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Abstract

A graceful labeling of a graph with n edges is an assignment to each

vertex a unique label between 0 and n, inclusive, satisfying the addi-

tional requirement that if each edge is labeled by the absolute value of

the di�erence of its incident vertices, then the set of edge labels is ex-

actly {1, 2, . . . , n}. It has been an open question for more than 50 years

whether or not every tree has a graceful labeling. In fact, it is unknown

whether every tree with maximum degree 3 has a graceful labeling. In

this paper we introduce a class of maximum degree 3 trees we call wind

chimes. We prove that all wind chimes satisfying certain criteria have a

graceful labeling.

1 Introduction

In 1967, A. Rosa introduced the concept of a graceful labeling of a graph [8]. A
labeling of a graph with n edges is said to be graceful if each vertex is assigned
a distinct number in {0, 1, . . . , n} and when each edge is labeled by the absolute
value of the di�erence of the labels of its incident vertices, each number in
{1, 2, . . . , n} appears on exactly one edge. See Figure 1.

A graph G is a pair (V (G), E(G)) consisting of vertices V (G) and edges
E(G) between vertices of G. If u and v are vertices of a graph G and there is
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Figure 1: A gracefully labeled graph
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Figure 2: A gracefully labeled tree

an edge between u and v, this edge is denoted uv and we write uv ∈ E(G). A
tree is a connected graph with no cycles. The graph in Figure 1 contains a cycle
while the graph in Figure 2 is a tree. The degree of a vertex v is the number of
edges incident with v. For example, in Figure 2, the vertex labeled 0 has degree
3. For de�nitions omitted we refer the reader to West [10].

In this paper, a labeling of a graph G is injection from V (G) to {0, 1, 2, . . .}.
A labeled graph is a pair (G, θ) where G is a graph and θ is a labeling of G. If
(G, θ) is a labeled graph, we sometimes refer to the vertex of G that is labeled
k as the k-vertex of G.

Every labeling θ of a graph G induces an edge labeling as follows: for every
edge uv ∈ E(G), de�ne θ(uv) = |θ(u)− θ(v)|. A labeled graph (G, θ) with n
edges is gracefully labeled, and θ is called a graceful labeling of G, provided the
range of θ is contained in {0, 1, . . . , n} and {θ(uv) : uv ∈ E(G)} = {1, 2, . . . , n}.
A graph for which there exists a graceful labeling is called graceful. The graphs
appearing in Figures 1 and 2 are both graceful.

While there are many graphs that are not graceful, it has been an open
question for more than 50 years whether or not every tree is graceful. That
every tree can be gracefully labeled is known as the graceful tree conjecture.
There are hundreds of papers written on the topic of graceful labeling [5]. In
fact, as J. Gallian writes,

Despite the e�orts of many, the graceful tree conjecture remains
open even for trees with maximum degree 3 [5].

In this paper we take a step towards solving the graceful tree conjecture for
trees with maximum degree 3.

Trees with maximum degree 2 are paths, and every path is graceful [8]. We
denote the path with n vertices and n − 1 edges by Pn. We will write the
path Pn as Pn = (v1, v2, . . . , vn), by which we mean that the vertices of Pn are
{v1, . . . , vn} and the edges of Pn are {v1v2, v2v3, . . . , vn−1vn}. The vertices v1
and vn will be called end-vertices.

In this paper we will be concerned with a certain family of maximum degree
3 trees. Choose a natural number m, and to each vertex vi of the path Pm =
(v1, v2, . . . , vm), attach a path Pli by adding an edge between vi and an end-
vertex of Pli . We call the resulting tree W a wind chime, and for brevity denote
W by (l1, l2, . . . , lm). The vertices (v1, v2, . . . , vm) of Pm form the spine of
(l1, l2, . . . , lm). See Figure 3. Since, for example (4, 3, 3, 2) and (2, 0, 0, 3, 3, 0, 1)
represent the same wind chime, to eliminate multiple names for the same tree, if
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Figure 3: The wind chime (4, 2, 3, 5, 4, 1, 1, 5)

W is a wind chime one can require m to be minimal such that W = (l1, . . . , lm)
and (l1, . . . , lm) is minimal with respect to the lexicographic ordering on m-
tuples.

