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ABSTRACT
This article develops a frequentist solution to the functional calibration problem, where the value of a
calibration parameter in a computer model is allowed to vary with the value of control variables in the
physical system. The need of functional calibration is motivated by engineering applications where using a
constant calibrationparameter results in a significantmismatchbetweenoutputs from the computermodel
and the physical experiment. Reproducing kernel Hilbert spaces (RKHS) are used to model the optimal
calibration function, defined as the functional relationship between the calibration parameter and control
variables that gives the best prediction. This optimal calibration function is estimated through penalized
least squares with an RKHS-norm penalty and using physical data. An uncertainty quantification procedure
is also developed for such estimates. Theoretical guarantees of the proposedmethod are provided in terms
of prediction consistency and consitency of estimating the optimal calibration function. The proposed
method is tested using both real and synthetic data and exhibits more robust performance in prediction
and uncertainty quantification than the existing parametric functional calibration method and a state-of-
art Bayesian method.
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1. Introduction

To understand a physical system, one can conduct physical
experiments by feeding a set of inputs to the system and observ-
ing the output. These inputs are called control variables to the
system. The hope is that by learning the input–output relation
of the system, in the future one can predict the output for any set
of inputs that may be fed into the system. Because conducting
physical experiments is usually very costly and inconvenient,
computer simulation or using computer models is a common
practice (Santner,Williams, and Notz 2003). A computer model
attempts to use a set of mathematical formulas to mimic the
input-output relation of the physical system and can be imple-
mented through computer codes. There are usually a set of
parameters in the computermodel that represent intrinsic prop-
erties of the physical system. Different from control variables
that one can determine and measure before an experiment, the
computermodel parameters are unobservable or unmeasurable.
To determine the value of these parameters, one first obtains
some data in the form of input–output pairs from physical
experiments, and then adjusts the values of computer model
parameters so that the computer model generates similar out-
puts for a given set of inputs in the physical experiments. This
process is called calibration, and we refer to the computer model
parameters as calibration parameters. Kennedy and O’Hagan
(2001) is a renowned work on statistical framework for calibra-
tion of computer models, which also contains a review of earlier
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work on the subject. Related references in this field include
Higdon et al. (2004, 2008),Higdon et al. (2013), Bayarri et al.
(2007a), Bayarri et al. (2007b), Tuo and Wu (2015), Tuo and
Wu (2016), Joseph and Melkote (2009), Joseph and Yan (2015),
Wong, Storlie, and Lee (2017), Plumlee (2017), Gu and Wang
(2018), Plumlee (2019), Tuo (2019), Xie and Xu (2020), Wang
et al. (2020), and the references therein.

Commonly used approaches to calibration are based on
the assumption that there is one constant value for the cali-
bration parameter, and the goal of calibration is to estimate
that value, or find the closest possible point (Han, Santner,
and Rawlinson 2009; Tuo and Wu 2016). However, in many
complex physical systems, there may exist a functional rela-
tionship between calibration parameters and control variables.
For example, in the resistance spot welding process discussed
in Bayarri et al. (2007), or in the poly-vinyl alcohol (PVA)-
treated buckypaper fabrication process (Pourhabib et al. 2015),
engineering knowledge suggests that calibration parameters,
that is, contact resistance in the former and the PVA absorp-
tion rate in the latter, are not fixed but a function of con-
trol variables. In these examples, any attempts that seek to
calibrate the computer model by finding the “best” constant
value for the calibration parameter will result in a significant
mismatch between the outputs from the computer model and
the physical experiment. Therefore, appropriate calibration of
the computer model in such cases should allow the values
of the calibration parameters to vary with the value of the
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input variables. To highlight the functional relationship, we
refer to the calibration parameters as the functional calibration
parameters or calibration functions. If the calibration function
has a known form with an unknown Euclidean parameter, one
can develop a parametric solution to the functional calibration
problem (Bayarri et al. 2007; Pourhabib et al. 2015; Atamturktur
et al. 2015), and the theoretical framework of Tuo and Wu
(2015, 2016) can be employed to find the optimal calibration
parameter. However, such parametric solutions have obvious
limitations, since the form of the calibration function is usually
unavailable.

The goal of this article is to provide a theoretical frame-
work for a nonparametric solution to the functional calibration
problem and to develop corresponding computational methods
and uncertainty quantification procedures. We formulate the
problem such that it allows the data to determine the func-
tional relationship between the calibration parameter and con-
trol variables, instead of imposing a parametric form for the
relationship a priori. We use reproducing kernel Hilbert spaces
to model the functional relationship and employ the penalized
least squares for estimation. We devise a Gauss–Newton type of
algorithm for computation and establish frequentist properties
of our estimation procedure. We also develop an uncertainty
quantification procedure by borrowing ideas from the smooth-
ing splines literature. Our framework treats the computermodel
as an approximation to the physical system and do not assume
there exists a “true” underlying calibration function. The opti-
mal calibration function is defined operationally through an
optimization problem to give the best prediction. Interestingly,
when there aremultiple functional calibration parameters, there
is a possibility that the optimal calibration functions are not
uniquely defined (see the discussion in Section 2.2), but our
procedure still yields consistent prediction (Section 3.1) and our
numerical results show good performance of our method in
prediction (Section 6).

Upon completion of an earlier draft of this work, we became
aware of two related articles that tackled the same problemusing
the Bayesian framework. Plumlee, Joseph, and Yang (2016)
provided a Bayesian solution to the functional calibration prob-
lem in a specific application. Brown and Atamturktur (2018)
developed a general Bayesian framework with a software imple-
mentation. Both articles utilized Gaussian process (GP) priors
on the unknown calibration functions and applied the Markov
chain Monte Carlo simulation for computation of the posterior
distribution. While theoretical justification is lacking for these
existing Bayesian functional calibration methods, we are able
to establish an asymptotic theory of consistency and rates of
convergence to provide some theoretical guarantees to our fre-
quentistmethod.Ourmethod still provides goodprediction and
uncertainty quantification when the optimal functional calibra-
tion parameter is not uniquely defined (see Tables 3 and 4). The
existing Bayesian methods have not considered this challenging
situation. This article also contains a comparative simulation
study that is more comprehensive than those in the published
works. Empirical evidence shows that the proposed frequentist
approach tends to outperform existing Bayesianmethods on the
examples considered.

The rest of this article is organized as follows. Section 2
provides basic concepts regarding calibration, the formulation

of the functional calibration problem, and a solution procedure
through penalized least squares. Section 3 provides theoreti-
cal properties of the proposed method. Section 4 presents a
computational algorithm for solving the penalized least-square
problem and derives the GCV criterion for penalty parameter
selection. Section 5 develops an uncertainty quantification pro-
cedure for estimation of calibration function and for prediction.
Section 6 presents the results for a simulation study. We illus-
trate the proposed method on real data in Section 7. Section 8
concludes the paper. Proofs of all theoretical results are given in
supplementary materials.

Notations. For a vector a, let |a| denote its Euclidean norm.
For a function f (x) defined on a domain X , let ||f ||L2(X ) =
{∫X f 2(x) dx}1/2 denote its L2 norm. For a vector of functions
f = (f1, . . . , fr)T , denote ||f ||L2 = {∑r

i=1 ||fi||2L2(X )}1/2.

2. Functional Calibration: Problem Formulation

Consider a physical system that gives a vector of deterministic
responses ζ (x) ∈ Rr when there is a vector of inputs (called
control variables), x ∈ X , where X is a convex and compact
subset of Rd. To learn the response function ζ (·), we conduct
physical experiments at design points D = {x1, . . . , xn} ⊂ X
and observe the corresponding response vectors, denoted as
yp1, . . . , y

p
n, where superscript p stands for “physical.” A func-

tional relationship exists between the input x and the response
ζ (x), but due to measurement noises we only observe a noisy
version of the response. We assume that

ypi = ζ (xi) + ei, i = 1, . . . , n, (1)

where ei’s are iid zero-mean random vectors. We call each pair
(xi, y

p
i ) a data point and the set {(xi, ypi ), i = 1, . . . , n} the

physical dataset.

2.1. Optimal Constant Calibration

Exploring the response function through mere physical exper-
imentation can be extremely costly and time consuming. As
such, a computer model is often utilized to simulate the phys-
ical system. The computer model takes (x, θ) as the input
and yields the computer model response ys(x, θ), where θ ∈
� denotes a calibration parameter, � is a subset of Rq, and
superscript s stands for “simulated,” referring to simulated from
the computer model. The computer model response ys(x, θ)

is computable by running computer codes when a calibration
parameter θ and an input x are given. An appealing feature
of using computer models is that one can run the computer
codes for the computer model for any feasible combination
of control variables and calibration parameters, at much lower
expense than running physical experiments. A fundamental
problem for using computer models is calibration, that is, the
problem of finding a suitable value for the calibration param-
eters so that the computer outputs match well those from the
physical experiment for the same inputs or values of control
variables.

