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Abstract—This paper addresses the rectification of faulty finite
field arithmetic circuits by computing patch functions at internal
nets using techniques from polynomial algebra. Contemporary
approaches that utilize SAT solving and Craig interpolation are
infeasible in rectifying arithmetic circuits. Given candidate nets,
prior algebra-based techniques can ascertain whether the circuit
admits multi-fix rectification at these nets but cannot compute
patch functions. We show how the algebraic computing model
facilitates the exploration of admissible rectification functions,
collectively, for the nets. This model also enables the exploitation
of don’t care conditions for the synthesis and realization of the
patches. Experimental results on large operand width finite field
benchmarks, as used in cryptography, substantiate our approach.

I. INTRODUCTION

Debugging and rectification of digital circuits aims to cor-
rect a given defective implementation (Impl) to match its
intended specification (Spec). The process constitutes iden-
tifying candidate nets in the circuit as potential targets for
rectification, followed by a check to ascertain the rectifiability
of the circuit at these targets. If the check confirms that the
targets admit correction, corresponding rectification functions
are computed and synthesized to patch the circuit at these
targets. This paper addresses the computation of multi-fix
rectification (MFR) functions for faulty finite field arithmetic
circuits at a given set of targets. Rectification is performed
against a given polynomial Spec over finite fields. Such circuits
find application in Elliptic Curve Cryptography.

Problem Statement and Objective: We are given the follow-
ing: i) as the Spec, a multivariate polynomial f with coeffi-
cients in a finite field of 2" elements (denoted o), for a given
n € Zso; ii) a faulty Impl circuit C, with no assumptions on
the number or the type of bugs present in C’; and iii) a set
W = (ws,...,w,) of m targets from C, pre-specified or
selected using contemporary signal selection heuristics [1],
[2], [3]. We assume it has been ascertained that C' admits
rectification at these m targets, using [4]. The objective of
our approach is to: i) compute a set of individual rectification
functions U = (ui,...,u,,) for the corresponding targets.
Here, each u; is a polynomial function u; : IF‘2XPI| — Ty,
where Fy = {0, 1}, and X p; denotes the set of primary inputs;
ii) derive don’t care (DC) conditions corresponding to the
m rectification functions; and iii) synthesize the rectification
polynomials into logic sub-circuit patches.
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Prior Work: Contemporary approaches formulate rectifi-
cation using QBF solving [5], using Craig interpolation or
iterative SAT solving [6]. The MFR techniques in [2], [6],
[7] iteratively and incrementally compute multiple single-fix
functions that partially patch the circuit in each iteration.
Recent techniques include more resource awareness in patch
generation by reusing existing logic [1], employ improved
heuristics for target selection [2], or resolve a combination of
such objectives, such as the symbolic sampling approach of
[3]. While successful for control-dominated applications, these
techniques are computationally infeasible for rectification of
arithmetic circuits.

In the context of arithmetic circuits, Symbolic Computer
Algebra (SCA) techniques for integer arithmetic [8], [9] and
finite field circuits [10], [11] have been considered for rec-
tification. However, these approaches address only single-fix
rectification — where, irrespective of the type or number of
bugs in the circuit, rectification is attempted at a single net.
This is too restrictive and depending on the nature of the
bugs, the circuit may not admit single-fix rectification at all. In
such cases, correction must be attempted at multiple targets,
i.e. MFR is required. Recently, [4] proposes an SCA-based
approach that decides m-target rectifiability. Given a set of
m-targets, the approach only ascertains whether there exists
a set of patch functions at those targets. Since it is only a
decision procedure, it cannot compute rectification functions.

Approach and Contribution: The Spec f and Impl C
are modeled in terms of polynomial ideals. The rectification
functions are computed as polynomials whose common zeros
correspond to the minterms of the functions. These polynomi-
als are translated to Boolean logic by converting the algebraic
multiplication and addition operations to the Boolean AND
and XOR operations, respectively. Our approach extends the
setup of [4] to compute individual rectification functions for
each target. We present two approaches: one which employs
a greedy heuristic to resolve points in the DC conditions,
and one which computes a subset of the DC logic of the
rectification functions for patch optimization.

