2021 IEEE 39th International Conference on Computer Design (ICCD) | 978-1-6654-3219-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICCD53106.2021.00039

2021 IEEE 39th International Conference on Computer Design (ICCD)

Rectification of Integer Arithmetic Circuits using
Computer Algebra Techniques

Vikas Rao Haden Ondricek

University of Utah, Salt Lake City, USA

vikas.k.rao@utah.edu haden.ondricek@utah.edu kalla@ece.utah.edu

Abstract—This paper proposes a symbolic algebra approach
for multi-target rectification of integer arithmetic circuits. The
circuit is represented as a system of polynomials and rectified
against a polynomial specification with computations modeled
over the field of rationals. Given a set of nets as potential
rectification targets, we formulate a check to ascertain the
existence of rectification functions at these targets. Upon con-
firmation, we compute the patch functions collectively for the
targets. In this regard, we show how to synthesize a logic sub-
circuit from polynomial artifacts generated over the field of
rationals. We present new mathematical contributions and results
to substantiate this synthesis process. We present two approaches
for patch function computation: a greedy approach that resolves
the rectification functions for the targets and an approach that
explores a subset of don’t care conditions for the targets. Our
approach is implemented as custom software and utilizes the
existing open-source symbolic algebra libraries for computations.
We present experimental results of our approach on several
integer multipliers benchmark and discuss the quality of the
patch sub-circuits generated.

Index Terms—Rectification, Debugging, Integer Arithmetic
Circuits, Formal Methods, Symbolic Algebra.

I. INTRODUCTION

Symbolic Computer Algebra (SCA) techniques are better
suited for verification of arithmetic circuits as compared to
conventional approaches based on Boolean satisfiability and
decision diagrams [1], [2], [3]. The approaches based on
decision diagrams are shown to exhibit exponential space com-
plexity, whereas Boolean satisfiability techniques are proven
to be not scalable. Methods based on theorem provers [4]
require preservation of hierarchical information. On the other
hand, the symbolic algebra techniques employing a polynomial
model as the core computation engine has been shown to be
the most effective approach for gate-level datapath verification.
Such models verify the correctness of a circuit C' by checking
if the given polynomial specification Spec is implied by a
set of polynomials representing C'. These algebraic models
have been shown to be largely successful in verifying integer
arithmetic circuits [1], [2], [3], [5], [6], [7], integer modulo
arithmetic circuits [8], and also for finite field circuits [9],
[10] — all with large operand sizes. Despite these advances in
verification, automated debug and rectification of arithmetic
circuits, especially multipliers, are still a significant challenge.

This research is funded in part by the US National Science Foundation
grants CCF-1911007 and CCF-1910368.

Priyank Kalla
Department of Electrical & Computer Engineering

Florian Enescu
Department of Mathematics & Statistics
Georgia State University, Atlanta, USA

fenescu@gsu.edu

When formal verification detects the presence of a bug in
the design, it is required to perform post-verification debug
and rectification of the faulty implementation such that the
rectified circuit matches the given specification. In such a
setting, it is desirable to compute rectification functions at
internal nets, without re-synthesizing/re-designing the entire
circuit — a problem of partial synthesis. The partial synthesis
problem is more involved than that of verification, as the
former is a quantification problem, whereas the latter is a
decision problem. Given a set of candidate nets as potential
rectification targets, the rectification procedure requires i) to
ascertain the rectifiability of the circuit at these targets, and ii)
subsequently, compute a corresponding rectification function
at each target.

While rectification has been addressed for random-logic
circuits [11], [12], [13], [14], as well as recently for large
operand finite field circuits [15], [16], the problem has not been
satisfactorily addressed for integer arithmetic circuits. This
paper addresses the problem of ascertaining rectifiability and
computing rectification functions for faulty integer arithmetic
circuits at multiple targets. While the concepts presented in
this paper apply to any polynomial algebra-based model of
integer arithmetic circuits, the application is demonstrated over
integer multiplier benchmarks. For rectification, we assume
that the candidate nets are provided beforehand, say, selected
using contemporary signal selection heuristics [17], [13], [14].

Problem Statement: Given a gate-level integer arithmetic
circuit C' and a polynomial specification Spec with integral
coefficients, we model them over the field of rationals (denoted
Q). Formal verification is performed to verify C against Spec
(say, using the techniques of [18], [1], [3], [6]). Verification
determines that C' is buggy, i.e., C' does not implement Spec.
No assumptions are made about the type, nature, or number
of bugs in C. A set of m candidate nets {w1,...w.,} from C
are given as targets. Our objective is to ascertain if C' is indeed
rectifiable at the m targets, and if so, compute a set of indi-
vidual rectification polynomial functions U = {uy,...,Um}
for the targets. And finally, we synthesize these polynomial
functions into logic sub-circuit patches.

Related Previous Work: Once rectification is deemed feasi-
ble, the problem of finding the rectification function can be
considered as a partial synthesis of an unknown component.
The approach of [19] formulates the computation of the

978-1-6654-3219-1/21/$31.00 ©2021 IEEE 186
DOI 10.1109/1CCD53106.2021.00039

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

unknown component as a quantified Boolean formula (QBF)
and solves it using incremental and iterative SAT solving.
Similarly, the authors in [20] present a QBF formulation for
answering whether a partial implementation can be extended
to a complete design that models a given specification. As
Craig interpolation is an alternative to QBF solving, it has been
presented in [11] for multi-fix rectification for ECO synthesis.

The rectification problem has been addressed for finite field
arithmetic circuits, particularly the ones that find applications
in Elliptic Curve Cryptography. For this class of circuits, the
problems are modeled and solved using polynomial algebra
over finite fields. The concept of Craig interpolation was ex-
tended to polynomials in finite fields [15], [21] and application
to rectification of finite field arithmetic circuits was demon-
strated over large operand widths. As Craig interpolation in
finite fields is a computationally challenging problem, another
rectification approach was presented for finite field circuits in
[16] which uses the (extended) Grobner basis algorithm as a
quantification procedure to compute the rectification function.
Recently, [22] proposed an SCA-based approach that decides
m-target rectifiability of finite field arithmetic circuits. Given
a set of m-targets, the approach only ascertains whether there
exists a set of patch functions at those targets, and cannot
compute rectification functions.

In contrast, the approach presented in this paper addresses
the rectification of integer arithmetic circuit designs, where
problems are modeled over infinite fields. Rectification has
been attempted for integer arithmetic circuits [23] [24]. Unfor-
tunately, the technique of [23] was demonstrated to be incom-
plete in [16], and [24] is limited by the fault model, which only
addresses a gate misplacement fault. In [25], a buggy integer
arithmetic circuit is patched at all the primary outputs where
the bug-effect is observable by implementing half-adders and
carry-propagate logic at those outputs. However, the approach
does not explore the possibility of rectification at internal nets
and also does not explore don’t care conditions for simplifying
patch functions.