Every wind chime is a tree with maximum degree 3. While the graceful tree
conjecture for trees with maximum degree 3 is seemingly di�cult, we o�er the
following simpli�cation, which may prove to be more tractable.

Conjecture. Every wind chime is graceful.

Although this paper falls short of settling this conjecture, we will show that
wind chimes that satisfy certain congruence conditions can be gracefully labeled.
Some wind chimes have previously been shown to be graceful. Huang, Kotzig
and Rosa [6] have shown that any tree with at most 4 vertices of degree 1 is
graceful, and therefore any wind chime with at most 4 spine vertices is graceful.
Some other graceful wind chimes appear in [2]; in this paper we generalize the
wind chime results due to Barrientos [2].

Our results will require a type of labeling stronger than graceful, which was
also introduced by A. Rosa [8]. A labeling θ of a graph G with n edges is said
to be an α-labeling provided θ is graceful and there exists a number λ so that
for every edge uv of G, either θ(u) ≤ λ < θ(v) or θ(v) ≤ λ < θ(u). This λ is
known as the boundary value of the α-labeling θ. The value λ is the largest of
the �small� labels and the value λ+ 1, which will appear often in this paper, is
the smallest of the �large� labels. To avoid confusion, we sometimes denote the
boundary value λ of the α-labeling θ by λθ. See Figure 1; this labeling is in fact
an α-labeling with boundary value 2.

There are trees that cannot be α-labeled. In fact, there are trees with degree
at most 3 that have no α-labeling: the spider with three legs of length two
appearing in Figure 2 is one such tree. Graceful labelings of spider trees have
been studied rather extensively; see, for example, [1, 3].

In fact, the tree in Figure 2 is a wind chime: it is the wind chime (1, 2, 1).
Therefore, there is at least one wind chime that cannot be α-labeled. However,
the tree in Figure 2 is the only spider tree with three legs that does not have an
α-labeling [6]. Hence any wind chime (l1, l2, l3) 6= (1, 2, 1) has an α-labeling.
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2 Preliminaries

In this paper all graphs are simple and connected. A graph G is bipartite if
there exists a partition of the vertices of G into two sets X and Y satisfying
that every edge of G joins a vertex in X with a vertex in Y . X and Y are known
as the parts of G. Every tree is bipartite.

If G is a graph with n edges and θ is a graceful labeling of G, the complemen-

tary labeling θ′ of θ is de�ned by setting θ′(v) = n− θ(v) for each vertex v of G.
The labeling θ′ is also graceful; moreover, if θ is an α-labeling with boundary
value λθ then θ

′ is an α-labeling with boundary value λθ′ = n− λθ − 1.
If G is a graph with n edges and θ is an α-labeling of G with boundary value

λθ, then the inverse labeling θ∗ of θ is de�ned by θ∗(v) = λθ − θ(v) mod n+ 1
for each v ∈ V (G) [9]. The inverse labeling θ∗ of an α-labeling θ is also an
α-labeling with the same boundary value as θ.

We will make use of the following proposition. This result is not new; it is a
modi�cation of a result of Huang, Kotzig and Rosa [6] and also appears in [11].
It allows for two α-labeled graphs to be combined to produce another α-labeled
graph, by adding an edge between the 0-vertex of one graph and the vertex
labeled by the smallest of the large labels in the other. We have highlighted a
speci�c detail as it will be needed to prove our main results.

Proposition 1. Let (G1, θ1) be an α-labeled graph with boundary value λ1 and

let (G2, θ2) be an α-labeled graph with boundary value λ2. Let v1 ∈ V (G1)
satisfy θ1 (v1) = λ1 + 1 and let v2 ∈ V (G2) satisfy θ2 (v2) = 0. Let G be the

graph formed by adding the edge v1v2 to G1∪G2. Then there exists an α-labeling
ψ of G with boundary value λψ satisfying ψ (v∗) = λψ + 1, where v∗ ∈ V (G2)
satis�es θ2 (v

∗) = λ2 + 1.