Paper Organization: The following section covers prelimi-
nary background. Section II-1 reviews the polynomial model-
ing concepts. The rectification check formulation is described
in Section III, followed by the rectification function and don’t
care computations in Section IV. Experimental results are
described in Section V, and Section VI concludes the paper.



II. PRELIMINARIES

In order to compute rectification functions U at targets W,
we first model the Impl and Spec as multivariate polyno-
mials in the ring R = Fan[zy,...,24]. Polynomials in R
contain variables from {x1,...,z4} and coefficients from the
finite field Fon. Section II-1 in the sequel describes how to
convert a circuit C' and its Spec into a set of polynomials
F={f1,..., fs} contained in R.

We are interested in the set of common zeros of the
polynomials in F'. This set of points is called the variety.
Boolean functions also comprise a set of points, so we can
model them as varieties. If a point is an element of a variety,
then that point can be considered an on-set minterm of a
corresponding Boolean function.

The first two columns of Table I describe the correspon-
dence between operations on Boolean functions and opera-
tions on varieties. We utilize this correspondence to construct
rectification functions by modeling the on-, off-, and DC-
sets as varieties. The variety depends not only on the set
of polynomials F', but on the ideal generated by F. The
ideal generated by F' is defined as J = (fi,...,fs) =
{h1-fi+-+hs fs| hi,...,hs € R}. We denote the
variety of J as V/(J). Algebraic Geometry analyzes ideals
to reason about varieties without explicitly computing the
varieties, which is infeasible in practice. In the third column,
747 077 represent product, sum, and colon operations
on ideals, respectively; these ideal operations are implemented
in computer algebra tools, which we utilize.

TABLE I: Correspondences between algebraic operations and Boolean operations. Here,
J1 = (f), and Jz = (g).

Boolean Functions Varieties Ideal operations
fVvg V(J1) UV (J2) Jy - Ja
Y V(J1) NV (J2) Ji+J2
f—g V(J1)\ V(J2) J1 i Ja

The relation p>" — ¢ = 0 holds for every element ¢ in
5. Therefore, any polynomial of the form 22" — z vanishes
at every point in Fo» and all such polynomials are called
vanishing polynomials. We denote the set of all vanishing
polynomials as Fy = {z?" — x1,...,2%" — 24}, and the
corresponding ideal generated as Jo = (Fp). Over circuits, the
sum of ideals J + Jy helps us to formulate verification and
rectification by restricting the variety V' (J 4 Jp) to a finite set
of points in the field Fan.

Another core operation used in our computations is polyno-
mial reduction. Let F' = {fi,..., fs} be a set of polynomials

in R and f € R be another polynomial. Then f £>+ r denotes
the reduction of f modulo the set of polynomials F', resulting
in a remainder r. The terms in f are iteratively cancelled by
the leading terms of the polynomials in F' using polynomial
division (cf. Algorithm 1.5.1 [12]).

An ideal may have many different bases, or generators. A
Grobner basis (GB) is a basis with properties useful in solving
many polynomial decision and quantification problems. For

example, a polynomial f is a member of ideal J if and only
if f ﬂnr 0. When f ¢ J, division by GB(J) results in a

non-zero remainder 7 that is unique/canonical. A reduced GB
is a canonical representation for an ideal.

In order to systematically process polynomials, their mono-
mials (terms) must be ordered. In this work, we use a reverse
topological term order (RTTO), i.e. a lex term order with the
circuit variables ordered reverse topologically from POs to
PIs. As a consequence, remainders generated by polynomial
division using this order comprise only PI variables.

1) Polynomial Modeling of Circuits: A multivariate poly-
nomial f over Fan is given as a Spec, where n is the
operand word-length (data-path size). A combinational circuit
C is given as its (faulty) implementation. The field Fan is
constructed as Fon = Falz] (mod P, (x)), where P,(z) is
the given primitive polynomial of degree n with ~ as a root,
i.e. P,(y) = 0. The function implemented by C' is modeled
with a system of polynomials over R = Fan[Z, A, X], where
X = {x1,...,xq} corresponds to all the bit-level variables
(nets) in the circuit. Let Xp; C X denote the set of all primary
input variables from C. Further, Z = {zo,...,2,-1} and
A = {ag,...,a,—1} represent the output and input operand
words of the circuit, respectively.

