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Abstract

A graceful labeling of a graph with n edges is an assignment to each
vertex a unique label between 0 and n, inclusive, satisfying the addi-
tional requirement that if each edge is labeled by the absolute value of
the difference of its incident vertices, then the set of edge labels is ex-
actly {1,2,...,n}. It has been an open question for more than 50 years
whether or not every tree has a graceful labeling. In fact, it is unknown
whether every tree with maximum degree 3 has a graceful labeling. In
this paper we introduce a class of maximum degree 3 trees we call wind
chimes. We prove that all wind chimes satisfying certain criteria have a
graceful labeling.

1 Introduction

In 1967, A. Rosa introduced the concept of a graceful labeling of a graph [8]. A
labeling of a graph with n edges is said to be graceful if each vertex is assigned
a distinct number in {0,1,...,n} and when each edge is labeled by the absolute
value of the difference of the labels of its incident vertices, each number in
{1,2,...,n} appears on exactly one edge. See Figure 1.

A graph G is a pair (V(G), E(G)) consisting of vertices V(G) and edges
E(G) between vertices of G. If u and v are vertices of a graph G and there is

*Hobart and William Smith Colleges bell@hws.edu

THarvey Mudd College Inwobbi@g.hmc.edu

fwilliam Smith College connor.parrow@hws.edu

$Carthage College, awheeler@carthage.edu

YGoucher College zephrata@gmail.com
This material is based upon work supported by the National Science Foundation under Grant
No. 1757616.

Figure 1: A gracefully labeled graph



Figure 2: A gracefully labeled tree

an edge between u and v, this edge is denoted uv and we write uv € E(G). A
tree is a connected graph with no cycles. The graph in Figure 1 contains a cycle
while the graph in Figure 2 is a tree. The degree of a vertex v is the number of
edges incident with v. For example, in Figure 2, the vertex labeled 0 has degree
3. For definitions omitted we refer the reader to West [10].

In this paper, a labeling of a graph G is injection from V(G) to {0,1,2,...}.
A labeled graph is a pair (G, 0) where G is a graph and 0 is a labeling of G. If
(G, 0) is a labeled graph, we sometimes refer to the vertex of G that is labeled
k as the k-vertex of G.

Every labeling 6 of a graph G induces an edge labeling as follows: for every
edge uv € E(G), define §(uv) = |0(u) — 6(v)|. A labeled graph (G, 8) with n
edges is gracefully labeled, and 0 is called a graceful labeling of G, provided the
range of 0 is contained in {0,1,...,n} and {#(w) : wv € E(G)} ={1,2,...,n}.
A graph for which there exists a graceful labeling is called graceful. The graphs
appearing in Figures 1 and 2 are both graceful.

While there are many graphs that are not graceful, it has been an open
question for more than 50 years whether or not every tree is graceful. That
every tree can be gracefully labeled is known as the graceful tree conjecture.
There are hundreds of papers written on the topic of graceful labeling [5]. In
fact, as J. Gallian writes,

Despite the efforts of many, the graceful tree conjecture remains
open even for trees with maximum degree 3 [5].

In this paper we take a step towards solving the graceful tree conjecture for
trees with maximum degree 3.

Trees with maximum degree 2 are paths, and every path is graceful [8]. We
denote the path with n vertices and n — 1 edges by P,. We will write the
path P, as P, = (v1,v9,...,v,), by which we mean that the vertices of P, are
{v1,...,v,} and the edges of P, are {viva,vovs,...,vy—10,}. The vertices vy
and v,, will be called end-vertices.

In this paper we will be concerned with a certain family of maximum degree
3 trees. Choose a natural number m, and to each vertex v; of the path P,, =
(v1,v2,...,0m), attach a path P, by adding an edge between v; and an end-
vertex of P;,. We call the resulting tree W a wind chime, and for brevity denote
W by (l1,la,...,ly). The vertices (vi,vs,...,vy) of P, form the spine of
(l1,l2, ..., Ln). See Figure 3. Since, for example (4, 3,3,2) and (2,0,0,3,3,0,1)
represent the same wind chime, to eliminate multiple names for the same tree, if
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Figure 3: The wind chime (4,2,3,5,4,1,1,5)

W is a wind chime one can require m to be minimal such that W = (I1,...,1,)
and (ly,...,l,;,) is minimal with respect to the lexicographic ordering on m-
tuples.