Proof. Suppose G2 has m edges. If ψ is de�ned as follows:

ψ(v) =


θ1(v) if v ∈ V (G1) and θ1(v) ≤ λ1
θ1(v) +m+ 1 if v ∈ V (G1) and θ1(v) > λ1

θ2(v) + λ1 + 1 if v ∈ V (G2)

(1)

then ψ is an α-labeling of G [11]. One can check that the boundary value of
ψ is λψ = λ1 + λ2 + 1. It remains to show that ψ (v∗) = λψ + 1. By the
de�nition of ψ, since v∗ ∈ V (G2) and θ2 (v

∗) = λ2+1, ψ (v∗) = θ2(v)+λ1+1 =
λ2 + 1 + λ1 + 1 = λψ + 1.

See Figure 4 for an example of Proposition 1 applied to two disjoint copies
of the labeled graph in Figure 1, adding an edge between the 3-vertex (where 3
is the smallest of the large labels) of one copy and the 0-vertex of the other.

3 Labeled Paths

As wind chimes are built from paths, paths will play an important role in our
results. Paths are trees and are therefore bipartite graphs. If n = 2k, then the
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Figure 4: Proposition 1 applied to two copies of Figure 1

Figure 5: P6 labeled as in Equation 2

parts of Pn both have size k, and any α-labeling has boundary value k − 1. If
n = 2k + 1, one part of Pn contains k vertices while the other contains k + 1
vertices. In this case, the boundary value of an α-labeling of the path Pn is
either k− 1 (if the 0-vertex is in the smaller part) or k (if the 0-vertex is in the
larger part).

Any path Pn has an α-labeling θ with an end-vertex labeled 0 [8]; explicitly,
θ is as follows:

θ (vi) =

{
i−1
2 if i is odd

n− i
2 if i is even.

(2)

Note that if n is even, then θ (vn) = λ + 1 where λ = n−2
2 is the boundary

value of θ. See Figure 5. Taking the complementary labeling θ′ of θ yields an
α-labeling of Pn with an end-vertex labeled n− 1. Explicitly,

θ′ (vi) =

{
n− i+1

2 if i is odd
i−2
2 if i is even.

(3)

Note that if n is odd, then θ′ (vn) = λ+1 where λ = n−3
2 is the boundary value

of θ′. See Figure 6.
There is quite a bit of freedom in the placement of the 0-vertex in an α-

labeling of a path. A. Rosa showed that for every n and for any vertex v of
Pn there exists an α-labeling θ of Pn with θ(v) = 0, except for the case that
v is the central vertex of P5 [9]. In fact, with few exceptions, for any vertex v
of Pn and each number j with 1 ≤ j ≤ n − 1, there exists an α-labeling of Pn
in which v is labeled j [4]. We will require more, however; for our purposes it

Figure 6: P5 with the labelings in Equation 2 and Equation 3
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Figure 7: P11 with the labeling in the proof of Lemma 2

will be important that the vertex labeled with the smallest of the large labels
is adjacent to the 0-vertex. The next three lemmas provide criteria for when
this is possible. Although these lemmas easily follow from the proof of the main
result in [9], the fact that these labelings also satisfy our additional condition
requires proof.

Lemma 2. If n = 2k+1 and n ≡ 3mod 4, there exists an α-labeling ψ of Pn =
(v1, . . . , vn) with boundary value k satisfying ψ (vk) = 0 and ψ (vk+1) = k + 1.

Proof. Since n ≡ 3mod 4, if n = 2k + 1 then k is odd. Let θ be the α-labeling
of Pn as depicted in Figure 3 of [9]. No explicit formula is given in [9], but it
can be written as follows:

θ (vi) =


k − k−i

2 if i ≤ k and i is odd

k + k−i+1
2 if i ≤ k and i is even

i−k
2 − 1 if i > k and i is odd

n− i−k+1
2 if i > k and i is even.