Approach and Contributions: We model the rectification
problem using concepts from algebraic geometry and use sym-
bolic computer algebra algorithms to determine rectifiability
and to compute rectification functions. In [26], the authors
showed that the verification of integer multipliers can be
formulated and solved over polynomial rings with coefficients
from @Q, as opposed to solving over integers Z. As many
algebraic geometry results are valid over fields, and Z is not
a field, their approach leverages the fact that Z C Q, and it
devises theory as well as computational techniques over fields
to solve the verification problem.

Expanding upon the model presented in [26], we describe
the gates of C' with a set of polynomials with integer coeffi-
cients and perform all the algebraic computations required for
rectification over Q. Overall, our contributions are as follows:

1) We formulate a rectifiability check to ascertain that the

circuit C' is rectifiable at the given set of m targets.
o This check implies the existence of a polynomial
function over Q with mapping u; : {0, 1}1Xr1l —

{0,1}, at individual targets w;, where 1 < ¢ < m and
Xpr denotes the set of primary inputs of C'. Substi-
tuting the polynomial function at the corresponding
targets, w; = u;[X py|, rectifies the circuit.

2) We present two approaches for patch function compu-
tation, a heuristic that greedily resolves the rectification
functions for the targets and a heuristic that explores a
subset of don’t care conditions for the targets.

3) Modeling rectification over Q poses new challenges be-
cause algebraic computations may result in polynomial
functions with coefficients in Q. We further propose a
synthesis procedure that can translate such polynomial
functions to Boolean rectification functions. We present
new mathematical results and provide proof of soundness
and completeness as part of this investigation.

4) We demonstrate the application of our approach by per-
forming rectification of faulty integer multiplier circuits
at multiple targets.

Paper Organization: The paper is organized as follows: The
following section covers preliminary concepts and Sec. III
covers the circuit modeling. Sec. IV describes the rectifica-
tion check followed by rectification function computation in
Sec. V. The synthesis of rectification functions is described in
Sec. VI. Experiments are described in Sec. VII, and Sec. VIII
concludes the paper.

II. PRELIMINARIES

This section reviews basic concepts from symbolic algebra

and associated algorithms that are utilized in this paper.

1) Background:

e Let R = Q[X] be the polynomial ring in variables X =
{z1,...,24} with coefficients in Q (field of rationals).
Finite extensions of QQ are called algebraic number fields,
and the algebraic closure of Q is the field of algebraic
numbers (denoted Q in this work).

« A monomial is a power product over the variables X of
the type x7' - 252 - - - x5, €; € Z>o.

¢ A polynomial p € R is written as a finite sum of terms
p = c1X1 + coXo + -+ 4+ ¢t X¢. Here cq,...,c; are
coefficients € Q and X3, ..., X; are monomials.

o To systematically manipulate the polynomials, a mono-
mial order > (also called a term order) is imposed on the
polynomial ring.

e Subject to >, X7 > Xo > .-+ > Xy, and lt(p) =
aXi, Im(p) = X1, le(p) = c1, are the leading
term, leading monomial and leading coefficient of p,
respectively. Also, for a polynomial p, tail(p) = p—It(p).

— In this work, we use lexicographic (lex) term orders.

2) Polynomial Ideals, Varieties, and Grobner Basis: We are
given a multivariate polynomial specification f in the ring R.
The behavior of the gate-level circuit C' is modeled as a set
of polynomials F' = {fi,..., fs} contained in R (Sec.).

e Then f £>+ r denotes the reduction of f modulo the
set of polynomials F, resulting in a remainder r. The
terms in f are iteratively canceled by the leading terms

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

of the polynomials in F' using polynomial division (cf.
Algorithm 1.5.1 [27]).

o The ideal generated by the set of polynomials F' is
defined as J = (f1,...,fs) = {h1 - f1+ -+ hs -
fs | h1,...,hs € R}. The polynomials fi,.., fs form
the basis or generators of ideal .J.

e Given an ideal J C R, the radical of J is defined as
VI={p€eR:3ecN,pecJh

- When V'J = J, J is said to be a radical ideal.

e An ideal J C R is said to be maximal if J # R and
any ideal J’ containing J is such that either J' = J or
J = R.

o Leta = (ay,...,aq) € Q% be a point in the affine space,
and p € R. If p(a) = 0, we say that p vanishes on a, or
a is a zero of the polynomial p.

o We are interested in the set of all common zeros (points)
of the polynomials of F' that lie within the field Q. This
zero set is called the variety.

— The variety depends not only on the set of polyno-

mials F, but also on the ideal J generated by F.

We denote the variety of J over Q as V(J), where:

Vo(J) = Vo((F)) = {a € Q" : Vp € J,p(a) = 0}.

Boolean functions comprise a finite set of points, so we

can model them as varieties. If a point is an element of a

variety, then that point can be considered an on-set minterm

of a corresponding Boolean function. The first two columns

of Table I describe the correspondence between operations

on Boolean functions and operations on varieties. We utilize

this correspondence to formulate rectification check and to

construct rectification functions by modeling the on-, off-, and
DC-sets as varieties.

TABLE I: Correspondences between algebraic operations and
Boolean operations. Here, J; = (f), and J = (g).

Boolean Functions Varieties Ideal operations
fVyg V(J1)UV(J2) Ji - Jo
fAg V(J1)NV(J2) Ji+ J2
f—g9 V(J1)\ V(J2) J1 2

Algebraic geometry analyzes ideals to reason about varieties
without explicitly computing the varieties, which is infeasible
in practice. In this paper, we compute the union, intersection,
and set difference of functions, represented by varieties, by
performing corresponding operations on ideals. In the third
column, ” -7 | 7 +7 |7 7 represent the product, sum, and
colon operations on ideals, respectively; these ideal operations
are implemented in computer algebra tools, which we utilize.

o An ideal may have many different bases or generators.
A Grobner basis (GB) is a basis with properties that
are useful in solving many polynomial decision and
quantification problems. For example, a polynomial f

is a member of ideal J if and only if f GBL) + 0.
When f ¢ J, division by GB(J) results in a non-zero

. GB(J . . .
remainder f Jhr r that is unique/canonical.

188

o The Grobner basis for an ideal J can be computed using
the Buchberger’s algorithm (Algorithm 1.7.1 in [27]). A
Grobner basis can be reduced. A reduced GB (redGB) is a
canonical representation of an ideal. Thus, any operation
on an ideal can be construed as being performed on its
GB.

3) Variety over the Algebraic Closure of a Field: All vari-
ables representing the nets of a circuit only range over binary
values, and thus satisfy the polynomial constraint relation

2

—x=0.

x
o Let Fy = {27 —x; : Vo, € X} denote the set of all
such polynomials, and .Jy be the ideal generated by it,

Jo = (Fp). The variety of Jy is Vo(Jo) = {0,1}%.
« Consider the polynomial ¢ = z7 — 2; € Q[X]. The
solution to g = 0 over Q, and also over Q, is {0,1}.
Therefore, Vo(Jo) = Vg(Jo) = {0,1}%. Here, Vi(Jo)

denotes the variety of Jy over the algebraic closure Q.