Being built based on simplifying assumptions about the phys-
ical system, a computer model may not perfectly match the
physical system. Therefore, we should not expect there exists a
value θ such that the computer model response ys(x, θ) exactly
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equals the physical system response ζ (x). The objective in cal-
ibration is to adjust the imperfect computer model, through
changing the values of the calibration parameter, so that it
adequately represents the physical system. Following Tuo and
Wu (2015, 2016) and Wong, Storlie, and Lee (2017), we define
the optimal value θ∗ of the calibration parameter θ to be the
value that minimizes the L2 distance between ζ (x) and ys(·, θ),
that is,

θ∗ = argminθ∈�||ζ (x) − ys(x, θ)||2L2(X ) (2)

= argminθ∈�

∫
X

|ζ (x) − ys(x, θ)|2 dx.

Empirically, the optimal calibration parameter can be estimated
by solving a similar optimization problem as Equation (2) where
the integral for the L2 distance is replaced by sample average for
a given physical dataset, and each ζ (xi) by its noisy observation
ypi . This empirical calibration method is called the ordinary
least-square method in (Tuo and Wu 2015, sec. 4).

2.2. Optimal Functional Calibration

In the above discussion, we look for one single value of the
calibration parameter such that the computer model best rep-
resents the physical experiment. We now consider the situation
that there is a functional relationship between the calibration
parameters and control variables. Our goal is to learn this func-
tional relationship using physical data. Extending (2), we define
the optimal calibration function for the functional calibration
problem as

θ∗(·) = argminθ(·)
∫
X |ζ (x) − ys(x, θ(x))|2 dx,
subject to: θ(x) ∈ � for all x ∈ X .

(3)

We refer to θ∗(x) as the optimal functional calibration param-
eter and ζ ∗(x) = ys(x, θ∗(x)) as the optimal prediction at
location x. Similar to Equation (2), here we do not assume
a true value/form for the calibration function, but we seek a
function that minimizes the discrepancy between the outputs
of computer model and physical experiments. In fact, θ∗(·) can
be defined pointwise: θ∗(x) is the minimizer of the function
hx(θ) = |ζ (x) − ys(x, θ)|2 for each x. Since � is compact, by
assuming that hx(θ) is a continuous function, the minimizer
θ∗(x) always exists.

The optimal functional calibration parameter θ∗(x) may not
be unique, although the optimal prediction ζ ∗(x) is uniquely
defined. Section 6 presents some examples when there are mul-
tiple or even continuum many minimizers θ∗(x) for (3); see
simulation settings 3 and 4. A key condition for the uniqueness
of θ∗(x) is r ≥ q, that is, the number of response variables is no
fewer than the number of functional calibration parameters. To
see this, note that θ = θ∗(x) solves the system of r equations
ζ ∗(x) = ys(x, θ), and thus in order for the system to have a
unique solution, the number of equations should be no fewer
than the number of parameters. Under mild conditions, the
existence and uniqueness of the solution is ensured by the
inverse function theorem or the implicit function theorem. On
the other hand, since the primary goal of computer experiment
is usually on prediction of outcomes of physical experiments,
the uniqueness of θ∗(x) is not that a big concern.

2.3. Empirical Functional Calibration

Recall that what we observe are noise-contaminated physical
responses ypi at a finite number of values of control variables
xi ∈ D. We need to learn the optimal calibration function
using the physical data {xi, ypi }. One could replace the inte-
gral in Equation (3) by a summation over the design points
xi’s, replace each ζ (xi) by its noisy observation ypi , and solve
the corresponding minimization problem. However, this min-
imization problem does not have a unique solution since one
can vary the values of the function at points other than the
design points and do not change the value of the minimiz-
ing objective function. Therefore, to make θ∗(·) estimable, we
have to postulate certain assumptions on θ∗(·). A common
assumption is to suppose θ∗ has certain degree of smooth-
ness. Therefore, we shall restrict our attention to elements in
a suitably chosen space of smooth functions. Specifically, we
consider native spaces, which is a generalization of reproducing
kernel Hilbert spaces (RKHS). We refer to Wendland (2005) for
the necessary mathematical background of RKHS and native
spaces.

Let � be a conditionally positive-definite function over X ×
X and N�(X ) be the native space generated by � with its
native semi-norm || · ||N�

. In general, the native semi-norm of
a function f , ||f ||N�

is a measure of roughness of f , with a larger
value indicating a rougher function. We define our empirical
calibration function θ̂(·) to be

θ̂(·) := argminθ(·)=(θ1(·),...,θq(·))T
1
n

n∑
i=1

∣∣∣ypi − ys(xi, θ(xi))
∣∣∣2

+ λ

q∑
j=1

||θj||2N�
,

subject to: θ(x) ∈ � for all x ∈ X , (4)

where the first term of the objective function measures the
goodness-of-fit of the computer model’s responses to the phys-
ical responses, the semi-norm ||θj||N�

measures the roughness
of θj, and λ > 0 is a regularization/penalty parameter that
balances the data fit with function smoothness. It is neces-
sary that the solution θ̂(·) = (θ̂1(·), . . . , θ̂q(·)) must satisfy
||θ̂j||N�

< ∞ so that its components are in the native space gen-
erated by �. We call our proposed approach the nonparametric
functional calibration, since we do not assume a parametric
form for the calibration function θ(·). The prediction of the
outcome at a new location x is obtained by the plug-in estimator
ys(x, θ̂(x)).

Sofar we have assumed the computer model is cheap, that is,
ys(x, θ) can be evaluated at any arbitrary point (x, θ) ∈ X × �

with almost no cost. However, in practice there is always com-
putational cost associated with running a computer code.When
the computational cost cannot be ignored when comparing
with the physical experiments, we say that the computer model
is expensive. To deal with the case of an expensive computer
model, we can evaluate the computer model only at a set of
computer design points G = {(x1, θ1), . . . , (xm, θm)} and then
build an emulator, or a surrogatemodel, based on the evaluation
of the computermodel at these design points (Santner,Williams,
and Notz 2003). Denote such an emulator as ŷsm(x, θ) which is
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obtained using {(xj, θ j, ys(xj, θ j)), j = 1, . . . ,m}. Simply replac-
ing the computermodel ys(x, θ) in Equation (4) by the emulator,
we obtain

θ̂ (m)(·) := argminθ(·)=(θ1(·),...,θq(·))T
1
n

n∑
i=1

∣∣∣ypi − ŷsm(xi, θ(xi))
∣∣∣2

+λ

q∑
j=1

||θj||2N�
,

subject to: θ(x) ∈ � for all x ∈ X . (5)

We could select the design points G such that m = n,
and for any xi ∈ D there exists θ i such that (xi, θ i) ∈
G, that is, we build the emulator based on the same design
points augmented by the θ ’s. However, in most applications,
even expensive computer codes are much cheaper than their
associated physical experiments and thus it is often reasonable to
choosem � n.

Remark. The criterion functions in the optimization prob-
lems (4) and (5) can be compared with the logarithm of the
posterior density presented on pages 727–728 of Brown and
Atamturktur (2018). While the two terms in Equations (4) and
(5) also appeared in the Bayesian formulation, the log poste-
rior density has a few extra terms that are the result of prior
specification.

3. Theoretical Properties

In this section, we develop some asymptotic properties for the
proposed nonparametric functional calibration method. Here
“asymptotic” means that the sample size of the physical obser-
vations tends to infinity and the error of the emulator tends to
zero. In Section 3.1, we study the prediction consistency when
the optimal calibration function is not required to be unique. In
Section 3.2, we show the consistency of estimating the optimal
calibration function when it is uniquely defined. The rates of
convergence are also discussed for both scenarios.