Then, since θ (vk+2) = 0, it follows that the boundary value of θ is k, since
the part of Pn which contains vk+2 is the larger one. Now let ψ be the inverse
labeling of θ; since Pn has n− 1 edges, ψ(v) = k − θ(v) mod n. Then ψ (vk) =
k − k mod n = 0 and

ψ (vk+1) = k −
(
n− k + 1− k + 1

2

)
mod n = k + 1

and since the boundary value of ψ is k, ψ satis�es the conditions of the lemma.

See Figure 7 for the labeling of P11 as in the proof of Lemma 2.

Lemma 3. If n = 2k, there exists an α-labeling ψ of Pn = (v1, . . . , vn) with

boundary value k − 1 satisfying ψ (vk) = 0 and ψ (vk+1) = k.

Proof. Suppose n = 2k, and let θ be the α-labeling of Pn as in Figure 1 of [9];
no explicit formula is given, however this labeling can be written as follows: if
k is odd,

θ (vi) =


k − 1− k−i

2 if i ≤ k and i is odd

k − 1 + k−i+1
2 if i ≤ k and i is even

i−k
2 − 1 if i > k and i is odd

n− i−k+1
2 if i > k and i is even
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Figure 8: P10 with the labeling in the proof of Lemma 3

Figure 9: P11 with the labeling in the proof of Lemma 4

and if k is even,

θ (vi) =


k + k−i−1

2 if i ≤ k and i is odd

k − 1− k−i
2 if i ≤ k and i is even

n− i−k+1
2 if i > k and i is odd

i−k
2 − 1 if i > k and i is even.

In either case, θ (vk) = k − 1 and θ (vk+1) = n − 1, and any α-labeling of Pn
has boundary value k − 1. Let ψ be the inverse labeling of θ, so that ψ(v) =
k−1− θ(v) mod n. Then ψ (vk) = 0 and ψ (vk+1) = k−1− (n−1) mod n = k,
as required.

See Figure 8 for the labeling of P10 as in the proof of Lemma 3.

Lemma 4. If n = 2k+1 and n ≡ 3mod 4 there exists an α-labeling ψ of Pn =
(v1, . . . , vn) with boundary value k−1 satisfying ψ (vk+1) = 0 and ψ (vk+2) = k.

Proof. Suppose n = 2k + 1, n ≡ 3mod 4, Pn = (u1, . . . , un) and let θ be the
α-labeling of Pn satisfying θ (uk) = 0 and θ (uk+1) = k+1 with boundary value
k found in the proof of Lemma 2. Since Pn has n− 1 edges, the complementary
labeling θ′ of θ is an α-labeling satisfying θ′ (uk) = (n − 1) − 0 = n − 1 and
θ′ (uk+1) = (n−1)−(k+1) = k−1. The boundary value of θ′ is (n−1)−k−1 =
k − 1. Then, the inverse labeling f of θ′ satis�es

f (uk) = λθ′ − θ′(uk) mod n = (k − 1)− (n− 1) mod n = k

f (uk+1) = λθ′ − θ′(uk+1) mod n = (k − 1)− (k − 1) mod n = 0.

Then, reversing the order of the vertices of Pn by setting vi = un+1−i for
1 ≤ i ≤ n and setting ψ (vi) = f (un+1−i) yields the result, since ψ (vk+1) = 0
and ψ (vk+2) = k.

See Figure 9 for the labeling of P11 as in the proof of Lemma 4.

4 Wind Chimes

A tree is said to be a caterpillar if, after all of its degree 1 vertices are removed,
the remaining tree is a path. All caterpillars can be α-labeled [8]. Therefore,
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any wind chime of the form (l1, . . . , lm) where li ≤ 1 for each i has an α-labeling.
It follows from a construction of Koh, Rogers and Tan [7] that all wind chimes
of the form (n, n, n, . . . , n) are graceful. It is known that every wind chime of
the form (k, k + 1, k + 2, . . . k + n) has an α-labeling [2] (see Figure 12). We
prove more general results which include these three results as special cases.