Every wind chime is a tree with maximum degree 3. While the graceful tree
conjecture for trees with maximum degree 3 is seemingly difficult, we offer the
following simplification, which may prove to be more tractable.

Conjecture. FEvery wind chime is graceful.

Although this paper falls short of settling this conjecture, we will show that
wind chimes that satisfy certain congruence conditions can be gracefully labeled.
Some wind chimes have previously been shown to be graceful. Huang, Kotzig
and Rosa [6] have shown that any tree with at most 4 vertices of degree 1 is
graceful, and therefore any wind chime with at most 4 spine vertices is graceful.
Some other graceful wind chimes appear in [2]; in this paper we generalize the
wind chime results due to Barrientos [2].

Our results will require a type of labeling stronger than graceful, which was
also introduced by A. Rosa [8]. A labeling 0 of a graph G with n edges is said
to be an «a-labeling provided 0 is graceful and there exists a number A so that
for every edge uv of G, either O(u) < A < 6(v) or 8(v) < A < 6(u). This A is
known as the boundary value of the a-labeling 6. The value A is the largest of
the “small” labels and the value A + 1, which will appear often in this paper, is
the smallest of the “large” labels. To avoid confusion, we sometimes denote the
boundary value A of the a-labeling 6 by Ag. See Figure 1; this labeling is in fact
an a-labeling with boundary value 2.

There are trees that cannot be a-labeled. In fact, there are trees with degree
at most 3 that have no a-labeling: the spider with three legs of length two
appearing in Figure 2 is one such tree. Graceful labelings of spider trees have
been studied rather extensively; see, for example, [1, 3].

In fact, the tree in Figure 2 is a wind chime: it is the wind chime (1,2,1).
Therefore, there is at least one wind chime that cannot be a-labeled. However,
the tree in Figure 2 is the only spider tree with three legs that does not have an
a-labeling [6]. Hence any wind chime (I, l2,13) # (1,2,1) has an a-labeling.



2 Preliminaries

In this paper all graphs are simple and connected. A graph G is bipartite if
there exists a partition of the vertices of G into two sets X and Y satisfying
that every edge of G joins a vertex in X with a vertexin Y. X and Y are known
as the parts of G. Every tree is bipartite.

If G is a graph with n edges and 0 is a graceful labeling of G, the complemen-
tary labeling 6 of 0 is defined by setting 6'(v) = n —6(v) for each vertex v of G.
The labeling ¢’ is also graceful; moreover, if # is an a-labeling with boundary
value \g then 6’ is an a-labeling with boundary value Ay =n — A\g — 1.

If G is a graph with n edges and 6 is an a-labeling of G with boundary value
Mg, then the inverse labeling 6* of 6 is defined by 6*(v) = \p — 6(v) mod n + 1
for each v € V(G) [9]. The inverse labeling 6* of an a-labeling 6 is also an
a-labeling with the same boundary value as 6.

We will make use of the following proposition. This result is not new; it is a
modification of a result of Huang, Kotzig and Rosa [6] and also appears in [11].
It allows for two a-labeled graphs to be combined to produce another a-labeled
graph, by adding an edge between the 0-vertex of one graph and the vertex
labeled by the smallest of the large labels in the other. We have highlighted a
specific detail as it will be needed to prove our main results.

Proposition 1. Let (G1,61) be an a-labeled graph with boundary value A1 and
let (Ga,02) be an a-labeled graph with boundary value X\y. Let vy € V (Gy)
satisfy 01 (v1) = A\ + 1 and let vo € V (G2) satisfy 02 (va) = 0. Let G be the
graph formed by adding the edge vivy to G1UG5. Then there exists an a-labeling
Y of G with boundary value Ay satisfying ¢ (v*) = Ay + 1, where v* € V (Ga)
satisfies B2 (vV*) = Ay + 1.