— To enforce idempotency, we include the ideal Jy
in our computations. In other words, the circuit
is modeled as an ideal J + Jy. We have that,
Vo(J+Jo) € {0,1}%, and Vi (J+Jp) = V@(J—i-Jo).

- In this work, we simplify notation by writing V'(J)
to mean V@(J). However, we will use the notation
Vi and Vig when we need to specify which field the
variety is considered over.

4) Quotient rings:

o Although circuit polynomials F' and specification poly-
nomial f contains integral coefficients; every polynomial
has to satisfy the constraints imposed by the set Fj. Let
J = (F) and Jy = (Fp). Thus, every computation is
performed (mod Jy) and effectively, we are working
over the quotient ring R/Jy = Q[X]/Jy. Note that Jy
is a radical ideal in Q[X]. This implies that R/Jy is
0-dimensional and reduced, and hence R/Jy is a Von
Neumann regular ring [28], [29], which have special
properties.

o There is a one-to-one correspondence between ideals
I € R containing Jy and ideals I’ in R/Jy. The
correspondence is given by I — I’ = I/Jy. As such,
properties of I’ € R/Jy lift to the corresponding ideal
IcR.

o Due to the fact that R/.Jy is a Von Neumann regular ring,
it has the following properties:

— Every ideal I’ is radical in R/Jy. So, every ideal I
of R such that Jy C I is radical in R, or equivalently
vdJ+ Jog = J+ Jy, for any ideal J in R.

— Every ideal I’ is principal in R/Jy, which implies
the ideal can be generated by a single element, i.e.,
J+Jy (mod J()) =p-R+Jy (mod Jo) or J+Jy =
p- R+ Jo.

o This implies that we can compute a single rectification
polynomial p by performing ideal computations on J +

Jo CQ[X}

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

III. POLYNOMIAL MODELING

Consider an n-bit gate-level integer multiplier circuit im-

plementation C' modeled over the ring R = Q[X]. Let
the two n-bit input vectors of C be ag,...,a,—1 and
bo,...,bp_1, le. Xpr = {ao, ceyQp_1,bg,. .. »bn—l}- Let
Xpo = {so,...,S2n—1} denote the 2n-bit output vector.

Each internal gate is represented by a gate variable, and let
Xy ={z1,...,z1} denote the set of all such variables. Then,
X =Xpo UXg UXpr.

Specification: Let f be a polynomial in R that acts as the
specification for C. Given two n-bit input vectors a; and b;,
f can be modeled as a polynomial in Q as:

2n—1

) n—1) n—1)
f = Z 2152' — Z 2104' . Z lei
=0 i=0 i=0

where a;, b;, s; € {0,].} c Q.

Implementation: Given a gate-level circuit netlist, we map
the gate-level Boolean operators to polynomials over Q. For
example, the Boolean operators NOT, AND, OR, and XOR
are represented as polynomials using the following relations:

M

U= v = u—1+v =0
u=vAw = u — VW =0
u=vVuw — u—v—w+ow =0
u=vdw — u—v—w-+ 2vw =0
Let F' = {f1,..., fs} represent the polynomial functions of

all the gates in the circuit and J = (F') be the corresponding
ideal. We also construct Jo = (Fp) = (27 —x; : 3, € X).
Then, ideal J + Jy models the functionality of C. The veri-
fication problem can now be formulated as checking whether
or not f is implied by the ideal J + Jy. In other words,
f=0 — § 28U, 691, 261,

To systematically manipulate the polynomials, instead of
imposing an arbitrary order, it is a standard practice to use a
specialized term order called the Reverse Topological Term
Order (RTTO). RTTO is a lex term order with the circuit
variables ordered reverse topologically from POs to PIs. RTTO
has the property which ensures the polynomials of the circuit
form a Grobner basis themselves [9], [26]. As a consequence,
GB(J+Jy) = FUF,, and hence we can perform verification
by checking whether the remainder r from the polynomial
division f M+ r equals zero. It was further shown [9]
that in the ideal of vanishing polynomials Jy, it is sufficient
to include vanishing polynomials in primary input variables
(Xpr C X). Thus, ideal J +.J; 77, where J3 &7 = (F#T) =
{2? —x; : Vo, € Xpr}, models the functionality of the circuit.

Example II1.1. Fig. I represents a faulty implementation C' of
a two-bit integer multiplier circuit. A correct multiplier would
have XOR gates in place of the AND gates at nets ey and
z1. The Spec polynomial for this two-bit multiplier is modeled
according to III: [= (8- 2z5+4-204+2-21 4+ 20) — ((2-
a1+ ag) - (2- b1 + by)). We impose RTTO > as lex with:

189

{Z()>21>Zg>2’3}>{69>€5}>{68>64}>{67>
61} > {66 > 62} > {63} > {ao > ay > bo > bl}
We map the Boolean gates of C to polynomials over Q):

fiizs—(eg-e5); fstea—(ag-br);
Jarzo—(eg+es—2-e9-e5); fo:es— (b1-ai);
farzi—(ea-e1); fio:es — (es - bo);
farzo—(ao-bo); fi1:er — (e e2);
fs:er—(a1-bo); fio:es—(er-e1);
forea—(1=bo); fiz:eg— (es-eq);

J7:e3 — (bo 4 ap — ag * bo);

The polynomials highlighted in red specify the gates where
bugs were introduced into the circuit. For simplicity, we select
these two nets as targets for rectification (wi = ey, ws = 21).

Let J = <f1,"' ,f13> and Jgﬁj] = <CL§ —ag,...,bg —b0>.
a
=l Z°
ay
b Z

Fig. 1: Buggy two-bit multiplier circuit with added redun-
dancy. Red gates were changed from XOR gates to AND gates.
Labels wj, wy indicate the two selected rectification targets.

To perform verification, we reduce the Spec polynomial by
X
+ P PI

the ideal J—i—JX” which models C. We find that f ————
r = 2aga1bpb1 — agby — 2a1by, confirming that C' is buggy.

IV. RECTIFICATION CHECK

If verification results in a non-zero remainder r, then the
circuit is deemed faulty and rectification needs to be performed
to fix the circuit. As a first step, it is required to derive the
necessary and sufficient condition to confirm whether or not
the circuit can be rectified at a given set of m targets. This
condition implies the existence of a polynomial function with
mapping wu; : {0, 1}1X71l — {0,1}, at individual targets.

Let W = (wh...,wm) C {Xg,Xpo}
denote a given set of m candidate targets. Let
w. = {(0,0,...,0),...,(1,1,...,1)} represent the set

of all {0, 1}-assignments to targets 1. Here, = m and
|W.| = 2™, with each W,[l], 1 < [< 2™, representing one
set of assignments to targets W (|W.(l)] = m). In other
words, the tail of gate polynomials representing the targets
are replaced by the corresponding {0, 1} values from W_[].