Theorem 5. The wind chime (l1, l2, . . . , lm) has an α-labeling provided for each

i with 1 ≤ i ≤
⌊
m−1
2

⌋
, |l2i − l2i+1| ≤ 1 and l2i+1 + l2i 6≡ 3 mod 4.

Proof. Suppose W is a wind chime with an odd number of spine vertices. We
prove that W has an α-labeling by induction.

Any wind chime W with 1 spine vertex is a path Pn = (u1, u2, . . . , un).
Choose the spine vertex to be v1 = un. If n is even, choose φ to be the labeling
of Pn as in Equation 2, and if n is odd, choose φ to be the labeling as in
Equation 3. Then φ is an α-labeling of W satisfying φ (v1) = λφ + 1 where λφ
is the boundary value of the labeling φ.

Next, assume that any wind chime with 2k−1 spine vertices v1, . . . , v2k−1 sat-
isfying the conditions of the theorem has an α-labeling φ satisfying φ (v2k−1) =
λφ + 1, where λφ is the boundary value of φ.

Now suppose m = 2k + 1 and let (l1, . . . , lm) be any wind chime satisfying
the hypotheses of the theorem with spine vertices v1, . . . , vm. By the induction
hypothesis, (l1, . . . , lm−2) has an α-labeling φ satisfying that φ (vm−2) = λφ+1
where λφ is the boundary value of φ.

By the hypotheses of the theorem, (lm−1, lm) is the path Pj = (w1, . . . , wj)
where j is even (if |lm−1 − lm| = 0), or where j ≡ 3 mod 4 (if |lm−1 − lm| = 1).
Let vm−1 and vm be the �spine� vertices of (lm−1, lm); that is, if q = lm−1 + 1
then vm−1 = wq and vm = wq+1. See Figure 10. If lm−1 = lm apply Lemma 3
to Pj ; if lm−1 + 1 = lm apply Lemma 2; or if lm−1 = lm + 1 apply Lemma 4 to
Pj . This yields an α-labeling θ of Pj = (lm−1, lm) satisfying θ (vm−1) = 0 and
θ (vm) = λθ + 1 where λθ is the boundary value of the labeling θ.

Now apply Proposition 1 to (G1, θ1) = ((l1, . . . , lm−2) , φ) and (G2, θ2) =
((lm−1, lm) , θ). Since φ (vm−2) = λφ + 1 and θ (vm−1) = 0, the resulting graph
includes an edge between vm−2 and vm−1, so that the resulting graph is the wind
chime (l1, . . . , lm). The resulting α-labeling ψ of (l1, . . . , lm) is as in Equation
1. Since θ (vm) = λθ + 1, by Proposition 1 we have ψ (vm) = λψ + 1, where λψ
is the boundary value of ψ. This completes the induction.

Now, for the case of an even number of spine vertices, suppose m = 2k
and (l1, l2, . . . , lm) satis�es the hypotheses of the theorem. By the preceding
argument, (l1, l2, . . . , lm−1) with spine vertices v1, . . . , vm−1 has an α-labeling
φ satisfying φ (vm−1) = λφ + 1. Let n = lm + 1 and let ϕ be an α-labeling of
Pn = (u1, . . . , un) so that ϕ (u1) = 0. Now apply Proposition 1 with (G1, θ1) =
((l1, l2, . . . , lm−1) , φ) and (G2, θ2) = (Pn, ϕ) to complete the proof.

The wind chime (4, 2, 3, 5, 4, 1, 1, 5) in Figure 3 satis�es the criteria of The-
orem 5; see Figure 11 for the labeling of this tree produced as in the proof of
Theorem 5.
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Figure 10: Schematic diagram for the proof of Theorem 5

Figure 11: Labeling of (4, 2, 3, 5, 4, 1, 1, 5) as in Theorem 5

Theorem 6. If m ≥ 2, the wind chime (l1, l2, . . . , lm) has an α-labeling provided
for each i with 1 ≤ i ≤

⌊
m
2

⌋
, |l2i−1 − l2i| ≤ 1 and l2i−1 + l2i 6≡ 3 mod 4.