For the rest of this section, we fix a conditionally positive-
definite kernel function � defined on X ×X . LetN (X ) be the
native space generated by the kernel�with its native semi-norm
|| · ||N (we drop the subscript� inN� to simplify the notation).
Recall that�, the domain of θ , is a subset of Rq. DenoteN� :=
{f = (f1, . . . , fq) : fj ∈ N (X ), j = 1, . . . , q, f (x) ∈ � for all x ∈
X }. The functional calibration problems (4) or (5) can be cast
into a unified form as

θ̂n := argminθ∈N�
1
n

∑n
i=1

∥∥∥ypi − ŷsn(xi, θ(xi))
∥∥∥2

+λn
∑q

j=1 ||θj||2N ,
(6)

for a sequence of smoothing parameters λn > 0, where {ŷsn}
is a sequence of emulators for ys with increasing accuracies as
n → ∞. For the case of cheap codes, letting ŷsn(xi, θ(xi)) =
ys(xi, θ(xi)) in Equation (6) gives Equation (4); for the case
of expensive codes, letting ŷsn(xi, θ(xi)) = ŷsm(xi, θ(xi)) in
Equation (6) gives Equation (5). In the latter case, we allowm to
depend on n. It is worth noting that if the solution of Equation
(6) is not unique and we focus on prediction, our theory works
for an arbitrary choice from possible solutions.

3.1. Prediction Consistency

According to Equation (3), the computer model response
ys(x, θ∗(x)), equipped with the optimal calibration function
θ∗(·), provides the best possible prediction of the physical sys-
tem response ζ (x). The corresponding prediction error mea-
sured in L2 distance is

PE(θ∗) =
∫
X

|ζ (x) − ys(x, θ∗(x))|2 dx.

The L2 norm of prediction error corresponding to the empirical
calibration function defined in Equation (6) is

PE(θ̂n) =
∫
X

|ζ (x) − ŷsn(x, θ̂(x))|2 dx.

The difference between these two quantities tells us how well
the empirical calibration function performs in terms of predic-
tion. This subsection establishes a prediction consistency result,
which states that PE(θ̂n) − PE(θ∗) → 0 when the sample size
n → ∞. Our result does not require the uniqueness of θ∗. Note
that the value of PE(θ∗) is always uniquely defined and does not
depend on the choice of feasible θ∗.

Before stating our results, we introduce some technical con-
ditions. Call a r-dimensional random vector ξ sub-Gaussian, if
there exists ς > 0 such that

E[exp{αT(ξ − Eξ)}] ≤ exp(ς2||α||2/2), (7)

for all α ∈ Rr . Here the constant ς is referred to as the sub-
Gaussian parameter.

Condition 1. The design points xi’s are randomly drawn from
the uniform distribution over X , and the noise vectors ei’s are
independent from a sub-Gaussian distribution with mean zero
and sub-Gaussian parameter σ , for i = 1, . . . , n. Moreover,
{xi}ni=1 and {ei}ni=1 are mutually independent.

Condition 2. The computer model is a smooth function of its
inputs in the sense that ys ∈ C2(X × �), the space of twice
continuously differentiable functions defined on X × �.

Define the covering number N(δ,S , d) of the set S as the
smallest value of N for which there exist functions f1, . . . , fN ,
such that for each f ∈ S , d(f , fj) ≤ δ for some j ∈ {1, . . . ,N}.
LetN (X , ρ) := {f ∈ N (X ) : ||f ||N ≤ ρ} for ρ > 0.

Condition 3. The covering number ofN (X , ρ) satisfies

logN(ε,N (X , ρ), L∞(X )) ≤
(
Cρ

ε

) d
ν

, (8)

for some ν > d/2 and a constant C independent of ε and ρ.
Condition 3 gives a constraint on the size of the reproducing

kernel Hilbert space. Normally the value of ν depends highly
on the smoothness of the kernel function. Consider the Matérn
family of kernel functions (Stein 1999),

�(s, t) = �υ,φ(s, t) (9)

= 1
�(υ)2υ−1

(
2
√

υφ||s − t||)υ Kυ

(
2
√

υφ||s − t||) ,
where Kυ is the modified Bessel function of the second kind.
The smoothness of this kernel function is determined by the
value of υ. If �υ + d/2� > d/2 (which holds if υ ≥ 1),
the reproducing kernel Hilbert space generated by this kernel
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function is equal to the (fractional) Sobolev space Hυ+d/2 (Tuo
andWu 2015, coroll. 1). Using this equivalence and the covering
number of the Sobolev space (Edmunds and Triebel 2008), we
obtain, for υ ≥ 1, the L∞ covering numbers of the balls of the
reproducing kernel Hilbert space generated by Matérn kernel
�υ,φ are given by

logN(ε,N�υ,φ (X , ρ), L∞(X )) ≤
(
CXρ

ε

) d
υ+d/2

,

for a constant CX depends on X only. Condition 3 is clearly
satisfied by this kernel with ν = υ + d/2. Native spaces gen-
erated by some other kernels may also admit covering number
bound as Equation (8), for example, the thin-plate spline and
polyharmonic spline kernels (Duchon 1977). The native spaces
generated by such kernels are equivalent to certain Sobolev
spaces; see Wendland (2005) for details.

We also remark that Condition 3 is satisfied for the Gaussian
kernels as well. In fact, there is amuch tighter entropy bound for
the Gaussian case (Zhou 2002), which can yield an even faster
rate of convergence. But to save space, we do not pursue this in
the article.

In this work, we do not require a specific type of emulators.
Users can choose their favorite emulators (such asGP regression
or polynomial models) provided that they can well approximate
the underlying computer response function. Condition 4 is an
assumption regarding the approximation error.

Condition 4. The sequence of emulators is chosen to satisfy

||ŷsn − ys||C1(X×�) = O(n− ν
2ν+d ), (10)

where ||f ||C1(�) := maxjk supx∈� | ∂fk
∂xj (x)|.

Condition 4 assumes that the magnitude of the emulation
error is no bigger than that of the error of the nonparametric
regression. In the case of cheap codes, ŷsn = ys, and thus Con-
dition 4 automatically satisfied. In the case of expensive codes,
Condition 4 is a requirement on the rate of approximation for
the emulator. The approximation error of the emulator depends
on how the emulator is constructed. For commonly used emu-
lators, their rates of convergence are available in the numerical
analysis literature. For instance, the error bound for the radial
basis function interpolation can be found in Wendland (2005).
Note that the input dimension of the emulator is d+q because it
has both control variables and calibration parameters. Suppose
the smoothness of emulator is ν′, then a typical rate of conver-
gence for the emulator constructed by m computer outputs is
O(m−ν′/(d+q)). Therefore, to ensure Condition 5, m should be
at least with the order of magnitudeO(n

ν
ν′

d+q
2ν+d ). We believe this

condition can be easily achieved by choosing the sample size
for the computer experiment to be much larger than n, which
is feasible because each run of the computer codes should be
much less costly than the corresponding physical experiment.

Corresponding to the design points of the physical
experiment, define an empirical (semi-)norm as ||f ||n =
{∑n

i=1 f 2(xi)/n}1/2 for any function f on X . To incorporate
the multivariate response, we extend the notion of native norm
to a vector-valued function. For f = (f1, . . . , fq), define ||f ||N
as the Euclidean norm of (||f1||N , . . . , ||fq||N ). Similarly, we
can also define the L2 norm as well as the empirical norm for a
vector-valued function.

Theorem 1. Suppose that Conditions 1–4 are fulfilled. In addi-
tion, we assume

||ŷsn(x, θ(x))||N ≤ C1||θ ||N + C2 (11)

for all θ(·) ∈ N� and some constantsC1,C2 > 0. Then ifλ−1
n =

op(n1/2) and λn = op(1), we have PE(θ̂n) − PE(θ∗) = Op(λn).

Condition (11) requires that ŷsn(x, θ(x)) preserves the
smoothness of N , which is generally true if ŷsn is smooth
enough. For example, if x and θ are one-dimensional, � is
compact, andN is equivalent to the Sobolev space Hk with k ∈
N

+, then according to (Danchin 2005, prop. 1.4.8), Equation
(11) holds if ŷsn is k + 1 times continuously differentiable.

In Theorem 1, we consider the randomdesign case where the
design points follow the uniform distribution. The fixed design
is also commonly used in practical situations, where the design
points are chosen in a deterministic way. Our next result extends
Theorem 1 to the fixed design case.

Condition 1′.The design points {x1, . . . , xn} are deterministic
and satisfying

||f ||L2(X ) � ||f ||n + n− ν
2ν+d ||f ||N , (12)

for all f ∈ N . The noises ei’s are independent from a sub-
Gaussian distributionwithmean zero and sub-Gaussian param-
eter σ , for i = 1, . . . , n.

The condition (12) is generally a mild condition. It holds for
a broad class of design schemes called quasi-uniform designs,
which covers many commonly used space-filling designs. For
a designDn = {x1, . . . xn}, define its fill distance as

h(Dn) := max
x∈X

min
xi∈Dn

||x − xi||,

and separation distance as

q(Dn) := min
xi,xj∈Dn

||xi − xj||.

