aided Verification Conference, 2008, pp. 473–486.

[9] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner Basis Reductions for
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