Proof. The proof is very similar to the proof of Theorem 5. Suppose W is a
wind chime with an even number of spine vertices. We prove that W has an
α-labeling by induction.

Any wind chime of the form W = (l1, l2) satisfying the hypotheses of the
theorem satis�es that l1 + l2 6≡ 3 mod 4, and therefore W is the path Pn =
(u1, . . . , un) where n = l1 + l2 + 2, so that n 6≡ 1 mod 4. Let v1 = ul1+1 and
v2 = ul1+2. Then, by either Lemma 2, Lemma 3, or Lemma 4, W = Pn has
an α-labeling φ satisfying that φ (v1) = 0 and φ (v2) = λφ + 1, where λφ is the
boundary value of the labeling φ.

Next, assume that any wind chime W satisfying the conditions of the the-
orem with 2k spine vertices v1, . . . , v2k has an α-labeling φ satisfying that
φ (v2k) = λφ + 1, where λφ is the boundary value of the labeling φ.

Suppose m = 2k + 2 and let (l1, . . . , lm) be any wind chime satisfying the
hypotheses of the theorem with spine vertices v1, . . . , vm. By the induction
hypothesis, (l1, . . . , lm−2) has an α-labeling φ satisfying that φ (vm−2) = λφ+1
where λφ is the boundary value of φ. As in the proof of Theorem 5, by either
Lemma 2, Lemma 3, or Lemma 4, the wind chime (lm−1, lm) with �spine� vertices
vm−1, vm has an α-labeling θ satisfying θ (vm−1) = 0 and θ (vm) = λθ+1, where
λθ is the boundary value of the labeling θ. To complete the induction, apply
Proposition 1 to (G1, θ1) = ((l1, . . . , lm−2) , φ) and (G2, θ2) = ((lm−1, lm) , θ),
which adds an edge between vm−2 and vm−1, to obtain an α-labeling ψ of
(l1, . . . , lm) satisfying ψ (vm) = λψ + 1, where λψ is the boundary value of ψ.
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Figure 12: The triangular tree (0, 1, 2, 3, 4, 5) and the truncated triangular tree
(2, 3, 4, 5)

Next, suppose m = 2k + 1 and (l1, . . . , lm) with spine vertices v1, . . . , vm
satis�es the hypotheses of the theorem. By the preceding argument, the wind
chime (l1, . . . , lm−1) has an α-labeling φ satisfying φ (vm−1) = λφ + 1, where
λφ is the boundary value of φ. Let n = lm + 1 and let ϕ be an α-labeling of
Pn = (u1, . . . , un) so that ϕ (u1) = 0. Proceed, as in the proof of Theorem 5, to
apply Proposition 1 to (G1, θ1) = ((l1, l2, . . . , lm−1) , φ) and (G2, θ2) = (Pn, ϕ)
to �nish the proof.

Next, we shall examine how our results imply each of the results on wind
chimes due to Barrientos [2]. In [2], a wind chime of the form (0, 1, 2, . . . , n) is
called a triangular tree, and a wind chime of the form (k, k + 1, k + 2, . . . , k + n)
where k ≥ 1 is called a truncated triangular tree. See Figure 12. Theorem 2.1
of [2] states that every triangular tree has an α-labeling, and Theorem 2.2 of [2]
states that every truncated triangular tree has an α-labeling.

Consider any wind chime of the form W = (k, k + 1, k + 2, . . . , k + n) for
k ≥ 0. Then W = (l1, l2, . . . , ln+1) where li = k+ i− 1. Then |lj − lj+1| = 1 for
1 ≤ j ≤ n. If k is odd, then k = 2q + 1 and

l2i+1 + l2i = 2k + 4i− 1 = 2 (2q + 1) + 4i− 1 = 4 (q + i) + 1 ≡ 1 mod 4

so that W satis�es the hypotheses of Theorem 5. If k is even, then k = 2q and

l2i + l2i−1 = 2k + 4i− 3 = 4 (q + i)− 3 ≡ 1 mod 4

so that W satis�es the hypotheses of Theorem 6. Therefore Theorems 2.1 and
2.2 of [2] follow from our results.