Note that h(Dn) and q(Dn) are also commonly used criteria
to measure the space-filling property of a design: the design
minimizing h(Dn) is known as the minimax design and the
design maximizing q(Dn) is known as the maximin design. See
Johnson, Moore, and Ylvisaker (1990). A sequence of designs
{Dn} is called quasi-uniform if h(Dn)/q(Dn) is bounded. Utr-
eras (1988) proved that Equation (12) is ensured if the design
scheme is quasi-uniform.

Theorem 2. Assume that Condition 1′, Conditions 2–4 and (11)
are satisfied. Then if λ−1

n = op(n1/2) and λn = op(1), we have
PE(θ̂n) − PE(θ∗) = Op(λn).

3.2. Consistency of Calibration Function

Now we study the consistency of the empirical calibration func-
tion θ̂n in estimating the optimal calibration function θ∗, pro-
vided the latter is uniquely defined. The required identifiability
condition for θ∗ is specified below.

Condition 5. The optimal calibration function θ∗(x) exists.
There exists ω0 > 0, such that

|ζ (x) − ys(x, θ)|2 − |ζ (x) − ys(x, θ∗(x))|2 ≥ ω0|θ − θ∗(x)|2, (13)

for all θ ∈ � and x ∈ X .
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Inequality (13) suggests that |ζ (x) − ys(x, ·)|2 is bounded
below locally by a quadratic function around the optimal cal-
ibration parameter θ∗(x). It also implies that θ∗(·) is uniquely
defined. A sufficient condition for Equation (13) is that � is a
compact set, ys ∈ C2(X × �) and

inf
x∈X λmin

(
∂2lx(θ)

∂θ∂θT

∣∣∣∣
θ=θ∗(x)

)
= λ0 > 0, (14)

where lx(θ) = |ζ (x) − ys(x, θ)|2 and λmin(A) denotes the
smallest eigenvalue of the matrix A. To see this, we apply the
Taylor expansion to obtain that for any θ ∈ �,

lx(θ) − lx(θ∗(x)) = (θ − θ∗(x))T ∂2lx(θ)

∂θ∂θT

∣∣∣∣
θ=θ ′

(θ − θ∗(x)),

where θ ′ lies between θ and θ∗(x). Let A ≥ B mean A − B
is positive semidefinite for square matrices A,B. Because of the
condition ys ∈ C2(X ×�) and Equation (14), we can find δ > 0
so that

∂2lx(θ)

∂θ∂θT

∣∣∣∣
θ=θ ′

≥ 1
2

∂2lx(θ)

∂θ∂θT

∣∣∣∣
θ=θ∗(x)

≥ λ0
2
I, (15)

for all |θ − θ∗(x)| ≤ δ and x ∈ X . This implies

lx(θ) − lx(θ∗(x)) ≥ λ0|θ − θ∗(x)|2/2, (16)

for all |θ − θ∗(x)| ≤ δ. On the other hand, because θ∗ is the
unique optimal (minimum distance) calibration function, for
|θ − θ∗(x)| > δ, there exists a constant γ > 0 so that

lx(θ) − lx(θ∗(x)) ≥ γ ≥ γ |θ − θ∗|2/D(�)2, (17)

where D(�) denotes the diameter of �. Thus, Equation (13)
is ensured by combining Equations (16) and (17). Note that
Equation (14) is amild condition analogous to a standard one in
parametric statistical inference: the Fisher informationmatrix is
non-singular (or positive definite).

The main result for the calibration consistency is Theorem 3.
The rate of convergence here can be much faster than that in
Theorem 1, and attains the minimax rate for nonparametric
regression (Stone 1982). In Theorem 3, the smoothing parame-
ter λn can be random but subject to certain order of magnitude
conditions.

Theorem 3. Assume Conditions 1–5 are satisfied. Assume fur-
ther that the sequence {λn} is chosen to satisfy λn ∼ n− 2ν

2ν+d ,
that is, λn = Op(n− 2ν

2ν+d ) and λ−1
n = Op(n

2ν
2ν+d ). Then ||θ̂n −

θ∗||L2(X ) = Op(n− ν
2ν+d ) and ||θ̂n||N = Op(1).

Similar to Theorem 2, we have a fixed-design version of the
calibration convergence theorem, given by Theorem 4.

Theorem 4. Assume that Condition 1′ and Conditions 2–5 are
satisfied. Assume further that the sequence {λn} is chosen to
satisfy λn ∼ n− 2ν

2ν+d , λn = O(n− 2ν
2ν+d ) and λ−1

n = O(n
2ν

2ν+d ).
Then ||θ̂n − θ∗||L2(X ) = Op(n− ν

2ν+d ) and ||θ̂n||N = Op(1).

Remark.Conditions 1 and 1′ assume sub-Gaussion noises but
this condition can be relaxed. By applying an adaptive trunca-
tion argument using Bernstein’s inequality (van deGeer 2000), it

can be proved that Theorems 1–4 hold for sub-exponential ei’s,
that is, E[ec|ei|] < +∞ for some c > 0.

Remark. The method in this article is inspired by smoothing
splines, a widely used method for nonparametric regression.
However, this article addresses the problem of computer model
calibration, which is a problem different from nonparametric
regression. For readers interested in comparing results in this
section with asymptotic results of smoothing splines, we refer
to Gu (2013) and van der Geer (2000) for results of rates of
convergence for smoothing splines.

4. Computation

This section develops an algorithm to solve the minimization
problem (4) and a method for penalty parameter selection. The
same algorithm is applicable to solve Equation (5). For simplic-
ity, we drop the constraint θ(·) ∈ � since we can monitor the
steps of the iterative algorithm to ensure that the iteration steps
will not lead to a point outside the feasible region. Moreover,
we focus on the case of one-dimensional response (i.e., r = 1).
Extension of the algorithm to general r is straightforward with
only some notational complications. After these simplifications,
the problem (4) becomes

min
θ(·)=(θ1(·),...,θq(·))T

n∑
i=1

{ypi − ys(xi, θ(xi))}2 + nλ
q∑

j=1
||θj||2N�

.

(18)
Here ypi and ys(xi, θ(xi)) are scalers.

We first reduce the optimization over the infinite-
dimensional native space N� to an optimization over a
finite-dimensional space. Let N0 be the finite-dimensional
null space of N�(X ), that is, N0 = {f : ||f ||N�

= 0}.
Let {v1, v2 . . . , vk} be a set of basis functions for N0. The
generalized representer theorem (e.g., Schölkopf, Herbrich, and
Smola 2001) implies that a solution to Equation (4) has the
basis expansion

θj(x) = vj(x) + φj(x) :=
k∑

s=1
αjsvs(x) +

n∑
i=1

βji�(x, xi) . (19)

for j = 1, 2, · · · , q. The solution is a sumof vj(x) in the null space
and φj(x) in the reproducing kernel Hilbert space generated by
the kernel function�.With the representation in Equation (19),
the quasi-Newton algorithm (Byrd and Nocedal 1989) can be
used to solve (18) and worked well in our numerical studies.

The penalty parameter λ can be selected in a similar manner
as in the smoothing spline literature, by minimizing the gen-
eralized cross-validation or GCV criterion (Golub, Heath, and
Wahba 1979; Craven and Wahba 1979). To develop an appro-
priate GCV criterion in our context, we extend the derivations
in (Gu 2013, chap. 3).

We expand the computer model ys(x, θ(x)) by its first-order
Taylor expansion at the optimal value θ̂(x),

ys(xi, θ(xi)) ≈ ys(xi, θ̂(xi)) +
q∑

j=1

∂

∂θj
ys(xi, θ̂(xi))

×
(
θj(xi) − θ̂j(xi)

)
. (20)
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Plug this into the original objective function, we get

min
θ(·)

n∑
i=1

{
ypi − ys(xi, θ̂(xi)) −

q∑
j=1

∂

∂θj
ys(xi, θ̂(xi))

×
(
θj(xi) − θ̂j(xi)

)}2

+ nλ
q∑

j=1
||θj||2N�

.