The Boolean logic gates in C' can be represented as poly-
nomials (mod 2) over Fo, using the mapping B +— Fo:

z=-a—z+a+1; z=aAb—z+a-b;

1
z=aVb—z+a+b+a-b z:a@b+—>z+a+b;()

The bit-level to word-level correspondence is represented:

f1SZ:ZO+7‘21+"'+"YR71'Z7L—1

" 2)
f2rA=a+v a1+ +7 1'an—1

Since o C Fan, the polynomials in Eqn. (1) can also
be interpreted as polynomials over Fon. Thus, the circuit is
represented by a set of polynomials F' = {f1,..., fs} € R.
Let J = (F) be the ideal generated by this set. Let Fy =
{22 — 2;,Y?" —Y | x; € bit-level variables, Y € word-
level variables} be the set of all vanishing polynomials, and
Jo = (Fp) the corresponding ideal. Then, ideal J 4+ Jy models
the functionality of Impl C.

One can verify the correctness of the circuit C' by checking
if the given Spec is implied by the ideal representing C. In

other words, f = C <« f M+ 0 [13]. In the
manuscript, we use the circuit of Fig. 1, borrowed from [4],
as a running example to demonstrate our approach for MFR.

Example I1.1. The circuit C in Fig. 1 is a faulty implemen-
tation of a 3-bit (n=3) Mastrovito multiplier. The field Fys is
constructed using P3(x) = x® + x + 1 with «y as a root, i.e.
P;(v) = 0. The Spec polynomial is f : Z + A - B, where Z is
the output word, and A, B the input words. Impose RTTO >
on the polynomials. Lex order: {Z} > {A > B} > {z0 > z1 >
22}>"'>{d1>d2>d3>7“0>d5>’I“7“1}>{7“1>’I“'I“3>
rro} > {ra > 13 > rra} > {ra > da} > {ao > a1 > a2 > by >
b1 > bz}

Under RTTO >, the following polynomials represent C':

fliZ4z+y 2+ 2 fo
forAtao+vy a1+ az; faz i1+ 1o+ s
fa:B+bo+7- b1+~ ba;  fog:rs+ ra 4 da
fa:zo+do+er; for:irrs+rra+bo...
f30 : 774 + a2 + b2 + az2bs;

rr1 4+ rr3 + rro;



where the polynomials foq, for correspond to the introduced
bugs. Then F = {f1,...,fs0}, Fo = {a? — ag,...,25 —
29, A% — A,B® — B, Z% — Z}. So, ideal J + Jy = (F U
Fy) encapsulates the function implemented by C. Since

GB(J+J
f ghr r # 0, the circuit is buggy.

Fig. 1: A 3-bit finite field multiplier Impl with bugs introduced at net r3
(AND gate replaced with an XOR gate and one of the inputs mis-connected
to dy instead of bz) and net rr3 (AND gate replaced with an XOR gate).
III. RECTIFICATION CHECK

In [4], the authors model a given circuit as a polynomial
ideal, as described above, and present techniques to perform
an MFR check at a set of targets W = (wi,...,wn).
They set up the MFR check by constructing ideals J;, 1 <
I < 2™, for each {0, 1}-value assignment to the targets. Let
w. = {(0,0,...,0),...,(1,1,...,1)} denote the set of all
assignments to targets W, where W.[l] represents one set of
assignments to targets W. In each ideal .J;, the polynomials
representing the target nets are replaced by the correspond-
ing values from W_[l]. Subsequently, the Spec polynomial
is reduced by each ideal to produce each remainder rem;.
The variety of rem; for any [ corresponds to the set of all
assignments to primary inputs Xp; (minterms) where the
Spec f agrees with the Impl C. Finally, the rectifiability
of the circuit at the targets is determined by checking that
the condition []2, rem; ~%, 0 holds (Thm. V.1 [4]). This
condition implies that every minterm in the input space is
contained in the union of varieties of each rem;.