Theorem IV.1. A Spec polynomial f, a faulty circuit C', and a
set of targets W from C are given. The circuit C is represented
using the ideal J 4 Jy C R, wherein the targets in set W are

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

considered fan-in free or treated as pseudo primary inputs.
RTTO > is imposed on R.
The following ideals are constructed:

o Ju=(F) = {(f1,., Jur r w1 = W[[1],..., fu,, + wm —
Wellllm] 5..., fs), VL € 1,...2™
Reduce f by J;+ Jy to obtain remainders remy;: f LJO)JF

remy, for 1 <1 < 2™. Then, the faulty circuit C is rectifiable
at the target set W if and only if

om

UV remy) + Jg P’):{O,l}lxm‘ 2)

where, JXPI = <F0XPI> ={a? —x;: Yz, € Xpr}.

Proof IV.1. If rectification is feasible, then a rectification at
the target-set W makes C' match f. Consequently, f should be
implied by the patched ideal J + Jy representing the rectified
circuit, or f should vanish on V(J + Jp). Moreover, each
rem; comprises only Xp; variables. This is because RTTO
> ensures that each non-primary input variable (each gate
output) appears as the leading term of some polynomial in
F' and all such leading terms are canceled in the reduction

J .
f Q rem,. Furthermore, as X p; take values in {0, 1},
V(rem;) C {0, 1}|XP1‘. Thus, the rectification condition can

be equivalently stated as: “f vanishes on V(J + Jy) <=

o
U V((remu) + Jg) = {0, 1} Xr1l.
=1

(i) To prove “=": Let zp; € {0, 1}‘XP1| be an assignment
to the primary input variables of C. Every assignment zp;
results in a corresponding assignment x;,; to rest of the
variables in C. For each such point (zpy, zin:) € {0, 1},
the set of m targets W evaluate to one set of possible
{0,1} assignment from .. When the m-targets in W eval-
uate to W.[1] = (0,0,...,0), J; vanishes on the point
(zpr,®int). Likewise, Jo vanishes on (xpy, ;) wWhen the
targets evaluate to W,[2] = (0,0,...,1), and so on. Since

J . .
f JLO%JF remy,1 <[< 2™, and f vanishes on the point
(zpr,Tint) to begin with, we obtain that for every primary

input assignment x py, one of the rem; vanishes. This implies
gm
that U V((remy) + JXr7) = {0, 1}1XPrl,

(11) To prove “<": Say there exists an assignment to the
primary inputs zp; € {0,1}X71l such that 7em; vanishes on
xpr, i.e. remy(zpr) = 0. For the given point zpy, the rest
of the variables of C' get a corresponding assignment x;,,;. As

f mhr remy, we have that f is a member of the ideal
J1+ Jo + (remq). Therefore, when remy(xpy) = 0, the ideal
Ji also vanishes on (zpr, in;) € {0,1}%X! because the point
(zpr1,Tint) is a valid evaluation of the circuit. Further, Jy by
definition vanishes on all the points € {0, 1}!XI. This implies
that f(zpr, Zint) = 0. The argument similarly holds for each
rem; vanishing on some x py. This proves that for all primary
inputs, if any rem; : 1 <[< 2™ vanishes, then f vanishes
too; and that completes the proof.

O

190

Intuitively, the above theorem can be elaborated as follows.
The variety of remy, for any [, corresponds to the set of all
assignments to primary inputs X p; (minterms) where the Spec
f agrees with the Impl C. Thus, the condition of Thm. IV.1
implies that every minterm in the input space is contained in
the union of varieties of each rem;. Thus, for every minterm
from the input space, there exists an assignment W.[l] to W
where f and C' match. Consequently, there exists a set of
individual rectification functions for the targets that can be
computed to rectify every error minterm.

In the above check, the computation with the union of vari-

gm

eties |J V ({rem;)+J; 7") = {0,1}1X1l can be performed as
1=1 s

a product of ideals, i.e. by checking if Hle rem; ——4 0.

Example IV.1. Continuing Ex. IIl.1, we demonstrate the
rectification check for W = (w1, w2) = (ez, z1).
Constructing the J; ideals:

. J1:< 1); Filfs 21— 0, fi1:e7r—0],(z1 =0,e7 =0)
< > FQ[f;}:Zl—O, f112€7—1],(21:0,67:1)
<F3>, Fg[22’1*17 f11267*0],(21=1,€7=0)

0J4—< >,F[12171, f11:e771],(21:1,e7:1)

Reducing the Specf modulo these ideals results in:

J +JXPI
e TEeMmy = f ! 9 + —2a0b1 — 2(111)0,
J2+JXPI
e Moy = f —) —2@01)1 — 2&11)0 + 2,
J3+JXPI
e T"EM3 = f —>+ 4a0a1b0b1 — 2&0[)1 — 2a1b0,
J. +J
e TEMy = f 4—)+ 4a0a1b0b1 — 2a0b1 — 2(11b0 + 2.

XPI
When we compute Hl L remy —>+, we obtain remain-

der 0, thus confirming that the target set W indeed admits
correction.

V. COMPUTING RECTIFICATION FUNCTIONS

For a given set of targets ¥/, due to the presence of
don’t cares (DC), there may exist more than one set U of
rectification functions which rectify the circuit. Exploring all
the DC conditions for m targets might be computationally
infeasible; we present two different approaches to overcome
this. First, we present an approach to compute an on- and
off-set for each rectification function by greedily resolving all
the DC conditions. Following this, we present an approach
to heuristically explore and compute a subset of the DC
conditions, along with on- and off-sets, for each rectification
function.

1) Greedy Approach for MFR: To illustrate the greedy ap-
proach, consider the case with m = 2 (W = {wy, w2 }), where
w. ={(0,0),(0,1),(1,0),(1,1)}, and we must compute rec-
tification functions u; and us corresponding to targets w1 and
ws, respectively. For brevity, let Viy, ;) V((reml> 4+ J3en,
for 1 <1 < 2™; in this case, Viy, 1) = 5? 0) V({remy) +
I, Vv o) = Vioay = V((rems) + J, , and so on.

Recall that V| o) comprises the set of pomts where the Spec
matches the Impl under the assignments w; = wy = 0 to
the targets. This implies that at these points, the rectification

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

functions w; and wus should evaluate to 0. Table II shows
the required evaluations of u; and us for the points in each
variety, following the same reasoning, assuming each Vyy,) is
pairwise disjoint. The on (off)-set of the rectification function
for a target corresponds to the union of the varieties where
the function evaluates to 1 (0). In this case, the on- and off-
sets of uy consist of the set of points in Vi gy U V{1,1) and
V(0,00 U V(0,1), respectively. Similarly, the on- and off-set of
uz comprise points in V(g 1) U V(1,1) and V(g 0y U V(1,0). The
functions u; and wuy could be synthesized using these sets.

TABLE II: Required rectification function evaluations

Variety | u1 | uz
Vioo | 0] 0
Vi) | 0] 1
Vao [1] 0
Vay [T]!

However, the above argument is only correct when each
Vi, 1) are pairwise disjoint, which may not be true in practice.
For example, for a point contained in V(g o) N V{o,1), (u1,u2)
may evaluate either to (0,0), or to (0, 1) in order for the Impl
to evaluate to the same value as the Spec; this point would
be in both the on- and off-set of u9 in the method previously
described. A decision procedure is necessary to determine the
evaluation of (uy,usz) at these intersections, unambiguously.
We present a greedy approach which resolves such ambiguities
by imposing an order on the sets.