Proof. Suppose G5 has m edges. If ¢ is defined as follows:

01(v) if v e V(Gy) and 61 (v) < A
'I/J(U) = 91(1}) +m4+1 ifve V(Gl) and 01(’[}) > A\ (].)
92(1}) +XM+1 ifoe V(Gg)

then ¢ is an a-labeling of G [11]. One can check that the boundary value of
Y is Ay = A + A2 + 1. It remains to show that ¢ (v*) = Ay + 1. By the
definition of ¢, since v* € V (G3) and 02 (v*) = Ao +1, ¥ (v*) = Oz (v) + A1 +1 =
)\2+1+)\1+1=)\w+1. O

See Figure 4 for an example of Proposition 1 applied to two disjoint copies
of the labeled graph in Figure 1, adding an edge between the 3-vertex (where 3
is the smallest of the large labels) of one copy and the 0-vertex of the other.

3 Labeled Paths

As wind chimes are built from paths, paths will play an important role in our
results. Paths are trees and are therefore bipartite graphs. If n = 2k, then the
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Figure 5: Ps labeled as in Equation 2

parts of P, both have size k, and any a-labeling has boundary value k — 1. If
n = 2k + 1, one part of P, contains k vertices while the other contains k£ + 1
vertices. In this case, the boundary value of an a-labeling of the path P, is
either k — 1 (if the 0-vertex is in the smaller part) or & (if the O-vertex is in the
larger part).

Any path P, has an o-labeling 6 with an end-vertex labeled 0 [8]; explicitly,
0 is as follows:

n—3 if i is even.

{121 if 7 is odd
Note that if n is even, then 6 (v,) = A+ 1 where A\ = 252 is the boundary
value of 0. See Figure 5. Taking the complementary labeling 6 of 6 yields an

a-labeling of P, with an end-vertex labeled n — 1. Explicitly,

9’ (1}1) =

{n - % if 7 is odd 3)

if 7 is even.

Note that if n is odd, then 6’ (v,,) = A+ 1 where A = 252 is the boundary value
of 6. See Figure 6.

There is quite a bit of freedom in the placement of the O-vertex in an a-
labeling of a path. A. Rosa showed that for every n and for any vertex v of
P, there exists an a-labeling 6 of P, with 6(v) = 0, except for the case that
v is the central vertex of P5 [9]. In fact, with few exceptions, for any vertex v
of P, and each number j with 1 < j < n — 1, there exists an «a-labeling of P,
in which v is labeled j [4]. We will require more, however; for our purposes it

Figure 6: P5 with the labelings in Equation 2 and Equation 3



Figure 7: P;; with the labeling in the proof of Lemma 2

will be important that the vertex labeled with the smallest of the large labels
is adjacent to the O-vertex. The next three lemmas provide criteria for when
this is possible. Although these lemmas easily follow from the proof of the main
result in [9], the fact that these labelings also satisfy our additional condition
requires proof.

Lemma 2. If n = 2k+1 and n = 3 mod 4, there exists an «-labeling ¥ of P, =
(v1, ..., v,) with boundary value k satisfying ¥ (vi) =0 and ¢ (vgr1) =k + 1.

Proof. Since n = 3mod 4, if n = 2k + 1 then k is odd. Let 6 be the a-labeling
of P, as depicted in Figure 3 of [9]. No explicit formula is given in [9], but it
can be written as follows:

k- B if i <k and i is odd
0 (v;) = k+ 2=+ if i <kandiis even
YT Yik 1 if >k anddis odd

if ¢ > k and 7 is even.

Then, since 6 (vg42) = 0, it follows that the boundary value of 6 is k, since
the part of P, which contains vjo is the larger one. Now let ¢ be the inverse
labeling of 6; since P, has n — 1 edges, ¥(v) = k — 8(v) mod n. Then v (vy) =
k —k mod n =0 and

k+1—-k+1

¢(Uk+1)=k—<n— 5 )modnzk—&—l

and since the boundary value of ¢ is k, 1 satisfies the conditions of the lemma.
O

See Figure 7 for the labeling of Pj; as in the proof of Lemma 2.

Lemma 3. If n = 2k, there exists an «a-labeling i of P, = (v1,...,v,) with
boundary value k — 1 satisfying v (vi) = 0 and ¥ (vi11) = k.

Proof. Suppose n = 2k, and let 6 be the a-labeling of P, as in Figure 1 of [9];
no explicit formula is given, however this labeling can be written as follows: if
k is odd,

k—1— k- if i <k and 7 is odd

k—1+455L if i < kandiiseven

| if i > k and i is odd

2
ikl
n 2

0 (v;) =

if ¢ > k and 7 is even



Figure 8: Pjg with the labeling in the proof of Lemma 3
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Figure 9: Py with the labeling in the proof of Lemma 4

and if k is even,

k+ ==L if i <k and iis odd

k—1—% - if i<k andiiseven
9<vi): i—k+1 P ..

n— =5= if i >k and 7 is odd

if i > k and 7 is even.