Example III.1. Continuing on with the Ex. Il.1, we demon-
strate the rectification check presented in [4] for W =
(w17 U}Q) = (T37 TT3)-

Constructing the J; ideals:

o J1 = (F1); Fi[fas : 73 +0, for :7r3+0],(rs =0,7r3 = 0)
o Jo= <F2>,’ FQ[fQ()‘ :r3 + 0, f27 rrs + 1], (7"3 =0,rr3 = 1)
o J3 = <F3>,‘ Fg[fge trg+ 1, f27 rr3 + 0], (7‘3 =1,rr3 = 0)
o Jy= <F4>,' F4[f26 crs+ 1, for irrs+ 1], (7‘3 =1,rr3 = 1)

Reducing the Spec f : Z + A- B modulo these ideals, we get:

Ji+Jo

o TEM = + (v + Dagbiby + (7% + v)asbs
Ja+Jo

F=
+ ey = F 2 (5 by
f M)+ (v +1)azbiba + asby + (v* +7)azbs

o TemMy = f M)Jr (v + 1)agbiba + asby

e TEM3 =

m J ; ;
When we compute H12:1 rem; — ., we obtain remainder 0,
thus confirming that the target set W indeed admits correction.

The techniques presented in [4] are limited to proving the
existence of rectification functions at W. This paper utilizes
the remainders described above to characterize and compute
rectification functions, as shown in the following section.

IV. COMPUTING RECTIFICATION FUNCTIONS

For a given set of targets W, due to the presence of
don’t cares (DC), there may exist more than one set U of
rectification functions which rectify the circuit. Exploring all
the DC conditions for m targets might be computationally
infeasible; we present two different approaches to overcome
this. First, we present an approach to compute an on- and oft-
set for each rectification function by heuristically resolving
all the DC conditions. Following this, we present an approach
to explore and compute a subset of the DC conditions, along
with on- and off-sets, for each rectification function.

1) Greedy Approach for MFR: To illustrate the greedy
approach, consider the case with m = 2, where W, =
{(0,0),(0,1),(1,0),(1,1)}, and we must compute rectifica-
tion functions w; and us corresponding to targets w; and
wy, respectively. For brevity, let VWC[I] = V(remy), for 1 <
I < 2™ in this case, Viy,i) = Vio,0) = V(rema), Viy, 2] =
Vio,1) = V(rems), and so on.

Recall that V| o) comprises the set of points where the Spec
matches the Impl under the assignments w; = ws = 0 to
the targets. This implies that at these points, the rectification
functions uw; and wus should evaluate to 0. Table II shows
the required evaluations of u; and usy for the points in each
variety, following the same reasoning, assuming each Vyy, ;) is
pairwise disjoint. The on(off)-set of the rectification function
for a target corresponds to the union of the varieties where
the function evaluates to 1(0). In this case, the on- and off-
sets of u; consists of the set of points in V(y gy U V(q 1) and
Vi0,0) U V(0,1), respectively. Similarly, the on- and off-set of
uz comprise points in V(g 1) U V{1,1) and V(g 0y U V(1 0). The
functions u; and uy could be synthesized using these sets.

TABLE II: Rectification function evaluations

Variety uy Uo
V(0,0 0 0
Vio,1) 0 1
V1,0 1 0
Vi, 1 1

However, the above argument is only correct when each
Vi, iy are pairwise disjoint, which may not be true in practice.
For example, for a point contained in Vg 0y N V(g 1), (u1,u2)
may evaluate either to (0, 0), or to (0, 1) in order for the I'mpl
to evaluate to the same value as the Spec; this point would be
in both the on- and off-set of uy in the method previously
described. A decision procedure is necessary to determine



the evaluation of (u1,us) at these intersections. We present a
greedy approach which resolves such ambiguities by imposing
an order on the sets.

An example of our greedy approach to evaluate (uq,us)
for an order V(g 0y > V(o,1) > V1,00 > V(1,1) is as follows:
First, we place all the points from V(g ) into the off-sets of
(u1,uz). Next, we place all the points from V(g 1) \ V(0,0
into the off-set of u; and the on-set of us. We perform the
set difference to avoid placing the points in Vg o) N V(o 1)
into both the on-set and off-set of us. Next, we place all the
points from V{; o) \ (V(0,0) U V(0,1)) into the on-set of u1, and
the off-set of uy. Finally, we place the remaining points from
Vi) \ (V0,00 UV(0,1) UV(1,0) into the on-set of (uy,us2). The
resulting on- and off-sets for u; and uy are shown below.