An example of our greedy approach to evaluate (uq,us)
for an order V(g 0y > V(o,1) > V(1,00 > V(1,1) is as follows:
First, we place all the points from V(g) into the off-sets of
(u1,uz). Next, we place all the points from V(g 1) \ V(o0
into the off-set of w; and the on-set of uy. We perform the
set difference to avoid placing the points in V(g o) N V(o 1)
into both the on-set and off-set of uy. Next, we place all the
points from V{; oy \ (V(0,0)U V(0,1)) into the on-set of u;, and
the off-set of uy. Finally, we place the remaining points from
Vi, \ (Vo,0)UV(0,1)UV(1,0)) into the on-set of (u1,uz). The
resulting on- and off-sets for w; and ug are shown below.

V(ulon) = (V1,1) N (V(0,0) Y V(0,1) Y V(1,000 Y (V(1,0) \ (V(0,0) Y V(0,1)))
Vi,) = (V0,00 Y (Vo,1) \ V(0,0))

Vi(uz,,) = (Vio,1) \ V(0,00 Y (V(1,1) \ (V(0,0) Y V(0,1) Y V(1,0)))
Viuz, ;) = V(0,00 Y (V(1,0) \ V(0,0) Y Vi0,1)))

This approach with the given order greedily places points
into the off-sets of the rectification functions (u1,u2) where
possible and only places points into the on-sets of the recti-
fication functions when necessary. Subject to the given order,
the on-sets of the rectification functions are thus minimized.
For the experiments in this paper, we always use the order
Vi) > Vw, [y for @ < j, as in the above example, though
any order would yield valid rectification functions.

Generalizing our greedy approach for m targets, we first

191

construct the following composite sets (varieties):

VWc[1]7 lfl =1

S’ =
: Vv \ (

-1
U Viry), 2<i<2m ©)
=1

Jj=

The resulting on-set and off-set functions for each target ¢,
where 1 <3 <m are:

V(ui,,) =S, VI | We[l]li] =1

C))
V(ui,,,) = J S, VI | We[l][i] =0

2) Don’t Care Conditions for MFR: Let Uy C U denote a
subset of the target rectification functions. We are interested
in the DC conditions which arise for these functions at
points where they may evaluate to any value, for some fixed
evaluation of the remaining functions in the set {U \ Uy}. For
example, consider a point in Vg o) N V(g 1) for a circuit with
two targets. As discussed previously, u; must evaluate to 0 at
this point, but Uz = {uy} may evaluate either to 0 or to 1, so
this is a DC point for us.

Not every intersection of varieties yields DC' points which
follow the conditions described above. Consider a point in
V(0,00 M V(1,1)- Here, (u1,uz) must evaluate either to (0,0) or
o (1,1). If this point were assigned to the DC' set of us, for
example, the Spec and Impl would only evaluate the same if
uy evaluated to the same value as us. Thus, u; would become
a function of uy at this point. This point cannot be placed into
the on-set, off-set, or DC-set of u; before us is evaluated. To
avoid inter-dependencies between the rectification functions,
we do not classify points in such intersections as DC' points.
We rely on our greedy heuristic to evaluate these points.

Finally, consider a point in V(g 9y N V{0,1)V|(1,0). This point
cannot be a DC point for both targets simultaneously since the
evaluation (1, 1) here will result in an incorrect rectification
function. However, because V(o,0y N V(o,1) N V(1,0) C V(0,00 N
V(0,1)» we could treat this point as a DC point for uz and
evaluate u; to 0. Alternatively, because V(o 0y V(0,1y"V(1,0) C
V(0,0) N V(1,0)> we could treat this point as a DC point for u;
and evaluate uo to 0. Thus, we have a choice to place this
point in the DC-set of either targets, but not both.

Finding every intersection containing DC' points for every
target can be very expensive for circuits with more than a
few targets. We therefore propose an approach to compute a
subset of the DC' points by considering only the set of pairwise
intersections of varieties which contain DC' points for exactly
one target, denoted as DChpqp.

Let d(W.[j], W,[k]) denote the Hamming distance between
the two sets of assignments to the targets W.[j] and W.[k].
We compute the set of varieties which contain DC' points for
one target, denoted DC)p,;r, from the equation below, where
1<,k <2m,

Dcpair = {VWL[]] N VW(;[k] ‘ d(Wc[JL Wc[k]) = 1} (&)

Since the Hamming distance d = 1 between the assignments
W.[j] and W_.[k] for each intersection of varieties in DCpqiy,
exactly one rectification function may evaluate either to 0

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

or to 1. The remaining rectification functions require fixed
evaluations of 1 or 0. Therefore, each intersection of varieties
in DCpqir yields DC points for exactly one rectification
function in U, and either on- or off-set points for the remaining
rectification functions in U. We use DC),; to compute the
DC points for each rectification function, as described below.
3) Computing Rectification Functions with Don’t Cares:
Once the set DC),; has been found, a few steps remain
to compute the on-, off-, and don’t-care sets for each target.
First, we follow an approach identical to the greedy approach
to evaluate points outside of DCpq;r. We construct new
composite sets Sld for 1 <[< 2™, which are identical to the
composite sets (varieties) created for the previous approach,
except that all the points from DC);, set are removed.

sf:{

Points in these composite sets are assigned to the on- and
off-set for each rectification function in the same way as
Eqn. (4), substituting S; with S{. Next, we place the points
in DCpq;r in the on-, off-, or DC sets for each rectification
function, by imposing an order on the intersections and
resolving them as explained in the following example.

Given a circuit with two targets, DCpqir = {V(o.,o) N
Vio,1ys V00,00 V(1,0 Vio,1 "V(1,1)5 Vi1,00NV(1,1) }- We impose
the order Vio,0y > Vio,1) > V(1,00 > V(1,1)- We place the
points in V{g,0) N V/q,1) into the off-set of u; and the DC set
of uz. We then place the points in V(g 0y V(1,0 \V(o,o) NVio,1
into the DC' set of u; and the off-set of uy. We place points
in Vio,)) N Vi \ (Vio.o) N Vio,n) U (Vo0 N Vi) into
the DC set of u; and the on-set of uy. Finally, we place
points in Vi1 0y N Vi1,1) \ (V0,00 N Vi0,1)) U (Vi0,0) N V(1,0)) U
(Vio,1) MV(1,1))) into the on-set of u; and the DC' set of us.
Following this approach, we calculate on- off- and DC sets
for each rectification function.

VWC[l] \DCpa'ir,
-1

Vv \ ((U Viv,()) U DCpair), 2<1<2™
=1

ifi=1
©

VI. SYNTHESIZING RECTIFICATION FUNCTIONS

The above techniques show how to construct a rectification
function by reasoning about the varieties of each rem;.
However, algebraically, these functions are computed using
their corresponding ideals. We now show how the remainders
computed in Sec.IV can be utilized for rectification function
computation.