In [2], pairs of triangular trees are combined to produce wind chimes in three
di�erent ways. In the �rst construction in [2], two copies of the same triangular
tree (0, 1, . . . , n) are connected by adding an edge between the last spine vertices
of each tree, as in Figure 13. The resulting tree is a wind chime of the form

W1 = (0, 1, 2, . . . , n− 1, n, n, n− 1, . . . , 2, 1, 0) .

Theorem 3.1 of [2] states that any such wind chime has an α-labeling. If W1 =
(l1, . . . , lm) then |l2i − l2i−1| ≤ 1, and l2i−1 + l2i ≡ 1 mod 4 if i 6= n+2

2 . If
i = n+2

2 , then l2i−1 + l2i = 2n, so in either case l2i−1 + l2i 6≡ 3 mod 4. Thus W1

satis�es the hypotheses of Theorem 6, and therefore Theorem 3.1 of [2] follows
from Theorem 6.
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Figure 13: The wind chime (0, 1, 2, 3, 3, 2, 1, 0)

Figure 14: The wind chime (3, 2, 1, 1, 2, 3, 4, 5)

In the second construction in [2], two triangular trees (0, 1, . . . ,m) and
(0, 1, . . . , n) where m and n are both odd are connected by adding an edge
between the last spine vertices of each tree. This results in a wind chime of the
form

W2 = (0, 1, . . . ,m− 1,m, n, n− 1, . . . , 1, 0) .

Theorem 3.2 of [2] states that any tree of this type has an α-labeling. If W2 =
(l1, . . . , lm+n+2) then since m is odd, m = lm+1 6= l2i−1 for any i, and so
|l2i−1 − l2i| = 1 for 1 ≤ i ≤ m+n+2

2 . Since n is odd, for i > m+1
2 we have

l2i−1 + l2i ≡ 1 mod 4, and for i ≤ m+1
2 we also have l2i−1 + l2i ≡ 1 mod 4.

Therefore a wind chime of the form W2, where m and n are both odd, satis�es
the hypotheses of Theorem 6, and thus Theorem 3.2 of [2] follows from Theorem
6.

In the third construction in [2], two triangular trees (0, 1, . . . ,m) and (0, 1, . . . , n)
are connected by identifying the �rst spine edge of each tree, as in Figure 14.
The result is a wind chime of the form

W3 = (n, n− 1, . . . , 2, 1, 1, 2, . . . ,m) .

Theorem 3.3 of [2] states that any tree of this variety has an α-labeling. If
W3 = (l1, l2, . . . , ln+m) then |lj − lj+1| ≤ 1, and if n is even, l2i + l2i+1 6≡
3 mod 4 so that W3 satis�es the hypotheses of Theorem 5. If n is odd, then
l2i−1+l2i 6≡ 3 mod 4 so thatW3 satis�es the hypotheses of Theorem 6. Therefore
Theorem 3.3 of [2] follows from our results.

Note, however, that our results are strictly stronger than the results on wind
chimes in [2], as no result in [2] produces an α-labeling of the tree in Figure 11.
Moreover, our results allow for arbitrarily many truncated triangular trees to
be combined, subject to a congruence condition, while the results in [2] allow
for just two triangular trees to be combined.

It is tempting to try to prove that all wind chimes except (1, 2, 1) are graceful
using the technique in the proof of Theorem 5. However, this approach is
doomed to fail, as the next theorem demonstrates.
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Theorem 7. If n = 2k + 1 and n ≡ 1 mod 4 then no graceful labeling θ of Pn
satis�es θ (vk) = 0 and θ (vk+1) = k.