V(ulen) = (V1,1) \ (V(0,0) Y V(0,1) Y V(1,00 Y (V(1,0) \ (V(0,0) Y V(0,1)))
V(ulnff) = (V0,0)) ¥ (0,1) \ Y(0,0))

Vi(uzg,) = (Vio,1) \ V(0,0)) Y (V(1,1) \ (V(0,0) Y V(0,1) Y V(1,0)))
Viuz, o) = (V0,00 Y (V(1,0) \ (V(0,0) Y V(0,1)))

This approach with the given order greedily places points
into the off-sets of the rectification functions (uq,us) where
possible, and only places points into the on-sets of the recti-
fication functions when necessary. Subject to the given order,
the on-sets of the rectification functions are thus minimized.
For the experiments in this paper, we always use the order
Vw.lip > Vw,[y) for @ < j, as in the above example, though
any order would yield valid rectification functions.

Generalizing our greedy approach for m targets, we first
construct the following composite sets (varieties):

Vw.n) ifl =1

=l m 3)
Ve \ (U Vv 1), 2<1<2
=1

The resulting on-set and off-set functions for each target ¢,
where 1 < i < m are:

V(ui,,) =S, VI | Welll[i] = 1

(C))
Viui,,,) = ]S, VI | We[l][i] =0

2) Don’t Care Conditions for MFR: Let U; C U denote a
subset of the target rectification functions. We are interested
in the DC conditions which arise for these functions at
points where they may evaluate to any value, for some fixed
evaluation of the remaining functions in the set {U \ U;}. For
example, consider a point in V(g gy N Vg, 1) for a circuit with
two targets. As discussed previously, u; must evaluate to 0 at
this point, but U; = {us} may evaluate either to 0 or to 1, so
this is a DC' point for us.

Not every intersection of varieties yields DC' points which
follow the conditions described above. Consider a point in
V(0,00 N V(1,1)- Here, (u1,u2) must evaluate either to (0,0) or
to (1, 1). If this point were assigned to the DC' set of ug, for
example, the Spec and Impl would only evaluate the same if
uy evaluated to the same value as us. Thus, ©; would become
a function of us at this point. This point cannot be placed into
the on-set, off-set, or DC-set of u; before us is evaluated. To
avoid inter-dependencies between the rectification functions,
we do not classify points in such intersections as DC' points.

We rely on our greedy heuristic to evaluate these points.

Finally, consider a point in Vg )M V(¢,1)NV(1,0). This point
cannot be a DC point for both targets simultaneously since the
evaluation (1,1) here will result in an incorrect rectification
function. However, because V(g o) N V(0,1) N V(1,0) C V(0,00 N
V(0,1), we could treat this point as a DC' point for uz and
evaluate u; to 0. Alternatively, because Vg 0)NV(0,1)V(1,0) C
V(0,00 N V(1,0), we could treat this point as a DC point for u;
and evaluate uy to 0. Thus, we have a choice to place this
point in the DC-set of either targets, but not both.

Finding every intersection containing DC' points for every
target can be very expensive for circuits with more than a
few targets. We therefore propose an approach to compute a
subset of the DC points by considering only the set of pairwise
intersections of varieties which contain DC' points for exactly
one target, denoted as DCpqir.

Let d(W.[j], W,[k]) denote the Hamming distance between
the two sets of assignments to the targets W,.[j] and W_[k].
We compute the set of varieties which contain DC' points for
one target, denoted DC)pqir, from the equation below, where
1<g,k<2m.

DCpair = {VWc[J] N VWc[k] | d(Wc[J]’WC[k]) = 1} (5)

Since the Hamming distance d = 1 between the assignments
W,[j] and W_[k] for each intersection of varieties in DCpqir,
exactly one rectification function may evaluate either to 0
or to 1. The remaining rectification functions require fixed
evaluations of 1 or 0. Therefore, each intersection of varieties
in DClq;r yields DC points for exactly one rectification
function in U, and either on- or off-set points for the remaining
rectification functions in U. We use DClqir to compute the
DC points for each rectification function, as described below.