In either case, 6 (vp) = k — 1 and 0 (vgy1) = n — 1, and any o-labeling of P,
has boundary value k — 1. Let ¢ be the inverse labeling of 0, so that (v) =
k—1—60(v) mod n. Then ¢ (v) =0and ¥ (vg41) =k—1—(n—1) mod n =k,
as required. O

See Figure 8 for the labeling of P;y as in the proof of Lemma 3.

Lemma 4. If n =2k+ 1 and n = 3 mod 4 there exists an «-labeling ¥ of P, =
(v1, .. .,v,) with boundary value k — 1 satisfying ¥ (vg+1) = 0 and ¢ (vg42) = k.

Proof. Suppose n = 2k + 1, n = 3mod 4, P, = (u1,...,u,) and let 6 be the
a-labeling of P, satisfying 6 (u) = 0 and 6 (ug+1) = k+ 1 with boundary value
k found in the proof of Lemma 2. Since P,, has n — 1 edges, the complementary
labeling 0" of # is an a-labeling satisfying 6’ (uy) = (n — 1) — 0 = n — 1 and
0" (ug+1) = (n—1)—(k+1) = k—1. The boundary value of #’ is (n—1)—k—1 =
k — 1. Then, the inverse labeling f of ¢’ satisfies

fug) =Xy — 0 (up) modn=(k—1)—(n—1) modn==~%

f (ugs1) = Ao — 0" (ugs1) mod n = (k—1) — (k—1) mod n = 0.

Then, reversing the order of the vertices of P, by setting v; = wu,41-; for
1 < i < n and setting ¥ (v;) = f (upt1—;) yields the result, since ¥ (vg41) =0
and ¥ (vg12) = k. O

See Figure 9 for the labeling of P;; as in the proof of Lemma 4.

4 Wind Chimes

A tree is said to be a caterpillar if, after all of its degree 1 vertices are removed,
the remaining tree is a path. All caterpillars can be a-labeled [8]. Therefore,



any wind chime of the form (11, ..., ) where [; < 1 for each ¢ has an a-labeling.
It follows from a construction of Koh, Rogers and Tan [7] that all wind chimes
of the form (n,n,n,...,n) are graceful. It is known that every wind chime of
the form (k,k+ 1,k +2,...k+n) has an o-labeling [2] (see Figure 12). We
prove more general results which include these three results as special cases.

Theorem 5. The wind chime (l1,1a,...,l,,) has an a-labeling provided for each
i with 1 <4 < |52, |lgs — laip1] <1 and laigr + 2 # 3 mod 4.

Proof. Suppose W is a wind chime with an odd number of spine vertices. We
prove that W has an a-labeling by induction.

Any wind chime W with 1 spine vertex is a path P, = (u1,ug,...,uy,).
Choose the spine vertex to be v; = u,,. If n is even, choose ¢ to be the labeling
of P, as in Equation 2, and if n is odd, choose ¢ to be the labeling as in
Equation 3. Then ¢ is an a-labeling of W satisfying ¢ (v1) = Ay + 1 where Ay
is the boundary value of the labeling ¢.

Next, assume that any wind chime with 2k—1 spine vertices vy, .. ., Vo1 sat-
isfying the conditions of the theorem has an a-labeling ¢ satisfying ¢ (vog—1) =
A¢ + 1, where A4 is the boundary value of ¢.

Now suppose m = 2k + 1 and let (I1,...,[,;,) be any wind chime satisfying
the hypotheses of the theorem with spine vertices vy, ..., v,. By the induction
hypothesis, (I1,...,l,—2) has an a-labeling ¢ satisfying that ¢ (v,—2) = Ay +1
where )\ is the boundary value of ¢.