Proof. Suppose n ≡ 1 mod 4 and n = 2k+1 where n > 1 and for contradiction
that θ is a graceful labeling of Pn = (v1, . . . , vn) satisfying θ (vk) = 0 and
θ (vk+1) = k. For ease of bookkeeping, for 1 ≤ i ≤ k let ui = vk+1−i so that the
vertices of Pn are written as follows:

Pn = (uk, uk−1, . . . , u2, u1, vk+1, . . . , vn) .

For 1 ≤ i < k let ei = ui+1ui. We claim that for i ≤ k,

θ (ui) =

{
i−1
2 if i is odd

n− i
2 if i is even

(4)

and if i < k then θ (ei) = n− i. The proof is by induction on i.
By assumption θ (u1) = 0. The path (Pn, θ) must have an edge labeled n−1

as Pn has n − 1 edges. By assumption θ (vk+1) = k, so the only possibility is
that θ (u2) = n− 1, since the (n− 1)-vertex must be adjacent to the 0-vertex in
any graceful labeling of a graph with n− 1 edges. Thus θ (e1) = n− 1 and the
base case holds.

Next suppose that 1 ≤ j < k and that for 1 ≤ i ≤ j, θ (ui) is as de�ned
above in Equation 4 and for i < j we have θ (ei) = n− i. There are two cases,
depending on the parity of j.

If j is odd, then θ (uj) =
j−1
2 and the vertex labels of u1, . . . , uj are{

0, 1, . . . ,
j − 1

2

}
∪
{(

n− j − 1

2

)
, . . . , n− 1

}
.

Therefore if v is a vertex of Pn which is not an element of {u1, u2, . . . , uj} then
j−1
2 < θ(v) < n − j−1

2 . Therefore if uv is an edge of Pn and neither u nor v is
an element of {u1, u2, . . . , uj}, then

θ (uv) ≤
(
n− j − 1

2
− 1

)
−
(
j − 1

2
+ 1

)
= n− j − 1.

Now, the edge labels appearing on e1, . . . , ej−1 are n− 1, n− 2, . . . , n− (j − 1)
respectively. Pn must contain an edge with the label n− j; the only possibility
is the edge ej = uj+1uj , since by assumption θ (u1vk+1) = k. Therefore it must
be that θ (uj+1) = n− j−1

2 − 1 = n− j+1
2 , which makes θ (ej) = n− j.

If j is even, then θ (uj) = n− j
2 and the vertex labels of u1, . . . , uj are{

0, 1, . . . ,
j − 2

2

}
∪
{(

n− j

2

)
, . . . , n− 1

}
.

If v is a vertex of Pn satisfying v /∈ {u1, u2, . . . , uj} then j−2
2 < θ(v) < n −

j
2 . Therefore if uv is an edge of Pn and neither u nor v is an element of
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{u1, u2, . . . , uj} then θ(uv) ≤ n−j−1. The edge labels appearing on e1, . . . , ej−1
are n− 1, n− 2, . . . , n− (j − 1), respectively. Pn must contain an edge labeled
n − j. Therefore it must be that θ (ej) = θ (uj+1uj) = n − j, which makes

θ (uj+1) =
j
2 = (j+1)−1

2 . This completes the induction.
Since n = 2k+1 and n ≡ 1 mod 4 it follows that k is even. By the previous

argument the vertices uk, . . . , u1 have the labels{
0, 1, . . . ,

k − 2

2

}
∪
{(

n− k

2

)
, . . . , n− 1

}
.

Thus if v is a vertex of Pn which is not an element of {u1, . . . , uk} then

k − 2

2
+ 1 ≤ θ(v) ≤ n− k

2
− 1.

Therefore if uv is an edge of Pn and neither u nor v is an element of {u1, . . . , uk},
then

θ(uv) ≤
(
n− k

2
− 1

)
−
(
k − 2

2
+ 1

)
= n− k − 1 = k.

By the preceding argument the labels n−1, n−2, . . . , k+2 appear on the edges
e1, . . . , ek−1. By assumption, θ (u1vk+1) = k. Therefore there is no edge of Pn
with the label k + 1, contradicting that θ is graceful.
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