Define wij = ∂
∂θj

ys(xi, θ̂(xi)) and ȳi = ypi − ys(xi, θ̂(xi)) +∑q
j=1 wijθ̂j(xi). The original problem is then reduced to a penal-

ized regression problem,

min
θ(·)

n∑
i=1

{
ȳi −

q∑
j=1

wijθj(xi)
}2

+ nλ
q∑

j=1
||θj||2N�

. (21)

Let αj = (αj1, . . . ,αjk)
T and β j = (βj1, . . . ,βjn)T . The repro-

ducing property of the kernel function� implies that ||θj||2N�
=

βT
j �β j, where � = (�(xi, xj))n×n. Let ȳ = (ȳ1, · · · , ȳn)T ,

V = (vs(xi))n×q, and the diagonal weight matrix Wj =
diag(w1j, · · · ,wnj). The optimization problem (21) is expressed
in the matrix notation as

min
αj,β j

∥∥∥∥ȳ −
q∑

j=1
Wj

(
Vαj + �β j

)∥∥∥∥
2

2
+ nλ

q∑
j=1

βT
j �β j , (22)

which in turn is equivalent to

min
αj,β jw

∥∥∥∥ȳ −
q∑

j=1

(
Vjwαj + �jwβ jw

)∥∥∥∥
2

2
+ nλ

q∑
j=1

βT
jw�jwβ jw .

(23)
where Vjw = WjV, �jw = Wj�Wj, and β jw = W−1

j β j.
For the objective function in Equation (23), take first order

derivative with respect to αj and β jw and set them to zero. We
find that the optimal solution must satisfy

VT
jw

{
ȳ −

q∑
j=1

(
Vjwαj + �jwβ jw

)}
= 0 , (24)

�jw

{
ȳ −

q∑
j=1

(
Vjwαj + �jwβ jw

)}
− nλ�jwβ jw = 0 . (25)

If �w is singular, the above equation may have multiple solu-
tions. It is easy to see Equations (24) and (25) are satisfied by the
solution of

VT
kwβ jw = 0 , (26)

ȳ −
q∑

j=1

(
Vjwαj + �jwβ jw

)
− nλβ jw = 0 , (27)

for any j, k = 1, 2, . . . , q and the solution is unique. In fact,
pre-multiply (27) by �jw, we get Equation (25). In addition,
Equation (26) for k = j and Equation (27) together imply
Equation (24).

These equations can be arranged into a more compact form.
Let α = (αT

1 ,αT
2 , · · · ,αT

q )T , and βw = (βT
1w,βT

2w, · · · ,βT
qw)T .

We also let ȳ be repeated q times, and the resulting vector is
denoted as Y = (ȳT , · · · , ȳT)T ∈ Rqn. Similarly, we define

Vw =

⎛
⎜⎜⎜⎝
V1w V2w · · · Vqw
V1w V2w · · · Vqw
...

...
...

V1w V2w · · · Vqw

⎞
⎟⎟⎟⎠ ,

�w =

⎛
⎜⎜⎜⎝

�1w �2w · · · �qw
�1w �2w · · · �qw
...

...
...

�1w �2w · · · �qw

⎞
⎟⎟⎟⎠ .

where the row blocks simply repeat the first row block q times.
It follows that Equations (26) and (27) can be presented as

VT
wβw = 0 , (28)

Y − Vwα − (�w + nλI)βw = 0 , (29)

This requires βw to be orthogonal to the column space of
Vw. Suppose the full QR decomposition of Vw is Vw =
(F1 F2)(RT0T)T , then we have FT1 βw = 0 and βw = F2FT2 βw.
Pre-multiply (29) by FT2 and FT1 separately, the solution to Equa-
tions (28) and (29) can be found as

β̂w = F2
(
FT2 �wF2 + nλI

)−1 FT2Y , (30)

α̂ = R−1
(
FT1Y − FT1 �wβ̂w

)
. (31)

Plug the above solution into Equation (29) and with some cal-
culation, we obtain that the estimatedY is Ŷ = Vwα̂+�wβ̂w =
A(λ)Y, where A(λ) = I − nλF2(FT2 �wF2 + nλI)−1FT2 .

The smoothing matrix A(λ) transforms Y to Ŷ = A(λ)Y.
This connection suggests the following generalized cross-
validation (GCV) criterion

GCV(λ) = (qn)−1YT(I − A(λ))2Y
{(qn)−1tr(I − A(λ))}2 . (32)

The term q appears in the above equation because the whole set
of observations is repeated q times in our derivation. This GCV
is employed to select the penalty parameter λ.

5. Uncertainty Quantification

The uncertainty of estimation of the calibration function and
prediction comes from two sources: the physical experiments
and the computer experiments. We develop an uncertainty
quantification method that considers only the former source
of uncertainty, which is usually the dominant source of uncer-
tainty. This method is adequate for use in the case of cheap
codes, and may under-estimate the uncertainty in the case of
expensive codes. As in the previous section, our presentation
focuses on the case of one-dimensional responses (i.e., r = 1).

Adopting a strategy typically used in the smoothing spline
regression literature (e.g., Wahba 1990; Gu 2013), we develop
a confidence interval for θ̂(x) at an arbitrary x via considering
the penalized regression (21) in the Bayesian framework. Let σ 2

e
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denote the variance of the measurement noise ei in data model
(1). The objective function of Equation (21) is proportional to

n∑
i=1

− 1
2σ 2

e

{
ȳi −

q∑
j=1

wijθj(xi)
}2

− nλ
2σ 2

e

q∑
j=1

||θj||2N�
.

Taking exponential of the above, we arrive at
n∏

i=1
exp

(
− 1
2σ 2

e

{
ȳi −

q∑
j=1

wijθj(xi)
}2)

(33)

×
q∏

j=1
exp

(
− nλ
2σ 2

e
||θj||2N�

)
.

First, recall that wij = ∂
∂θj

ys(xi, θ̂(xi)) and ȳi = ypi −
ys(xi, θ̂(xi)) + ∑q

j=1 wijθ̂j(xi). When the estimated θ̂ is close to
the population optimal θ∗, the distribution of ȳi is close to that
of

ypi − ys(xi, θ∗(xi)) +
q∑

j=1
wijθ

∗
j (xi) =

q∑
j=1

wijθ
∗
j (xi) + εi. (34)

In other words, the term ȳi approximately follows a normal
distribution with mean

∑q
j=1 wijθ

∗
j (xi) and variance σ 2, which

is the first term in Equation (33).
Second, the penalty on θj(·) is equivalent to imposing a prior

on the native spaceN� corresponding to kernel�. Consider the
decomposition (19), for the function φj(·) in the reproducing
kernel Hilbert space, one can think it follows a GP prior φj(·) ∼
GP

(
0, σ 2

e
nλ�(·, ·)). Lastly, we can impose an additional prior on

the coefficients αjs ∼ N(0, ρ σ 2
e /(nλ)). The contant ρ takes

a large value, resulting in an approximately non-informative
prior on the null space. Combining the above leads to the joint
distribution (33) when ρ approaches infinity.

At an arbitrary location x, define v = (v1(x), · · · , vs(x))T
and φ = (�(x, x1), · · · ,�(x, xn))T . The joint distribution of
θj(x) and ȳ is a normal distribution

N
(
0,

σ 2
e

nλ

(
σ11 	T

21
	21 	22

))
,

where σ11 = �(x, x) + ρvTv,	21 = Wjφ + ρVjwv, and	22 =∑q
j=1(�jw + ρVjwVT

jw) + nλI. It follows that the conditional
variance of θj(x) given ȳ is

σ̂ 2
θj(x) = σ 2

e
nλ

(
σ11 − 	T

21	
−1
22 	21

)
. (35)

To make use of this distribution result, we need an estimate
of σ 2

e . Based on the converted regression problem (23), we adopt
the following estimator (Gu 2013, eq. 3.26)

σ̂ 2
e = YT

w(I − A(λ))2Yw
tr(I − A(λ))

, (36)

and λ is chosen by minimizing the GCV criterion (32).
Putting the above together, the (1 − α) × 100% confidence

interval for θj(x) is

(θ̂j(x) − zα/2σ̂θj(x), θ̂j(x) + zα/2σ̂θj(x)), (37)

where zα is the upper α quantile of the standard normal distri-
bution and σ̂θj(x) is calculated using the expression (35) with
σ 2
e estimated by Equation (36) and λ selected by the GCV. The

confidence intervals for functional calibration parameters given
in (37) only make sense when the optimal calibration functions
are identifiable.

While the conditional variance of θ(x) given ȳ can be com-
puted as Equation (37), the conditional variance of ys(x, θ(x))
given ȳ, denoted as σ 2

ys(x), is easily obtained by the delta
method. In particular, when the gradient is non-zero, that is,
∂
∂θ
ys(x, θ̂(x)) �= 0, we can compute

σ 2
ys(x) = σ 2

e
nλ

(
�11 − 
T

21

−1
22 
21

)
, (38)

where

�11 =
q∑

j=1
w2
j (�(x, x) + ρvTv),


21 =
q∑

j=1
wj(Wjφ + ρVjwv),


22 =
q∑

j=1
(�jw + ρVjwVT

jw) + nλI,

and wj = ∂
∂θj

ys(x, θ̂(x)). This expression can be equivalently
obtained from the the covariance matrix of ys(x, θ(x)) and ȳ,
which is computed with the aid of (20) to be

σ 2
e

nλ

 = σ 2

e
nλ

(
�11 
T

21

21 
22

)
.