By the hypotheses of the theorem, (l,,,—1,1,,) is the path P; = (w1,...,w,)
where j is even (if |l,,—1 — l;n] = 0), or where j =3 mod 4 (if |l,,—1 — Ln| = 1).
Let v,,—1 and vy, be the “spine” vertices of ({,,—1,l); that is, if ¢ = 1,1 + 1
then v,,_1 = wy and vy, = wy41. See Figure 10. If 1,1 = [, apply Lemma 3
to Pj; if l,,—1 + 1 ={,, apply Lemma 2; or if [,y =[,,, + 1 apply Lemma 4 to
P;. This yields an a-labeling 6 of P; = (I;,—1, ;) satistying 6 (v,,—1) = 0 and
0 (vm) = Ag + 1 where )y is the boundary value of the labeling 6.

Now apply Proposition 1 to (G1,01) = ((l1,...,lm—2),¢) and (Ga,03) =
((m=1,1m) ,0). Since ¢ (vyp—2) = Ay + 1 and 0 (vy,—1) = 0, the resulting graph
includes an edge between v,,_o and v,,_1, so that the resulting graph is the wind
chime (I1,...,l,). The resulting a-labeling ¢ of (I1,...,l,,) is as in Equation
1. Since 0 (v,) = Ag + 1, by Proposition 1 we have v (v,,) = Ay + 1, where Ay
is the boundary value of . This completes the induction.

Now, for the case of an even number of spine vertices, suppose m = 2k
and (Iy,1a,...,1,) satisfies the hypotheses of the theorem. By the preceding
argument, (I1,ls,...,l,,—1) with spine vertices vy,...,v,,—1 has an a-labeling
¢ satisfying ¢ (vm—1) = Ay + 1. Let n =, + 1 and let ¢ be an o-labeling of
P, = (u1,...,uy) so that ¢ (u;) = 0. Now apply Proposition 1 with (G1,6;) =
(U1, 12y s lm—1),¢) and (Gs,02) = (Pn, ¢) to complete the proof. O

The wind chime (4,2,3,5,4,1,1,5) in Figure 3 satisfies the criteria of The-
orem 5; see Figure 11 for the labeling of this tree produced as in the proof of
Theorem 5.
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Figure 11: Labeling of (4,2,3,5,4,1,1,5) as in Theorem 5

Theorem 6. If m > 2, the wind chime (I1,la,...,1,;,) has an a-labeling provided
for each i with 1 <i < L%J, [loi1 —lo;] <1 and ly;—1 + lo; £ 3 mod 4.

Proof. The proof is very similar to the proof of Theorem 5. Suppose W is a
wind chime with an even number of spine vertices. We prove that W has an
a-labeling by induction.

Any wind chime of the form W = (iy,15) satisfying the hypotheses of the
theorem satisfies that [y + [ #Z 3 mod 4, and therefore W is the path P, =
(u1,...,un) where n = Iy + I3 + 2, so that n # 1 mod 4. Let v; = u;, 41 and
vo = Uy, 2. Then, by either Lemma 2, Lemma 3, or Lemma 4, W = P, has
an a-labeling ¢ satisfying that ¢ (v1) = 0 and ¢ (v2) = Ay + 1, where Ay is the
boundary value of the labeling ¢.

Next, assume that any wind chime W satisfying the conditions of the the-
orem with 2k spine vertices vy,...,vo;r has an o-labeling ¢ satisfying that
@ (vag) = Ay + 1, where )\, is the boundary value of the labeling ¢.

Suppose m = 2k + 2 and let (l1,...,l,,) be any wind chime satisfying the
hypotheses of the theorem with spine vertices vy,...,v,. By the induction
hypothesis, (I1,...,l,—2) has an a-labeling ¢ satisfying that ¢ (v,—2) = Ap +1
where A4 is the boundary value of ¢. As in the proof of Theorem 5, by either
Lemma 2, Lemma 3, or Lemma 4, the wind chime (I,,—1, l,,) with “spine” vertices
Um—1, Um has an a-labeling 6 satisfying 6 (v,,—1) = 0 and 6 (v,,) = A\g+1, where
Ag is the boundary value of the labeling 6. To complete the induction, apply
Proposition 1 to (Gl, 6‘1) = ((117 ey lmfg) y gb) and (G27 92) = ((lmfl, Zm) 5 9),
which adds an edge between v,,_s and v,,_1, to obtain an a-labeling v of
(l1,..., 1) satistying ¢ (v,,) = Ay + 1, where )y is the boundary value of 9.