The rectification theorem IV.1 implies the existence of a
polynomial function with mapping u; : {0, 1}Xr1l — {0,1},
at individual targets. However, since we use a polynomial
model over Q, our algebraic rectification techniques compute
a polynomial function over Q, i.e., it may evaluate to constants
in Q, i.e., non-Boolean values. To overcome this, we present
new mathematical contributions to transform a polynomial
function of the form (rem;) + J; 7' to another polynomial
rem; such that V((rem;) + J3 7)) = V((rem}) + J&*7),
and rem; evaluates to only Boolean values {0,1} C Q and
corresponds to the rectification function evaluation.

192

Consider the quotient ring R/Jy = %ﬁq Let J C Q[X] be
an ideal with coefficients in Q and so V' (J +.Jy) C {0, 1}/X].
Moreover, J + Jy (mod Jp) is radical in R/Jy, and J + Jo
is radical in R. Given that ideals J + Jy correspond to a finite
variety, and that they are radical and principal, from the above
discussion, we show the following results.

Fact VI.1. The ideal J 4 Jy can be expressed as the intersec-
tion of maximal ideals. In Q[X] the intersection of maximal
ideals is the same as their product: J + Jy = ﬂle M; =
Hle M;, where M, are maximal in R. Furthermore, each
such maximal ideal M; is of the form M = (z1—eq,..
€q), where ¢; € {0,1},V1 < j <d.

<y Ld —

Every radical ideal can always be decomposed into an
intersection of maximal ideals. While the result is well known
over algebraically closed fields, it is also true over Q[X].

Proposition VI.1. The ideal Hle M; can be expressed as
generators (fi,...,fs,2> —x : Vo € Xps) such that
fi,-.., fs have coefficients only in {—1,+1}.

Since each M; is of the form (z; — €), their intersection
also have coefficients only in {—1,+1}. The above implies
that any arbitrary polynomial p € R, when combined with
Jo, can be expressed as (p) + Jo = (f1,..., fs) + Jo, where
fi,-.., fs have coefficients in {—1,+1}.

Even though the remainders rem; have coefficients in Q
(higher field), their varieties are in {0, 1}X71| (V' ((rem;)) C
{0,1}1XP11y as they correspond to bit-level assignments to
Xpy.

Proposition VI.2. Compute the GB G; for the ideals
((remy) + J3P7) € Q[X], 1 <1< 2™, as
reducedGB({rem;) + J3'*"), where rem,’s are the remain-
ders generated in Thm. IV.1. Then the polynomials in GG; have
coefficients in {—1,+1} with variables in Xpj.

The above results imply that a reduced Grobner basis of an
ideal of the form (f) + J; 7' for any arbitrary polynomial
[€ Q[Xp;] will have generators G = {g1,...,g:} with
coefficients from {+1,—1}. This enables the synthesis of
Boolean rectification functions from these Grobner bases.
Example VI.1. Let p= 4/3'@0&11)0[)1 —2 'Clobobl — 2/7 a160
be a polynomial in R = Q[ag, a1,bo, by]. Let Jy = (a3 —
ao,...,b% —b1>.

Computing G = redGB({p) + Jo) = {aobob1,a1bo}.

Note that the polynomials in G have coefficients in
{-1,+1}.

Proposition VL3. Given a set of generators F' = {f1,..., fs}
with coefficients only in {—1,+1}, a polynomial p can always
be constructed as p = ((1 + fi)(1 + f2)... (1 + fs) + 1)
(mod 2), such that V({p) + Jo) = V({f1,..., fs) + Jo) and
p evaluates to only binary values {0,1} C Q.

We utilize the above facts and the reduced GB computation
to construct a synthesizable Boolean function rem; from a
polynomial function rem;.

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

Overall, our procedure for the rectification of integer arith-
metic circuits is as follows:

o Model the specification polynomial and the circuit poly-
nomials over Q[X] using techniques described in Sec. III.

o Generate remainders rem; and formulate the rectification
check for a gi}\(/en set of m targets as

m PI
12" rem; 2>—, 0 (Thm. IV.1).
— Here, each rem; corresponds to a polynomial func-
tion mapping from {0, 1}1Xr1l — QIXril,

o If the check confirms existence of rectification functions,
then compute functions u;, ¢ = 1,...,m corresponding
to each target as follows:

1) Compute a reduced GB for each ((rem;) + J3*7) as
shown in Prop. VL.2.

— Here, the generators from each redGB({rem;) +
J;PT) will have coefficients only in {—1,-+1}, and
V({rem;) + JOX P} corresponds to the minterms of
the rectification function.

2) Construct a singleton polynomial rem; such that,

V((rem)) + J3F1) = V({rem;) + JX*'), as shown

in Prop. VIL.3.

— Here, rem; is a polynomial function mapping from
{0,1}Xrrl 5 {0,1}, such that it has the same

variety.
3) Impose the order on the remainders: remj > --- >
rem;.
4) Greedy approach: Compute composite sets from
Eqn. (3).

— Assign points from composite sets to the on- or off-
sets of the rectification functions (Sec. V-1).
5) DC-based approach: Compute DC,q; using Eqn. (5),
and then compute the composite sets in Eqn. (6)
— Assign the points in the composite sets and DChqr
to the DC-, on- or off-sets of the rectification func-
tions (Sec. V-2).
6) Perform the union, intersection, and set difference of
varieties using the respective ideal operations (Table I).
7) Translate the polynomials representing ;. and u;_,
into Boolean functions v} _ and u; by interpreting
the algebraic product and sum as Boolean AND and
XOR gates, respectively.
8) Optimize the on-set u]?im w.r.t. to the DC-set U?DC for
the DC-based approach using a logic synthesis tool.

Example VI.2. Continuing with Ex. IV.1, consider rems:
. Recall, rems = 4a0a1b0b1 — 2a0b1 — 2a1b0.
. redGB((remg) -+ J()) = {a1b0b1 — albo, a0b1 -
aibo, agarby — a1bo}
- Note, V((rems) + Jo) = V(redGB({rems) + Jo))
— Compute a reduced GB for remy, rems, and remy.
o Impose the order remy > remo > rems > remy.
o The rectification polynomials for the targets (er,z)
computed using our greedy approach:

u1,, = apaiboby;
m:u?:(ao/\al/\bo/\bl);
on = Qob1 + a1bo;

21 =us = (ag Aby) @ (a1 Abg);

U2

o The rectification polynomials for the targets (er,z)
computed using our DC-based approach:

(58 = aoalbobl; Uy, = a0a1b0b1 + 1;

on de

er = us = 1; (after logic optimization)
ug,,, = apb1 + a1bo;

on

21 =us = (ag Aby) @ (a1 Abo);

ug,, = 1;

Note that with DC conditions extracted using our ap-
proach, the synthesis tool was able to optimize the logic
at net e7 to tautology.