3) Computing Rectification Functions with Don’t Cares:
Once the set DClqir has been found, a few steps remain
to compute the on-, off-, and don’t-care sets for each target.
First, we follow an approach identical to the greedy approach
to evaluate points outside of DCp.;,. We construct new
composite sets Sld for 1 < < 2™, which are identical to the
composite sets (varieties) created for the previous approach,
except that all the points from DC)p,;, set are removed.

Vo) \ DCpair, ifl=1

Si = m m ()
Vive \ (( _U1 Vi) U DCpair), 2<1<2
=

Points in these composite sets are assigned to the on- and
off-set for each rectification function in the same way as
Eqn. (4), substituting S; with S{. Next, we place the points
in DClq;r in the on-, off-, or DC sets for each rectification
function, by imposing an order on the intersections and
resolving them as explained in the following example.

Given a circuit with two targets, DCpqir = {V(o,o) N
Vio,1)s V10,00 V(1,0)> Vio,1)yMV(1,1), V(1,00 V(1,1) }- We impose
the order Vig,0y > Vio,1) > Vii,00 > Vi1,1)- We place the
points in V{g,0y N V{g,1) into the off-set of u; and the DC' set
of uy. We then place the points in Vi 0y V(1,0)\ Vi0,0) V(0,1
into the DC' set of u; and the off-set of us. We place points
in Vio.1y 0 Vi) \ (V0,00 N Vio,1)) U (Vio,0) N V1,0))) into
the DC' set of w; and the on-set of uq. Finally, we place



points in V(1 0) N V(1 1) \ (Vio,0) N V(0,1)) U (V(0,0) N V(1,0)) U
(Vio,1) M V(1,1))) into the on-set of u; and the DC' set of us.
Following this approach, we calculate on- off- and DC' sets
for each rectification function.

4) Synthesizing Rectification Functions: The above tech-
niques show how to construct a rectification function by
reasoning about the varieties of each rem;. However, alge-
braically, we compute these functions using their correspond-
ing ideals. Specifically, we show how the remainders computed
in Sec.Ill can be utilized for rectification function compu-
tation. Even though the remainders rem; have coefficients
in Fon (higher field), their varieties are in IF|2XP" as they
correspond to {0, 1}-assignments to bit-level Xp;. In [10],
it was shown that the reduced Grobner bases of such ideals
((remy, Jo)) only contain coefficients from Fy. Consequently,
the rectification function operations are restricted to algebraic
computations in Fo[Xps], i.e. in Boolean rings.

To compute the patch u;, we perform the following steps:

1) Compute a reduced Grobner basis for each (remy, Jy).
2) Impose the order on the remainders: rem; > - > rem,.
3) Greedy approach: Compute composite sets from Eqn. (3).

« Assign points from composite sets to the on- or off-
sets of the rectification functions (sec. IV-1).

4) DC-based approach: Compute DClq; using Eqn. (5),
and then compute the composite sets in Eqn. (6)

o Assign the points in the composite sets and DCpqr
to the DC-, on- or off-sets of the rectification func-
tions (Sec. IV-2).

5) Perform the union, intersection, and set difference of
varieties using the respective ideal operations (Table I).

6) Translate the ideals representing u;,. and u,; , into
Boolean functions by interpreting the algebraic product
and sum as Boolean AND and XOR gates, respectively.

7) Optimize the on-set u;,,, w.r.t. to the DC-set u; ., for the
DC-based approach.

Example IV.1. Continuing with Ex. IIl.1, consider rems:

o rems = (v + 1)agb1bs + azby + (v + 7)azbs.
o redGB({rems, Jy)) = {azb1,azbs}

— Repeat for remq, rems, and remy.

— Note, V(rems) = V(redGB({rems, Jo)))

o Impose the order remy > rems > rems > remy.
e The rectification polynomials for the targets (r3,r7r3)
computed using steps 3, 5, and 6 from the procedure:

Ulyy = azblbz;
r3 = U1 = (CLQ /\bl A bQ);

uz,, = a2 b2;

Tr3 = U2 = (CLQ A bg);

o The rectification polynomials for the targets (r3,r7T3)
computed using steps 4-7 from the procedure:

Uu1,, = a2b1b2; U2,, = azbs;

u1,, = a2b1by + azbz; Uz, = az2b2 + 1;

rs = u1 = az N ba; rrys = U2 = 1;

V. EXPERIMENTAL RESULTS

The benchmark suite includes a Mastrovito multiplier and
a circuit that performs Point Addition over NIST standard
Elliptic curves. These benchmarks are taken from [13] and
are synthesized using the abc tool with a gate library. We
introduce gate and wiring faults in the netlists such that bugs
propagate to multiple POs. The faults are placed at various
topological levels; some faults are placed closer to PIs, some
are placed in the middle of the circuit, and some near POs.
In our experiments, we choose between two to ten targets m,
based on the number of bugs introduced in the benchmark.