Figure 12: The triangular tree (0,1,2,3,4,5) and the truncated triangular tree
(2,3,4,5)

Next, suppose m = 2k + 1 and (l4,...,l,) with spine vertices v1,..., v,
satisfies the hypotheses of the theorem. By the preceding argument, the wind
chime (I1,...,l,—1) has an a-labeling ¢ satistying ¢ (v,,—1) = Ay + 1, where
Mg is the boundary value of ¢. Let n = [,, + 1 and let ¢ be an a-labeling of
P, = (u1,...,uy) so that ¢ (u1) = 0. Proceed, as in the proof of Theorem 5, to
apply Proposition 1 to (G1,61) = ((I1,1l2,--.,lm-1),¢) and (G2,02) = (Pn, )
to finish the proof. O

Next, we shall examine how our results imply each of the results on wind
chimes due to Barrientos [2]. In [2], a wind chime of the form (0,1,2,...,n) is
called a triangular tree, and a wind chime of the form (k, k + 1,k +2,...,k +n)
where k£ > 1 is called a truncated triangular tree. See Figure 12. Theorem 2.1
of [2] states that every triangular tree has an a-labeling, and Theorem 2.2 of [2]
states that every truncated triangular tree has an a-labeling.

Consider any wind chime of the foorm W = (k,k+1,k+2,...,k+n) for
k>0. Then W = (l1,12,...,lpt+1) where [; = k+4i—1. Then |l; — ;41| =1 for
1<j<n. If kis odd, then £k = 2¢ + 1 and

l2i+1—|—lgi :2]€+4i—1:2(2q+1)+4i—1:4(q+i)—|—15 1 mod 4
so that W satisfies the hypotheses of Theorem 5. If k is even, then k = 2¢ and
lo; 4+ loi_1 :2k+4i—3=4(q+i)—35 1 mod 4

so that W satisfies the hypotheses of Theorem 6. Therefore Theorems 2.1 and
2.2 of [2] follow from our results.

In [2], pairs of triangular trees are combined to produce wind chimes in three
different ways. In the first construction in [2], two copies of the same triangular
tree (0,1,...,n) are connected by adding an edge between the last spine vertices
of each tree, as in Figure 13. The resulting tree is a wind chime of the form

Wy=(0,1,2,...,n—1,n,nn—1,...,2,1,0).

Theorem 3.1 of [2] states that any such wind chime has an a-labeling. If W; =
(ll, .. 7lm) then |121 — lgi_l‘ <1, and ly;—1 +1ls; = 1 mod 4 if ¢ 7& TLTH If
1= ";‘2, then ly;_1 + lo; = 2n, so in either case l5;_1 + lo; Z 3 mod 4. Thus W,
satisfies the hypotheses of Theorem 6, and therefore Theorem 3.1 of [2] follows
from Theorem 6.

10



Figure 13: The wind chime (0,1,2,3,3,2,1,0)

Figure 14: The wind chime (3,2,1,1,2,3,4,5)

In the second construction in [2], two triangular trees (0,1,...,m) and
(0,1,...,n) where m and n are both odd are connected by adding an edge
between the last spine vertices of each tree. This results in a wind chime of the
form

Wy =(0,1,...,m—1,m,n,n—1,...,1,0).

Theorem 3.2 of [2] states that any tree of this type has an a-labeling. If W, =

(1, -+ lintnt2) then since m is odd, m = l,, 41 # la;—1 for any ¢, and so
[loi1 —loi) = 1for 1 < i < %"“ Since n is odd, for i > mTH we have
loi—1 + lz; = 1 mod 4, and for i < ™ we also have lp;—1 + l; = 1 mod 4.

Therefore a wind chime of the form W5, where m and n are both odd, satisfies
the hypotheses of Theorem 6, and thus Theorem 3.2 of [2] follows from Theorem
6.

In the third construction in [2], two triangular trees (0,1,...,m) and (0,1, ...
are connected by identifying the first spine edge of each tree, as in Figure 14.
The result is a wind chime of the form

Ws=(mnn-1,...,2,1,1,2,...,m).

Theorem 3.3 of [2] states that any tree of this variety has an a-labeling. If
W3 = (ll,lQ,...7ln+m) then |l] —lj+1| S ]., and if n is even, lgi + l2i+1 7_é
3 mod 4 so that W3 satisfies the hypotheses of Theorem 5. If n is odd, then
lo;—1+l2; # 3 mod 4 so that W3 satisfies the hypotheses of Theorem 6. Therefore
Theorem 3.3 of [2] follows from our results.