VII. EXPERIMENTS

This section presents experimental results on performing
rectification of faulty integer multiplier benchmarks using our
approach. The multiplier benchmark circuits comprise three
structural levels: the Partial Product Generator (PPG) stage,
the Partial Product Accumulator (PPA) stage, and the Final
Stage Adder (FSA) stage. We focus on two different multiplier
structures, sp-ar-rc and sp-wt-cl. The naming convention of
the multipliers follows the structure: "PPG-PPA-FSA”, e.g., a
sp-ar-rc multiplier indicates simple partial product for PPG,
array structure for PPA, and ripple-carry adder for FSA.
Similarly, the notation wt indicates a Wallace-tree structure,
and c/ indicates a Carry-look-ahead adder. The circuits are
taken from [3] and are mapped using the abc tool with a
library consisting of AND-XOR-OR-INV gates. We introduce
gate and wiring faults in the netlists which affect multiple POs.
The faults are placed at various topological levels across the
multiplier stages; some faults are placed inside the PPG stage
near the PIs, some are placed in the middle of the circuit in
the PPA stage, and some inside the FSA stage near the POs.
We select between two to five targets m, one near each bug
location in the benchmark.

Our approach is implemented as a custom software using
the programming language Python. The software utilizes the
binary revsca [6], and the open-source libraries amulet [3],
Singular [30], abc, and sis. The tools amulet and revsca
use different approaches to generate the remainders rem;.
We run both tools to compare the performance of the two,
and use the remainders from the first tool to complete.
We utilize the symbolic computer algebra system Singular
to perform the rectification check. Singular is also used to
compute the reduced Grobner basis for each rem; and to
construct a singleton polynomial rem; corresponding to each
remy. Our custom software utilizes the polynomials rem; to
compute rectification functions by performing all the algebraic

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Rectification of faulty integer multipliers; Time in seconds, I = Row number, n = Operand width, m = Number
of targets, revsca = required time for remainder generation using [6], amulet = required time for remainder generation using
[3]. GBC = required time to perform rectification check and to compute the redGB for each rem; using Singular, FC
= required time to compute functions using the greedy approach and don’t care based approach, PGC = synthesized patch
sub-circuit using the greedy approach, PDC = synthesized patch sub-circuit using the DC-based approach, A = Area in terms
of number of gates, D = longest topological delay, Time-Out (TO) = 10000s, NA = not applicable, OOM = out of memory

sp-ar-rc sp-wt-cl

S revsca | amulet | GBC | FC PGC PDC revsca | amulet | GBC | FC PGC PDC

A|D|A|D A|D|A|D
1{4]12] 08 0.8 1.0 [0.8] 74| 13| 36 0.1 0.1 01 (0327 | 8 | 14| 6
21413 03 0.3 04 05|74 10|52 | 13| 02 0.2 02 (05236 |10]| 5
31415 1.2 1.4 07 2230 7 |31 8 1 1 01 (17217 |16]| 5
41812] 01 0.1 03 (02|17 | 8 |16 7 0.8 1.2 37 (02173 | 18 | 151 14
5183 02 0.2 36 |09(374] 19 | 193| 27 | 0.1 0.3 08 |1.1]46 | 8 | 31| 6
618]5] 07 0.7 TO |[NA|NA|NA|NA|NA| TO TO NA |NA|NA [NA [NA |NA
711612] 02 0.2 7696 | 1.3 1823 | 17 [114| 17 | 04 0.8 1872 1 0.9 |231| 27 | 189 25
811613 | 04 04 05 |08 [105| 15| 47 | 10 14 2.7 08 (04|67 |22]53]25
913212] 19 TO 02 (04539 [39] 8 4.6 6.5 193 0.6 92 |16 | 83 | 17
10323 3 3 3732 | 0.6 | 155| 15 | 68 | 12 | TO TO TO |NA|NA |NA|NA [NA
11|64 2| OOM | TO NA |NA|NA |[NA|NA|[NA| 73 TO [1940 |12 [137|22 |94 | 19

computations described in Sec. V. The software uses the
sis scripts kernel extraction and full simplify to optimize
the rectification function using the DC-sets computed in the
DC-based approach. Next, all the computed functions are
optimized using abc. The optimized functions are then mapped
using a library of AND-XOR gates and the synthesis results for
Area and Delay are extracted. The experiments are conducted
on a desktop computer with a 3.5GHz Intel CoreTM i7-4770K
Quad-core CPU, 16 GB RAM, running 64-bit Linux OS.

Table IIT presents the results on performing rectification
of faulty circuits for multiplier structures sp-ar-rc and sp-
wt-cl. The columns denote the datapath size of the faulty
benchmarks, the number of selected targets, the execution time
for different stages of the approach, and the area and delay of
the resulting patch sub-circuits after abc and sis optimization.
As seen in these results, the main bottleneck of our approach is
the execution time required to compute reduced Grobner bases
for each rem;. This computation times out when performed on
large remainders. The size of the remainders depend primarily
on the factors: i) the number of bugs; ii) the number of targets;
iii) the location of the bugs; iv) the location of the targets; and
v) the size of the benchmark.

For example, consider the results for the structure sp-
ar-rc, at row six of the table, the GBC execution times
out while computing a reduced Grobner basis due to large
remainder sizes. However, the GBC computation completes
relatively quickly for the same benchmark with fewer targets
and fewer bugs at different locations as shown at row five
of the table. The seventh row shows an example where the
GBC computation completed after significant execution time
due to large remainder sizes. Row eleven shows an example

194

where neither revsca nor amulet were able to generate the
remainders rem,.

TABLE IV: Comparison of Area and Delay between original
benchmark and patch-integrated rectified benchmarks. n
Datapath size, m = Number of targets, ORIG = Original faulty
benchmark, Greedy = Benchmark rectified using patch from
our greedy approach, DC-based = Benchmark rectified using
patch from our DC-based approach, A = Area in terms of
number of gates x103, D = Longest delay

sp-ar-rc sp-wt-cl

n |m ORIG Greedy DC-based ORIG Greedy | DC-based

A D A D A D A |D| A |D| A |D

4 |2 127 | 31| 126 | 20| 119 |20 | 130 |22] 116 |20 96 |20

4 |3 134 | 31| 130 | 20 | 141 |24 | 137 |22] 96 |20 96 |20

4 |5] 148 | 35 97 19 9 | 21 151 |25] 98 |[22] 99 |22

8 | 2| 647 | 67 | 534 | 62| 538 | 55| 755 |32 731 |29 714 |30

8 |3 654 | 70 | 815 | 64 | 674 | 72| 762 |37| 723 |34| 698 |36

16| 2| 1935 | 146 1908 | 135 | 1872 | 137 | 3831 | 50| 3778 |49 | 3753 |51
32| 3| 12510 | 306 [10090 | 270 | 10128 | 274 | 17501 | 84 | 17445 | 78 | 17312 | 79

Columns PGC and PDC denote the post-optimization syn-
thesis results for the greedy approach and the DC-based
approach, respectively. The synthesis results computed in PDC
contain a smaller area and delay than the ones computed in
PGC. This shows the efficacy of the DC-based approach in uti-
lizing DC points for the logic optimization of the rectification
functions. For these small patch sub-circuits, the difference in
execution time between the greedy and DC-based approaches
is negligible. Table IV compares the area and delay between
the original benchmarks and the patch-integrated benchmarks
for the relevant cases. As shown in the results, the area and

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

delay of the patched benchmarks is comparable to the original
faulty benchmark after resynthesis (using abc).