Our custom software is implemented using the program-
ming language Python as a wrapper around libraries from
PolyBori [14], abc, and sis. The wrapper processes the netlists
of the Impl and Spec and uses Polybori’s ZDD datastructure

to model and efficiently perform the polynomial divisons

Ji+J, . )
f =% rem,. The software utilizes the remainders rem;

to perform an MFR check at the targets. It then computes
the rectification functions by performing the algebraic ideal
operations. Finally, the software uses sis [15] and abc [16]
to perform logic optimization and synthesis. Specifically, in
sis we run a script to perform kernel extraction and full
simplify to optimize the rectification functions computed in
Sec.IV-2. We use abc to perform structural hashing, functional
reduction, balancing, refactoring, rewriting, etc. Finally, we
map the computed functions using a library of AND-XOR
gates and extract the synthesis results for Area and Delay.
The experiments are performed on a 3.5GHz Intel(R) Core™
17-4770K Quad-Core CPU with 32 GB RAM.

Table III presents the datapath size of the faulty bench-
marks, the number of given targets, the total number of outputs
affected by the bugs, the execution time for different stages
of the approach, and the area and delay of the resulting patch
sub-circuits after abc and sis optimization. The execution time
TGC includes the total time required to generate the patch sub-
circuit from the remainders and to perform re-synthesis (using
abc) of the original faulty circuit after integrating the patch at
the given targets. During TDC, we perform patch generation,
attempt logic optimization (with sis) using the computed don’t
cares, and then perform re-synthesis (using abc) of the patch
integrated benchmark.

Columns PGC and PDC denote the post-optimization syn-
thesis results for the greedy approach and the DC-based
approach, respectively. The synthesis results computed in
PDC where sis completed simplification successfully contain
a smaller area and delay than the ones computed in PGC. The
asterisk (*) in the PDC column denotes the cases where full
simplify fails to utilize the don’t care network for function
simplification. In these cases, sis aborts simplification because
the BDD size exceeds 480,000 nodes. For these entries, the
patch functions are synthesized using abc which ignores the
provided don’t care network.

The execution time for function computation (TGC and
TDC) and the resulting patch area and delay depend on
factors such as: i) the number of bugs; ii) the number of
targets; iii) the location of the bugs; iv) the location of the
targets; v) the number of affected outputs; and vi) the size of
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TABLE III: Time in seconds; n = Datapath size, m = Number of targets, FO = Number of faulty outputs, TPS = Execution time of PolyBori setup (ring

declaration/poly collection/spec collection), TRC = Execution time for verification, multi-fix setup, and rectifiability check, TGC = Execution time for function

computation using the greedy approach, TDC = Execution time for function computation with DC-based approach, PGC = Synthesized patch sub-circuit using

the greedy approach, PDC = Patch sub-circuit using the DC-based approach, A = Area in terms of number of gates , D = Longest delay

Mastrovito multiplier Point Addition circuit
" m FO | TPS TRC | TGC TDC PGC PDC m | FO | TPS | TRC | TGC | TDC PGC PDC