The (1 − α) × 100% confidence interval for the computer
model response ys(x, θ∗(x)) at location x is

(ys(x, θ̂(x)) − zα/2σ̂ys(x)), ys(x, θ̂(x)) + zα/2σ̂ys(x))), (39)

where σ̂ys(x) is calculated using Equation (38)with σ 2
e estimated

by using Equation (36). This can be used as a confidence interval
for the physical response ζ(x). The confidence interval of the
physical response given in (39) ismeaningful evenwhen θ∗(x) is
unidentified, since the optimal prediction function ys(x, θ∗(x))
is uniquely defined.

We expect that the confidence intervals in Equations (37) and
(39) have the across-the-function coverage property (Wahba
1983; Nychka 1988). Rigorous asymptotic justification is left for
future research. In the next section, we will empirically illustrate
the performance of these intervals in a simulation study.

6. Simulation Study

In this section, we compare our proposed method, the non-
parametric functional calibration, with the constant calibra-
tion (abreviated as Const; Tuo and Wu 2016), the parametric
functional calibration (Pourhabib et al. 2015), the Bayesian
method of Brown and Atamturktur (2018). To set up the stage
for comparison, we consider two parametric calibration mod-
els in Section 6.1 and two unidentified calibration models in
Section 6.2. For parametric functional calibration, we consider
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two parametric models. The first is the parametric exponential
(Param-Exp) model, θ(x) = γ0 exp(γ1x). The second is a
quadratic model (Param-Quad) of the form θ(x) = γ0 +
γ1x + γ2x2. For our proposed method, the native space is
chosen as the Sobolev space of order 2. It has kernel k2(x, y) =
1

(2!)2B2(x)B2(y)− 1
4!B4(|x−y|), whereBm(·) is themth Bernoulli

polynomial (see, e.g., Gu 2013, p. 39). This kernel is com-
monly used in the smoothing spline literature and the solution
in this space is a cubic spline function. In the following, our
nonparametric functional calibration method using this kernel
is denoted as RKHS-Cubic.

In the comparative study of Section 6.2 for the cases of
unidentified calibration models, we also include local approx-
imate GP regression method (abbreviated as laGP; Gramacy
et al. 2015; Gramacy 2016), which runs a GP regression on the
residuals from a constant calibration model. The laGP method
is a mis-specified model in the context of Section 6.1 and thus
not considered in that section where the estimation error of the
calibration parameter is evaluated.

In our study, we consider both cases of cheap code and
expensive code. This allows us to evaluate the impact of using
the emulator on each method in the case of expensive code. In
the cheap code cases, the exact computermodel ys(x, θ) are used
for calibration. In the expensive code cases, the computermodel
is evaluated on a grid of size 14 × 15 on the domain of interest
and a GP emulator with the squared exponential kernel (e.g.,
Rasmussen andWilliams 2006, p. 83) is trained on the computer
generated data. The output of the emulator serves as a surrogate
computer model for calibration.

6.1. Two Parametric Models

For each of the two settings, one of the above two para-
metric calibration models (Param-Exp or Param-Quad) exactly
matches the physical model for a given parameter. This allows
us to compare the performance of the parametric calibration

model when the model is correctly specified and also when the
model is misspecified.

1. The first setting. The physical response is yp(x) =
exp(x/10) cos(x) + σ e for x ∈ [π , 3π ], where σ = 0.1
and e ∼ N(0, 1). The computer model is ys(x, θ) =
0.5 exp(x/10) cos(x) exp(x/5)

θ
with the calibration parameter

θ . The optimal calibration function is θ∗(x) = 0.5 exp(x/5).
The emulator is trained on the domain [π , 3π ]×[π/5, 6π/5].

2. The second setting. The physical response is yp(x) =
cos(2x) sin(x/2) + σ e for x ∈ [0.5π ,π ], where σ = 0.1 and
e ∼ N(0, 1). The computer model is

ys(x, θ) = cos(2x) sin(x/2) exp
(

3θ
0.5(x − 2)2 + 0.5

− 3
)

with the calibration parameter θ . The optimal calibration
function is θ∗(x) = 0.5(x−2)2+0.5. The emulator is trained
on the domain [0.5π ,π ] × [π/9,π/2].
For both the cheap and expensive code cases in these two

settings, the simulation is repeated 100 times. In each replica-
tion, n = 50 sample points are generated from on the physical
response model with the design points xi’s uniformly generated
on the domain.

The following metrics are employed to compare different
methods. The accuracy of the estimate θ̂ (x) is measured by the
L2-loss, {

∫
X (θ∗(x)−θ̂ (x))2dx}1/2. For eachmethod, confidence

intervals are constructed for three nominal levels of coverage
probability, 90%, 95% and 99%. Suppose the upper and lower
bound of the confidence interval are U(x) and L(x). Its average
width across the domain X is computed as

∫
X {U0.05(x) −

L0.05(x)} dx. The average coverage rate (CR) across X is mea-
sured as

∫
X I(Uα(x) > θ∗(x) > Lα(x)) dx/|X |. The integrals

are approximated by the Riemann sum with 200 equally spaced
points on the domain.

The results are summarized in Tables 1 and 2. In term of
estimation accuracy, the correctly specified parametric calibra-
tion model gives the best result, RKHS-Cubic and the Bayesian

Table 1. Simulation 1 (Param-Exp model).

Code Method L2-loss 90% 95% 99%
Width CR Width CR Width CR

CC Const 2.222 2.376 0.123 2.831 0.146 3.721 0.193
(0.022) (0.027) (0.001) (0.032) (0.002) (0.042) (0.002)

Param-Exp 0.063 0.527 0.883 0.628 0.946 0.825 0.989
(0.003) (0.006) (0.021) (0.007) (0.014) (0.010) (0.007)

Param-Quad 0.086 0.620 0.822 0.739 0.891 0.971 0.966
(0.003) (0.008) (0.020) (0.009) (0.016) (0.012) (0.009)

RKHS-Cubic 0.131 1.074 0.895 1.280 0.937 1.682 0.979
(0.004) (0.021) (0.012) (0.025) (0.010) (0.033) (0.005)

Baysian 0.157 1.696 0.960 2.030 0.979 2.693 0.994
(0.005) (0.019) (0.006) (0.022) (0.004) (0.029) (0.001)

EC Const 2.288 2.550 0.129 3.038 0.155 3.993 0.204
(0.024) (0.027) (0.002) (0.033) (0.002) (0.043) (0.002)

Param-Exp 0.072 0.535 0.830 0.637 0.903 0.837 0.965
(0.005) (0.007) (0.024) (0.008) (0.019) (0.010) (0.012)

Param-Quad 0.095 0.643 0.827 0.766 0.891 1.007 0.955
(0.005) (0.008) (0.021) (0.010) (0.017) (0.013) (0.011)

RKHS-Cubic 0.164 1.296 0.890 1.544 0.935 2.029 0.981
(0.007) (0.030) (0.011) (0.036) (0.009) (0.047) (0.005)

Baysian 0.165 1.762 0.948 2.108 0.972 2.792 0.996
(0.006) (0.018) (0.007) (0.022) (0.005) (0.030) (0.002)

NOTES: Comparison of methods with the cheap code (CC) and expensive code (EC). The mean (and SE) of the L2-loss and of the width and average coverage rate (CR) for
the 90%, 95%, and 99% confidence intervals.
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Table 2. Simulation 2 (Param-Quad model).