VIII. CONCLUSION

This paper presents an automated approach for the multi-
fix rectification of integer arithmetic circuits using computer
algebra techniques. Given a set of targets, we formulate a
rectifiability check to ascertain the existence of rectification
functions and present two approaches to compute them. One
approach utilizes a greedy heuristic for quick patch computa-
tion, while the other finds a subset of DC points to better
optimize the rectification functions. These approaches may
result in polynomials with coefficients in the field of rationals.
We present novel techniques to synthesize sub-circuit patches
from these polynomials and demonstrate them on preliminary
experimental results from array integer multiplier benchmarks.

Our approach requires computing reduced Grobner bases,
which is the main bottleneck in our experiments. As part of
our future research, we are investigating alternatives to this
expensive computation. We are also researching methods to
compute the rectification functions in terms of internal nets of
the circuit.

REFERENCES
[11 M. Ciesielski, T. Su, A. Yasin, and C. Yu, “Understanding algebraic
rewriting for arithmetic circuit verification: A bit-flow model,” IEEE
TCAD of Integrated Circuits and Systems, 2020.
A. Mahzoon, D. GroBle, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in DATE, 2020.
D. Kaufmann and A. Biere, “Amulet2.0 for verifying multiplier circuits,”
in TACAS, 2021.
M. Temel, A. Slobodova, and W. A. Hunt, “Automated and scalable
verification of integer multipliers,” in Computer Aided Verification, 2020.
D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining sat and computer algebra,” in FMCAD, 2019.
A. Mahzoon, D. Grofle, and R. Drechsler, “Revsca: Using reverse
engineering to bring light into backward rewriting for big and dirty
multipliers,” in Design Automation Conference, 2019.
D. Kaufmann, “Formal verification of multiplier circuits using computer
algebra,” Ph.D. dissertation, Johannes Kepler University Linz, 2020.
O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Gruel, “An Alge-
braic Approach to Proving Data Correctness in Arithmetic Datapaths,”
in Computer Aided Verification Conference, 2008, pp. 473-486.
J. Lv, P. Kalla, and F. Enescu, “Efficient Grobner Basis Reductions for
Formal Verification of Galois Field Arithmetic Circuits,” in /EEE Trans.
on CAD, vol. 32, no. 9, 2013, pp. 1409-1420.
T. Pruss, P. Kalla, and F. Enescu, “Efficient Symbolic Computation for
Word-Level Abstraction from Combinational Circuits for Verification
over Finite Fields,” TCAD, vol. 35, no. 7, pp. 1206-1218, July 2016.
K. F. Tang, P. K. Huang, C. N. Chou, and C. Y. Huang, “Multi-patch
Generation for Multi-error Logic Rectification by Interpolation with
Cofactor Reduction,” in DATE, 2012, pp. 1567-1572.
H. T. Zhang and J. H. R. Jiang, “Cost-aware Patch Generation for Multi-
target Function Rectification of Engineering Change Orders,” in Design
Automation Conference (DAC), 2018, pp. 1-6.
Y. Kimura, A. M. Gharehbaghi, and M. Fujita, “Signal Selection
Methods for Efficient Multi-Target Correction,” in ISCAS, 2019, pp. 1-5.
V. N. Kravets, N. Lee, and J. R. Jiang, “Comprehensive Search for ECO
Rectification Using Symbolic Sampling,” in DAC, 2019, pp. 1-6.
U. Gupta, L. Ilioaea, V. Rao, A. Srinath, P. Kalla, and F. Enescu, “On the
Rectifiability of Arithmetic Circuits using Craig Interpolants in Finite
Fields,” in VLSI-SoC, Oct 2018, pp. 49-54.
V. Rao, U. Gupta, A. Srinath, I. Ilioaea, P. Kalla, and F. Enescu, “Post-
Verification Debugging and Rectification of Finite Field Arithmetic
Circuits using Computer Algebra Techniques,” in FMCAD, 2018.

[10]

[11]

[12]

[13]
[14]

[15]

[16]

195

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

A. Q. Dao, N.-Z. Lee, L.-C. Chen, M. P.-H. Lin, J.-H. R. Jiang,
A. Mishchenko, and R. Brayton, “Efficient Computation of ECO Patch
Functions,” in DAC, 2018, pp. 51:1-51:6.

D. Ritirc, A. Biere, and M. Kauers, “Column-Wise Verification of
Multipliers Using Computer Algebra,” in Formal Methods in Computer-
Aided Design (FMCAD), 2017, pp. 23-30.

M. Fujita, “Toward Unification of Synthesis and Verification in Topo-
logically Constrained Logic Design,” Proceedings of the IEEE, 2015.
K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker,
“Equivalence Checking of Partial Designs Using Dependency Quantified
Boolean Formulae,” in ICCD, 2013.

U. Gupta, P. Kalla, I. Ilioaea, and F. Enescu, “Exploring Algebraic
Interpolants for Rectification of Finite Field Arithmetic Circuits with
Groebner Bases,” in ETS, May 2019, pp. 1-6.

V. Rao, I. Ilioaca, H. Ondricek, P. Kalla, and F. Enescu, “Word-level
multi-fix rectifiability of finite field arithmetic circuits,” in ISQED, 2021.
F. Farahmandi and P. Mishra, “Automated Debugging of Arithmetic
Circuits Using Incremental Grobner Basis Reduction,” in ICCD, 2017.
A. Mahzoon, D. Grofle, and R. Drechsler, “Combining Symbolic Com-
puter Algebra and Boolean Satisfiability for Automatic Debugging and
Fixing of Complex Multipliers,” in ISVLSI, 2018, pp. 351-356.

N. A. Sabbagh and B. Alizadeh, “Arithmetic Circuit Correction by
Adding Optimized Correctors Based on Groebner Basis Computation,”
in Proc. Eur. Test Symp. (ETS), 2021, pp. 1-6.

D. Kaufmann, A. Biere, and M. Kauers, “Incremental column-wise
verification of arithmetic circuits using computer algebra,” Formal
Methods in System Design, Feb 2019.

W. W. Adams and P. Loustaunau, An Introduction to Grébner Bases.
American Mathematical Society, 1994.

J. von Neumann, “On regular rings,” Proceedings of the National
Academy of Sciences, vol. 22, no. 12, pp. 707-713, 1936.

K. R. Goodearl., “Von neumann regular rings,” Monographs and Studies
in Mathematics, vol. 4, p. 369, 1979.

W. Decker, G.-M. Greuel, G. Pfister, and H. Schonemann, “SINGULAR
4-1-0 — A computer algebra system for polynomial computations,” http:
/lwww.singular.uni-kl.de, 2016.

Authorized licensed use limited to: Georgia State University. Downloaded on May 31,2022 at 15:00:39 UTC from IEEE Xplore. Restrictions apply.