A D A D A D A D
16 5 10 0.1 0.1 7 10 19 3 17 3 5 7 0.07 0.02 14 41 529 25 217 17
32 10 | 21 0.1 0.3 1620 | T1810 10 1 10%* 1* 5 13 0.2 0.06 76 675 1314 | 33 890 29
64 5 10 0.6 9 106 280 1675 | 29 | 1577* | 46* | 3 64 0.8 0.1 310 315 2288 | 30 | 2250* | 29*
96 7 15 1.5 0.2 50 110 1980 | 51 | 3435* | 39*% | 5 14 2.4 0.3 390 431 23 6 20 4
128 4 7 3.1 0.2 80 94 334 18 211 13 2 | 128 | 6.42 4.38 485 491 5930 | 33 | 6340* | 31*
163 5 6 6.4 0.4 72 117 122 9 95 7 5 22 15.9 1.53 152 177 50 10 24 4
233 8 12 13 0.6 151 223 19 4 17 3 2 | 233 19.7 1.44 245 246 4980 | 30 | 3150* | 27*
409 6 7 190 2 403 414 26 4 24 4 2 | 409 224 53 756 762 2226 | 21 | 2000% | 21*
571 4 8 2143 6 957 979 29 4 27 4 2 5 2492 13.2 1.2 20 622 22 210 16

the remainder rem;. The cells marked T in Table III show
anomalous data where the area of the pre-optimized patch
circuit was approximately 20,000 gates, in part due to the large
number of targets selected. At the cost of significant execution
time, abc was able to optimize the patch to 10 gates.

We compare our results to the SAT-based procedures [17]
and [18] which we implemented using abc. Table IV presents
the execution time for the rectification of faulty Mastrovito
multipliers for these approaches. As shown, the SAT-based
procedures time out while rectifying benchmarks at a single
target beyond ten-bit operand words.

TABLE 1IV: Rectification of Mastrovito Multipliers using SAT-based
techniques; n = Operand width, m = Number of targets, #G = number
of gates in the miter model, Time-Out (TO) = 6000s

n | m #G [17] [18]
8 1 380 158 24
9 1 510 4507 37
10 1 750 TO 215
12 1 1000 TO TO

Table V compares the area and delay between the original
benchmarks and the patch-integrated benchmarks. As shown,
the area is comparable to the original faulty benchmark after
resynthesis (using abc). The delay, however, is significantly
longer in some cases, due to a long chain of logic introduced
by our model during the rectification function computations.

VI. CONCLUSION

This paper presents an automated symbolic computer alge-
bra approach to perform MFR of faulty finite field arithmetic
circuits at a given set of targets. Our approach reasons about
the rectification functions by means of algebraic varieties in
finite fields, and computes these functions using Grébner bases
of ideals corresponding to the circuit. We present two MFR
approaches, a heuristic which greedily tries to resolve the
rectification functions for the targets, and a variety intersection
heuristic that explores a subset of DC conditions for the target
functions. Our approach is able to compute rectification func-
tions for circuits with large (NIST-standard) operand widths n.

Improving the model to reduce the delay of the patch circuits,
and computing functions in terms of internal nets comprise
part of our future work. We are also investigating the extension
of this approach to integer arithmetic circuits.

TABLE V: Comparison of Area and Delay between original benchmark
and patch-integrated rectified benchmarks. n = Datapath size, ORIG = Original
faulty benchmark, Greedy = Benchmark rectified using patch from our greedy
approach, DC-based = Benchmark rectified using patch from our DC-based
approach, A = Area in terms of number of gates x 103, D = Longest delay

Mastrovito multiplier Point Addition circuit

n ORIG Greedy DC-based ORIG Greedy DC-based

A D A D A D A | D A D A D

16 81 | 10| .81 10 [ .81 10 09 |16 | 1.27 | 32| 091 |22
32 29 12| 28 12| 28 121 29 | 14| 33 |21 3.03 |21
64 | 112 | 18| 115 {30 | 11.3 |33 | 10.7 | 17 | 10.8 | 28 | 109 | 30
96 | 245 | 16| 245 | 58 251 | 45248 | 18 248 | 18 | 248 | 17
128 (432 | 12| 432 |21 | 415 | 17 | 432 | 16 | 434 | 31| 435 | 29
163 [ 69.8 | 12| 68.1 | 13| 68.1 | 13 | 716 | 16 | 71.6 | 16 | 71.6 | 16
233 | 119 | 12| 1185 | 13 | 1185 | 13 | 122 | 14 [ 122.8 | 23 | 1222 | 19
409 | 384 | 12| 384 | 12| 384 | 12| 368 | 14 | 368.1 | 14 [ 368 | 14
571 | 827 | 15| 825 | 15| 825 |15 813 | 17 813 | 18| 813 | 17
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