Note, however, that our results are strictly stronger than the results on wind
chimes in [2], as no result in [2] produces an a-labeling of the tree in Figure 11.
Moreover, our results allow for arbitrarily many truncated triangular trees to
be combined, subject to a congruence condition, while the results in [2] allow
for just two triangular trees to be combined.

It is tempting to try to prove that all wind chimes except (1,2, 1) are graceful
using the technique in the proof of Theorem 5. However, this approach is
doomed to fail, as the next theorem demonstrates.

11
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Theorem 7. If n =2k + 1 and n = 1 mod 4 then no graceful labeling 6 of P,
satisfies 0 (vi) = 0 and 0 (vp41) = k.

Proof. Suppose n =1 mod 4 and n = 2k + 1 where n > 1 and for contradiction
that 0 is a graceful labeling of P, = (vi,...,v,) satisfying 6 (vx) = 0 and
0 (vi4+1) = k. For ease of bookkeeping, for 1 < i < k let u; = vgy1—; so that the
vertices of P,, are written as follows:

Pn = (ukvukfla'"7u27u1avk+11"'7vn)'

For 1 <i < k let e; = u;11u;. We claim that for i < k,

ﬂ . ..
H(ui):{ 5 if 7 is odd (1)

n—5 ifiiseven

and if 4 < k then 6 (e;) = n —i. The proof is by induction on i.

By assumption 6 (u;) = 0. The path (P,, ) must have an edge labeled n — 1
as P, has n — 1 edges. By assumption 0 (vip41) = k, so the only possibility is
that 6 (ug) = n — 1, since the (n — 1)-vertex must be adjacent to the 0-vertex in
any graceful labeling of a graph with n — 1 edges. Thus 6 (e;) =n — 1 and the
base case holds.

Next suppose that 1 < j < k and that for 1 < i < j, 6 (u;) is as defined
above in Equation 4 and for ¢ < j we have 6 (e;) = n — 4. There are two cases,
depending on the parity of j.

If j is odd, then 6 (u;) = % and the vertex labels of uq,...,u; are
j— 1 j— 1
{QLHWJZ}U{<nJ2)V.Wn1}
Therefore if v is a vertex of P, which is not an element of {u1,u2,...,u;} then
% <f(v) <n-— % Therefore if uv is an edge of P, and neither u nor v is
an element of {uy, us,...,u;}, then
) — 1 | —1
flu) < (n-?2"= 1) (L= 11)=n—j—1.
2 2
Now, the edge labels appearing on ey,...,ej_1 aren—1,n—2,...,n—(j — 1)

respectively. P, must contain an edge with the label n — j; the only possibility
is the edge e; = u;1u;, since by assumption 6 (u1v41) = k. Therefore it must

be that 0 (ujy1) =n — 5 —1=n— 221, which makes 0 (¢;) = n — j.

If j is even, then 6 (u;) = n — % and the vertex labels of uy, ..., u; are
9 .
{Qlwn,]Q}U{(n—é>w.”n—1}.
If v is a vertex of P, satisfying v ¢ {u1,us,...,u;} then % < O(v) <n-—

2. Therefore if uv is an edge of P, and neither v nor v is an element of
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{ui,ug,...,u;} then §(uv) < n—j—1. The edge labels appearingon ey, ..., e;_1
aren—1,n—2,...,n— (j — 1), respectively. P, must contain an edge labeled
n — j. Therefore it must be that 6 (e;) = 6 (uj+1u;) = n — j, which makes

0 (ujy1) = % = % . This completes the induction.

Since n = 2k +1 and n = 1 mod 4 it follows that k is even. By the previous
argument the vertices uy, ..., u; have the labels
k—2 k
{222V () )
Thus if v is a vertex of P,, which is not an element of {uy,...,u} then
k—2 k
T+1§0(v)§n7571.
Therefore if uv is an edge of P,, and neither u nor v is an element of {uy, ..., ux},
then

< (- -1) - (552 41) =n-ioro

By the preceding argument the labels n —1,n—2,... k42 appear on the edges

€1,...,€ex—1. By assumption, 0 (ujvg41) = k. Therefore there is no edge of P,
with the label k& + 1, contradicting that 6 is graceful. O
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