Code Method L2-loss 90% 95% 99%
Width CR Width CR Width CR

Const 0.278 0.075 0.202 0.089 0.245 0.117 0.341
(0.001) (0.001) (0.003) (0.001) (0.004) (0.001) (0.007)

Param-Exp 0.094 0.080 0.192 0.096 0.230 0.126 0.306
(0.000) (0.001) (0.003) (0.001) (0.003) (0.002) (0.005)

Param-Quad 0.011 0.048 0.882 0.057 0.944 0.075 0.988
(0.000) (0.001) (0.018) (0.001) (0.012) (0.001) (0.004)

RKHS-Cubic 0.019 0.076 0.898 0.091 0.945 0.119 0.985
(0.001) (0.001) (0.010) (0.001) (0.007) (0.002) (0.003)

Bayesian 0.025 0.116 0.948 0.138 0.963 0.182 0.978
(0.001) (0.001) (0.004) (0.001) (0.003) (0.001) (0.002)

Const 0.279 0.072 0.196 0.086 0.240 0.113 0.328
(0.001) (0.001) (0.003) (0.001) (0.005) (0.001) (0.006)

Param-Exp 0.095 0.079 0.186 0.094 0.223 0.124 0.297
(0.000) (0.001) (0.002) (0.001) (0.003) (0.001) (0.004)

Param-Quad 0.011 0.048 0.889 0.058 0.939 0.076 0.982
(0.001) (0.001) (0.018) (0.001) (0.014) (0.001) (0.008)

RKHS-Cubic 0.019 0.074 0.891 0.088 0.940 0.115 0.986
(0.001) (0.001) (0.011) (0.001) (0.007) (0.002) (0.003)

Bayesian 0.026 0.115 0.947 0.137 0.959 0.181 0.976
(0.001) (0.001) (0.004) (0.001) (0.003) (0.001) (0.002)

NOTES: Comparison of methods with the cheap code (CC) and expensive code (EC). The mean (and SE) of the L2-loss and of the width and average coverage rate (CR) for
the level 90%, 95% and 99% confidence intervals.

methods have comparable performance, whereas the Const
method performs the worst with no surprise. The results for
uncertainty quantification are more interesting. In term of the
coverage rate close to nominal level, RKHS-Cubic is competitive
to the correctly specified parametric calibration in the case of
cheap code, and outperforms in the case of expensive code. The
confidence intervals produced by misspecified parametric cali-
bration can have very low coverage. Comparing two nonpara-
metric functional calibration methods, the actual confidence
interval coverage rate for RKHS-Cubic is closer to the nominal
coverage rate, whereas the Bayesian method is conservative and
produces much wider intervals with coverage rate higher than
the nominal level.

6.2. TwoUnidentifiedModels

We consider two settings that the optimal calibration function
is not uniquely defined. Since parameter/function estimation is
meaningless in this situation, we focus on prediction perfor-
mance of the competing methods.

• The third setting. The physical response is yp(x) = 1+x3+σ e
for x ∈ [1, 2], where σ = 0.2 and e ∼ N(0, 1). The computer
model is ys(x, θ) = ys(x, θ) = θ1x+θ2x2 with two calibration
parameters θ1 and θ2. The functional calibration problem
is not identifiable. For example, one possible solution is
θ1(x) = 1/x and θ2(x) = x, another possible solution is
θ1(x) = x2 and θ2(x) = 1/x2. Plugging either solution into
the computer model gives a model that matches exactly the
physical response function.

• The fourth setting. The physical response is yp(x) = x3 + σ e
for x ∈ [1, 2], where σ = 0.2 and e ∼ N(0, 1). The
computer model is ys(x, θ) = θ1xθ2 with two calibration
parameters θ1 and θ2. The functional calibration problem is
non-identifiable because for any α ∈ R, the pair θ1(x) = xα

and θ2(x) = 3 − α constitutes a possible solution.

For both the cheap and expensive code cases in these two set-
tings, the simulation is repeated 100 times. In each replication,

n = 50 sample points are generated from on the physical
response model with the design points xi’s uniformly generated
on the domain.

The target of prediction is the physical response function
yp(x). To measure the qualify of the calibrated computer model
ys(x, θ̂(x)) in predicting yp(x), we use the L2-loss for prediction,
that is, {∫X [yp(x) − ys(x, θ̂(x))]2 dx}1/2. The average width
and average coverage rate for predicting the physical response
function can be defined similarly as that for estimating the
calibration function, used in Tables 1 and 2. Again, the integrals
are approximated by the Riemann sum with 200 equally spaced
points on the domain.

The results for several competing methods are summarized
inTables 3 and 4. The threemethods, Const, Param-Exp, Param-
Exp, do not suffer from the identifiability problem since these
models impose rigid forms on the calibration function. Our
algorithm for our RKHS-Cubic method converges to differ-
ent local solutions with random initial starting values, but the
resulting prediction is rather stable. For the third setting, our
RKHS-Cubic method gives the most accurate prediction in
terms of the L2-loss for prediction, while the Bayesian method
completely fails in prediction in the expensive code case, giving
a huge L2-loss. For the fourth setting, our RKHS-Cubic method
outperforms other competing methods in prediction except the
Const method and the laGP method. That the Const model
performs the best in this setting is not surprising, because this
setup is in favor of the Const model: The constant calibration
parameters θ1 = 1 and θ2 = 3 give the optimal solution,
and the Const method is constrained to only search over a 2-
dimensional parameter set rather than an infinite-dimensional
function space for the optimal solution. The laGP method is
built on the Const model and thus has its advantage. It is
interesting to note that the performance of the laGP method in
terms of L2-loss deteriorates significantly from the cheap code
to the expensive code case.

The results for uncertainty quantification in these uniden-
tified settings are more interesting. Our RKHS-Cubic method
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Table 3. Simulation 3. Comparison ofmethods with the cheap code (CC) and expensive code (EC). Themean (and SE) of the L2-loss and of the width and average coverage
rate (CR) for the level 90%, 95%, and 99% confidence intervals.

Code Method L2-loss 90% 95% 99%
Width CR Width CR Width CR

CC Const 0.151 0.158 0.298 0.188 0.358 0.247 0.477
(0.001) (0.002) (0.003) (0.002) (0.004) (0.002) (0.006)

Param-Exp 0.060 0.733 0.852 0.874 0.911 1.148 0.967
(1.016) (0.384) (0.018) (0.457) (0.014) (0.601) (0.009)

Param-Quad 0.052 0.181 0.899 0.216 0.944 0.284 0.985
(0.002) (0.002) (0.015) (0.003) (0.012) (0.003) (0.006)

RKHS-Cubic 0.044 0.158 0.908 0.188 0.953 0.247 0.986
(0.002) (0.002) (0.015) (0.002) (0.011) (0.003) (0.006)

Bayesian 0.067 0.885 1.000 1.054 1.000 1.381 1.000
(0.002) (0.001) (0.000) (0.001) (0.000) (0.001) (0.000)

laGP 0.057 0.667 1.000 0.795 1.000 1.044 1.000
(0.003) (0.007) (0.000) (0.009) (0.000) (0.012) (0.000)

EC Const 0.216 0.125 0.184 0.149 0.223 0.196 0.300
(0.010) (0.003) (0.006) (0.004) (0.008) (0.005) (0.011)

Param-Exp 0.481 0.302 0.605 0.360 0.670 0.473 0.775
(0.100) (0.040) (0.025) (0.048) (0.025) (0.063) (0.023)

Param-Quad 0.220 0.283 0.735 0.337 0.802 0.443 0.888
(0.025) (0.017) (0.021) (0.021) (0.019) (0.027) (0.014)

RKHS-Cubic 0.114 0.311 0.879 0.370 0.915 0.486 0.954
(0.015) (0.028) (0.017) (0.033) (0.015) (0.043) (0.011)

Bayesian 2.326 9.000 0.891 9.982 0.916 11.206 0.934
(0.054) (0.289) (0.016) (0.360) (0.015) (0.470) (0.014)

laGP 0.228 0.684 0.967 0.815 0.981 1.071 0.991
(0.024) (0.008) (0.003) (0.009) (0.002) (0.012) (0.001)

Table 4. Original Simulation 4. Comparison of methods with the cheap code (CC) and expensive code (EC). The mean (and SE) of the L2-loss and of the width and average
coverage rate (CR) for the level 90%, 95% and 99% confidence intervals.

Code Method L2-loss 90% 95% 99%
Width CR Width CR Width CR

CC Const 0.035 0.125 0.883 0.149 0.928 0.196 0.982
(0.002) (0.001) (0.023) (0.002) (0.018) (0.002) (0.008)

Param-Exp 0.060 0.180 0.859 0.215 0.914 0.282 0.975
(0.003) (0.004) (0.017) (0.005) (0.013) (0.006) (0.007)

Param-Quad 0.069 0.220 0.889 0.262 0.940 0.345 0.988
(0.002) (0.004) (0.013) (0.005) (0.009) (0.007) (0.004)

RKHS-Cubic 0.058 0.181 0.879 0.216 0.928 0.284 0.977
(0.002) (0.002) (0.017) (0.002) (0.013) (0.003) (0.008)

Bayesian 0.076 0.820 0.998 0.978 0.999 1.286 1.000
(0.003) (0.008) (0.001) (0.009) (0.001) (0.013) (0.000)

laGP 0.037 0.643 1.000 0.766 1.000 1.007 1.000
(0.002) (0.007) (0.000) (0.008) (0.000) (0.011) (0.000)

EC Const 0.035 0.129 0.898 0.154 0.955 0.202 0.992
(0.002) (0.001) (0.021) (0.002) (0.014) (0.002) (0.004)

Param-Exp 0.082 0.175 0.740 0.208 0.805 0.274 0.886
(0.004) (0.004) (0.020) (0.004) (0.017) (0.006) (0.012)

Param-Quad 0.066 0.245 0.893 0.291 0.937 0.383 0.984
(0.002) (0.014) (0.012) (0.016) (0.009) (0.021) (0.004)

RKHS-Cubic 0.057 0.180 0.877 0.214 0.937 0.281 0.978
(0.002) (0.002) (0.016) (0.003) (0.012) (0.004) (0.006)

Bayesian 0.061 0.944 0.986 1.125 0.994 1.477 0.999
(0.002) (0.002) (0.003) (0.002) (0.002) (0.003) (0.000)

laGP 0.055 0.645 1.000 0.768 1.000 1.010 1.000
(0.002) (0.007) (0.000) (0.009) (0.000) (0.011) (0.000)

gives comparatively shorter confidence intervals with actual
coverage rate close to the nominal coverage rate (with a
slight under-coverage). Even in the cases when the existing
Bayesian method (Brown and Atamturktur 2018) gives compa-
rable prediction errors, its confidence intervals (for prediction)
are substantially wider than those produced by our proposed
method. Inspecting the posterior distributions of the func-
tional calibration parameters produced by the MCMC indi-
cates that the MCMC samples diffuse over many local modes;
see Figure 1. This could be one of the main reasons why
the Bayesian method produces substantially wider confidence
intervals. Deeper understanding of the behavior of the Bayesian

method in unidentified settings needs further research. The
confidence intervals provided by the laGP method are shorter
than the corresponding intervals of the Bayesian methods but
are still much wider than those provided by our RKHS-Cubic
method.

7. Real Data: Young’s Modulus Prediction in
Buckypaper Fabrication

Pourhabib et al. (2015) proposed parametric functional calibra-
tion as a method for modulus prediction in buckypaper fabri-
cation. Below we apply the proposed nonparametric functional
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Figure 1. Posterior distributions from the existing Bayesian method for one simulated dataset from Simulation 4. Each panel shows the heat map of the posterior
distribution of the underlying function sampled byMCMCafter burn-in. The three panels correspond to the physical response ŷp, and two functional calibration parameters
θ̂1, θ̂2, respectively. The solid curve in the first panel represents the true physical response curve.

calibration method to the real dataset from Pourhabib et al.
(2015) and compare with the exponential calibration function
used in that work.

Nowwe provide some background of the problem. Buckypa-
per is a thin sheet of carbon nanotubes. As far as its mechanical
properties are concerned, buckypaper is not directly suitable for
most applications. Tomake it useable for practical purposes, one
method is to form composites of buckypaper (Tsai et al. 2011),
and another approach is to add Poly-vinyl alcohol (PVA) (Wang
2013). In the latter, which yields PVA-treated buckypaper, the
goal is to enhance the tensile strength of the final product, mea-
sured in terms of Young’s modulus. Practitioners want to under-
stand how the stiffness of the buckypaper, measured in terms of
the Young’s modulus, is affected by the addition of PVA in the
fabrication process in the presence of other noise variables. A
standard approach is to conduct a set of physical experiments;
that is, fabricate a number of buckypapers with varying amounts
of the PVA added, measure the Young’s modulus of the resulting
buckypaper, and fit a functional relationship between the PVA
input and the stiffness output. Because measuring the Young’s
modulus requires a process that damages the buckypaper under
test, the physical experiments are expensive to conduct, both
time-wise and cost-wise. Therefore, a computer model based on
a finite element approximation has been developed to numeri-
cally calculate the Young’s modulus of the buckypaper under a
given amount of PVA additive and a few specifications of carbon
nanotubes (Wang 2013).

Pourhabib et al. (2015) reported that this computer model
tends to underestimate the Young’s modulus for small amounts
of PVA and overestimate the modulus for larger amounts of
PVA. Understanding of the physical process suggests that such
a mismatch is caused by the assumption made in the simulation
that the effectiveness of PVA—that is, the percentage of the PVA
absorbed in the process—stays unchanged as its amount varies.
For the computer model outputs to better match the physical
experiment outcomes, Pourhabib et al. (2015) considered a
modified computer model that includes the effectiveness as a
calibration parameter. To determine the value of this parame-
ter is a case of functional calibration because the effectiveness
depends on the PVA amount, which is the control variable.

The total number of physical data points is 17. To train the
emulator model, we used 150 simulated data points from the
finite element model. To remove themodel bias of the computer
model, a constant was subtracted from the physical data such
that the physical data and the simulated data have equal average
response over their common range of the control variable. Then
the six methods used in the previous section were applied. The
fitted calibration functions θ(·) for various methods are pre-
sented in Figure 2. TheConstmethod and the laGPmethodhave
constant calibration parameter and their results are not plotted.
All fitted functions show that the effectiveness is a roughly
decreasing function of the PVA amount in the range [0.7, 1.1],
while the two parametric models indicate steeper decrease. The
Param-Quad, RKHS-Cubic and the Bayesian method also show
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Figure 2. Comparison of four methods for fitting the calibration parameter effectiveness as a function of PVA amount. In each panel, the solid line represents the fitted
calibration function, and the dashed lines represent the uncertainty by one standard deviation from the fitted function.

Table 5. Leave-one-out and leave-two-out cross-validation absolute prediction error (APE) formodulus prediction in buckypaper fabrication. Themean and standard error
(in parenthesis) of the APEs is presented for each method.

leave-C-out Const Param-Exp Param-Quad RKHS-Cubic Bayesian laGP

C = 1 130.41 127.71 111.83 59.73 77.89 67.88
(19.37) (25.06) (17.68) (9.33) (19.21) (15.13)

C = 2 129.72 124.79 110.15 60.32 88.24 80.16
(5.86) (7.93) (4.74) (3.09) (7.61) (4.72)

increase of the effectiveness in the PVA range [1.1, 1.2]. The two
functional calibration methods, RKHS-Cubic and the Bayesian
method, yield calibration functions with similar general
shape, while the result of RKHS-Cubic exhibits greater local
variability.

We also used cross-validation to compare the prediction
performance of themethods, using the absolute prediction error
(APE) as the metric for evaluation. Suppose ypi is the observed
response of the ith observation of the physical data, and ycvi is
the predicted response using the model fitted by leaving out
the ith observation. The corresponding cross-validated APE is
computed as APEi = |ypi −ycvi |. From Table 5, our RKHS-Cubic
clearly has the smallest average leave-one-out cross-validated
APE. Because we only have seventeen physical data points in
total for leave-one-out cross-validation, the standard errors are
too big to claim statistical significance. We then performed
a leave-two-out cross-validation which randomly leaves two
observations out and computed the cross-validated APE for

each leave-out observation similar to above. The leave-two-out
process was repeated 100 times and the results are presented
in Table 5. The substantially smaller standard errors returned
by the leave-two-out cross-validation indicates that the better
performance of RHKS-Cubic over competing methods is statis-
tically significant.

8. Conclusion

The existence of different types of dependency among attributes
in complex systems is a well-known fact. In the context
of computer experiments, this article considers the depen-
dency between the calibration parameter and control variables
through a functional relationship. In this context, unique chal-
lenges are present, such as how to model that dependency, how
to obtain predictions, what the theoretical properties of the
prediction procedures are, and how to quantify the uncertainty
of the predictions. This article develops a frequentist approach
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to answer such questions. While existing Bayesian methods
require to fully specify a probabilistic model and the compu-
tation is based on Markov chain Monte Carlo sampling, our
frequentist approach does not rely on a concrete probabilistic
model and is based on optimization. We have showed that the
frequentist approach performs competitively in finite sample for
both prediction and uncertainty quantification.

The subject of functional calibration of computer models
is clearly widely open for future research. Both frequentist
and Bayesian approaches need further development to apply
to more sophisticated physical systems. This article provides
the first set of asymptotic results on functional calibration of
computer models such as consistency and rates of conver-
gence. These results only apply to the frequentist approach.
Whether and under what conditions the Bayesian approach
has frequentist asymptotic properties are unclear. Asymptotic
coverage property of confidence intervals for both frequentist
and Bayesian approaches is unstudied and still an important
research problem.

Supplementary Materials

The supplementary materials contain the proofs of Theorems 1–4.
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